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ABSTRACT

Microarchitectural side channels expose unprotected software to
information leakage attacks where a software adversary is able
to track runtime behavior of a benign process and steal secrets
such as cryptographic keys. As suggested by incremental software
patches for the RSA algorithm against variants of side-channel
attacks within different versions of cryptographic libraries, protect-
ing security-critical algorithms against side channels is an intricate
task. Software protections avoid leakages by operating in constant
time with a uniform resource usage pattern independent of the
processed secret. In this respect, automated testing and verification
of software binaries for leakage-free behavior is of importance,
particularly when the source code is not available. In this work, we
propose a novel technique based on Dynamic Binary Instrumen-
tation and Mutual Information Analysis to efficiently locate and
quantify memory based and control-flow based microarchitectural
leakages. We develop a software framework named MicroWalk for
side-channel analysis of binaries which can be extended to support
new classes of leakage. For the first time, by utilizing MicroWalk, we
perform rigorous leakage analysis of two widely-used closed-source
cryptographic libraries: Intel IPP and Microsoft CNG. We analyze
15 different cryptographic implementations consisting of 112 mil-
lion instructions in about 105 minutes of CPU time. By locating
previously unknown leakages in hardened implementations, our re-
sults suggest that MicroWalk can efficiently find microarchitectural
leakages in software binaries.
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1 INTRODUCTION

Side-channel attacks exploit information leakage through physical
behavior of computing devices. The physical behavior depends
on the processed data. The resulting data-dependent patterns in
physical signals such as power consumption, electromagnetic ema-
nations or timing behavior can be analyzed to extract secrets such
as cryptographic keys [19, 33, 50, 59]. Despite the physical prox-
imity requirement for most physical attacks, there exist remotely
exploitable side channels such as microarchitectural attacks [32].
Microarchitectural attacks exploit shared hardware features such
as cache [13, 65, 67], branch prediction unit (BPU) [2], memory
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order buffer (MOB) [61] and speculative execution engine [49]
to extract secrets from a process executed on the same system.
These attacks can be mounted remotely or locally on systems
where untrusted entities can execute code on a shared hardware,
either because the system is shared or untrusted code is executed.
Scenarios include but are not limited to cross-VM attacks in the
cloud environment [44, 57], drive-by JavaScript trojans inside the
browser sandbox [54], attacks originating from untrusted mobile
applications [55] and system-adversarial attacks against Intel Soft-
ware Guard eXtensions (SGX) [20, 62]. Microarchitectural leakage
can be used to break software implementations of cryptographic
schemes where the adversaries recover the secret key by com-
bining the leaked partial information from key-dependent activ-
ities [12, 68, 83]. These side channels can be further exploited to
violate user’s privacy through activity profiling [37], or to steal
user’s keystrokes [35]. Memory protections such as Address Space
Layout Randomization (ASLR) can be bypassed by exploiting mi-
croarchitectural side-channel leakages [30].

Defense against microarchitectural side channels have been pro-
posed based on new hardware design [24, 47], systematic mitiga-
tion [56] and activity monitoring [18, 87]. However, the most widely-
used protection against microarchitectural leakage is software hard-
ening using constant-time programming techniques [17, 39]. In
this context, constant-time programming implies using microar-
chitectural resources in a secret-independent fashion. Therefore,
timing, or trace-based leakages [26] in the hardware would not re-
veal any information about the secret. These techniques depend on
the underlying microarchitecture and side-channel knowledge, i.e.
software implementations are hardened to follow a constant-time
behavior based on published attacks on the target microarchitec-
ture. Consequently, a novel microarchitectural attack demands new
changes to these software protections. While true constant-time
code avoids such problems, manual verification of the software im-
plementation for constant-time behavior is an error-prone task, and
it requires extensive, and ever growing knowledge of side channels.
Besides, what we observe in the source code is not always what
is executed on the processor [72], and there are leakages in the
program binary that remain unobserved in the source code [46].
The state of art tools and techniques for automated finding of
side-channel leakages in software binaries fall short in practice,
particularly when the source code is not available. As a result, com-
mercial cryptographic products such as Microsoft Cryptography API



Next Generation (CNG), which is used everyday by millions of users,
have never been externally audited for side-channel security.

1.1 Our Contribution

We propose a leakage detection technique, and develop a frame-
work named MicroWalk to locate leakages within software binaries.
We apply MicroWalk to analyze two commercial closed-source cryp-
tographic libraries hardened toward constant-time protections and
report previously unknown vulnerabilities, in summary:

e We propose a technique based on Dynamic Binary Instru-
mentation (DBI) and Mutual Information (MI) Analysis to
locate memory based and control-flow based microarchitec-
tural leakages in software binaries.

o We develop the MicroWalk framework to perform automated
leakage testing and quantification based on our technique.
Our framework can be extended to locate other and new
types of microarchitectural leakages.

e We demonstrate the ease-of-use of MicroWalk by showing
how it significantly eases the analysis of binary code even
in cases where source code is not accessible to the analyst.

o We apply MicroWalk to cryptographic schemes implemented
in Microsoft CNG and Intel IPP, which are both widely used,
yet closed source crypto libraries. Our results include previ-
ously unknown leakages in these libraries.

e We perform analysis and quantification of the critical leak-
ages, and discuss the security impact of these leakages on
the relevant cryptographic schemes.

1.2 Analysis Setup and Targeted Software

Our machine for analysis is a Dell XPS 8920 machine with Intel(R)
Core i7-7700 processor, 16 GB of RAM and a traditional hard disk
drive running Microsoft Windows 10. The MicroWalk Framework
uses Pin v3.6 as the DBI backend, and IDA Pro v6.95 for binary visu-
alization and leakage analysis. The tested cryptographic modules
are Microsoft beryptprimitives.dll v10.0.17134.1 as part of Microsoft
CNG, and Intel IPP v2018.2.185.

