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Abstract

Executing multiple applications on a single MPSoC brings the ma-
jor challenge of satisfying multiple quality requirements regarding
real-time, energy, etc. Hybrid application mapping denotes the com-
bination of design-time analysis with run-time application mapping.
In this article, we present such a methodology, which comprises a de-
sign space exploration coupled with a formal performance analysis.
This results in several resource reservation configurations, optimized
for multiple objectives, with verified real-time guarantees for each in-
dividual application. The Pareto-optimal configurations are handed
over to run-time management which searches for a suitable mapping
according to this information. To provide any real-time guarantees,
the performance analysis needs to be composable and the influence
of the applications on each other has to be bounded. We achieve
this either by spatial or a novel temporal isolation for tasks and by
exploiting composable NoCs. With the proposed temporal isolation,
tasks of different applications can be mapped to the same resource
while with spatial isolation, one computing resource can be exclu-
sively used by only one application. The experiments reveal that
the success rate in finding feasible application mappings can be in-
creased by the proposed temporal isolation by up to 30% and energy
consumption can be reduced compared to spatial isolation.

1 Introduction

Modern multiprocessor system-on-chips (MPSoCs) contain an increasing number of
heterogeneous resources, i.e., processing elements (PEs), distributed memories, and
parallel communication interconnects. This advances the admittance of more and more
functionality into a single chip, which is becoming a prerequisite for implementing
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Figure 1: Overview of the presented hybrid mapping methodology.

modern mobile and multimedia devices, as well as near-future automotive and avion-
ics multi-/many-core systems with varying mixes of concurrently running real-time
applications. These application mixes are not always known a priori: At design time,
applications may stem from different developer teams and/or are added at different
points of time to the already running system. Also, the number of possible application
mixes is exponential to the number of applications. This renders the analysis of all
application mixes practically infeasible, even if all applications would be known. In
this context, run-time management (RM) has the purpose of partitioning the system re-
sources and mapping applications onto these partitions dynamically in such a way that
certain objectives such as energy consumption are optimized. For this task, RM has to
be able to anticipate the impact of the different mapping options on (a) the individual
application objectives and (b) the overall system objectives, e.g. resource utilization. In
recent years, several approaches have emerged tackling the problem via design-time,
run-time and combined design- and run-time techniques (termed hybrid), see Singh
et al. (2013b) for an overview.

In this article, we present a novel hybrid application mapping methodology outlined
in Fig. 1. The methodology enables the dynamic management of multiple real-time
applications with high utilization of available system resources. Based on a formal
specification of an application by a task graph, different mapping candidates are gener-
ated and evaluated with respect to their resource requirements and obtainable execution
qualities, called quality numbers, at design time. To deal with (hard) real-time require-
ments, a performance analysis is proposed to determine worst-case latencies, and map-
ping candidates that do not fulfill deadline constraints are immediately rejected. The
result is a set of so-called operating points (OPs) which are non-dominated regarding
their resource requirements and quality numbers. The idea is that this reduced infor-
mation is then used by the RM to find a suitable application mapping at run time in
a highly predictable fashion, however, with a lower complexity than when having to
explore the complete search space without exploration at design time.
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However, as soon as multiple individually designed applications are executed on the
same system, there would exist side effects in case they share common resources like
PEs, memory, or the communication infrastructure which makes static analysis worth-
less. The main challenge of hybrid application mapping is therefore to guarantee that
an application’s execution properties, which were analyzed at design time, will actu-
ally be satisfied at run time when executed together with other applications. This is
particularly true for applications with real-time requirements that have to meet individ-
ual task or application deadlines, where unbounded interference would lead to deadline
violations. For applying hybrid application mapping in this context, it becomes a pre-
requisite that the system is composable Akesson et al. (2011). According to Akesson et
al. composability is a concept to reduce complexity in real-time MPSoC systems. Com-
posability ensures that the concurrent execution of multiple applications on a common
system only has a bounded effect on each application’s performance value and it thus
ensures that all deadlines can still be met when running any mixture of applications.
This is achieved by analyzing each application individually with resource reservations
at design time and ensuring that the required resource reservations are provided at run
time in the presence of any arbitrary application mix.

A common approach in related work Ykman-Couvreur et al. (2006); Shojaei et al.
(2013); Wildermann et al. (2014) is to try to reduce any side effects by assigning PEs
exclusively to applications, so that only tasks of the same application may share the
same PEs. Yet this way of creating spatial isolation is realized for PEs only. So, these
approaches do not consider that the on-chip communication infrastructure is typically
shared to realize flexible memory accesses and data transmissions. In fact, Weichslgar-
tner et al. (2014) recently showed that approaches which neglect communication are
too optimistic. This basically means that applications pass admission control and are
executed although their deadlines could actually be violated. As a solution Weichsl-
gartner et al. (2014) propose a hybrid application mapping approach for MPSoCs with
a composable network-on-chip (NoC) architecture to also bound the interferences in
communication. Isolation of tasks of different applications is still obtained via spatial
isolation by exclusive assignment of tasks to PEs which, however, may result in poor
PE utilization rates.

As a remedy, we present a novel hybrid mapping approach that is temporal isolation
of applications on both computational and communication resources. In particular, we
propose (a) novel composable scheduling and performance analysis techniques, and
(b) a constraint-based run-time mapping approach supported by design-time analysis,
which enable to bound the interference effects between applications even if they share
the same resources. This has the major contribution that system resources can be uti-
lized much better and much more efficiently even under real-time constraints.

We illustrate this by means of a motivational example according to Fig. 2. We assume
a given heterogeneous 2× 2 NoC target architecture with PEs being either of resource
type r1 or r2. An example application, see Fig. 3(a), is specified by a task graph
with four tasks ti and four messages mi. Based on this specification, design space
exploration (DSE) is performed (e.g., Blickle et al. (1998); Lukasiewycz et al. (2008);
Mariani et al. (2012); Weichslgartner et al. (2014)) for generating and evaluating dif-
ferent mappings of tasks to resources. By employing static performance analysis, the
worst-case end-to-end latencies can be determined for each of these mappings, and
mappings that could violate deadlines are rejected. The result of the DSE is a set of
Pareto-optimal OPs that represents a trade-off between several objectives. Now, as
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Figure 2: Schematic overview of spatially and temporally isolated mappings: After
DSE, the resulting Pareto-optimal operating points (OPs) are stored along with their
quality numbers of resources used (#PE), energy consumption (E), and their worst-
case end-to-end latency (L). When the application is released at run time, it needs to
be mapped to the system where another application is already admitted and currently
executed (gray clusters Ca and Cb). Via spatial isolation, only OP1 can be feasibly
mapped (a) while with our proposed temporal isolation, also OP2 can be mapped (b).
This choice results in a lower energy consumption while still meeting the application’s
deadline by construction. Unused PE u0 could be power gated to save more energy.

symmetric architectures may have a huge number of concrete mappings with the same
number of PEs used in the mapping, each OP does not describe a concrete mapping
of tasks to resources and messages to the NoC, but a constraint graph instead which
describes (a) which tasks are clustered together and (b) mapped onto what resource
type to achieve the quality numbers analyzed. For example, for OP1 in Fig. 2, t0 and
t2 should be mapped together onto a PE with resource type r1 (denoted C4) and t1
and t3 together onto any available PE of resource type r1 (denoted C5). For OP2 tasks
t1 and t3 need to be mapped together onto a PE of the type r2 (denoted C3), while
tasks t0 and t2 should be mapped onto two different PEs of type r1 (denoted C1 and
C2). Overall, OP2 uses more resources (two r1, one r2) than operating point OP1 (two
r1, zero r2). In this example, task mappings according to operating point OP2 can be
executed more efficiently and thus have a lower energy consumption due to the higher
degree of parallelism. Please thereby note that a constraint graph stands for a family
of concrete and symmetrically identical mappings. The advantage of this separation
of static quality analysis and run-time search for a suitable mapping is to reduce the
complexity of run-time mapping to a largest possible extent.

