
Crystal (ball): I Look at Physics and Predict Control Flow!
Just-Ahead-Of-Time Controller Recovery

Sriharsha Etigowni
Rutgers University

sriharsha.etigowni@rutgers.edu

Shamina Hossain-McKenzie
University of Illinois at
Urbana-Champaign

shaminahossain@gmail.com

Maryam Kazerooni
University of Illinois at
Urbana-Champaign

kazerooni.maryam@gmail.com

Katherine Davis
Texas A&M University
katedavis@tamu.edu

Saman Zonouz
Rutgers University

saman.zonouz@rutgers.edu

ABSTRACT
Recent major attacks against unmanned aerial vehicles (UAV) and
their controller software necessitate domain-specific cyber-physical
security protection. Existing offline formal methods for (untrusted)
controller code verification usually face state-explosion. On the
other hand, runtime monitors for cyber-physical UAVs often lead
to too-late notifications about unsafe states that makes timely safe
operation recovery impossible.

We present Crystal, a just-ahead-of-time control flow predictor
and proactive recovery for UAVs. Crystal monitors the execution
state of the flight controller and predicts the future control flows
ahead of time-based on the UAV’s physical dynamics. Crystal de-
ploys the operator’s countermeasures proactively in case of an
upcoming unsafe state. Crystal’s just-ahead-of-time model check-
ing explores the future control flows in parallel ahead of the UAV’s
actual operation by some time margin. The introduced time mar-
gin enables Crystal to accommodate operator’s feedback latency
by the time the actual execution reaches to the identified unsafe
state. Crystal periodically queries the controller’s execution state.
It emulates the UAV physical dynamical model and predicts future
sensor measurements (controller inputs) and upcoming feasible
controller’s execution paths. This drives Crystal’s model-checking
exploration away from unreachable future states. Crystal’s selec-
tive model checking saves computational time to stay ahead of
execution by concentrating on relevant upcoming control flows
only. This eliminates the state-explosion problem in traditional
offline formal methods. We evaluated a multi-threaded prototype
of Crystal between the control station server and the UAV. Crystal
was able to predict upcoming hazardous states caused by the third-
party controller program and proactively restored the safe states
successfully with minimal overhead.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274724

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; • Com-
puter systems organization→ Embedded and cyber-physical sys-
tems;

KEYWORDS
Unmanned Aerial Vehicle, Just-Ahead-of-Time verification

ACM Reference Format:
Sriharsha Etigowni, ShaminaHossain-McKenzie,MaryamKazerooni, Kather-
ine Davis, and Saman Zonouz. 2018. Crystal (ball): I Look at Physics and
Predict Control Flow! Just-Ahead-Of-Time Controller Recovery. In 2018
Annual Computer Security Applications Conference (ACSAC ’18), December
3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, Article 4, 13 pages.
https://doi.org/10.1145/3274694.3274724

1 INTRODUCTION
The use of unmanned aerial vehicles (UAVs) has been increasing
in many mission-critical settings such as surveillance, delivery
systems, and military applications [2]. Consequently, they are be-
coming attractive targets for malicious penetrations leading to
physical damage. Recent attacks took control of the drones re-
motely [17, 35, 40] and hacked RQ-170 Sentinel built by Lockheed
Martin [41]. AnonSec team [45] obtained partial control over the
global hawk used by NASA in 2016.

Secure operation of next-generation cyber-physical systems,
specifically unmanned aerial vehicles will require effective scal-
able formal verification capabilities. Current static formal verifica-
tion methods (e.g., TSV [23] and HACMS [30]) analyze the system
model in an offline manner, often facing state space explosion, and
hence do not scale up to large-scale cyber-physical systems. On
the other hand, existing dynamic execution monitoring solutions
(e.g., Avatar [48]) notify operators about incidents that have just
occurred or are about to occur, and hence do not leave enough
of a time buffer for effective manual or automated response and
recovery.

To take best of both worlds, we present Crystal that leverages
Just-Ahead-of-Time (JAT) verification (Figure 1). Crystal stays ahead
of the actual system state by an arbitrary time buffer. Crystal is
a nonintrusive formal verifier for drone controller programs. It
speculatively checks in real-time whether the program execution
may drive the drone towards any unsafe state. Drone’s get there

553

https://doi.org/10.1145/3274694.3274724
https://doi.org/10.1145/3274694.3274724
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3274694.3274724&domain=pdf&date_stamp=2018-12-03

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Etigowni et al.

X

Shallow TEG

Current
System
State

Possible
Next
States

Time

Start

As time passes,
the physical system
follows a path through
the shallow TEG.

The actual states visited
become the roots of
subsequent shallow TEGs

At each step, possible bad future
states are checked for, ahead of
actual system execution.

Shallow model

As -me passes,
the physical system
follows a path through
the shallow model

The actual states visited
become the roots of
subsequent shallow models

At each step, possible bad future
states are checked for, ahead of
actual system execu-on

Current
System
State

Possible
Next
State

Start

Time

Figure 1: Just-Ahead-Of-Time Verification

controller program inputs from the sensors, e.g., inertial measure-
ment unit (IMU) or GPS and sent the output commands to drone’s
actuators, e.g., propeller motors. Crystal executes the control logic
symbolically and calculates possible input-to-output mapping (sen-
sor measurements to actuation commands) of the controller pro-
gram. Crystal closes the loop on the physical channel by calculating
how sensor measurements are determined based on the previous
actuation commands and physical drone’s dynamic evolution (i.e.,
actuation commands to sensor measurements). Crystal estimates
drone’s state (e.g., location and orientation) and deploys a new
symbolic execution of the drone’s physical dynamics to calculate
its input-to-output mappings.

Given the flight control unit and physical system coupling, Crys-
tal pipes its findings of IO mappings of the cyber controller and
physical dynamics together to create a full closed-loop model of
the cyber-physical system. The model captures all the interdepen-
dencies between cyber and physical components and is used for
Crystal’s just-ahead-of-time formal verification. Crystal does not
generate the complete systemmodel one-time due to its (very) large
size and instead relies on local exploration and model checking of
the upcoming future symbolic states up to a finite horizon based
on the current system state. This enables Crystal to stay just a few
steps ahead of native execution and avoids exhaustively considering
all states. Crystal periodically synchronizes the model exploration
process with the native execution through communication with
the drone’s processor and obtaining concrete values of flight con-
troller program variables. The synchronization step allows Crystal
to refine the model exploration and not explore the states that will
definitely not be reached through the native execution. The model
generation process continues to stay ahead of native execution and
explore’s the states that have not yet been reached.

Crystal inspects each upcoming state and checks its symbolic
variable values to determinewhether the state could be unsafe under
a specific concretization. If the drone’s native execution is about
to enter the unsafe state according to its upcoming concrete input
values Crystal will notify the operator about potentially upcoming
unsafe state’s and requests for recommended recovery response.
Crystal expects to receive the operator’s response before the native
execution catches up. This waiting time denotes how far Crystal’s

Figure 2: Drone’s pitch, roll, and yaw

JAT exploration leads the native execution and could be adjusted
initially. Crystal deploys the recommended countermeasure if the
unsafe state is actually realized, and caches it to not involve the
operator again for future similar situations.

The contributions of this paper are as follows:

• We present a scalable formal verification technique, just-
ahead-of-time verification, for complex UAV platforms that
eliminates state explosion problem and leaves time for the
operator to select an appropriate countermeasure strategy.

• We present a cyber-physical symbolic execution framework
that leverages programming language analysis and enhanced
drone state estimation techniques to create cyber-physical
models for formal verification purposes.

• We present a predictive hybrid model with data-driven and
system knowledge model of the drone’s physical dynamics
using a neural network and extended Kalman filter (EKF)
that takes actuation commands (flight controller outputs) as
inputs and outputs the predicted sensor data (controller’s
next input).

This paper is organized as follows. Section 2 gives an introduc-
tion to drones dynamics and a previous related work [23]. Section 3
lays out our assumed threat model and gives an overview of Crys-
tal’s architecture. Section 4 explains the predictive model based on
a hybrid approach of a neural network and EKF model to formulate
the drone physical dynamics. Section 5 describes how the drone’s
controller code and physical dynamical formulations are integrated
into a unified cyber-physical model. Section 6 explains the real-time
formal verification and recovery using the cyber-physical models.
Section 7 describes our prototype implementation and evaluation
results. Section 8 covers the related work, and Section 9 concludes
the paper.