2 BACKGROUND
2.1 Dynamic Binary Instrumentation

Dynamic program analysis is more accurate compared to static
analysis due to availability of real system states and data [63]. Dy-
namic analysis requires instrumentation of the program binary, and
it analyzes the program when it executes. The instrumentation code
is added to the program binary without changing the normal logic
and execution flow of the program under analysis, and it contains
minimal instructions and subroutines for collecting metadata and
measurements. The instrumentation code and the instrumented
code execute at the same time following each other. Indeed, adding
instrumentation is easier during the compilation phase and when
the source code is available [53], but source code is not always
available, and the analysis would not be as accurate due to compiler
transformations. Thanks to Dynamic Binary Instrumentation (DBI)
frameworks such as Pin [58], it is possible to instrument program
binaries without source code.

Instrumentation

Code ~ Instrumented
) Target Applicationj, =  Code
Pintools
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Figure 1: Pin: The JIT compiler combines application and in-
strumentation codes, and it stores the transformed binary in
code cache. The virtual machine maintains and tracks pro-
gram states, while it executes from the code cache.

Pin is a DBI framework based on just-in-time (JIT) compilation.
In general, JIT compilers transform a source language to executable
binary instructions at runtime. Figure 1 shows how an embedded
JIT engine is part of Pin to recompile the binary instructions at run-
time and combine the program’s instruction with instrumentation
codes, named Pintools. To avoid the performance pitfall of JIT com-
pilation, Pin uses a code cache that stores the combined code, and
re-execution of the same basic blocks occur from the code cache.
Binary instrumentation using Pintools gives us an easy to use inter-
face to collect runtime metadata about program states such as the
accessed memory addresses, targets of indirect branches and mem-
ory allocations. Pin makes sure the instrumentation is transparent,
i.e., it preserves the original application behavior [58]. These events
can be measures as accurate as they occur on the OS and the pro-
cessor and as it would be an uninstrumented execution. In terms of
microarchitectural analysis, we can observe the program behavior
and resource usage as they appear on the hardware, and this gives
us the ability to model a known microarchitectural leakage based
on the observation of states from a real system.

2.2 Microarchitectural Leakage

Modern microarchitectures feature various shared resources, and
these resources are distributed among malicious and benign pro-
cesses with different permissions. A malicious process, sharing the
same hardware, can cause resource contention with a victim and
measure the timing of either the victim or herself to learn about
the victim’s runtime. In a cache attack, the adversary accesses the
same cache set that the victim’s security-critical memory accesses
are mapped to, and she measures the memory accesses’ timing. A
slow memory access reveals some information about the address
bits of the victim’s memory access. As motivated by cache attacks
on AES [13, 65], knowledge of secret-dependent memory accesses
such as S-Box operations leaks information about the internal run-
time state, and this information can be used for cryptanalysis and
secret key recovery. In cache attacks, the size of each cache block
is 64 B which stops adversaries from gaining information about the
log,(64) = 6 least significant address bits. While some constant-
time software countermeasures assume that the adversary cannot
leak these bits, there are microarchitectural attacks on cache banks
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Figure 2: Montgomery Square and Multiply operations can
leak information about the secret exponent. While r9 points
to the exponent in memory, comparison of a value from the
exponent determines if the left jump should occur which
leaves a key-dependent microarchitectural footprint.

and MOB that leak beyond this assumption [61, 84]. In this work, we
consider all secret-dependent memory accesses and treat them as
memory-based leakages disregarding their spatial resolution.

Memory operations are not the only source of leakage. A con-
ditional statement, or a processing loop that depends on a secret
to choose an execution path can leak information about the se-
cret. Each unique execution path operates on a different set of in-
structions, and it consumes the shared resources uniquely. Shared
resources such as instruction cache and BPU leak information
about the state of branches [1, 3]. Figure 2 resembles a classical
side-channel leakage in RSA Montgomery modular exponentiation.
This algorithm processes a secret exponent one bit at a time, and
it performs an additional arithmetic operation when the secret bit
is one. An adversary who is able to track the execution of the left
branch is able to determine the secret value that affected the condi-
tional jump decision. We treat all the attacks that are triggered due
to secret-dependent branches as control-flow based attacks.

2.3 Mutual Information Analysis

Mutual information (MI) measures the mutual dependence of two
random variables, and it can be used to quantify the average amount
of obtainable information about one variable through observation
of the second variable [36]. Mutual information using Shannon
entropy is defined as
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where p(x) and p(y) are the probability distributions of random
variables X and Y respectively. p(x, y) is the joint probability of
X and Y, and I(X,Y) tells us the average amount of dependent
information in bits! between the variables X and Y. MI has been
utilized to quantify side-channel security [10, 43, 75, 86], or to
mount side-channel attacks [34]. Redefining MI in the side-channel
context, we can define variable X as the secret and variable Y as an
internal physical state of a system leaked through a side channel.

!log, measures the MI in bit unit.

I(X,Y) will measure the average amount of leakage from secret X,
through observing the side-channel information Y.

2.4 Signing Algorithms

2.4.1 DSA. Digital Signing Algorithm (DSA) [69] is a signature
scheme based on the discrete logarithm problem (DLP) [48]. Choos-
ing a prime p, another prime g divisor of p — 1, the group generator
g, a secret key x, the public key y = g* mod p, and the hash of the
message to be signed z, the DSA signing operation is defined as

k«— RANDOM |1<k<gq
r=(g" modp)mod g, s =k (z+r-x) mod g
where (r, s) are the output signature pairs.

2.4.2 ECDSA. Elliptic-Curve DSA (ECDSA), as an analogue of
DSA, is a signature scheme based on elliptic curves [45], in which
the subgroup of a prime p is replaced by the group of points on
an elliptic curve over a finite field. Choosing an elliptic curve, a
point on the curve G, the integer order n of G, a secret key dg4, the
public key Q4 = d4 X G, and the hash of message to be signed z,
the ECDSA signing operation is defined as

k— RANDOM |1<k<n-1
(xl,yl):kXG

r=ximodn, s=k '(z+r-d4) modn

Both DSA and ECDSA use an ephemeral secret k that needs to be
chosen randomly for each operation.