This information is now used by the RM prior to starting each application at run time.
In the example illustrated in Fig. 2, tasks belonging to another application (Ca and Cb)
are already mapped to some resources. This means that the RM needs to determine
a feasible mapping just for the new application. Figure 2(a) illustrates a RM strategy
based on spatial isolation. Here, the already occupied resources cannot be used for
mapping the new application. Thus, there does not exist a feasible mapping for operat-
ing point OP2, as there is no unoccupied instance of resource type r2 for mapping the
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tasks represented by C3. RM therefore has to test the operating point with next lower
energy consumption, i.e., operating point OP1, which then can be feasibly mapped as
illustrated in the figure. In contrast, the proposed approach is now able to share PEs un-
der certain conditions as introduced in this article. As a consequence, operating point
OP2 can be mapped according to Fig. 2(b), resulting in a lower energy consumption,
where even the unoccupied PE u0 could be powered down.

As illustrated, the advantage of allowing temporal is to obtain a higher utilization of the
system resources while satisfying predictability requirements on execution time. This
not only has the direct consequence that a higher number of applications can be exe-
cuted concurrently, but it is also possible to execute them on fewer PEs than when they
are reserved exclusively for an application. Unused PEs can be power gated, which
may additionally reduce energy consumption. Moreover, in emerging many-core sys-
tems, temporary or even permanent unavailability of hardware resources is expected to
be experienced more often because of hardware faults (manufacturing variability and
aging) or temperature/power management (cf. Henkel et al. (2013)). In this context,
the proposed mapping approach enhances robustness as it is possible to react to un-
availability of PEs by re-mapping affected applications onto the remaining PEs, which
can be shared with other applications. Overall, the contributions of this article are the
following:

• This article presents the hybrid application mapping methodology, first in-
troduced in Weichslgartner et al. (2014), in more detail and with more ex-
amples. This approach combines the strengths of design time, e.g., analysis
and compute-intensive optimization, with the flexibility of run-time decision
making to cope with dynamism. While related work often neglects or sim-
plifies the NoC communication, with this hybrid application mapping (HAM)
methodology, timing guarantees for state-of-the-art packet-switched NoC ar-
chitectures can be given.

• We enhance this methodology by including the concept of temporal isola-
tion. This, opposed to Weichslgartner et al. (2014), enables the sharing of PEs
among different applications while still preserving real-time requirements. In
consequence, this increases the utilization of the system and enables possibil-
ities for energy saving.

• We evaluate execution times of the RM through a simulation of embedded
hardware which is not considered in Weichslgartner et al. (2014). For bound-
ing the execution times, we propose to use the backtracking algorithm with
timeout mechanism and outline the implications in the conducted experiment.

The remainder of the paper is outlined as follows: In Section 2, we give an overview of
related work. We formalize the used model of applications and system architecture in
Section 3. Section 4 describes our formal design-time analysis while Section 5 details
the design-time optimizations. In contrast, Section 6 deals with run-time mapping. In
Section 7, we evaluate our approach through several experiments and conclude our
work in Section 8.

2 Related Work

According to Singh et al. (2013b), application mapping approaches for embedded
multi-/many-cores can be classified as design-time mapping, (on-the-fly) run-time
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mapping, and hybrid (design-time analysis and then run-time use) mapping. In the
following, we give a brief overview of the existing mapping approaches:

Design-time mapping approaches require a global view of the system for which appli-
cation mapping is then optimized. While these approaches enable application execution
with high predictability, support of varying sets of executed applications and/or unpre-
dictable dynamic workload scenarios is not in their focus. In general, there are not any
strict requirements on the execution-time of design-time approaches and they can uti-
lize well-known optimization techniques such as integer linear programming (ILP) Che
and Chatha (2010), evolutionary algorithm (EA) Choi et al. (2012), simulated anneal-
ing (SA) Orsila et al. (2007), or divide-and-conquer Kang et al. (2012).

Run-time mapping approaches use scalable run-time heuristics to determine applica-
tion mapping whenever the workload scenario of the system is dynamically changing.
However, they do neglect or cannot guarantee the predictable execution of applica-
tions with (typically hard/soft) real-time requirements. In contrast to design-time map-
ping, the execution time and available power for determining a mapping is limited.
In consequence, simple and fast heuristics such as simple nearest neighbor algorithms
have been proposed here (e. g. Carvalho et al. (2007); Weichslgartner et al. (2011)).
The objectives for run-time optimization are typically soft real time (e. g. Brião et al.
(2008)), energy (e. g. Chou et al. (2008); Hölzenspies et al. (2008)), or average speedup
(e. g. Kobbe et al. (2011)). In Hölzenspies et al. (2008), an iterative online application
mapping methodology for heterogeneous NoC architectures is proposed. After an ini-
tial greedy task to resource assignment, the mapping is optimized and afterwards it
is checked if all quality-of-service (QoS) are met. If not, the mapping is marked as
infeasible and feedback to the previous steps to remap the application is given. In con-
trast to this work, we propose to pre-define already mapping classes which define the
implementation, i.e. task variant for a certain resource type, at design time.

Hybrid application mapping (HAM) attempts to combine the strengths of design-time
and run-time mapping. Here, scenario-based (e. g. van Stralen and Pimentel (2010))
and multi-mode (e. g. Wildermann et al. (2011)) embedded system design tries to opti-
mize the mappings for different workload scenarios or execution modes at design time
and then just applies them at run time. Yet, considering all possible combinations of ap-
plications in different scenarios, of course, would result in a lot of mappings that need
to be stored, as the number of combinations increases exponentially with the number
of applications. To reduce this number of mappings, the authors in Quan and Pimentel
(2015) propose to save only a “representative subset of scenarios for each cluster”. For
each application, two operating points (throughput-optimized and throughput under a
certain energy budget) are stored after DSE. The RM then tries to detect a scenario
at run time and to customize and optimize the mapping accordingly. In contrast to
this approach, we exploit the concept of composability to explore several mappings
per application which can be embedded at run time with guaranteed upper bounds for
end-to-end-latency and without the need of scenarios and any run-time optimization.

In Singh et al. (2013a), a hybrid mapping methodology that determines energy and
throughput optimized application mappings is proposed. Pareto-optimal mappings
with iteratively increased hop distances between the tasks are generated at design time.
At run time, a heuristic selects a mapping based on the number of used processor
tiles while only considering the maximal number of hops for the respective operating
point. This approach is only viable when using a communication infrastructure which
provides dedicated point-to-point connections between all pairs of computational re-
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sources. This has the major advantage that the usage of such end-to-end connections
results in fixed communication latencies between computational resources, and thus
supports the verification of real-time guarantees. However, implementing dedicated
connections between all pairs of computational resources is not practicable and scal-
able in many-core systems with tens or even hundreds of PEs.