2 BACKGROUND

2.1 Drone Flight Dynamics
Since the motion of UAV is in three-dimensional space, it can be con-
trolled along three axes. The altitude of the drone is proportional
to and controlled by the thrust produced by the propellers from
the four motors. For instance, the thrust on all the motors should
be the same to move the drone just in the z-axis. In order for the
drone to hover (stay at a fixed location in air), all the motors should
produce a thrust to neutralize gravity. To balance the rotational
torque produced by the motors and to increase the stability of the

554

Just-Ahead-Of-Time Controller Recovery ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

drone, motors on the opposite direction rotate in the clockwise
direction and the ones adjacent to these rotate in the counterclock-
wise direction. The rotation of the drone along the x-axis is called
roll, along the y-axis is called pitch, and along the z-axis is called
yaw (Figure 2).

The drone’s left-right motion can be controlled by changing
its roll. If the drone has to move towards left (right), the thrust
on the right (left) motors is increased. Similarly, the drone’s front-
back motion can be controlled by changing the pitch and changing
the thrust on front or back motors. Drone’s direction along the
z-axis is controlled by changing the yaw. If the drone has to rotate
clockwise, the thrust on the motors rotating counterclockwise has
to be reduced. The aforementioned parameters allow defining the
drone’s state notion as a six-entry vector of its location (x,y,z), and
orientation (roll, pitch, yaw). Given the drone’s current state and
the latest issued actuation commands to the motors, the drone’s
next state can be calculated based on its physical dynamic models.
In this paper, we used a combination of extended Kalman filter and
a data-driven model of the drone’s physical dynamics to predict its
future states.

2.2 Offline Controller Code Verification
Due to model error and random disturbances, drones obtain the
aid of flight control unit to constantly monitor and regulate the
flight operations. The controller repeatedly takes measurements
of the process state and feeds these to its software control logic to
determine what changes need to be made to keep the process on
course. This sense-execute-actuate loop is called the scan cycle and
may occur many times per second.

In most commercial-grade flight control units, the control logic
can be modified remotely, exposing the threat of malicious logic in-
jection. Authentication required for modifying flight control logic is
often weak or does not exist, e.g., no authentication for Bitcraze [5].
Hardcoded backdoors are a common industry practice [37]. Modi-
fication of a flight control logic grants the attacker complete con-
trol of the physical drone operation. As demonstrated by the well-
known Stuxnet attack [9], the malicious control logic can also forge
sensor data reported to human operators, thus hiding the first sig-
nals of malicious behavior.

We review the most related recent work on offline controller
code verification [23]. The trusted safety verifier (TSV) [23] is in-
terposed between controllers (i.e., programmable logic controllers -
PLCs) and the control network (i.e., supervisory control and data
acquisition - SCADA). Any controller-bound code must be formally
verified against a set of safety properties. The safety properties
are stated in linear temporal logic (LTL) that allows for the de-
scription of temporal properties such as causal relationships, and
guarantees of eventual progress [11]. An LTL property contains
a set of atomic propositions that are non-temporal property typ-
ically stated in propositional logic, e.g., landed = (altitude =

0)∧ (drone_velocity = 0). The LTL property then combines these
atomic propositions using temporal connectors to describe relation-
ships over time, e.g., safe_landing = ¬motors_off until landed.

Cyber-physical system controllers typically follow synchronous
execution paradigm as a sequence of fixed-time sense-process-
actuate epochs called scan cycles. TSV performs a mixed concrete

and symbolic execution of an ILIL program to produce a symbolic
scan cycle. A symbolic scan cycle represents every possible execu-
tion of a single scan cycle of the controller program. It is a mapping
from path constraints over controller input variables (sensor mea-
surements) to symbolic values for PLC output variables (actuation
commands). For a single entry in the mapping, if the input variables
satisfy the path constraint, then the output variables will have the
corresponding symbolic value.

To model the PLC execution’s subsequent scan cycles, TSV com-
bines successive symbolic scan cycles into the Temporal Execution
Graph (TEG). The TEG is a tree that represents a nondeterministic
execution of a controller program for some fixed number of scan
cycles. For example, a TEG of depth three would represent all possi-
ble executions of the program for three successive scan cycles. The
TEG is later checked against the safety requirements to determine
if the controller code could ever produce unsafe outputs.

2.3 Limitation of Existing Solutions
By design, offline verification solutions [18, 23, 33] should com-
plete before the code is allowed to run on the controller. Due to the
exhaustive exploration of all possible states and too many possi-
bilities, existing formal solutions face state-space explosion and do
not scale up to real-world complex cyber-physical systems [23].

Additionally, TSV’s analysis of subsequence scan cycles consid-
ers all controller inputs (sensor measurements) as free variables
that can take on any value. This results in too-pessimistic outcomes
(i.e., the code rarely satisfies all safety properties) and deteriorates
the solution scalability. The physical dynamics of the drone deter-
mines the sensor values given its recent actuation commands. For
instance, the actuation command "increase the propellers rotation
speed" results in an increase in altitude sensor value. As discussed
later, the models of the physical dynamics along with the controller
code models can be used to predict and investigate the drone’s
future behavior.

3 OVERVIEW

3.1 Threat Model
The threat to the UAVs can be from one or more of the following
attack vectors [27]: physical (attack on sensors, actuators), cyber
(firmware, controller software, guidance and navigation algorithms)
and communication (radio link to ground control station). One of
the most prominent causes for recent drone security failures is
remote cyber attacks [17, 35] that Crystal aims to protect against.
We assume that the underlying software stack (e.g., operating sys-
tem or firmware) and hardware are trusted, while the control logic,
guidance and navigation algorithms on the drone’s flight control
processor can be malicious. By ahead-of-time verifying that control
logic will not violate safety properties, Crystal protects against
arbitrary control logic injection on the controller. Crystal does not
defend against physical attacks since they are arbitrary. Crystal
does not defend against sensor channel attacks, where sensor data
is forged [21, 43]. In such a case, the control logic may behave ex-
actly as intended, but on false sensor data. Such attacks are outside
the scope of this paper and must be addressed by improved state
estimation techniques [21].

555

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Etigowni et al.

Physical SystemPhysical System

…

Flight Control UnitFlight Control Unit

Sensors Actuators

M
ea

su
re

m
en

ts

Control Com
m

andsGPS
sensor

IMU
sensor …

propellers
controller

…

I 0.0

I 0.1

I 4.7

Inputs

…

O 0.0

O 0.1

O 4.7

Outputs

Ground Control
Station (HMI)

Ground Control
Station (HMI)

Main Processor
Just-Ahead-Of-Time
Controller Recovery

Main Processor
Just-Ahead-Of-Time
Controller Recovery

Controller Executable

Executable

Execution
State

Malicious
controller
program?

Figure 3: Crystal’s High-Level Architecture

3.2 Crystal Architecture
Figure 3 shows Crystal’s context and its interactions with other
control assets. Drones typically follow a dual processor architecture.
The flight control unit processor takes care of the real-time sense-
process-actuate executions; it receives sensor measurements, runs
its control logic, and sends the output values to the motors. The
main processor interacts with other peripheral devices, e.g., to
communicate with the ground control station. All the control logic
updates to the flight control unit from the external world go through
the main processor. Crystal runs on the main processor to monitor
each control logic update and its execution on the flight control
unit processor.

3.3 Safety Requirement Definition
Before Crystal’s setup, the drone operator needs to define a set of
high-level safety properties for the underlying physical dynamics.
The safety requirements do not have to correspond to specific
actuator outputs and could be defined for global system parameters.
For instance, if the controller has to maintain the propeller speeds
around a fixed set-point, the safety requirements can be defined to
limit the whole drone’s acceleration. Crystal’s consideration of the
physical system dynamics enables automated correlation of global
system parameters to individual actuation commands.