2.4.3 Modified Elliptic Curve Signature. Elliptic-Curve Nyberg-
Rueppel (ECNR) [64] and SM2 [8], a standard signature scheme,
are modified schemes based on ECDSA that allow signatures with
message recovery. ECNR and SM2 are widely used, and they are both
supported by Intel IPP. Public parameters, the private/public key
pair and the ephemeral secrets are chosen similar to ECDSA. The
pair (x1, y1) is also calculated similarly, but the signature generation
for ECNR is defined as

r=xi1+z s=k—-r-dg,
and the signature generation for SM2 is defined as

r=x1+z s=0+da) Mk —r-dy)

3 MICROWALK ANALYSIS TECHNIQUE

MicroWalk aims to find microarchitectural leakages in software
binaries. A binary implementation is vulnerable to microarchitec-
tural side-channel attacks when there is a dependency between a
secret and internal computation states observable through the side
channels. We expose such relationships and quantify the amount
of observable leakage in these implementations. This helps security
analysts 1) to reveal whether an implementation has leakages, 2)
to locate the exact location of each leakage in the binary, and 3) to
measure the dependency between the secret and the internal state,
i.e. it can give some confidence value on the severity of the leakage.
In contrast to side-channel analysis model, we are able to perform
this analysis in a white-box model.
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Figure 3: Left: side-channel analyst finds relationship be-
tween a real leakage such as cache access pattern and se-
crets such as cryptographic keys. Right: MicroWalk follows
a white-box model where the security analyst has full access
to runtime states such as memory accesses, and she can find
dependencies between arbitrary secrets and internal states.

3.1 Leakage Analysis Model

We assume a strong adversary with full access to runtime events
such as memory accesses, execution path and even register values.
Further, the adversary can choose and modify any secret input of the
system. This strong adversary can define any internal computation
state such as addresses of memory accesses and register values as a
potential leakage vector, based on her knowledge of a category of
side-channel attacks, e.g., memory based attacks (Section 2.2). The
adversary executes the system under her full control, and feeds the
system with arbitrary secrets while collecting runtime traces for
the defined leakage vector. Figure 3 compares our leakage analysis
model with the side-channel analysis model. As an example, if we
try to analyze a binary implementation of AES, we need to define
certain operations as our leakage vectors. Based on cache attacks,
an adversary defines memory accesses as a leakage vector, and she
collects all memory accesses during the execution of AES using
arbitrary secret keys. If there is a dependency between different
secret keys and the variation of memory accesses, the adversary can
locate which instructions relate to any secret-dependent memory
accesses, and identify potential leakages.

3.2 Capturing Internal States

We choose two common sources of leakage as our leakage vectors:
1) execution path and 2) memory accesses. A true constant-time
implementation follows a linear execution path for any given secret
input; each time a software performs a secret-dependent conditional
branch, it leaks some amount of information about the secret. Defin-
ing execution path as a leakage vector helps us to check whether
for any secret input the same operations are performed. The second
common source of leakage are memory accesses. A constant-time
implementation should follow a secret-independent memory access
pattern. If, for example, an implementation of a cryptographic algo-
rithm does key-dependent table look ups which can be exploited by
measuring cache timings, an attacker will be able to extract parts of
the secret key; we ensure that memory accesses are either invariant,
or at least uncorrelated to the input (e.g. blinding in RSA [50]).

To be able to detect these two types of leakages, we need to collect
the internal state for all memory accesses and branch operations.
First of all, we generate a set of arbitrary inputs for a chosen secret.
These inputs can be either random (e.g. plain texts for encryption)

or have a special structure with some random components (e.g.
private keys or ephemeral secrets). We then execute the target
binary on each input and log the following events:

e memory allocations

e branches, calls and returns
e memory reads and writes
e stack operations.

Absolute memory addresses may vary even for constant-time
programs, e.g., due to ASLR and dynamic heap allocation. We use
the trace of memory allocations and stack operations to compute
relative memory addresses; our meta data then consists of a list of
relative addresses for memory accesses and the branches to, from
and within the code we are analyzing. Note that one can define
other leakage sources based on the underlying microarchitecture
and collect the state of relevant instructions for analysis, e.g., the
multiplication on some ARM platforms leaks information [7].

3.3 Preparing State Variables

We do not make any assumptions on the leakage granularity; com-
pared to similar techniques, that stop at cache line level, we keep
this parameter freely configurable. This has the advantage that the
analysis can be restricted to leakage sizes that are actually rele-
vant to the analyst: For example, as of writing this paper, on Intel
processors the finest known attack has a leakage granularity of
4 bytes [61]. Applying our technique in 1-byte mode will give all
positions where a leakage might occur, but if one only expects 4-
byte leakages to be exploitable, this may yield some false positives.
Instead, the security analyst can choose the leakage granularity
that fits to the desired spatial resolution. After applying the chosen
leakage granularity of g € N bytes by discarding the lower log, g
bits of each address, we can acquire an efficient representation of a
specific execution state by computing a hash value of all or a subset
of the trace entries; a truly constant-time program should have
identical hashes of the full trace for every secret input. If we are
only interested in analyzing individual instructions, e.g., memory
access leakages of a specific subroutine, we can as well just compute
the hash for the subset of traces for a single instruction.

3.4 Leakage Analysis

Our approach identifies any variations resulting from unique inputs
and captured internal states per input. A naive approach is to com-
pare the collected traces and divide them into classes. Observing
more than one class informs us about secret-dependent operations.
One can also compare raw traces sequentially which outlines all
positions where the program behaves input-dependent and thereby
allows to isolate the problematic sections. In addition to these sim-
ple approaches, we use MI to detect/locate these leakages, and to
quantify the observable information.

To simplify MI analysis, we assume that X is a set of unique
uniformly distributed input test cases, which trigger deterministic
behavior of the investigated program. If the program makes use
of randomization (e.g. blinding in RSA [50]), the test cases x € X
should contain the corresponding sources of randomness too.

Let Y be a set of possible internal states (e.g. hashes of execution
traces). We then define the execution state T; C X X Y of the



analyzed program at time point i as
ccyelin(xy)eTi=y=y,

i.e. each test case x € X appears at most once in T;. The probability
of one observed state y € Y is

Hx',y") e Tily=y'}]|
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For the probability of pairs (x,y) € X X Y we get
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since each input and therefore each input/state tuple occur exactly
once: |T;| = |X].