In Mariani et al. (2010); Ykman-Couvreur et al. (2011), HAM approaches where
a design-time DSE generates operating points which are mapped onto a bus-
based MPSoCs during run-time by a light-weight multiple-choice knapsack problem
(MMKP) solver are presented. Another approach for bus-based MPSoCs which solves
the MMKP heuristically during run time by using Pareto-Algebra is presented in Sho-
jaei et al. (2009). Jung et al. (2014) propose to explore Pareto-optimal schedules for
data-flow modeled applications while a greedy run-time manager performs allocation
and binding. As communication infrastructure they assume a NoC “point-to-point con-
nections with fixed latency between tiles” and the real-time properties are assured by
spatial isolation, i.e., exclusive tile usage by one application.

In fact, sophisticated NoC architectures multiplex multiple communication flows over
shared resources, i.e., links Dally and Towles (2001). They perform packet-switched
routing by partitioning each communication into packets which are then routed over
shared links. While this enhances scalability, it makes it harder to give any guarantees
regarding the communication latency as this requires a communication infrastructure
with QoS guarantees. In order to give any QoS guarantee, each flow can only get a
limited time budget of a multiplexing interval. There are different strategies to assign
such budgets, e.g. priority-based Carara et al. (2011), global time division multiple ac-
cess (TDMA) Goossens et al. (2005), or weighted round robin Heisswolf et al. (2013).

3 Preliminaries

In the following, we introduce the required formal notations and models for applica-
tions as well as the MPSoC system architecture.

3.1 Application Model

In this work, we concentrate on periodic real-time applications (e.g. image/signal pro-
cessing, control loops, streaming and multimedia applications, etc.). Such applications
typically can be represented by acyclic, directed, bipartite task graphs. Fig. 3(a) illus-
trates an example. A task graph is denoted by GA(V,E). The vertices V = T ∪M
are composed of the set of tasks t ∈ T , representing sequential code segment, and the
set of messages m ∈ M , representing data exchanged between pairs of tasks. Conse-
quently, tasks in T are connected through directed edges in E with messages in M and
vice versa, i.e., E = T ×M ∪M × T .

Applications represented by task graphs shall be executed periodically once admitted
with period P and have to meet a certain deadline δ. Furthermore, we assume that
the period is at least as long as the deadline. Every message has a maximum data
size size(m) (i.e., payload), so that together with the period, a minimum bandwidth
requirement bw(m) can be calculated. Each task is assumed to represent a sequen-
tially executed code segments of each application, a worst-case execution time (WCET)
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Figure 3: Representation of (a) an example application by a task graph and (b) an
example system architecture including 4 PEs with two different resource types (colored
white and gray) and a 2× 2 NoC. One possible application mapping of the task graph
onto the architecture is shown in (c), also illustrating the two paths in the task graph
which are relevant for the calculation of the worst-case end-to-end latency by a solid
blue and a dashed red line.

W (t, u) can be determined through WCET analysis1 for each task t ∈ T on resource
u. The determination of task WCETs itself is not in the focus of this work but can be
derived by WCET analysis tools like aiT Ferdinand (2004) or Chronos Li et al. (2007).
However, to prevent cache interferences in private PE caches when mapping different
tasks to the same PE, cache partitioning, private scratchpads, or flushing caches after
each scheduling interval (c.f. Wilhelm et al. (2008)) may be considered.

3.2 System Architecture

The system architecturesGarch(U,L) targeted by our approach are many-core systems
which consist of a set of heterogeneous PEs u ∈ U . The resource type r ∈ R of a PE
u is specified by the function type : U → R. A NoC is used as communication
infrastructure where routers are connected with each other and to the PEs via links l ∈
L to form a 2-dimensional mesh topology, as exemplified in Fig. 3(b). Each link has a
capacity cap(l) which is proportional to the link width and the frequency 1

τ . Moreover,
we concentrate on packet-based routing, where messages are partitioned into flits which
are transmitted one after the other over the infrastructure. Transmission happens from
the sending to the receiving PE along a route of consecutive routers. The distance
between two PEs u1 and u2 is determined by a hop count function hops(u1, u2), i.e.,
the number of routers along the route.

4 Application Mapping and Static Performance Analysis

The worst-case end-to-end latency of an application depends on its mapping onto the
available computing and communication resources. Using the proposed model, this is
formulated as a mapping of the application graphGA(V,E) onto the architecture graph
Garch(U,L) obtained by binding each task and routing each message:

1We assume architectures with tiles consisting of a single PE and analyzable cache, e.g.
PowerPC with partitioned LRU cache Wilhelm et al. (2008).
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a) Binding β: T → U represents the assignment of each task t ∈ T to a target
PE β(t) ∈ U .

b) Routing ρ : M → 2L represents the routing of each message m with sender
t1 and receiver t2 over a set of connected links L′ ⊆ L that establish a path
between PE β(t1) with PE β(t2).

An example mapping of the introduced task graph GA(V,E) from Fig. 3(a) is shown
in Fig. 3(c).

For a mapping to be feasible, it must be guaranteed that the end-to-end latency for exe-
cuting an application does not exceed its deadline δ. The worst-case end-to-end latency
of the application depends on the critical path of the mapped task graph. For determin-
ing the critical path, we calculate the end-to-end latency for each path of GA(V,E)
by summing up the worst-case execution latencies TL of all tasks in the path and the
worst-case communication latencies CL of all messages in the path. The worst-case
end-to-end latency of a path path for a given binding β and routing ρ may then be
calculated according to

L(path, β, ρ) =
∑

∀t∈path∩T

TL(t, β(t)) +
∑

∀m∈path∩M

CL(m, ρ(m)). (1)

The worst-case end-to-end latency is then the latency of the path with the highest worst-
case end-to-end latency (i.e., the critical path):

L(β, ρ) = max
∀path∈paths(GA(V,E))

{L(path, β, ρ)}. (2)

Figure 3(c) presents an example where GA(V,E) basically includes two paths from
the source task t0 to the sink task t3. One path is (t0,m0, t1,m2, t3), and the other
path is (t0,m1, t2,m3, t3). In the given mapping, t0 and t1 are mapped together on
one PE so that m0 does not have to be routed over the NoC but can be established by
local memory. Note that the resulting delay for doing so has to be already included in
the WCET analysis.

When permitting to execute the application on resources that are potentially shared
with other applications, they may interfere and affect each other’s timing behavior. For
being able to bound this interference, and thus being able to calculate TL and CL
without knowing whether and how other applications share resources, composability
is required. In the following, we describe techniques for composable communication
scheduling and composable task scheduling and their respective worst-case analysis
as used in this work. Both techniques are based on the idea of reserving periodically
available time slots for data transmission and task scheduling, respectively. The inter-
esting aspect is that the worst-case execution and communication latencies obtained
here can be composable even during run-time mapping of new tasks into the system
if just certain mapping constraints are satisfied. This will be explained in detail in
Sect. 6.

4.1 Composable Communication Scheduling

In order to provide the desired composability, the NoC architecture has to fulfill certain
criteria and has to show a predictable timing behavior. One NoC architecture which
adheres to these requirements is proposed in Heisswolf et al. (2013). This architecture
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uses wormhole switching and the concept of virtual channels (VCs) to ensure a high
throughput and low latencies. Further, guaranteed service (GS) connections supporting
QoS can be set up and physical links are arbitrated in a weighted round robin fashion
for transmitting the flits of the different messages routed over it.