Previous protection solutions (e.g., TSV [23]) fully ignore the
physical dynamics of the underlying system, and hence pose strong
requirements for the operators: i) flight dynamics expertise: all
safety requirements should be defined for only the target flight con-
trol unit’s output values; hence, in the example above, the operators
have to analyze the flight dynamics to determine what flight control
unit’s output values (propeller set-points) would cause unaccept-
able accelerations of the quadcopter; ii) tedious human involvement:
the operators should redefine/update the safety requirements every
time the parameters of the components change due to external
environmental factors, which occurs often in practice.

3.4 Predictive Flight Modeling
Crystal enables hybrid cyber-physical symbolic execution by com-
plementing flight control code analysis [23] through its predictive
modeling of the underlying flight physical dynamics. The drone’s
physical state (i.e., location and orientation) is estimated and pre-
dicted using a hybrid approach of neural network and EKF that is

already trained and configured to formulate the flight dynamics.
The predictive trained hybrid model will estimate the values of the
sensors in the future given the upcoming actuation commands. The
upcoming actuation commands are calculated by Crystal’s analysis
of the drone’s controller code. During the drone’s operation, the
hybrid predictive model adaptively corrects itself using a sliding
window on the most recent sensor values. Later in the paper, we
extend to multiple parallel actuation commands (e.g., power con-
trol of the drone’s four propeller motors), where the actuation is
modeled as a symbolic vector (section 4).

3.5 Just-Ahead-of-Time Verification
Crystal is deployed on the drone’s main processor and intercepts ev-
ery control logic updates bound to the flight control unit processor.
Crystal disassembles the binary and starts the dynamic conversion
of the resulting source to its corresponding finite state automaton.
During the conversion (model exploration), Crystal implements
on-the-fly formal model checking in parallel to ensure that the
reachable states are safe and do not violate the safety requirements.

In practical situations, the conversion does not complete within
a reasonable time due to the state explosion problem. After a prede-
fined waiting time (so-called time margin tm which could be varied)
and most likely before it completes its formal verification, Crystal
uploads the control logic on the flight control unit. The control logic
starts its native on-device execution, while Crystal, in parallel, is
exploring and verifying its future states, called just-ahead-of-time
(JAT) verification. The future states being explored are initially
ahead of the native execution by tm . Higher the value of tm lower
is the accuracy.

Assuming that JAT’s speed is not lower than the flight control
unit’s native execution, Crystal maintains the time margin. That
is any state S visited by JAT at time T will not be visited by the
native execution sooner than T + tm . Otherwise, if Crystal gets
behind the actual execution, Crystal’s outputs would be useless, be-
cause the operators would get notified about the actual adversarial
consequences of the malicious control logic before Crystal could
analyze them symbolically. It is noteworthy that JAT exercises all
the paths, while the native execution goes through a single path
only. Therefore, the native execution may never visit that specific
state S, because it may take a different execution trace.

The time margin between the symbolic model exploration and
the flight control unit’s actual execution enables the operators or
automated response systems to take the time deciding upon an ap-
propriate recovery strategy in case an unsafe state is visited during
the future state speculations. We will not focus on the automated
response selection, and consider it outside the scope of this paper.

4 DRONE PHYSICS MODELING
To ensure effective JAT drone safety monitoring, Crystal must
be able to quickly model and reason about its flight’s physical
dynamics, it’s current and future behaviors when the upcoming
actuation command sequences are given. The model outcomes
are later merged with flight control code analysis to analyze the
controller code execution impact on the flight dynamical operation
and drone safety. Crystal uses the hybrid model for its formal JAT

556

Just-Ahead-Of-Time Controller Recovery ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

verification to determine if the controller execution can drive the
drone towards unsafe situations.

4.1 Normal Operation Mode Physical Modeling
The estimation of the future sensor values during normal operation
mode is computed using an extended Kalman filter (EKF). The ex-
tended Kalman filter is a nonlinear state estimation algorithm that
uses data containing noise and inaccuracies collected from a series
of observations over time and estimates the unknown states. The
states of the system are the physical parameters (acceleration, alti-
tude, pitch, roll, yaw) which are obtained by inertial measurement
unit sensors on the drone. The observations are the values given
to the actuators like the PWM signal to the motors of the drones.
The EKF is one the popular technique used for future sensor data
estimation for a nonlinear system like drones. The EKF linearizes
the flight dynamics equations at each step and applies Kalman filter
technique on the linear system. The system equations which are
required for the algorithm are derived from the physical dynamics
hence in order to use the EKF algorithm for state estimation, the
system dynamics (flight dynamics) has to be known. Detailed equa-
tions of the model are described in Appendix B. The estimation of
sensor data K steps ahead of time is given by Equation 1

x̂(n + k |n + k − 1) = f (x̂(n + k − 1|n + k − 1)),u(n + k − 1)) (1)

The values for (K - m) step are evaluated based on (K - m - 2)
estimation. The EKF predicts the sensor values K steps ahead of
time and then updates it if the error is large after every scan of the
sensor data and updates equations to minimize the error from the
actual sensor data.

4.2 Failure Mode Data-Driven Modeling
Crystal leverages a data-driven physical flight dynamics modeling
using neural networks for the estimation of sensor values during
abnormal conditions such as failure modes. The trained model’s
inputs are the drone’s current state (sensor measurements) and
upcoming sequence of actuation commands calculated by the flight
controller code analysis. The neural network outputs the next se-
quence of drone’s flight dynamical state (location and orientation),
and hence the upcoming sequence of sensor measurements.

Since the sensor data is collected from the physical system, the
data is continuous and has some fixed slew rate with respect to the
actuator actions. The sensor data varies continuously and does not
change abruptly although it is collected in a discrete manner. For
instance, during the takeoff, the drone’s altitude increases from 0 to
some H ≫ 0 gradually and does not jump 0→ H instantaneously.
The change rate (e.g., T per second) is limited by the drone’s physi-
cal limitations, e.g., maximum thrust by its motors. Since the sensor
data is continuous, Crystal leverages the spatial features of the
measurements by using convolutional neural networks. The model
uses convolutional layer, pooling layer, flattening layer, and a dense
layer. The applications of different layers are explained below.

Convolutional layer. It is the core of the neural network. Crys-
tal obtains the sensor data from the flight controller memory and
uses them as inputs to the convolutional layer through an input
layer. Each convolutional layer has four learnable filters and the
window size is fifty. In our experiments, we empirically found these

numbers to optimize the trade-off between hard-to-train accurate
huge networks and inaccurate easy-to-train small models. Each
filter performs a convolution (dot product) between the drone input
sensor data and the values of the filter data.

The filters are learned to activate when they observe specific
features on input sensor data such as increasing, decreasing or
fluctuating between values based on the time and state of the drone
dynamics. These dot product from a filter and input data produces
outputs called activation map. Since Crystal uses four filters, it
produces four activation maps. These maps are stacked to produce
output volume that feeds the next layer. The rectifier linear units are
used along with the convolutional layers as the activation function.

Pooling layer. It is periodically inserted in between the convo-
lutional layers reduce the over-fitting by control reduction of the
spatial size. In convolutional layers, the window slides through
all the drone sensor data in the strides of one. So, it has a lot of
spatial data which leads to large spatial size and high computation
apart from the overfitting. Crystal uses pooling layers to reduce the
spatial size and hence over-fitting. It makes use of one-dimensional
pooling layer after each convolutional layers.

Flatten layer. Crystal uses this later to flatten the activation
maps and get a single dimensional data. Flatten layer is used to
merge all the four activationmaps to a single dimensional activation
map.

Dense layer. These layers are connected to all the activations
from the flattening layer to the output layer. The dense layer is a
conventional neural network with weights and biases.

The drone sensor data has a lot of spatial locality in nature due to
the continuity of the underlying flight physical dynamics and how
the drone’s physical state evolves over time. Therefore, the neural
network just uses previous finite N sensor data samples to predict
the future sensor data i.e it does not depend on the whole flight
history. Similar to the EKF even the neural network model predicts
K steps ahead of time, based on the (K - 1) prediction. During the
runtime, the predicted (K - 1) steps are continuously compared
against the actual values from the sensors and updates the values.