With this knowledge we can finally compute the mutual infor-
mation between test cases X and the set of all occurring states
Yi ={y|(x,y) € Ti}:
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3.5 Interpretation of MI Score

As mentioned before, we can compute the MI for the entire trace,
or a single instruction. A non-zero score for whole-trace MI tells
us that an implementation has leakages, but it cannot locate the
leakage point, and an implementation that has multiple leakage
points over the execution period will have an aggregated MI value.
The MI for single instructions is more precise, in which we can
locate the instructions with positive score. The MI score I;(X;, Y;) is
bounded by the amount of input bits log, |X|, and (for instruction
MI) by the operand size: For example, an instruction that once
accesses memory depending on 8 bits of the input will generate MI
min{8,log, |X|}. If we only execute | X| = 128 test cases, we get MI
score 7; for 256 or more test cases we get MI score 8. The analyzed
MI score is an estimate of the average leakage over the given test
cases. MI is the appropriate metric in cases where the analyzed
inputs are not under the attackers control and commonly used
in leakage quantification. Alternatively, the worst case leakage for
any attacker-chosen input is given by the min entropy, which only
considers the most likely guess. The use of min entropy instead of
MI in MicroWalk is recommended if the adversary has full control
over the inputs and specific high-leakage inputs exist [74].

4 MICROWALK FRAMEWORK

The MicroWalk framework is built as a pipeline with separate stages
for test case generation, tracing and analysis (Figure 4). This mod-
ular design reduce the complexity, leading to easier extensibility:
If one wants to implement additional analysis techniques apart
from the ones that we already provide, she can directly add a new
analysis stage, without needing to touch other parts like the trace
generation. We will continue explaining these stages in more detail.

4.1 Investigated Binary

Although we are only interested in analyzing a specific function
within a binary, we have to instrument and collect traces for the
entire setup stage of the application before reaching to the anal-
ysis point, including the target library or executable itself, and
parts of dependencies like system components. This process leads
to an enormous decrease in analysis speed. A more efficient ap-
proach is to load and instrument the setup code only once, and
then process the incoming test cases in a controlled loop. For li-
braries, we create a wrapper executable that executes an interface
in a loop with new test cases. For executable applications, we can
adopt in-memory fuzzing techniques where we inject hooks at
the beginning and end of the target function and control the ex-
ecution of the function to reset to the beginning with new test
cases [11]. To separate traces of the different test cases and avoid
that the loop code causes false positives, we place calls to two
instrumented dummy functions PinNotifyTestcaseStart and
PinNotifyTestcaseEnd, which mark the start and the end of the
analyzed section. A similar approach is taken by some fuzzers like
WinAFL [31], which use a built-in functionality of DynamoRIO [29]
to exchange the argument list of main or a similar function.

4.2 Input Generation

The MicroWalk framework utilizes cryptographically secure pseu-
dorandom number generators to create random test cases of any
specified length. This performs well when analyzing cryptographic
code, e.g. decrypting random ciphertexts. If a special input format
is required, the test case generation code can be easily extended to
produce such inputs, e.g. cryptographic keys in PEM format; this
way, parts of the input can be kept constant while other parts are
randomized, allowing to isolate the parameters which cause non-
constant time behavior. Further, the framework supports passing a
directory containing already generated inputs of any format.

4.3 Trace Generation

To trace the execution of individual test cases, we create a custom so-
called Pintool, which is a client library making use of Intel Pin’s
dynamic instrumentation capabilities. In summary, our Pintool logs
the following events in a custom binary format on disk:

e module loads and the respective start and end addresses;

e calls to dummy functions in the instrumented executable, to
identify start and end of a test case execution;

e sizes and addresses of allocated memory blocks through
heap allocation functions such as malloc and free (Platform
dependent), for resolving relative memory addresses;

e Stack pointer modifications, for resolving relative addresses;

e branches, calls and returns to and from all involved modules;

e memory reads and writes in investigated modules.

4.3.1 Instruction Emulation. Several cryptographic libraries use
the CPUID instruction to detect the supported instructions for the
respective processor and select a fitting implementation (that e.g.
makes use of AES-NI). we enabled the Pintool to change the out-
put of this instruction. This allows to test arbitrary subsets of the
instruction set that is available on the computer running Pin.
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Figure 4: The MicroWalk pipeline: Given the software binary under test, the framework generates test cases using the selected
source, that are then used to produce execution traces. These traces need to be preprocessed to extract important information.
The resulting trace files can then be analyzed for leakages, which are shown to the user in the visualization stage. Each stage
can be easily modified to add further functionality, that is used either interchangeably or in addition to existing features.

Asmentioned in Section 3, cryptographic implementations might
use randomization techniques like blinding to hide correlations be-
tween secret inputs and execution, or use ephemeral secrets. Some
of these rely on the RDRAND instruction, which provides random
numbers seeded with hardware entropy [40]. We provide an option
to override the output of this instruction with arbitrary fixed values
to control the randomization of the program under investigation.

4.4 Trace Preprocessing

The resulting raw trace files now need some preprocessing: First
we add the common trace prefix that is generated before running
the first test case, and which contains allocation data from the setup
phase. In a second step, we calculate relative offsets of memory
addresses. This involves associating branch targets with instruction
offsets in the respective libraries, and identify offsets of memory
accesses, such that traces generated using the same test case but
during different runs of the Pintool still match, regardless of the
usage of randomized virtual addresses, e.g., ASLR. For accesses to
heap memory, we need to maintain a list of all currently allocated
blocks: We use a stack to match the allocation size with their respec-
tive returned memory addresses, since in some implementations
the heap allocator tends to call itself to reserve memory for internal
bookkeeping. Finally the resulting preprocessed trace file is much
smaller than the raw one (which can be discarded after this step),
saving disk space and speeding up the following analysis stage.

4.4.1 Applying Leakage Granularity. We apply the leakage gran-
ularity immediately before the analysis starts; this way the prepro-
cessed trace files are not modified, so the analysis can be performed
on the same traces with different parameters. An analysis granular-
ity of g = 2b bytes (b € N) is introduced by discarding the b least
significant bits of each relative address.

4.5 Leakage Analysis

We implemented three different analysis methods in our framework:

4.5.1 Analysis 1: Trace Comparison. The first analysis method
implements the trace comparison technique; given two prepro-
cessed traces, we compare them entry by entry to check whether

they differ at all. This performs well for leakage detection of partic-
ularly small algorithms such as symmetric ciphers. Optionally, the
user can use trace diffs to manually inspect varying sections.