A number of SLmax time slots (one slot for transmitting one flit) is periodically avail-
able for the overall transmission out of which a budget of SL(m) ≤ SLmax time slots
can be reserved for the transmission of a message m. Note that, in contrast to a global
synchronous TDMA like presented in Goossens et al. (2005), only the number and not
the position of the allocated time slot is fixed. This increases the utilization while still
allowing to compute upper bounds for throughput and worst-case latency.

The worst-case communication latency CL(m, ρ(m)) for transmitting message m ∈
M depends on the number of flits flits(m), the length of the route ρ(m), and the
number of reserved time slots SL(m) and can be calculated as follows Heisswolf et al.
(2013):

CL(m, ρ(m)) = (flits(m) · f−1 + hops (ρ(m)) ·∆Rf ) (3a)

+

(⌈
flits(m)

SL(m)

⌉
− 1 + hops (ρ(m))

)
· (SLmax − SL(m)) · f−1.

(3b)

In Eq. 3a, ∆Rf denotes the delay for routing one flit in one router with the frequency
f . Once the routing decision has been made in one router, one flit per clock cycle (f−1)
can be transmitted.

Figure 4 illustrates the best case and the worst case for communication latencies with
examples. The best case corresponds to the case without any interference. The mes-
sage can utilize the whole scheduling interval SLmax and the transmission delay only
depends on the message size flits, the hop distance hops, and the router delay ∆Rf

(see first summand in Eq. (3a)). The second summand in Eq. (3b) gives the maximal
delay possible by interference with other messages. This interference can happen in⌈
flits(m)
SL(m)

⌉
− 1 arbitration intervals and depends on the number of hops.

4.2 Composable Task Scheduling

Composability at PE level is achieved by temporally isolating the execution of tasks on
it. Therefore, the processing time on a PE is partitioned into service intervals with fixed
time duration. Within a service interval, tasks are scheduled exclusively. We consider
service intervals of equal length SI on each PE type type(u)2. Transition between the
scheduling of two tasks, i.e., task switching, takes place after each service interval SI .
This incurs an operating system (OS) scheduling overhead after each interval denoted

by SIos. Service intervals are made available to the tasks in the PE’s waiting queue in
a round robin fashion. Each task is assigned with a fixed priority that determines the
order in which intervals are allocated to tasks by the scheduler.

This scheduling strategy is illustrated in Fig. 5 for two tasks t1 and t2 in the ready queue
of a PE. The priority of task t1 is higher than the priority of task t2, i. e., pr(t1) <
pr(t2) (the lower the value the higher is the priority). So, task t1 is assigned the first

2Generally, the service intervals on different PEs or PE types could be of different lengths.
Our approach could still work here, but for keeping notations simple, we make this assumptions.

10



t
SLmax

t
SLmax

2*SLmax

t
SLmax SLmax

(a) Best Case

t
SLmax

SLmax

2*SLmax 3*SLmax

t
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Figure 4: Example for weighted round robin for the flows of flits of two messages m1

and m2. Periodically, SLmax = 4 time slots are available for transmission. The red
flow has SL(m1) = 2 and consist of 4 flits (flits(m1) = 4). In the best case (a) the
latency only depends on flits(m1), hops(ρ(m)), and ∆Rf , i.e. Eq. (3a). Whereas,
Eq. (3b) describes the additional delay which can occur if only reserved time slots
are available. At each hop in

(⌈
flits(m1)
SL(m1)

⌉
− 1
)

arbitration windows, the flits can be
delayed by (SLmax − SL(m1)) · τ . Note that the position of the time slot can vary in
each hop, while the number of time slots is assumed fixed per message. Transmission
can also use more time slots than actually reserved given there are unused time slots
available. However, it is always guaranteed that at least the reserved time slots are
available within the period.

t1 t2 t1 t2

time

SI SI SI SI SI
SIos SIos SIos SIos SIos

t1

Figure 5: Scheduling of tasks (with temporal isolation) mapped on a PE. The tasks
are executed in time slots with the length SI and operating system overhead, e.g., task
switching, is performed in SIos.

service interval. Allocation then proceeds by means of round robin scheduling. With
the above scheduling mechanism, we develop a performance analysis method next to
derive the worst-case execution latency of a task.

As initially stated, it is our goal to achieve a high utilization of the given many-core sys-
tem despite having to isolate applications from each other in order to satisfy real-time
constraints. The worst-case execution latency of a task basically consists of two parts:
First, the worst-case execution time of the task without interference TLexec(t, β(t)).
The proposed analysis also considers an upper bound on the number of tasks that could
share the same PE, denoted by Kmax. Therefore, the second part is the worst-case in-
terference TLinter(t, β(t)) from other tasks that could possibly be mapped and sched-
uled on the same PE. Thus, the total worst-case execution latency (TL(t, β(t)) of a
task is given by

TL(t, β(t)) = TLexec(t, β(t)) + TLinter(t, β(t)) (4)
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t0 t3

1 3

t0 is predecessor of t3

two other tasks can be scheduled here

(a) Maximal latency if predecessor is sched-
uled on the same PE.

t3

three other tasks can be scheduled here

Kmax-1

(b) Maximal latency in all other cases where
the introduced latency is solely dependent
on Kmax.

Figure 6: Example of the two cases of Eq. (7). The priorities of the tasks are annotated
in circles.

As each task is executed in service intervals and considered to finish at the end of an
interval, the value of TLexec(t, β(t)) is not necessarily equal to the WCETW (t, β(t)).
3 Rather, this value is given by

TLexec(t, β(t)) =

⌈
W (t, β(t))

SI

⌉
× (SI + SIos). (5)

The above expression is obtained from the fact that each task has to complete
dW (t, β(t))/SIe service intervals to finish its execution. Moreover, each task exe-
cution incurs the OS scheduling overhead SIos every time there is a switch into its
service interval from the service interval of the previously scheduled task (cf. Fig. 5).

The worst-case interference from other tasks consists of two components: the worst-
case interference before TLbinter(t, β(t)) and after TLainter(t, β(t)) the first service
interval of t, which is given by

TLinter(t, β(t)) = TLbinter(t, β(t)) + TLainter(t, β(t)). (6)

Recall Kmax being the maximum overall number of tasks allowed to be mapped onto
a PE, and let pred(t) be the predecessor of task t in the currently analyzed path of the
task graph. Then, worst-case interference before the first service interval is formulated
as follows:

TLbinter(t, β(t)) =

{(
pr(t)− pr(pred(t))

)
×
(
SI + SIos

)
, if β

(
pred(t)

)
= β(t)(

Kmax − 1
)
×
(
SI + SIos

)
, otherwise.

(7)

If task pred(t) is mapped on the same PE as task t, data is exchanged locally and
the number of time intervals with length (SI + SIos) that t has to wait is pr(t) −
pr(pred(t)), as exemplified in Fig. 6(a). On the other hand, if pred(t) is mapped
onto another PE, then the maximum interference is due to the service intervals of the

3If considering different frequencies the WCET and the service intervals depend on the fre-
quency f , i.e., W (t, β(t), f), SI(f), and SIos(f). To simplify the formulae and w.l.o.g. we
omit the frequency parameter in the remaining article.
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possible number of other tasks (Kmax−1) on the PE (see Fig. 6(b)). This is because in
the worst case, the message from pred(t) would have to wait until the service intervals
of all other tasks finish.