4.3 Full Flight Operation mode
The system knowledge is essential for the prediction of sensor data
by using EKF. In most of the scenario’s the system model is not
complete due to missing few modeling parameters due to lack of
complete knowledge, approximating few parameters during model-
ing or due extreme nonlinearities. The system model parameters
will also not hold true over the lifetime of a system due to the
changes caused to the parameters by wear and tear or damage, re-
placement of old or damaged part with newer once. Apart from the
difficulties of modeling of the system, EKF also takes few iterations
to converge from the initial estimated state values by correcting
itself based on the noise parameters. If the change on sensor values
are random and sporadic then EKF takes many iterations to correct
itself whereas the neural network takes only a single pass. Due
to the linearization of the system equations in each step, if the
system is modeled incorrectly or if the initial state estimation is
wrong then the algorithm quickly diverges. On the other hand, the
neural network does not know the system dynamics initially and

557

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Etigowni et al.

Flight Controller
Symbolic Execution

Predictive Model

Model Piping

Flight controller-
SE results

Predictive model
results

controller logic
symbolic outputs

physical system
symbolic inputs
(actuation points)

controller logic
symbolic inputs

physical system
symbolic outputs
(sensor measurements)

linked tolin
ke

d
to

Figure 4: Hybrid Cyber-Physical Symbolic Execution

has to be trained and re-designed using a large set of data consid-
ering different scenarios. The neural network’s model performs
well if the scenario’s which are trained but not so well on a newer
strange scenario. Since the neural networks lack the physical sys-
tem knowledge, they are weaker in self-adaptability compared to
the EKF. Hence a hybrid approach is used leveraging the advantages
[42] of both the models depending on the sensor data.

The hybrid estimation model is used at runtime for Crystal’s
JAT verification to predict future drone states (location, orienta-
tion) over next several scan cycles and sensor data that feed the
controller’s future executions. The time margin between the cur-
rent concrete execution and the predicted sensor data allows for
Crystal’s ahead-of-time analysis and timely notification of the op-
erators about potentially upcoming unsafe states. Crystal collects
upcoming actual sensor measurements (coming from actual execu-
tion) and use them to correct the predicted data. This feedback loop
enables Crystal to update the hybrid model about the drone’s ac-
tual physical dynamical evolution, and improve the next predicted
sensor measurements.

5 CYBER-PHYSICAL SECURITY MODELING
Crystal combines the outcomes of the controller code symbolic
execution and the flight physics models (i.e., neural network). The
resulting hybrid symbolic model captures the dynamics of both the
cyber flight controller and the underlying physical flight dynamics.
This allows Crystal to analyze how the (malicious) controller code
execution affects the drone’s physical operation and safety status.

The flight controller and physical dynamics are interconnected
through sensing and actuation channels (Figure 4). The flight con-
trol unit’s outputs feed actuators on the drone, and the flight control
unit’s inputs are fed by the drone’s sensors. Our calculated symbolic
hybrid model formulates how the flight control unit’s outputs and
inputs are interdependent based on the flight dynamics. The flight
controller code models encode how actuation commands are calcu-
lated based on sensor measurements. On the other hand, physics
models (EKF and neural network) close the loop and determine the
next sensor measurements based on the actuation commands.

Crystal generates the hybrid models through the following four
phases. First, Crystal translates the drone global safety requirements
to the flight control unit’s actuation output constraints automat-
ically. Second, Crystal analyzes the flight control unit’s code to
determine the primary constraints on its inputs that guarantee the
above-mentioned output constraints if the code executes. Third,

Crystal emulates the flight dynamics symbolically using the above-
mentioned flight control unit’s output constraints and calculates
a secondary set of constraints on the flight control unit’s inputs.
Finally, Crystal uses formal theorem provers to prove the drone
safety; Crystal verifies that the flight control unit’s input value
space defined by the secondary constraints is a subset of the input
space defined by the primary constraints. Otherwise, there will be
flight control unit’s inputs that violate its output constraints and
hence the drone’s safety requirements. In this section, we explain
these four steps in more details using a running example.

drone requirements→controller output constraints. Crys-
tal requires the global safety requirements for the drone’s physical
dynamics. The global requirements impose constraints on the pa-
rameters that are often different from those directly controlled by
the flight control unit’s outputs. For instance, the global require-
ments may state “the drone should not accelerate on z-axis by more
than Xms−2 ” while the flight control unit’s output controls the
amount of power fed to the propeller motors. The z-axis accelera-
tion depends on the propellers power feed according to the flight
dynamics of the drone. Crystal uses its drone physics models (sec-
tion 4) to calculate the flight control unit’s output constraints given
the drone’s global safety requirements. Crystal uses the predictive
model along with the hybrid symbolic execution to calculate the
range of the flight control unit’s output values that ensure the global
requirements are satisfied.

Flight controller output constraints→controller’s primary
input constraints. Flight controller code produces actuation out-
puts given its sensor data inputs. Crystal calculates the ranges
of the controller inputs that ensure output values satisfying the
constraints calculated in step a. Crystal executes the control logic
symbolically and computes the corresponding input constraints
and symbolic output values for feasible execution paths. Crystal
calculates the controller input constraints as the logical conjunc-
tion of the path condition predicates and the calculated controller
output constraints (step a). Consequently, Crystal obtains input
predicates for feasible control logic execution. The calculated input
constraints represent the permissible drone sensor value ranges to
ensure that the controller’s actuation outputs will not cause the
drone’s global safety property violations.

Controller output constraints→secondary input constraints.
In step b, we discussed howCrystal transforms the controller output
constraints to its input constraints by analyzing the cyber channel
(i.e., the controller code). In this step, Crystal performs the same
transformation (the controller output to input constraints) but con-
sidering the physical channel (i.e., flight dynamics). The controller’s
actuation outputs lead to the drone’s physical state change (dynam-
ical evolution) indicated later by the updated sensor measurements
back to the controller. Crystal assumes the controller outputs com-
ply with the constraints (calculated in step a) and emulates the
flight dynamics and its evolution over time using the trained neu-
ral networks. Crystal calculates the resulting constraints on the
upcoming sensor measurements. We call the calculated controller
input constraints secondary constraints to differentiate them from
the constraints calculated in step b.

558

Just-Ahead-Of-Time Controller Recovery ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Formal proof of the drone safety. So far, we have calculated
two sets of flight controller input constraints: i) the primary con-
straints for the controller code that ensure the flight controller
execution (cyber dynamics) will generate outputs that do not vi-
olate the drone safety, and ii) the secondary constraints that, if
violated, indicate the controller outputs must have taken on values
(based on the flight dynamics) that do not satisfy the global safety
requirements. To guarantee the compliance with the global require-
ments, the value space defined by the secondary constraints should
be a subset of the space defined by the primary constraints; other-
wise, the controller code execution could possibly result in outputs
that violate the global safety requirements. Consequently, Crystal
checks for the above-mentioned relationship. Crystal negates the
primary constraint for each execution path and calculates it’s con-
junction with the secondary constraint predicate. Crystal checks
whether the ultimate predicate is satisfiable. If not, the plant is
marked as verified. Otherwise, the global requirements could be
violated, because there would be a concrete value set that satisfies
the negated primary constraint (violates the primary constraint)
and satisfies the secondary constraint. This would be equivalent
to the primary constraint being a subset of the second constraint;
therefore, the cyber-physical flight control unit is not verified (is
either buggy or malicious) and its execution can lead to unsafe
drone states such as a physical ground crash.

6 JAT VERIFICATION AND RECOVERY
In the previous section, we described how Crystal develops a hybrid
verification of the drone operation. However, the above-mentioned
analysis does not consider the drone operation across subsequent
sense-process-actuate scan cycles (subsection 2.2). The flight control
code symbolic execution (section 5: step 2) goes through individual
execution paths of the control logic just once, whereas the flight
controller’s actual execution immediately starts the next scan cycle
based on the updated sensor inputs right after the current one
finishes. The control logic often leverages stateful variables such
as timers and counters that retain their values across successive
cycles; this causes inter-cycle output value dependencies.