4.5.2  Analysis 2: Whole-trace MI. For leakage detection of an
entire logic and calculation of the average amount of input bits
that might leak over arbitrary parts of the execution (assuming that
the attacker has full access to the trace), we provide an option to
estimate the MI between input data and resulting trace. Given a
set X of unique test cases, we need to determine matching outputs
for each trace prefix. Since we can compute the final MI only after
waiting for completion of all test cases, it would be inefficient to
store the entire trace; instead we reduce the trace data by encoding
information like relative memory accesses and branch targets into
64-bit integers, and then compress them into one 64-bit integer
y € {0,...,2% — 1} using a hash function. We store the resulting
tuples of inputs and hashes in sets T; ¢ X x {0,...,2% — 1} for
each prefix length i. We then apply the methods from Section 3 to
measure the trace leakage.

4.5.3  Analysis 3: Single-instruction MI. The average amount of
bits leaked by a single memory instruction is calculated analogously
to the trace prefixes: Here, for a specific instruction i, T; ¢ X X
{0, ...,2% — 1} contains hashes of the accessed memory addresses
for each input x. These hashes change when the accessed addresses,
their amount or their order vary, thus we get the maximum amount
of information that is leaked by the respective instruction.

4.6 Manual Inspection and Visualization

To be able to manually inspect the preprocessed traces, the program
has an option to convert binary traces into a readable text represen-
tation. If MAP files with function names are available (exported by
some compilers or disassemblers), these can be used to symbolize
memory addresses. We also created an IDA python plugin to import
our single-instruction MI results as disassembly annotations. This
helps further analysis on which parts of functions and loops leak.

Further we developed an experimental visualization tool, that
renders function names and then draws an execution path. It also
provides an option to render two traces simultaneously and high-
light all sections where they have differences. This gives a quick
overview of potential leakages and their structure.



5 CASE STUDY I: INTEL IPP

Intel’s Integrated Performance Primitives (IPP) cryptographic library
aims to provide high performance cryptographic primitives that are
compatible with various generations of Intel’s processor [41]. Intel
IPP supports symmetric operations such as AES, as well as asym-
metric signature and encryption schemes such as ECDSA. Intel IPP
is used as the cryptographic backend for many of Intel’s security
products such as Intel SGX. Each of the implemented schemes in
this library comes in variants optimized for different processors [42].
The dynamic library checks the supported instruction set at run-
time and chooses the most optimized implementation. However,
developers can statically link toward a specific implementation by
choosing the proper architecture code, e.g., n8_ippsAESInit rather
than ippsAESInit. In this case study, we test implementations for
the variant optimized for processors supporting Intel® Advanced
Vector Extensions 2 (Intel® AVX2) with architecture code 19.

5.1 Applying MicroWalk MI Analysis to IPP

To be able to test Intel IPP cryptographic implementations, we pre-
pared wrappers that perform encryption and signing operations.
For each tested implementation, we configured the wrappers for
testing multiple test case scenarios: 1) randomized plaintexts/ci-
phertexts to be encrypted/decrypted, or the message to be signed,
2) randomized symmetric keys or private asymmetric keys, and
3) random ephemeral secrets, when it is applicable, e.g., DSA and
ECDSA as the input to MI Analysis. As suggested by chosen plain-
text/ciphertext attacks, attacks on the cipher key and lattice attacks
on ephemeral secrets [12], using these scenarios, we are able to
detect leakages that are dependent on various types of secrets.

Table 1 shows the single-instruction MI analysis results, where
symmetric ciphers: (Triple) DES, AES and SM4 and asymmetric ci-
phers: DSA, RSA, ECDSA, ECNR and SM2 have been tested. On our
analysis setup, the total computational time to analyze 10 differ-
ent implementations with about 92 million total instructions is 73
minutes of CPU time, highlighting the efficiency of our method.
Note that we performed analysis with input size 27 = 128 (7-bit
MI) and input size 20 = 1024 (10-bit MI), for analysis of symmetric
and asymmetric operations respectively. Although analysis with
more iterations is possible, state-of-the art side-channel attacks
on these implementations suggest that the random secret should
show leakage behavior after this number of iterations. Intel IPP uses
two separate interfaces for the key schedule, and ephemeral secret
generation for most implementations (Table 1).

(Triple) DES, AES and SM4 are block ciphers that use table-based
S-Box operations. The results suggest that these implementations
are heavily protected against memory-based leakages. Our target
architecture code uses the AES-NI instruction set for AES and SM4
operations. AES-NI is inherently secure against known attacks.
However, testing the CTR mode reveals some leakages. All asym-
metric ciphers suffer from at least one leakage. For schemes that
are based on elliptic curves such as ECDSA, ECNR and SM2, Intel
IPP supports various standard curves. As some developers optimize
curve arithmetic differently for various standard elliptic curves, we
tested the ECDSA signing operation with three different curves:
SECP256R1, BN256 and SM2. However, the MI analysis results are
exactly the same for different choices of elliptic curves. We found a

Table 1: Singe-instruction MI Analysis of Intel IPP crypto-
graphic implementations v2018.2.185. All implementations
are chosen from the 19 architecture code.

Scheme Interfaces Executed / | Analysis | Leakage
Unique In- | Time Found
structions | (ms)

ippsDESInit

3DES/ECB ppeTE 4074613 /| 11921 | 0

ippsTDESDecryptECB 70205
ippsSMS4Init
SM4/ECB ppesTE 4085517 /| 10004 | 0
ippsSMS4EncryptECB 68221
ippsAESInit
AES/CTR 2138799 /| 27289 2
ippsAESEncryptCTR 49181
ippsDLPGenKeyPair
DSA (512) 12245281 / | 1735153 | 2
ippsDLPSignDSA 57423
RSA (512) ippsRSA_Decrypt 43987943 / | 275090 1
55167
ippsECCPGenKeyPai
ECDSA | PP 4085155 /| 358373 | 3
(SECP256R1) ippsECCPSignDSA 63785
ippsECCPGenKeyPai
ECDSA | PPV 5ag3010 /| 750188 | -
(BN256) ippsECCPSignDSA 63699
ippsECCPGenKeyPai
ECDSA | PP 5158607 /| 353435 | -
(SM2) ippsECCPSignDSA 63741
ippsECCPGenKeyPai

ECNR PSRt | 4028592 /| 281937 | 2

(SECP256R1) ippsECCPSignNR 62447

SM2 ippsECCPSignSM2 6021005 / | 554035 3
64273

Total 91208722 / | 73 minutes | 13
618142

* Different curves did not change the results for ECDSA.

total of 13 leakages in Intel IPP, while some of these leakages are
triggered through calling the same subroutine, e.g., both ECDSA
and SM2 use the leaky subroutine for scalar multiplication.
We will discuss these subroutines in more detail.