Worst-case interference after the first service interval is given by

TLainter,t(t, β(t)) =

(⌈
W (t, β(t))

SI
− 1

⌉)
× tlinter (8)

where tlinter = (SI + SIos)× (Kmax − 1) is the maximal total interference from all
the remaining possible tasks between two consecutive service intervals of task t. The
first part of the equation gives the number of service intervals of task t between which
interference could happen (analogous to Eq. (5)).

The worst-case execution latency of task t can then be calculated by inserting Eqs. (5)–
(8) into Eq. (4).

5 Design Space Exploration

Due to our composability assumptions and using the performance analysis techniques
presented in Section 4.2, a DSE for finding Pareto-optimal mappings is applied to each
application individually. Here, multiple mapping candidates are generated per appli-
cation with verified real-time properties and optimized objectives. The gain of this
separation is that the complexity of analyzing a single application is dramatically re-
duced over the exploration of a complete system with various application mixes.

To efficiently explore various mappings in our DSE, we apply an approach that com-
bines an EA with a Pseudo-Boolean solver Lukasiewycz et al. (2008). The EA consti-
tutes an iterative optimization process: In the exploration phase a set of new applica-
tions mappings is generated by applying genetic operators, and in the evaluation phase,
this set is evaluated by using analytical models (e.g. for timing the one presented in
Section 4). Both phases are iteratively carried out to obtain a set of better and better so-
lutions over time. In each iteration, the best so far explored, non-dominated mappings
are updated and stored in an archive and returned once the DSE terminates (see Fig. 7).

Again, to enable the individual exploration of classes of optimal application mappings
by means of a formal analysis, the concept of composability is essential. Composability
ensures that the addition of a new application in the mix only has a bounded effect on
the performance values obtained for each application that was analyzed completely in
isolation without considering the execution behavior of any other application as this
would fail due complexity reasons.

5.1 Generation of Feasible Application Mappings

We apply the composable scheduling techniques presented in the last section. This
means that an application mapping during DSE is generated by (a) determining a bind-
ing β(t) of each task t ∈ T and (b) determining a routing ρ(m) of each message
m ∈ M . We consider deterministic xy-routing for the messages in the NoC. Routing
of each message does, therefore, not have to be explored explicitly, as proposed in Graf
et al. (2014), as it is implicit by the binding of the message’s m sending and receiving
tasks. In addition, also a priority pr(t) has to be assigned to each task for scheduling
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exploration phase:
explore 

∀t∈T: β(t), pr(t)
∀m∈M: ρ(m), SL(m)

archive

terminate?

return non-dominated 
mappings and generate 

constraint graphs

determine non-
dominated 

mappings & update 
archive

evaluation phase:
evaluate timing  etc.

Figure 7: Flowchart of DSE using EA, including the iterative process of exploration
and evaluation.

tasks on the same PE, and SL(m) has to be generated for the transmission of each
message.

In our approach, unique priorities for each task mapped to the same PE are assigned
in the exploration phase. In the evaluation phase, it is checked if the assignment is
feasible. Through a depth-first search, we identify if a task is a predecessor of another
task on the same PE and change the priorities if required.

Also, SL(m) has to be explored per message m. To satisfy the minimal bandwidth
requirements of the message, SL(m) has to be at least bw(m)

cap(l) · SLmax. By using a
higher SL(m), however, the worst-case end-to-end latency L(β, ρ) may be reduced.
Therefore, the exploration interval of SL(m) is defined as follows:

SL(m) ∈

[⌈
bw(m)

cap(l)
· SLmax

⌉
, SLmax

]
.

Only feasible application mappings are returned in the end. More formally, a mapping
is feasible if the following conditions hold:

• First, the worst-case end-to-end latency has to stay within the deadline:
L(β, ρ) ≤ δ. (9)

• Second, no PE is overutilized. Meaning that the load induced by all tasks
mapped onto the same PE stays below 100 %:∑

t∈T :

β(t)=u

⌈
W (t,β(t))
SI(t)

⌉
· (SI(t) + SIos)

P
≤ 1 , ∀u ∈ U. (10)

• Finally, no communication link is overutilized. This means that SL(m) of
all messages that are sent over the same route (same source PE and target
PE) do not exceed the overall available budget of time slots SLmax. Let
Mρ = {m | m,m′ ∈ M : ρ(m) = ρ(m′)} be the set of messages that are
sent over the same route. This constraint is then formulated as follows:∑

m∈Mρ

SL(m) ≤ SLmax, ∀Mρ (11)
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Figure 8: Several mappings of an application onto a NoC with SLmax = 10. (a)
and (b) are infeasible due to overutilization of shared resources, while (c) represents a
feasible mapping Weichslgartner et al. (2014).

An example of such an infeasible mapping due to overutilization of a link is
illustrated in Fig. 8(a).

5.2 Optimization Objectives and Evaluation

Our DSE considers multiple objectives related to non-functional properties. As mod-
ern embedded system have strict energy budgets, it is essential to minimize the energy
consumption of application mappings. Therefore, we include energy consumption min-
imization as one objective in the DSE (Objective I). This maximal energy consumption
EOV that is going to be minimized may be the sum of the energy consumed by the PEs
EPE and energy which is used to route the message over the NoC ENoC :

EOV = EPE + ENoC (12)

EPE =
∑
t∈T

(
power

(
type

(
β(t)

))
·W
(
t, β(t)

))
(13)

The maximal energy consumed in the PE is the product of the WCET of the task on the
mapped PE and the maximal power consumption power(r) for the given resource type
which is derived by the function type(u). The energy consumed by the communication
infrastructure for a message m is directly proportional to the number of hops and used
links. We derive ENoC from the NoC energy model in Hu and Marculescu (2003);
Wolkotte et al. (2005):

E
ρ(m)
NoCbit =hops

(
ρ(m)

)
· ESbit +

(
hops

(
ρ(m)

)
− 1
)
· ELbit (14)

ENoC =
∑
m∈M

(
E
ρ(m)
NoCbit · size(m)

)
. (15)

In Eq. 14, ESbit is the energy consumed per bit inside the router, ELbit is the energy
consumed on a link, and size(m) is the size of the message in bits.

Contrary to conventional exploration, the outcome of the DSE will not be used to en-
code a concrete task and communication assignment to be selected by the RM but rather
a class of mappings. More details are elaborated in Section 6. In order to find map-
pings that allow a greater run-time flexibility, we therefore also include objectives that
quantify the resource overhead and flexibility of an application mapping as follows:
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The overall number of messages routed over the NoC should be minimized (Objective
II). The reason is that, if two communicating tasks are mapped to the same PE, they
can exchange their data through local memory and hence ρ = ∅. This does not burden
the NoC infrastructure. Consequently, congestion on NoC links is reduced, making it
more likely to map this operating point at run time.

Another two objectives are the maximization of the average and the minimal hop dis-
tances (Objective III and IV). Again, here the idea is to increase flexibility by giving
preference to routings that are more likely to be feasibly routed during run time: the
longer routes are allowed to be, the less mapping restrictions exist.