Just-ahead-of-time analysis. To address subsequent cycles,
Crystal explores possible symbolic hybrid states of the drone and
creates the corresponding state-based finite state automaton. Each
symbolic hybrid state captures the symbolic values of the controller
code as well as the flight dynamics parameters. Each state transition
in the automaton represents a new cycle. The first state represents
the drone right after it is turned on. The increasing depths within
the automaton represent subsequent scan cycles, and the number of
outgoing transitions from each state (branching factor) represents
the number of feasible execution paths in the flight controller code.
As the result, Crystal considers individual control logic executions
and the corresponding flight dynamical evolution and creating
the corresponding automaton state. Crystal performs the formal
verification steps (section 5: step 4) for that state specifically to
ensure the drone safety in that state.

The main problem with the algorithm above is scalability due
to the exponential growth of the automaton size on each depth.
The traditional alternative to offline formal analysis is the runtime
methods to detect the unsafe states as the system enters those

…

…

Flight Control Unit (Actual Execution)

Real-Time Model Generation Synchronization

Continue
Model
Generation

Terminate
Further
Recursion

Generated Model So Far: Current Concrete
Execution State

Figure 5: Model Generation, Refinement, and Checking

states dynamically. In cyber-physical real-time drone operations,
runtime solutions are not sufficient generally, because they often
report safety violations too late for a timely response and recovery
countermeasure. For instance, a runtime monitor for a drone may
report “the drone is about to hit a pedestrian”. That is too late for
the operator or automated decision maker to spend time picking a
response and carrying it out while the drone (physical world) has
inertia and hence will keep moving. Crystal implements just-ahead-
of-time (JAT) verification.

Crystal starts symbolic exploration and safety verification of the
automaton states as discussed above. After a predefined timemargin
tm , Crystal launches the flight control unit’s actual execution in
parallel, while the depth exploration is maintained at (at least)
the same speed as the concrete execution, and hence it stays tm
time units ahead of the actual execution permanently. Figure 5
shows JAT in operation, where the automaton has been explored
and created two depths ahead of the current system state. Crystal
avoids exploration of the states that are not reachable from the
system’s current concrete state.

Human-assisted drone safety recovery. Crystal enables human-
assisted system recovery through its fast enough JAT verification to
maintain the time margin tm between JAT and the flight controller
native execution. If JAT encounters a potentially unsafe future state,
Crystal asks for the operator’s recommendation. A potentially un-
safe state represents the existence of a feasible execution path from
the flight controller’s current native execution state to a future
point where the drone safety requirements are violated. The viola-
tion would be caused by the flight controller actuation outputs that
change the critical flight parameters.

The violation may be because of a malicious or buggy flight
controller program. Crystal facilitates such a hybrid cyber-physical
reasoning about the drone operation through its model piping
(Figure 4). Due to the model’s symbolic state variable values, Crystal
uses a formal SMT solver to determine the possibility of safety
requirement violation in every encountered future state through
one of its concretizations. Crystal expects the operator’s feedback

559

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Etigowni et al.

within tm , otherwise, the native execution catches up and may
enter the same unsafe state, while Crystal is not yet given with
the optimal response action. In those cases, the controller takes a
default non-optimal safe response action that is set initially before
the controller program execution launch time.

The operator’s recommendation within tm could be any se-
quence of the following: i) to modify or read any control logic
variable value on the flight control unit dynamically; ii) to inject
an instruction (e.g., call a recovery subroutine) on the running
control logic; iii) to upload a new control logic (possibly a safe
controller following the Simplex paradigm [39]); and iv) to halt the
flight controller’s dynamic maneuvers so that the drone enters the
hover mode. Crystal implements the operator’s recommendation
immediately if the native execution enters the target symbolic state
and the state’s current concrete variable values actually violates
the safety requirements. Regardless, Crystal stores the operator’s
recommendation to avoid inquiring the operator again later for
similar scenarios, where JAT encounters the same or a symbolically
equivalent state.

Optimization for practical feasibility. To ensure that JAT
will keep up with the native execution speed, we leverage various
drone architectural features and implement several optimization
techniques: i) symbolic execution. Before the runtime setup, Crystal
implements an offline symbolic execution of the flight controller
code to avoid exploring individual concrete traces with similar out-
comes in terms of the compliance with the safety requirements.
Additionally, the offline symbolic execution enables Crystal runtime
model exploration to consider only feasible control logic execution
paths and not waste its online analysis time on unreachable (infea-
sible) states. The use of symbolic execution significantly reduces
JAT’s search space and improves its runtime performance. Crystal
then pipes the cyber- and flight physics-side analysis results (input-
to-output mappings) to use a full cyber-physical system model for
JAT verification (Figure 4). ii) runtime model pruning. Any time
the native execution takes (or does not take) a branch at time t ,
a subset of the future states at time t + tm that JAT is about to
explore may become unreachable. To maximize its time utilization,
Crystal periodically investigates the native execution state and
prunes the unreachable model states accordingly. Crystal’s runtime
model pruning gives an exponential speedup and eliminates the
exponential recursive branching of the model states during the
exploration. Such exponential branching leads to the impracticality
of the previous formal method solutions [23]. It leads to a finite
state sub-space within JAT’s forward-sliding tm window over the
complete model’s state space (Figure 1). iii) parallel JAT. Given the
exponential speed up using the runtime model pruning, Crystal’s
exploration is accelerated further through its multi-threaded im-
plementation theoretically up to the point that JAT can complete
verification of everymodel depthwithin an execution-cycle interval.
In our implementations, Crystal achieves this objective for complex
controller programs using a quad-core machine. iv) physics-aware
flight dynamics prediction. The neural network created is trained
offline and the model is used for the prediction purposes to im-
prove the analysis performed. Crystal predicts the drone’s physical
state and hence limits the upcoming possible sensor input values
to the control logic. The introduced input constraints mark many

originally-feasible control logic execution paths as infeasible saving
analysis time.

7 EVALUATIONS
We have implemented and evaluated Crystal on two commercial
products i) 3DR Solo Quadcopter [1] and ii) advanced Siemens S7-
300 PLC controller [9]. We designed the experiments to evaluate
the following questions: i) How accurately and fast can Crystal
intercept and reverse engineer the flight controller-bound machine
codes between the ground base station and the drone’s flight control
unit processor? ii) How efficiently do the proposed symbolic hybrid
cyber-physical system analysis techniques calculate the formal
sensing/actuation constraints? and iii) Can Crystal perform JAT
verification efficiently for real controller programs?

We have taken three steps to optimize our implementations
to ensure Crystal maintains its exploration ahead of the native
execution: i) symbolic execution enables Crystal to consider similar
multiple concrete states through a single symbolic state analysis;
ii) periodic acquisition of native execution state and the predictive
modeling of the drone’s physical dynamics using a hybrid approach
of convolutional neural network and EKF enables Crystal to avoid
wasting verification time on unreachable future states; iii) multi-
threaded future state exploration and verification gives Crystal’s
performance a linear boost. Our experimental results are promising
and show that Crystal can detect violation of drone safety properties
and recover the safe operation successfully.

7.1 Evaluation on 3DR Solo Quadcopter
Implementation. We implemented Crystal on a Raspberry Pi 3

embedded computer running Linux kernel 4.4. We used Keras with
TensorFlow as a backend to implement the predictive neural net-
work. The extended Kalman filter was implemented in C/C++ code.
The Z3 theorem prover is used by Crystal for checking the feasibil-
ity of paths and simplifying the symbolic outputs obtained during
symbolic execution. The sensor data consists of flight data collected
in stabilize, acro, drift, altitude hold, position hold and loiter modes
in various scenario’s including a couple of crash scenarios.

We implemented Crystal on a 3DR Solo quadcopter. The 3DR
Solo has a flight control unit which is isolated from the external
world for programming and an i.MX6 solo processor from Freescale
which runs Linux based operating system 3DR Poky (based on
Yocto project reference Distro) and has connections with the exter-
nal world as well as the flight control unit. The Raspberry Pi can
communicate to the flight control unit through UDP. The Raspberry
Pi sends MAVLink [24] packets to request the sensor data from the
quadcopter. This sensor data is feed to the predictive model to ob-
tain the predicted sensor data. This predicted sensor data is used to
prune the TEG and determine if there is any unsafe state in the near
future and inform the operator about it. The flight control unit has
a relatively less powerful processor (168 MHz / 252 MIPS Cortex-
M4F) compared to i.MX6 Solo (ARM Cortex A9 1Ghz, 1 CPU core
with VPU and GPU) and Raspberry Pi 3 (1.2GHz 64-bit quad-core
ARMv8 CPU), Hence the implementation for JAT verification will
not lag behind the flight control unit’s actual execution.