5.2 Discovered leakages in Intel IPP

We have found 7 different subroutines that have leakages, i.e., per-
form data-depended memory accesses or branch decisions (Table 2).
We performed an initial analysis of these leakages using our vi-
sualization tool and IDA Pro. The subroutine gfec_MulBasePoint
performs scalar multiplication of a scalar and point on the elliptic
curve, as a common operation in all curve-based signature schemes:
ECDSA, ECNR, SM2. As defined by the signing algorithms Sec-
tion 2.4, gfec_MulBasePoint leaks information about the ephemeral
secret. This leakage occurs due to the dependability of the number
of times the window-based multiplier loop processes the ephemeral
secret. Further leakages exist in the curve operations after the scalar
multiplication: The subroutine alm_mont_inv leaks information
during the mapping of x coordinate of computed public point. As
(x1,y1) are not secrets in the signing operation, this leakage is not
critical, and we refrain from further root cause analysis. Similarly,



Table 2: Discovered leakage subroutines within Intel IPP
cryptographic implementations v2018.2.185. Some of the
subroutines expose critical and potentially exploitable leak-
ages.

Subroutine Affected MI Leakage Source

gfec_MulBasePoint ECDSA, 0.86 /10 | Conditional Loop
ECNR, SM2

cpMontExpBin DSA 3.73/10 | Conditional Loop

cpModInv DSA, SM2, | 3.88/10 | Conditional Loop
ECDSA

ExpandRijndaelKey | AES/CTR 7.00/7 | Memory Lookup

ippsAESEncryptCTR | AES/CTR 0.13/7 | Conditional Loop

1.12/ 10 | Conditional Loop

gsMontExpWin RSA
3.11/10 | Memory Lookup
. 5.33/10 | Conditional Loop
alm_mont_inv ECDSA, 9.98/10 | M Look
ECNR, SM2 . emory Lookup

the subroutine cpModInv has leakages with a relatively high MI
score that is due to the secret-dependent loop count. cpModInv
performs a modular inversion operation using Extended Euclidean
Algorithm (EEA). In ECDSA, k™! leaks information about the secret
ephemeral, and in SM2, (1 + d4)~! leaks information about the
secret signing key. ECNR does not perform any modular inversion
and is safe from leakages due to this subroutine. The existing leak-
age in cpModInv subroutine also applies to DSA where a modular
inversion on ephemeral secret, k™! can leak.

Intel IPP supports two distinct functions for performing Mont-
gomery exponentiation. Exponentiation of big numbers is a com-
mon operation in schemes such as RSA and DSA. The RSA algorithm
uses the gsMonthExpWin subroutine which is a window-based im-
plementation of the Montgomery exponentiation. This function has
leakages based on both memory lookup and conditional loop. The
second Montgomery exponentiation subroutine cpMontExpBin is
a protected binary implementation that has leakage due to the con-
ditional loop count. DSA uses the latter, which leaks information
about the ephemeral secret during computation of (g¥ mod p).

The only leakage exposed during testing of symmetric ciphers
are due to AES key generation subroutine ExpandRi jndaelKey, and
calculation of the nonce length in CTR mode. ExpandRijndaelKey
is called every time the ippsAESInit is used. As the high MI score
shows, AES key schedule used during the CTR mode has full leak-
age. This leakage can be considered critical in scenarios such as
the SGX environment where an adversary has a high resolution
side channel [62, 78]. When the symmetric key is passed to the
AES key schedule, a high resolution adversary can steal the secret
key before any encryption/decryption. While AES/CTR encryption
uses AES-NI, there is a loop within this implementation where
calculating the length of nonce leaks about the leading zero bits.

5.2.1 Leakage of Scalar Multiplication. Scalar multiplication in
Intel IPP uses a fixed-window algorithm with a window size of 5: for
a 256-bit ephemeral secret, as defined by SECP256R1, the algorithm
performs 51 iterations of the window operation. However, our
dynamic analysis of the algorithm with various random ephemeral
secrets shows that gfec_MulBasePoint skips the leading zero bits

Algorithm 1 Bitmasked Montgomery Exponentiation

1: procedure BINExp(base g, exponent k)
2 A < Rmod p

3 g = MontMul(g, R? mod p)

4 m«— 0

5 i=1

6 while i < (BitLength(k) mod 64) do
7 t—A&~m|g&m

8 A «— MontMul(A4, t)

9 m=~m&k;j

10: i=i+1-m

11: end while

12: for j « 1 to BitLength(k)/64 do

13: perform the same operations as above.
14: end for

15: return A

16: end procedure

and applies fewer windows if there are leading zero bits in the
beginning, as the multiple of the window size. In this case, the
main loop performs 50 times for 2, 49 for 7 and 48 times for 12, etc,
leading zero bits. CacheQuote [25] exploits a similar vulnerability
used by Intel EPID signature scheme, but EPID uses a different
function of Intel IPP for scalar multiplication cpEcGFpMulPoint.
As our discovery suggests, this was a common issue in Intel IPP
that was existed among other curve implementations. Although
this implementation has countermeasure based on Scatter-Gather
technique [17], this vulnerability can easily be exploited in high
resolution settings using a lattice attack [25].