As the targeted architecture is heterogeneous, different PE types may be selected for the
execution of the tasks. Only minimizing the overall number of allocated PEs without
differentiating between their resource types, will result in the generation of suboptimal
mappings, e.g., by always using the same PE type such as a powerful core which can
execute many tasks within the application’s period. However, if now during run time
all instances of this PE type are occupied, no more operating points could be embedded
in the system. To thwart this, we minimize the number of allocated PEs per resource
type to generate diverse operating points (Objective V).

Our DSE therefore performs a multi-objective optimization, with an overall of five
objectives. This results not in a single optimal, but in multiple Pareto-optimal appli-
cation mappings that trade-off between the different objectives. Such a Pareto front is
illustrated in Fig. 9 for two objectives.

6 Run-time Constraint Solving

The Pareto-optimal mappings generated by the DSE are handed over to the RM. Yet
each DSE mapping corresponds to a fixed assignment of tasks to concrete resources in
the architecture. However, in architectures with a multitude of equal resources, numer-
ous equivalent mappings may exist. Therefore, we transform the application mapping
(provided by β and ρ) into a constraint graph GC(VC , EC) as exemplified in Fig. 9
right. This graph represents a full class of symmetrical feasible mappings within the
NoC which are all equivalent to the application mapping that was actually determined
and analyzed during DSE. Consequently, all analyzed properties—particularly real-
time properties—also apply for these symmetrical mappings.

6.1 Constraint Graphs

As illustrated in Fig. 9, the vertices VC = TC∪MC of a constraint graph are composed
of task clusters belonging to the set TC and message clusters belonging to the set MC .

Each task cluster C ∈ TC represents a set of tasks that are mapped to the same PE, so
that ∀t, t′ ∈ C : βDSE(t) = βDSE(t′).

Each task cluster is annotated with typeCG(C) ∈ R, specifying the PE type onto which
the tasks are mapped, and furthermore, with load load(C) induced by the tasks on this
PE:

load(C) =
∑
∀t∈C

⌈
W (t, β(t))

SI

⌉
× (SI + SIos)

P
(16)
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Figure 9: Representation of the Pareto-front of explored mappings (left) and the con-
cept of a constraint graph (right) of an explored mapping containing two task clusters
and one message cluster with annotated constraint information.

Also, the scheduling information is annotated to the task cluster, i.e., the maxi-
mum number Kmax(C) of tasks allowed on the PE for scheduling and the priorities
〈pr(t), ∀t ∈ C〉 of all its tasks.

Each message cluster B ∈ MC represents a set of all messages which are routed
along the same path in the NoC between two such task clusters, so that ∀m,m′ ∈
B : ρ(m) = ρ(m′). Each message cluster is annotated also with the routing in-
formation, i.e. the accumulated SL(B) =

∑
m∈B SL(m) and the hop distance

hop(B) = hops(ρ(m)) between the sending and the receiving task clusters of mes-
sages m ∈ B.

6.2 Serializing Operating Points

To hand over the set of operating points to the RM the data has to be serialized. This
includes the constraint graph as well as the values for the explored objectives. The
memory requirement for these tuples can be calculated as follows:

sizeOP = sizeCG · nobj · sizeobj (17)

Where sizeCG is the memory requirement of the serialized constraint graph, nobj is the
number optimized objectives and sizeobj is the memory requirement of one objective
value. For serializing the constraint graph the graph needs to be traversed and all task
clusters, all message clusters, and all edges have to be serialized.

sizeCG = |TC | · sizeC + |MC | · sizeB + |EC | · sizee (18)

For a task cluster, a constraint graph unique ID, the number of tasks |C| , the load
load(C), the number of additional tasksKmax, and the priorities of the tasks need to be
saved. The serialized message clusters include an ID, the hop constraint hop(B), and
the SL constraint SL(B). With nobj = 7, sizeobj = 4 B, |TC | = 10, sizeC = 10 B,
|MC | = 8, sizeB = 6 B, and |EC | = 12 sizee = 4 B would result in sizeCG = 196 B
and sizeOP = 224 B.
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Figure 10: One constraint graph represents multiple feasible mappings with the same
characteristics and bounds on end-to-end latency and energy consumption.

6.3 Run-time Mapping of Constraint Graphs

The main task of the RM is to select a suitable operating point of the application that
should be executed and do the actual run-time application mapping. In principal, the
RM can select any operating point out of all found points which fulfills the application’s
requirement, e.g. performance.4 To fulfill system requirements, e.g. utilization, the RM
may also re-map an already mapped application to another operating point. The step
of run-time application mapping itself is to find a concrete application mapping based
on the notation of a constraint graph GC(VC , EC) and the architecture Garch(U,L)
by (a) binding each task cluster to a PE, i.e. βCG: TC → U , and (b) routing each
message cluster over a route of consecutive links, i.e., ρCG : MC → 2L.5 Instead
of mapping the task graph GA(V,E) onto the architecture, mapping the constraint
graph GC(VC , EC) has a lot of advantages: As tasks are clustered to a task cluster and
messages to a message cluster, it is evident that |TC | ≤ |T | and |MC | ≤ |M |. In con-
sequence, the size of the graph that needs to be mapped during run time is smaller than
the original size of the task graph. Second, the constraint graph also is a very compact
representation of possibly multiple symmetrical run-time mappings. This basic idea is
illustrated in Fig. 10, where one constraint graph can be feasibly mapped in multiple
ways while guaranteeing the analyzed quality bounds. Third, time-consuming analysis
is performed at design time. The analyzed properties apply for a mapped constraint
graph due to the composability of our approach.

A feasible mapping of a constraint graph has to satisfy the following constraints: First,
the routings of all message clusters B ∈MC have to fulfill constraints C.1 and C.2:

C.1 Routing ρCG(B) has to provide a connected route of links between βCG(C1)
and βCG(C2), i.e., the target PEs of its sending and receiving task clusters are
βCG(C1) and βCG(C2), respectively, with (C1, B), (B,C2) ∈ EC . The hop

4A methodology to order and select OPs for energy-efficient mappings can be found in Wil-
dermann et al. (2015).

5Note the difference of the binding and routing to β and ρ during DSE.
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count of this route must not exceed the given maximal hop count associated
with the message cluster:

hops (ρCG(B)) ≤ hop(B) (19)

C.2 LetMC denote the set of all already routed message clusters in the system.
The accumulated SL(B) of the messages routed over each link l ∈ ρCG(B)
must not exceed the maximal number of time slots SLmax:

SL(B) +
∑

B′∈MC :

l∈ρCG(B′)

SL(B′) ≤ SLmax, ∀l ∈ ρCG(B) (20)

Figure 8(b) gives an example where this constraint is violated resulting in an
infeasible run-time mapping.

Second, the bindings of all task clusters C ∈ TC have to fulfill constraints C.3–C.5:

C.3 The resource type of the target PE has to be the same as is required for the
task cluster:

type
(
βCG(C)

)
= typeCG(C) (21)

C.4 Let TC denote the set of task clusters that are already bound. The load induced
by all task clusters which are mapped on a target PE βCG(C) together with
the load of the new task cluster C must not exceed 100%:

load(C) +
∑
C′∈TC :

βCG(C′)=βCG(C)

load(C ′) ≤ 1 (22)

C.5 The overall number of tasks bound on a target PE must not exceed the max-
imal numbers Kmax allowed for feasibly scheduling any task cluster on the
PE according to its performance analysis results:

|C|+
∑
C′∈TC :

βCG(C′)=βCG(C)

|C ′| ≤ min
C′∈TC :

βCG(C′)=βCG(C)

{Kmax(C),Kmax(C ′)} (23)

In case of a spatial isolation, only constraint C.3 and the absence of other tasks on
βCG(C) would be sufficient to guarantee the worst-case latency (see Eq. (4)) as only
tasks of one task cluster would be mapped together onto the same PE. However, when
applying temporal isolation, all constraints need to hold. Figure 8(c) exemplifies a
feasible run-time mapping which fulfills all mentioned constraints. If all constraints
are fulfilled but the priority ranges of the tasks in C and in C ′ overlap, the priorities of
C are shifted after mapping to keep them unique on the PE. An example of this priority
assignment and constraint C.5 can be found in Fig. 11.