Case Studies: 3DR Solo Quadcopter Control Attack.

• Control attack on Motor and servo control

560

Just-Ahead-Of-Time Controller Recovery ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Safety requirements: The angular velocity of motors on
the quadcopter should be within safety limits. {P}C{Q <
γ } where P is the current angular velocity, C is the next
command and Q is the resulting angular velocity which
must be less than γ boundary condition for safe operation.
This limit changes with respect to the mode of operation.
eg.., the rate will be a bit relaxed when the quadcopter is in
acro mode compared to stabilize mode.
Safety violation: We implemented a malware (Maldrone)
to crash the quadcopter while landing. The Maldrone we
developed will decrease the thrust on the quadcopter sig-
nificantly while landing leading to crashing the quadcopter.
These kind of attacks are difficult to detect by humans if the
quadcopter is flying at a distance away from the operator.
Violation detection: The predictive model predicts the
significant reduction of the thrust on the quadcopter ahead
of time, based on the current and past reduction rate of the
thrust. Crystal estimates the possible unsafe state in future
and informs the operator about the unsafe state. We were
able to receive the information about the unsafe state well
in advance by using Crystal. Figure 6 shows the predicted
value before the crash which could not be detected until the
crash had occurred without Crystal.

• Control attack on AHRS
Safety requirements: The prediction value on the flight
control should not deviate from the actual sensor value by
more than γ (The safe operation range).
Safety violation: The synthetic malware which disrupts
the estimation of the EKF was introduced into the control
algorithm. This malware modifies the EKF algorithm so that
the estimation values do not follow the safety requirements.
Violation detection: Crystal predicts the upcoming un-
safe conditions and informs the operator about the situation.
Figure 7 shows that the Crystal could predict and inform the
operator.

• Drifting due control attack on PID control
Safety requirements: The quadcopter should not drift
more than a certain tolerance which depends on the accuracy
of the sensors and the external environmental factors. The
drift considered over a cycle as well as over an accumulated
period of time.
Safety violation: The PID parameters of the motor are
changed due to which the adaption of the change in the
motor speed was not accurate. Hence a lot of drift was intro-
duced into the system.
Violation detection: The predictive model detects this
drift caused due to change in PID parameters and informs
the operator about the violation.

• Control Attack on altitude control
Safety requirements: The quadcopter should not change
its altitude by more than the tolerance range. The tolerance
is due to external environmental factors like wind and/or
due to the accuracy of the sensors.
Safety violation: The synthetic malware was introduced
into the system which changes the speed of rotation of the
motors (angular velocity) and changes the altitude of the

Table 1: Average mean absolute error (MAE) for extended
Kalman filter (EKF) and neural network (NN) model during
minimal and heavy transitions

Sensor Data NN MAE EKF MAE

Roll during minimal transition 1.3242 0.1136
Roll during heavy transition 0.1713 0.8268
Yaw during minimal transition 1.9644 1.6359
Yaw during heavy transition 3.5643 18.5647

quadcopter. The malware injects false data into the control
algorithm.
Violation detection: The predictive model detects this
change in altitude by more than the tolerance value in alti-
tude hold mode and informs the operator about the unsafe
conditions. Since the firmware is trusted Crystal gets its
sensor values from the firmware, hence false data injection
on the control algorithm could be easily detectable by the
Crystal.

• Control Attack on position control
Safety requirements: The quadcopter should hold its po-
sition and not change the position by more than tolerance.
Again the tolerance might be due to external environmental
factors such as wind.
Safety violation: The synthetic malware was introduced
to change the position of the drone by more than the toler-
ance range. The malware can inject false data of either GPS
and /or IMU of the sensor data to the control algorithm.
Violation detection: The predictive model detects the
change in the position greater than the tolerance range and
informs the operator about the unsafe condition.

Accuracy. In Figure 8a and Figure 8b the estimation of sensor
data is better by using EKF for gradual and smooth transitions of
the sensor data since EKF is aware of the physical dynamics much
more accurately than neural network. However, in case of heavy
and violent transitions, the neural network is better than EKF as it
just takes one pass whereas EKF takes few iterations to converge
to the actual data based on the noise parameters used. Table 1
shows the results for the accuracy during smooth transitions and
violent transitions. The error is represented using mean absolute
error. Mean absolute error (MAE) is the average error between the
predicted value and the absolute value.

Mean Absolute Error (MAE) =
1

n

n∑

t=1

|et | (2)

Figure 9 shows the MAE for different iterations (epochs) of learn-
ing the sensor data. The learning data converges between 10 to 15
iterations (epochs). Hence Crystal’s neural network uses 12 epochs
for the experiments. The false positive rates due to the predicted
sensor data are shown in Figure 10.

Performance. The performance of the EKF and predictive neu-
ral network running on a Raspberry Pi 3 is shown in Table 2. The
analysis is performed for predicting the sensor data for five seconds
and ten seconds ahead of time. The time taken for EKF prediction
is almost equal to the scan rate of the sensor data, while the time
for NN is around four times of it. The performance of the neural

561

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Etigowni et al.

5 seconds

Actual

Drone crash

Predicted

Drone crash

Hovering

Gradual descent
Hovering

Sudden descent

due to malware

Figure 6: Crystal predicting the crash before the actual crash occurred

Figure 7: Crystal predicting the attack on attitude and head-
ing reference system (AHRS)

Table 2: Latency in milliseconds for predicting sensor data
with data points accumulating to 5 and 10 seconds

Estimation methods Min Avg Max Mdev

EKF (5 seconds) 10 56 120 26.64
EKF (10 seconds) 60 104.5 140 23.5
NN (5 seconds) 290 389.5 480 54.72
NN (10 seconds) 330 417.5 530 59.9

network can be further improved by using minimal lightweight
tools written in native code compared to heavy tools like Keras and
TensorFlow.

8 RELATEDWORK
Control system security. The related work to protect the con-

trol systems’ trusted computing base (TCB) are insufficient as soft-
ware patches are often applied only months after release [34], and
new vulnerabilities are discovered on a regular basis [3, 32]. The
traditional perimeter-security tries to keep adversaries out of the
protected control system entirely. Attempts include regulatory com-
pliance approaches such as the NERC CIP requirements [46] and
access control [10]. Despite the promise of information-security

(a) Roll sensor data

(b) Yaw sensor data

Figure 8: Two figures showing that extended Kalman filter
(EKF) is better in estimating with smoother transitions than
neural network and during violent transitions, neural net-
work is better than EKF

approaches, thirty years of precedence have shown the near im-
possibility of keeping adversaries out of critical systems [14] and
less than promising results for the prospect of addressing the secu-
rity problem from the perimeter [19, 20, 26]. Embedded controllers
from most major vendors [19, 47] and popular HMIs [26] have been
shown to have fundamental security flaws.

562

Just-Ahead-Of-Time Controller Recovery ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0

2

4

6

8

10

12

0 5 10 15 20

M
A

E
 in

 d
e

g
re

e

Time

Roll

Pitch

Yaw

Magnetometer X axis

Magnetometer Y axis

Magnetometer Z axis

Gyroscope X axis

Gyroscope Y axis

Gyroscope Z axis

Figure 9: Mean Absolute Error vs time

9.67299E-05

6.96719E-05

0.000319911

0.002269202

0.014454907

0.125989751

0.045104962

0.052366998

0.411604087

0.007484607

0 0.1 0.2 0.3 0.4 0.5

Gyroscope x axis

Gyroscope y axis

Gyroscope z axis

Magnetometer x axis

Magnetometer y axis

Magnetometer z axis

Pitch

Roll

Yaw

Altitude

False positive rate in %

Se
ns

or
 d

at
a

Figure 10: False positive rate due to sensor prediction

Controller program analysis. Basic static program analysis
approaches use SAT-basedmodel checking through Boolean logic [12,
22, 31] that could analyze sequence-based control systems with
timers, but those are only narrowly applicable. Unlike [6], the two
theorem-proving based approaches [13, 29] handle numerical in-
structions but do not implement rules for overflow checks or mixed
bit vector and integer arithmetic. Almost all static analysis tech-
niques [23] fall short in either checking for all program details
or scaling up to large-scale critical infrastructures. To improve
dynamic SCADA infrastructure monitoring techniques [44], PLC-
based approaches have been suggested [4, 15] for dynamic physical
plant monitoring. Dynamic plant behavior safety monitors [25] and
mathematical intrusion detectors [8] are also related. In addition
to being intrusive and causing performance overhead, dynamic
monitoring solutions such as WeaselBoard [28] focus mainly on
accidental failures, ignoring malicious actions, and/or leave an in-
sufficient time buffer for an effective response and recovery in case
of an attack or failure.