5.2.2  Bitmasked Montgomery Exponentiation. The Montgomery
exponentiation in Intel IPP follows a bit-by-bit operation based on
the Montgomery Reduction technique [38]. However, the imple-
mentation is protected by obfuscating the conditional statements as
bit-masked operations. Therefore, the subroutine always executes
the same Montgomery multiplication (MontMul) subroutine
disregarding the value of the exponent bits. However, the expo-
nent bits are used as a mask to choose the operand of the MontMul
and to execute the MontMul two times with two different operands
when the exponent bit is one. Although this implementation looks
secure at first sight, the exponent bits are used 1) to calculate the
exponent bit length, i.e., leading zero-bit leakage, and 2) to decide
the number of iterations of the loop. Based on Algorithm 1, the
main loop executes two times if an exponent bit is one and once
if the exponent bit is zero. This leaks the Hamming weight of the
ephemeral secret to a microarchitectural adversary.

Further, the algorithm performs a similar operation with separate
instructions for different parts of the key. For example, for a 160-
bit DSA exponent, the algorithm first processes the first 32 bits,
and then another code section processes the remaining 128 bits of
exponent. This gives an adversary a local Hamming weight leakage
of the first 32-bit of the secret exponent.



Table 3: Singe-instruction MI Analysis of some of the
beryptprimitives.dll v10.0.17134.1 cryptographic implemen-
tations.

Table 4: Discovered leakage subroutines within beryptprim-
itives.dll v10.0.17134.1 cryptographic implementations.

6 CASE STUDY II: MICROSOFT CNG

The Cryptography API: Next Generation (CNG) is the cryptography
platform supplied with every Windows system beginning with Win-
dows Vista, and replaces the older CryptoAPI as the default crypto-
graphic stack. It includes many common algorithms, including RSA,
AES, ECDSA. While the public API for Microsoft CNG resides in the
BCrypt.dll system file, its cryptographic implementations them-
selves are located in another library file, BCryptPrimitives.dll.
Microsoft does provide neither source code nor documentation for
the internal functionality, but one can download PDB symbol files
from Microsoft’s symbol server, which contain most of the internal
function names, helping to reduce the reverse engineering effort.

6.1 Applying MicroWalk MI Analysis to CNG

As we did with IPP, we again created wrapper executables to call
the respective library functions of RSA, DSA, ECDSA and AES/ECB.
For AES, the library uses the CPUID instruction to choose between
two different implementations, one that uses AES-NI vector instruc-
tions, and a plain T-table based implementation. We tested both
implementations by emulating the CPUID instruction, as explained
in Section 4.3.1. The results are shown in Table 3. We analyzed a to-
tal of 21 million instructions in 31 minutes of CPU time, finding four
different leakage points. For RSA, we discovered that Microsoft’s
implementation behaves truly constant-time. ECDSA and DSA im-
plementations both suffer from leakage due to calling the same
subroutine for modular inversion.

6.2 Discovered leakages in Microsoft CNG

Analyzing the aforementioned algorithms yielded two leakage can-
didates (see Table 4); the first one resides within the modular inver-
sion function of DSA and ECDSA and is used for all processors. The
MI returns full leakage for the modular inversion leakage, implying
that the implementation is heavily unprotected. The second one
is in the encryption function of AES and only used by processors

Subroutine Affected | MI | Leakage
Scheme | Interfaces Executed / | Analysis| Leakage Source
Unique In- | Time Found SymCryptFdefModInvGeneric DSA, 10.00| Conditional
structions | (ms) ECDSA | /10 | Loop
AES/ECB/| SymCryptAesEcbEncrypt 2384298 /| 17546 0 SymCryptAesEncryptAsmInternal | AES 7.96 | Memory
55451 /10 | Lookup
AES/ECB| SymCryptAesEcbEncryptAsm 2324391 /| 26211 2
63179
DSA (512) | MSCryptDsaSignHash 3586162/ | 223356 | 1 not supporting AES-NI. As it is a table-based implementation, the
63748 leakage is expected.
RSA (1024) | MSCryptRsaDecrypt 221::05 /| 760450 1 0 6.2.1 Leakage of Modular Inversion. The modular inversion
function that is used for DSA and ECDSA gives full MI on 1024
ECDSA MSCryptEcDsaSignHash 4764783 /| 831136 1 PR . .
signing operations for random ephemeral secrets with fixed key
(SECP256R1) 64732
and plaintext. This subroutine does not have any constant-time
Total 21133239/ 3;15 min- | 4 protection. However, while this is a non-constant time behavior
313564

and suggests that the ephemeral leaks, we considered this as not
exploitable; Microsoft protects this implementation through a mask-
ing countermeasure. The masking countermeasure for modular
inversion works as follow:

(1) A mask value m is generated randomly.

(2) The ephemeral secret k is multiplied by m before the modular
inversion: s = (k - m)~!(z + x) mod ¢

(3) Then the signature s is multiplied again with m to produce
the correct signature:

s=sm=(k-m) Hz+x)-m=kl(z+x)

Thus, the implementation leaks k - m, where m is a random per-
signature generated mask, effectively preventing extraction of use-
ful information. Leakage of ephemeral keys is exploitable [12], the
randomized product of ephemeral key and a random value is not.

6.2.2 Leakage of AES T-table Lookup. The non-vector version
of AES uses a common lookup table implementation, where four
so-called T-tables combine the steps SubBytes, ShiftRows and
MixColumns. Each round consists of four of such lookups per ta-
ble, leading to 16 - r memory accesses per encryption, where r €
{10, 12, 14} is the number of rounds. The 8-bit indices used for the
table accesses depend on the plaintext and the key; since the MI is
7.96 for 1024 measurements, these indices can be considered fully
leaking. Each table entry has 4 bytes size, thus each T-table has
1024 bytes, and therefore takes 16 cache lines on an Intel processor;
such implementations have already been shown to be exploitable
with cache attacks [13].

7 RELATED WORK

Programming languages can support constant-time code gen-
eration and verification [16, 21, 73]. The general approach is to
support annotation of security-critical variables and to generate in-
structions that operate obliviously on annotated secrets. Annotated
secrets can be verified for constant-time behavior using SMT-based
techniques [16]. Constant-time behavior can be enforced for some
operations by using primitives such as oblivious RAM (ORAM) [76]
and obfuscated execution [70]. Language-based approaches are not
widely used, and annotation is an error-prone task.