6.4 Backtracking Algorithm

To find a mapping which satisfies all the five constraints given a constraint graph and
to solve the corresponding constraint satisfaction problem6, we propose a backtracking

6The mapping of the constraint graph is a variant of task mapping which can be modeled as
a bin-packing problem which is NP-complete Brião et al. (2008).
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Figure 11: Example of a binding of a task cluster C = {t2, t3} to u. The maximal
number of tasks allowed on a PE for scheduling C is Kmax(C) = 4. The tasks from
task clusters C ′ = {t0} and C ′′ = {t1}, C ′, C ′′ ∈ TC are already present at u and
support a maximum task number of Kmax(C ′) = Kmax(C ′′) = 5. After mapping C,
no further tasks can be mapped onto u due to constraint C.5. The priorities (annotated
in circles) of the tasks in C are updated to 3© and 5© in order to keep the priorities on
u unique.

algorithm as shown in Algo. 1 and is an extension of the algorithm presented in Weich-
slgartner et al. (2014). This algorithm is executed for each application that should be
started on the system. This algorithm starts with A = ∅ and then searches recursively
for a valid variable assignment for A. As the backtracking algorithm would search
exhaustively through all possible variable assignments, a timeout can be chosen to de-
termine the maximal run time of the algorithm. This condition is checked in line 6,
and returns an empty set if the maximal time has elapsed since the initial start of the
backtracking algorithm for one operating point. In line 9, the next task cluster to map is
selected, and in line 10 the domain DC containing all target PEs which fulfill C.1 and
C.3 is created. In lines 11 to 17, the remaining constraints are checked when trying to
map C to the selected PE u. We use xy-routing to obtain routes LB deterministically
for all message clusters sent or received by C and which communication partners are
already mapped.

7 Experiments

We use task graphs from the Embedded System Synthesis Benchmarks Suite (E3S) Dick
(2010) for our experiments. These applications stem from various embedded domains
like automotive (18 tasks), telecommunication (14 tasks), consumer (11 tasks), and net-
working (7 tasks). The values for energy consumption, WCET of a task, and bandwidth
requirements of messages reflect a realistic scenario of current embedded MPSoCs.
We derived the energy consumption of each task on a certain PE from the E3S bench-
mark and the communication energy consumption by a model proposed by Hu and
Marculescu (2003); Wolkotte et al. (2005) with a link length of 2 mm (resulting in
ELbit = 0.0936 nJ) and ESbit = 0.98 nJ (see Section 5.2).

Furthermore, we selected a heterogeneous 6×6 NoC-based architecture,consisting of
three different processor types from Dick (2010), including an IBM Power PC and
variants of AMD K6.
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ALGORITHM 1: Backtracking algorithm for finding a feasible constraint graph mapping.

1 backtrack(A, GC , Garch)
33 if (A is complete) then
4 return A;
5 end
6 if (timeOut) then
7 return ∅ ;
8 end
9 C = getNextTaskCluster(TC );

10 DC = find PEs satisfying Constraints C.1 and C.3;
11 for each (u ∈ DC) do
12 βCG(C) and ρ(pred(C));
13 if 〈βCG(C), ρCG〉 fulfills Constraints C.2, C.4,C.5 then
14 A′ = backtrack(A ∪ 〈C, βCG(C), ρCG〉, GC , Garch);
15 if (A′ 6= ∅) then
16 return A′;
17 end
18 end
19 end
20 return ∅;

7.1 Considering Communication Constraints

In a first experiment, we evaluate the influence of the communication constraints, i.e.
C.1 - C.2, on finding feasible mappings. As exemplified in Fig. 8, checking only the
availability of the needed processing resources, e.g. as proposed in Ykman-Couvreur
et al. (2006); Shojaei et al. (2013); Wildermann et al. (2014) or assuming only point-
to-point connections Singh et al. (2013a), is not sufficient for a feasible mapping in a
packet-switched NoC architecture. Indeed, it only satisfies C.3 and neglects the other
constraints. To visualize this, we tried, in 6,000 test cases, to map operating points
from the above mentioned E3S benchmark applications to a preoccupied system using
Algo. 1 without a timeout. As a result, Fig. 12 shows the gap between only consid-
ering the resource availability (blue curve) and the actual feasibility considering the
communication constraints C.1 and C.2 tested by the introduced constraint solver (red
curve). The utilization classes on the x-axis denote the percentage of utilized comput-
ing resources before testing to add the new application. For example, 0 represents a
completely empty system and the utilization class 10 includes systems where 1 to 10 %
of the PEs are utilized by previously mapped applications. The gray area between the
two curves highlights the optimism introduced by a run-time system which only relies
on computing resource availability as in Singh et al. (2013a). In case of a 40 % uti-
lization class, 39 % of applications could be mapped to the system by only considering
resource availability, while only for 13 % guarantees for holding their deadlines could
be given. All remaining ones miss deadlines because of communication latencies or are
actually not mapped because of congested communication resources. Overall, this un-
derlines the importance of considering communication and routing constraints when it
comes to methodologies for application mappings on composable NoC-based MPSoCs
with a predictable execution times.
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Figure 12: Success ratio of mapping operating points obtained for the E3S benchmarks
to a 5×5 NoC for different utilization classes. Success ratios are given for resource
management based on resource availability and resource management using a con-
straint solver are compared Weichslgartner et al. (2014).

7.2 Temporal Isolation versus Spatial Isolation

By applying the EA-based DSE illustrated in Fig. 7, we generated and evaluated an
overall of 200,000 mappings per application, resulting from a population size of 200
and 1000 iterations. For each of these mappings, we conducted the performance anal-
ysis proposed in Section 4. This was done with the number of additional tasks set
to Kmax−|C|= 4, SI =50 µs, and SIos =10 µs. As outlined in Section 5.2, the opti-
mization criteria were minimizing (I) the energy consumption of each mapping, (II) the
number of routed messages, (V) the number of allocated PEs per resource type r ∈ R.
Further criteria were maximizing (III) the average and (IV) the minimal hop distance
in order to generate more flexible mappings (the bigger the hop count of a message
cluster, the less stringent becomes constraint C.1). Out of these 200,000 mappings,
all Pareto-optimal solutions which do not violate the application deadline are stored
as operating points together with the created constraint graphs and the values of the
evaluated objectives (less than 100 points per application).