Drone security and safety. There have been several recent
efforts on offline and runtime formal verification of drone plat-
forms [36]. Javaid et al. [16] investigates potential threats against
UAV platforms and how existing cybersecurity techniques fall short
in defense due to the lack of consideration of the physical dynam-
ics. Chan et al. [7] present an overview of formalizing stability
properties of cyber-physical systems and drone platforms using the
Coq proof assistant. The proof procedures introduced require fairly

tedious human involvement. R2U2 [38] proposes a runtime formal
verification for monitoring of security properties and diagnosing
of security incidents. R2U2 continuously monitors inputs from var-
ious sources such as the GPS and the ground control station and
identifies anomalous behaviors once they occur. R2U2 relies on
the models of the controller code that are assumed given by the
operators. Additionally, as discussed earlier, R2U2’s runtime verifi-
cation failure alerts often result in too-late notifications for a timely
recovery strategy selection and deployment.

9 CONCLUSION
We presented Crystal, a just-ahead-of-time formal verification and
controller recovery solution for cyber-physical system and evalu-
ated our solution over 3DR Solo quadcopter. Crystal’s just-ahead-
of-time analysis eliminates the state explosion problem and gives
the operators a time gap to choose recovery actions. Additionally,
unlike traditional online monitoring solutions, Crystal leaves the
operators with an arbitrarily-adjustable time gap to decide upon
how to recover the system normal operation mode in case of an
unsafe state. Our experimental results show that Crystal can proac-
tively detect unsafe states, and recover the system with a negligible
performance overhead.

A GLOBAL SAFETY CONDITIONS
The class of attacks and the relevant global safety requirements for
the attacks on the quadcopter are shown in Table 3

B NORMAL OPERATION MODE PHYSICAL
MODELING

The nonlinear discrete-time system obtained from the flight dy-
namics equations can be written by the state equations as

x(n + 1) = f (x(n),u(n)) +w(n) (3)

y(n) = h(x(n)) +v(n) (4)

where x is the (i * 1) state vector of sensor data, y is the (j * 1)
observation vector of actuator data, f is the state transition model,
h is the observation model. Both f and h are nonlinear functions. w
and v are the processes and observation noises which are zero-mean
Gaussian noises with known covariance q and r respectively. u is
the control vector. n is the current sample of the sensor data and n
+ 1 is the future sample of the sensor data. For the system equations
in Equation 3 and Equation 4 the EKF solution for state estimation
of one step ahead of time are given by Equations 3-9

x̂(n + 1|n) = f (x̂(n |n)),u(n)) (5)

Equation 5 is the predicted sensor data values for one step ahead
of time.

x̂(n |n) = x̂(n |n − 1) + K(n)[y(n) − h(x̂(n |n − 1))] (6)

Equation 6 is the sensor values estimation update.

K(n) = P(n |n − 1)H (n)
T
[H (n)P(n |n − 1)H (n)

T
+ R(n)]

−1 (7)

K(n) is (i * j) Kalman gain matrix

P(n + 1|n) = F (n)P(n |n)F (t)
T
+Q(n) (8)

Equation 8 is the predicted covariance estimate.

P(n |n) = P(n |n − 1) − K(n)H (n)P(n |n − 1) (9)

563

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Etigowni et al.

Table 3: Evaluation attacks and descriptions

Class Description Example attack Attack consequence Example safety requirements

Motor and
server control

Motors or the servo control,
controls the movement of the
quadcopter

Switching off the motor Crash to the ground due to the
lack of thrust Thrust ≥ γ ,

∀alt itude > 0

Increasing the speed of a mo-
tor

Fly high due to increase in
thrust Thrust

dt
< |γ |,

∀alt itude > 0

Increasing the adjacent motors Move towards the direction
away from the motors Thrust_on_ad jacent_Motors

dt
< |γ |,

∀alt itude > 0

Increasing the opposite motors Rotates along its axis
Thrust_on_opposite_Motors

dt
< |γ |,

∀alt itude > 0

AHRD
Attitude and heading
reference systems (AHRS)
provides heading and attitude
information based on
magnetometer, accelerometer
and gyroscope

IMU sensor data modification
on control algorithm

Heading towards undesired di-
rections IMU _Data_on_Drone−

IMU _data_predicted < |γ |

Timing attack by delaying the
sensor data

Delays the control response
leading to undesired motion of
the quadcopter

T ime_on_Drone = T ime_on_Crystal

Modified control algorithm Inaccurate control commands
given to quadcopter State_on_Drone = State_on_Crystal

Position hold
Holds the quadcopter in a
position by using GPS data

IMU sensor data modification
on control algorithm

Movement of the quadcopter

IMU _Data_on_Drone−

IMU _data_predicted < |γ |

GPS sensor data modification
on control algorithm

Change in position of quad-
copter GPS_Data_on_Drone−

GPS_data_on_Crystal < |γ |

Modified control algorithm Inaccurate control commands
given to quadcopter State_on_Drone = State_on_Crystal

Altitude hold
Holds the altitude of the
quadcopter by using
barometer

Barometer sensor data modifi-
cation on control algorithm

Change of altitude

Barometer_Data_on_Drone−

Barometer_data_predicted < |γ |

Modified control algorithm Inaccurate control commands
given to quadcopter State_on_Drone = State_on_Crystal

Drift
Drifts due to external
environment or sensor
accuracy

Sensor data modification on
control algorithm

Slight drifting motions of the
quadcopter SensorData_on_Drone−

Sensordata_predicted < |γ |

Modified control algorithm Inaccurate control commands
given to quadcopter State_on_Drone = State_on_Crystal

564

Just-Ahead-Of-Time Controller Recovery ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Equation 9 is the update of the covariance estimate

F (n) =
∂ f

∂x x=x̂ (n |n)
(10)

H (n) =
∂h

∂x x=x̂ (n |n−1)
(11)

Equation 10 and Equation 11 are Jacobian matrices.
Crystal predicts K steps ahead of time instead of estimating one

step at a time. The estimation of sensor data K steps ahead of time
is given by Equation 12

x̂(n + k |n + k − 1) = f (x̂(n + k − 1|n + k − 1)),u(n + k − 1)) (12)

ACKNOWLEDGMENTS
This work is supported in part by the US National Science Founda-
tion under grant numbers CNS-1446471 and CNS-1453046.

REFERENCES
[1] 2017. 3DR Solo Quadcopter, available at https://3dr.com/solo-drone/. (2017).
[2] Dane Bamburry. 2015. Drones: Designed for Product Delivery. Design Manage-

ment Review 26, 1 (2015), 40–48.
[3] Dillon Beresford. 2011. Exploiting Siemens Simatic S7 PLCs. In Black Hat USA.
[4] Hans Berger. 2013. Automating with SIMATIC S7-1200: Configuring, Programming

and Testing with STEP 7 Basic. Vol. 11. John Wiley & Sons.
[5] AB Bitcraze. 2016. Crazyflie 2.0. (2016).
[6] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen. 2000. Towards

the Automatic Verification of PLC Programs Written in Instruction List. In IEEE
International Conference on Systems, Man, and Cybernetics, Vol. 4. 2449–2454.

[7] Matthew Chan, Daniel Ricketts, Sorin Lerner, and Gregory Malecha. 2016. Formal
Verification of Stability Properties of Cyber-physical Systems. (2016).

[8] Steve Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner, and Al-
fonso Valdes. 2007. Using Model-based Intrusion Detection for SCADA Networks.
In Proceedings of the SCADA Security Scientific Symposium.

[9] Nicolas Falliere, Liam O. Murchu, and Eric Chien. 2010. W32.Stuxnet Dossier.
Technical Report. Symantic Security Response.