Black-box testing approaches use statistical methods to quan-
tify leakages of physical channels [23]. In particular, Dudect [71]
performs black-box timing analysis, in which the timing of a target
system with different inputs will be analyzed using the t-test [80],
but these black-box techniques do not scale to microarchitectural at-
tacks with a gray-box model. With an abstract model of the leakage
channel, methods based on Static Program Analysis are proposed
to analyze program code and to quantify leakages [4, 5, 9, 14, 51].
Similar to language-based approaches, these techniques are limited
to correct annotation of the source code. While some of these ap-
proaches are limited to the source code and cannot find leakages
that are potentially introduced by the compiler [5], others perform
the analysis on the lower level LLVM bitcode [4] or the annotated
machine code [9, 14]. However, they rely on the availability of the
source code. CacheAudit [27, 28] is based on Static Binary Analysis
(SBA). SBA approaches need to initially reconstruct the original
basic blocks and control flow graph. Precise reconstruction of the
program semantic and control flow graph is infeasible without the
runtime information, by just using static disassembly [6]. As a re-
sult, while they give formal guarantees on the absence of leakages,
they do not scale to accurately analyze large program binaries, e.g.,
CacheAudit approach has only been tested on rather simple algo-
rithms such as sorting and symmetric encryption. Other proposals
based on Symbolic execution quantify side-channel leakage by
determining symbolic secret inputs that affect the runtime behav-
ior [22, 66]. However symbolic execution is an expensive approach,
and the proposed methods require access to the source code.

In this work, we leverage Dynamic Program Analysis tech-
niques to accurately locate microarchitectural leakage in software
binaries, as they execute on the processor. ctgrind [52] based on
LLVM memcheck can check all branches and memory accesses
to make sure that they do not have dependency on secret data.
Irazoqui et al. instrument the source code to obtain and analyze
cache traces using MI [43]. Sensitive code sections are identified by
taint analysis. On binary-only approaches, CacheD [77] analyzes
binaries based on symbolic execution and constraint solving. They
initially use DBI to get execution traces for a set of input values;
then, given the information which input values are considered se-
cret, a taint analysis extracts all instructions that work with secrets,
either directly or indirectly. These instructions are then analyzed
using symbolic execution to detect whether cache leakages exist. In
comparison, our method aims at maximum performance without
too much loss of accuracy by only storing necessary information
and using hash compression to get small execution states. The sym-
bolic execution approach introduces a large bottleneck, as their
analysis time suggest. This saving of computation time allows us
to detect also other types of leakages like differing loop counts
or byte-level memory access differences. Also, since MicroWalk is
designed as a modular open source framework, one can implement
arbitrary analysis stages for other types of leakages. Zankl et al. [85]
use DBI to collect traces for instruction based leakage detection.
They use t-tests for leakage analysis and only test for execution
flow leakages. STACCO [81] is focused on differential trace analysis
for Bleichenbacher attacks [15]. Independently, DATA [79] follows
a similar approach based on DBI. They use trace differentiation and
t-tests for leakage analysis. As of our knowledge, our work is the
first that has been tested on actual closed-source binaries.

8 CONCLUSION

The lack of efficient and practical tools for leakage analysis of
binaries leave the reliability of these untested deployed implemen-
tations a mystery. To be able to analyze the compiler outputs and
closed-source libraries, we have created an extensible framework
that supports various types of microarchitectural leakages based on
instruction and data cache, MOB, BPU, etc. MicroWalk can be
extended to analyze other and future side channels. Our framework
leverages DBI to collect the internal state of a program under test,
and it applies multiple analysis techniques based on trace compar-
ison and ML MicroWalk is open source and is publicly accessible:
https://github.com/UzL-ITS/Microwalk. We used this framework to
thoroughly analyze two widely used closed-source libraries, Intel
IPP and Microsoft CNG. The tested implementations are optimized
for the current generation of Intel processors. Our report shows that
side-channel countermeasures for these implementations are still
not fully leakage-free, e.g., all the curve-based signature schemes
in Intel IPP suffer from at least one vulnerability. We have identi-
fied several leakages in symmetric and asymmetric ciphers, and
reported them to the respective vendors. Our analysis shows that
despite the existing efforts on protecting these implementations,
some of them still suffer from security-critical leakages.

8.1 Future Work

8.1.1 Coverage-based Fuzzing. We use random test cases to get
a uniform random distribution of potential memory accesses and
execution paths; while this works well with cryptographic imple-
mentation, it would not scale to targets such as protocols or data
structures. Coverage-based Fuzzing[60] is a technique to generate
test cases with the aim of achieving maximum code coverage; while
it was originally developed to find software bugs, e.g., memory cor-
ruption, the same approach can be applied for finding side-channel
leakages, e.g., leakage in the JPEG library [82]. We have already
implemented an experimental support for using WinAFL[31] as a
test case generator; in that setting AFL helps to generate samples
with higher coverage, while at the same time the test cases are
sent to our framework for further processing. It is desirable to en-
hance this experimental feature and apply it to non-cryptographic
implementations that are critical in terms of side-channel security.

8.1.2 Distinguishing leakages in call graph. We observed that
in some cases control flow leakages in the higher level algorithm
residing at the top of the call chain hide leakages in the subroutines
invoked in deeper levels. Also, if separate functions use a common
subroutine, a positive MI result in this subroutine can not easily be
assigned to its root cause. We therefore propose to add an option
to MicroWalk to take the call graph into account when computing
mutual information.

Responsible Disclosure We have informed the Intel Product Se-
curity Incident Response Team (PSIRT) and Microsoft Security Re-
sponse Center (MSRC) of our findings. MSRC has not responded.
After the initial report, we noticed that Intel have already patched
gfec_MulBasePoint in Intel IPP v2018.3.240. Intel have acknowl-
edged the receipt for the remaining vulnerabilities. Here is the time
line for the responsible disclosure:


https://github.com/UzL-ITS/Microwalk

e 06/22/2018: We informed our findings to the Intel Product
Security Incident Response Team (Intel PSIRT) and the Mi-
crosoft Security Response Center.

e 06/25/2018: Intel PSIRT acknowledged the receipt.

e 07/31/2018: Intel PSIRT confirmed a work-in-progress patch
for IPP 2018 update 4 (CVE-2018-12155, CVE-2018-12156).
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