We then implemented an RM for mapping different run-time mixes of the benchmark
applications, where the applications are mapped iteratively. The operating points of
each application were sorted in increasing order of energy consumption values (the
objective of main interest in our experiments). In this order, a run-time embedder,
following a first-fit scheme, searches the first operating point whose constraint graph
can be feasibly mapped to the system. For comparison, we implemented two embedder
variants based on Algo. 1: (a) variant ti performs the proposed mapping with temporal
isolation and (b) variant spi with spatial isolation (see Weichslgartner et al. (2014)).7
These embedders try to map one constraint graph of each application (from the first
fitting OP) to the architecture. Here, the mapping of the applications is incremental,
i.e. first, a constraint graph from the first application is mapped, then a constraint graph
from the second application etc. This simulates the arrival of different applications
at different points in time during run time that constitute an application mix, which
was unknown at design time. In principle, the proposed run-time mapping would also

7In both variants, only operating points are used which do not violate the deadline, hence
both satisfy the real-time requirements.
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Figure 13: Evaluation of the average success rate of run-time mapping of pre-explored
Pareto-optimal operating points belonging to different application mixes for spatial iso-
lation (spi) and temporal isolation (ti) depending on the percentage of initially available
PEs. The average success rate refers to the number of applications which could be suc-
cessfully mapped in an overall of 100 experiments, providing a good measure for the
system utilization.

support the remapping of OPs and removing of mapped applications but this is not
considered in the following experiments.

We evaluated how many applications out of an application mix we can map success-
fully to our system (referred as success rate in the following) for both variants. For
three different application mixes, experiments were repeatedly performed, but PEs
were successively made unavailable for mapping any tasks so that the overall PE avail-
ability ranged from 100% down to 40% (which also captures scenarios with, e.g., faulty
or powered down PEs). We generated 100 different sequences in which PEs are ran-
domly made unavailable, starting from 100% availability of PEs down to 40%, and
used the average values per number of available PEs as the result.

The result of such a set of experiments is depicted in Fig. 13(a) for application mix 1
consisting of one telecom application and two networking applications. Application
mix 2 (see Fig. 13(b)) is composed of one telecom, three automotive and one consumer
application, while application mix 3 (see Fig. 13(c)) consists of two automotive, two
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Figure 14: CDF of backtracking algorithm execution times on a 32 bit embedded
processor at 300 MHz. Note the logarithmic scale of the x-axis in both plots. The
maximal needed execution time for finding a feasible mapping (305 ms) is presented
by a dashed vertical line in both plots.

consumer and two networking applications. In the graphs, the x-axis represents the per-
centage of initially available PEs while the y-axis corresponds to the ratio of successful
mappings. The main trend observed is that with decreasing PE availability, the success
rate declines much faster when using spatial isolation. In the case of application mix 1,
the success rate of spi drops to 65% while it still remains at 95% using the proposed ti
in case of an availability of 60% of the PEs. The experiments with application mix 2
show a similar behavior. Even more drastically, in the experiments with application
mix 3, all applications could be mapped with our proposed approach in the case where
all PEs are available, whereas using spi, one application in the mix could not even be
mapped at all.

In our test cases, the obtained energy consumptions of ti mappings were always equal
or better than those using spi mappings for a PE availability of 100% for application
mixes 1 and 2. In application mix 1, ti and spi reached the same results. In application
mix 2, ti mapped operating points with an energy consumption of 351 mJ, whereas spi
mapping resulted in 477 mJ per execution. Being able to obtain run-time application
mappings which are better with respect to the objective (energy) is a direct conse-
quence of being able to better utilize the available resources. For all other rates of PE
availability and also for 100% PE availability in application mix 3, a comparison is not
meaningful as spi is not able to map as many applications as ti.

7.3 Execution Time

Constraint solving is the central concept for making use of the offline explored oper-
ating points at run time. However, this implies an additional overhead for determining
a feasible mapping based on the provided constraint graphs. In this experiment, we
evaluate the execution times of the run-time backtracking mapping algorithm (Algo. 1)
performed by a central RM. Here, we applied Roloff et al. (2015) to simulate the execu-
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tion of the RM according to Wildermann et al. (2015) on a 32 bit embedded processor
with a clock frequency of 300 MHz. Overall, feasible mappings for 500 constraint
graphs on an 8 × 8 NoC architecture were searched via the backtracking mapping al-
gorithm. Figure 14 shows the cumulative distribution function (CDF) of the execution
times (in ms) measured for executing the run-time backtracking algorithm. The CDF
describes the maximal execution time needed by the percentage of runs. Values are
separated for the cases of (a) successful (i.e. at least one feasible mapping exists) and
(b) failed constraint solving (no feasible mapping exists). Note that constraint solving
is a complex task (in the worst-case, Algo. 1 has exponential run time) and took up
to 305 ms (denoted in the Fig. 14 by a vertical line) for successful and 947 878 ms for
failed mappings. The vast majority of the applications can be mapped much faster, e.g.,
97 % of the successful test cases took at most 10 ms. In the case of failed mappings,
execution times were much higher. Only 78 % of test cases took below 305 ms, and
19 % took seconds or even minutes (see Fig. 14(b)).

Note that this time only elapses before a newly arriving real-time application is started.
While we are dealing with applications that—once mapped—are periodically executed
for a long time, mapping times in the range of few seconds might be tolerable. How-
ever, in order to bound the execution time of the run-time mapping and supporting
domains where mapping time matters, we propose the usage of a timeout mechanism
(see Algo. 1): We stop the algorithm after the expiration of the timeout interval and
classify the currently tested mapping as infeasible. The timeout value needs to be
appropriately chosen to fulfill the turn-around time requirements of the application
being mapped. Particularly, as a too low value may increase the number of false neg-
atives (i.e. feasible mappings which are classified as infeasible). However, for our
experiments even with a timeout value as low as 10 ms, we would only reject feasible
mappings (i.e., classify false negatives) in 3 % of the cases. As we provide multiple
operating points per application, a mapping according to another constraint graph may
then be obtained.

Nevertheless, to handle larger systems the execution times of this algorithm may be
not acceptable anymore. Therefore, we will conduct further research on the run-time
constraint satisfaction problem (CSP) solving. This may include a hierarchical de-
composition of the architecture where the backtracking algorithm searches in a sub-
architecture first, distributed CSP solving, or dedicated hardware support Weichslgar-
tner et al. (2015). With using isolated regions per applications, also fast heuristics
solving a 2D packing problem can be used Weichslgartner et al. (2016). However,
this makes use of spatial isolation only and makes temporal isolation infeasible, thus,
decreasing the utilization.

8 Conclusions

In this article, we proposed a technique to increase the utilization of many-core systems
using hybrid application mapping combined with a static performance analysis consid-
ering bounds on temporal interference on tasks. More specifically, the design-time
analysis for applications with real-time constraints was performed considering, for the
first time in a hybrid application mapping approach, temporal isolation of concurrent
tasks with bounds on task interference. Via design space exploration (DSE) of map-
pings, a set of Pareto-optimal operating points with composable performance values is
obtained. The subsequent operating point mapping at run time is achieved by solving a
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constraint satisfaction problem. It has been shown that this hybrid approach allows to
provide predictable application mappings within high system utilization and reduced
number of PEs that are needed to execute various application mixes while satisfying
real-time requirements. Another major advantage of our approach over previous work
is the reduction of the exploitative search for feasible mappings to design time and
leave only the remaining freedom in finding a concrete mapping to the run-time man-
agement (RM). This was possible through the concept of a constraint graph character-
izing feasible mappings. In the future, we want to investigate scalability enhancements
of our run-time mapping approach, e.g. distributed constraint solving techniques.
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