[10] David Formby, Preethi Srinivasan, Andrew Leonard, Jonathan Rogers, and Ra-
heem Beyah. 2016. Who’s in Control of Your Control System? Device Finger-
printing for Cyber-Physical Systems. In NDSS.

[11] Rob Gerth, Doron Peled, Moshe Y Vardi, and Pierre Wolper. 1995. Simple on-the-
fly automatic verification of linear temporal logic. In International Symposium on
Protocol Specification, Testing and Verification. IFIP.

[12] J.F. Groote, S.F.M. van Vlijmen, and J.W.C. Koorn. 1995. The Safety Guaranteeing
System at Station Hoorn-Kersenboogerd. In Tenth Annual Conference on Systems
Integrity, Software Safety and Process Security. 57–68.

[13] Ralf Huuck. 2005. Semantics and Analysis of Instruction List Programs. Electronic
Notes in Theoretical Computer Science 115 (2005), 3–18.

[14] Vinay M Igure, Sean A Laughter, and Ronald D Williams. 2006. Security issues
in SCADA networks. Computers & Security 25, 7 (2006), 498–506.

[15] Maria G Ioannides. 2004. Design and implementation of PLC-based monitoring
control system for induction motor. Energy Conversion, IEEE Transactions on 19,
3 (2004), 469–476.

[16] Ahmad Y Javaid, Weiqing Sun, Vijay K Devabhaktuni, and Mansoor Alam. 2012.
Cyber security threat analysis and modeling of an unmanned aerial vehicle
system. In Homeland Security (HST), 2012 IEEE Conference on Technologies for.
IEEE, 585–590.

[17] Samy Kamkar. 2013. SkyJack: autonomous drone hacking. Online (2013). http:
//samy.pl/skyjack

[18] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, and others. 2009. seL4: Formal verification of an OS kernel. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 207–
220.

[19] Egor Vladimirovich Kuz’min and Valery Anatolievich Sokolov. 2012. On Construc-
tion and Verification of PLC-Programs. Modelirovanie i Analiz Informatsionnykh
Sistem [Modeling and Analysis of Information Systems] 19, 4 (2012), 25–36.

[20] TedG Lewis. 2006. Critical infrastructure protection in homeland security: defending
a networked nation. John Wiley & Sons.

[21] Yao Liu, Peng Ning, and Michael K Reiter. 2011. False data injection attacks
against state estimation in electric power grids. ACM Transactions on Information
and System Security (TISSEC) 14, 1 (2011), 13.

[22] Stephen McLaughlin and Patrick McDaniel. 2012. SABOT: specification-based
payload generation for programmable logic controllers. In Proceedings of the 2012
ACM conference on Computer and Communications Security. 439–449.

[23] Stephen McLaughlin, Saman Zonouz, Devin Pohly, and Patrick McDaniel. 2014.
A Trusted Safety Verifier for Controller Code. In Network and Distributed System
Security Symposium.

[24] Lorenz Meier, J Camacho, B Godbolt, J Goppert, L Heng, M Lizarraga, and others.
2013. Mavlink: Micro air vehicle communication protocol. Online]. Tillgänglig:
http://qgroundcontrol. org/mavlink/start.[Hämtad 2014-05-22] (2013).

[25] Sibin Mohan, Stanley Bak, Emiliano Betti, Heechul Yun, Lui Sha, and Marco
Caccamo. 2012. S3A: Secure System Simplex Architecture for Enhanced Security
of Cyber-Physical Systems. http://arxiv.org. (2012).

[26] Thomas H Morris, Anurag K Srivastava, Bradley Reaves, Kalyan Pavurapu, Sherif
Abdelwahed, Rayford Vaughn, Wesley McGrew, and Yoginder Dandass. 2009.
Engineering future cyber-physical energy systems: Challenges, research needs,
and roadmap. In North American Power Symposium (NAPS), 2009. IEEE, 1–6.

[27] Devaprakash Muniraj and Mazen Farhood. 2017. A framework for detection
of sensor attacks on small unmanned aircraft systems. In Unmanned Aircraft
Systems (ICUAS), 2017 International Conference on. IEEE, 1189–1198.

[28] Department of Homeland Security. 2014. Cyber Security Division Transition to
Practice Technology Guide. (2014).

[29] Sidi Ould Biha. 2011. A Formal Semantics of PLC Programs in Coq. In IEEE
35th Annual Computer Software and Applications Conference (COMPSAC). IEEE,
118–127.

[30] P Paganini. 2014. Hack-proof drones possible with HACMS technology.
http://resources. infosecinstitute. com/hack-proof-drones-possiblehacms-technology
(2014).

[31] Taeshin Park and Paul I Barton. 2000. Formal Verification of Sequence Controllers.
Computers & Chemical Engineering 23, 11 (2000), 1783–1793.

[32] Dale G. Peterson. 2012. Project Basecamp at S4. http://www.digitalbond.com/
2012/01/19/project-basecamp-at-s4/. (January 2012).

[33] André Platzer. 2011. Logic and compositional verification of hybrid systems. In
Computer Aided Verification. Springer, 28–43.

[34] Jonathan Pollet. 2010. Electricity for Free? The Dirty Underbelly of SCADA and
Smart Meters. In Proceedings of Black Hat USA 2010.

[35] Michael Robinson. 2015. Knocking my neighbor’s kid’s cruddy drone offline. In
Defcon.

[36] Ann Rogers and John Hill. 2014. Unmanned: Drone warfare and global security.
Between the Lines.

[37] Ruben Santamarta. 2012. Here be backdoors: A journey into the secrets of
industrial firmware. Black Hat USA (2012).

[38] Johann Schumann, Patrick Moosbrugger, and Kristin Y Rozier. 2015. R2U2:
monitoring and diagnosis of security threats for unmanned aerial systems. In
Runtime Verification. Springer, 233–249.

[39] Lui Sha. 2001. Using simplicity to control complexity. IEEE Software 4 (2001),
20–28.

[40] Noah Shachtman. 2011. Computer virus hits US drone fleet. CNN. com (2011).
[41] Scott Shane and David E Sanger. 2011. Drone crash in Iran reveals secret US

surveillance effort. The New York Times 7 (2011).
[42] Ali Shareef, Yifeng Zhu, Mohamad Musavi, and Bingxin Shen. 2007. Comparison

of MLP neural network and kalman filter for localization in wireless sensor
networks. In Proceedings of the 19th IASTED International conference on parallel
and distributed computing and systems. ACTA Press, 323–330.

[43] Yunmok Son, Hocheol Shin, Dongkwan Kim, Young-Seok Park, Juhwan Noh,
Kibum Choi, Jungwoo Choi, Yongdae Kim, and others. Rocking Drones with
Intentional Sound Noise on Gyroscopic Sensors.

[44] Keith A Stouffer, Joseph A Falco, and Karen A Scarfone. 2011. SP 800-82. Guide
to Industrial Control Systems (ICS) Security: Supervisory Control and Data
Acquisition (SCADA) systems, Distributed Control Systems (DCS), and other
control system configurations such as Programmable Logic Controllers (PLC).
(2011).

[45] uasvision. 2016. NASA Drone Hack Revealed.
http://www.uasvision.com/2016/02/02/nasa-drone-hack-revealed/ (2016).

[46] U.S. Department of Energy Office of Electricity Delivery and Energy Reliability.
2015. North American Electric Reliability Corporation Critical Infrastructure
Protection (NERC-CIP) Standards; available at http://www.nerc.com/pa/Stand/
Pages/CIPStandards.aspx. (2015).

[47] Sidney E Valentine. 2013. PLC code vulnerabilities through SCADA systems. Ph.D.
Dissertation. University of South Carolina.

[48] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. 2014.
AVATAR: A framework to support dynamic security analysis of embedded
systems firmwares. In Symposium on Network and Distributed System Security
(NDSS).

565

https://3dr.com/solo-drone/
http://samy.pl/skyjack
http://samy.pl/skyjack
http://arxiv.org
http://www.digitalbond.com/2012/01/19/project-basecamp-at-s4/
http://www.digitalbond.com/2012/01/19/project-basecamp-at-s4/
http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

