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ABSTRACT

Large analytic applications on road networks including simula-
tions, logistics, location-based advertisement, and transportation
planning require shortest distance/time methods that provide high
throughput (i.e., distance/time computations per second). Our previ-
ous work discussed how to process graph distance computations in
a PostgreSQL database on a large road network, e.g., 60K distance
computations per second per machine, how to “scale out” by using
a Spark cluster to achieve 73.8K distance computations per second
per machine, and how to obtain a extremely high-throughput so-
lution in memory for city-sized road networks, e.g., 6.7M distance
computations per second. However, there is no solution that could
achieve more than 1M throughput for large road networks. In an
industrial setting, most state-of-the-art solutions yield 5K − 10K
shortest distance computations per second per machine even with
multi-threads. In this paper, we propose a new distance oracle
system (DOS) for large road networks. It can solve most spatial
analytic queries, and its throughput achieves 5M distance computa-
tions per second even on the whole USA road network. For example,
a 10K × 10K origin-distance (OD) matrix can be computed in 20
seconds.
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1 INTRODUCTION

Beyond simple navigation queries, location-based web services like
Google Maps repeatedly pose queries on a road network and utilize
the results to serve a user base, e.g., the Google Distance Matrix
product. Other examples include complex scenarios such as how
to assign and deliver 10, 000 packages for UPS in a city, how much
traffic congestion could be reduced if a new bridge is built, where to
locate the next supermarket among a number of potential locations
taking into account a variety of factors such as, but not limited to,
demography, distance to a warehouse, etc., identifying bottlenecks
in a road network for evacuation planning, or distance join queries
on road networks [34]. We use the term spatial analytic queries to
collectively describe such queries. The challenge lies that each such
instance of a spatial analytic query invariably involves being able
to make hundreds to as many as millions of computations of the
shortest distance along a spatial network rather than as the crow
flies or the Hausdorff distance (e.g., [26]).
In the face of a massive amount of spatial analytic queries from

internet scale users, for example, Google Maps [5] drastically re-
stricts the number of shortest distance results per query (e.g., a limit
of 625 (25× 25 O-D matrices) shortest distances per query using the
Google Distance Matrix API even to their paying customers). Most
other existing services such as Yelp just use the Euclidean distance
instead of the network distance. Figure 1 illustrates the drawback
of using the Euclidean distance in Google Maps and Yelp. Clearly,
using the geodesic or Euclidean distance to approximate network
distance can produce significant errors. To measure how big the
difference is, we tabulated ratios of network distance to geodesic
distance in some regions in Figure 2, termed the route directness
spectrum (RDS) [29]. It shows the distortion in approximating net-
work distance with geodesic distance. In particular, a query that is
of immense interest to transportation planners is a measure called
route directness index (RDI) [9]. The RDI of any two locations in the
road network is the ratio between the shortest network distance to
the geodesic distance.
Figure 2 shows the route directness spectrum of New York City

(NYC), the Bay Area (Bay), and Salt Lake City (SLC) road networks,
respectively, and from which it is easy to see that NYC has a higher
road network connectivity than the Bay Area or SLC as its road
directness spectrum is skewed more towards one (i.e., a larger
proportion of the location pairs have a route directness index close
to one). The result is what we expect as we know that most streets
in NYC are laid out on a grid. However, even for NYC, a well-
connected road network, 50% of the distance queries will have an
error of 20% or more by approximating using geodesic distance.
Considering the ordering examples in Figure 1 and the results of
the route directness spectrum in Figure 2, we conclude that more

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3274895.3274898&domain=pdf&date_stamp=2018-11-06
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(a) Google Maps example of the near-
est restaurants, the ordering A − H is
the geodesic distance ordering provided
by Google Maps and the ordering 1 − 8
marked by green is the network distance
(the blue values) ordering we computed.

(b) Yelp example of the nearest restaurants, the
ordering 1 − 9 is the biking distance ordering
provided by Yelp. Obviously, restaurant #5 must
be more than 1.3 miles by bike as it needs to
cross the river.

Figure 1: BothGoogleMaps andYelp uses a geodesic distance
ordering of results instead of network distance ordering: (a)
GoogleMaps results for the query: find theMoroccan restau-
rants near to Broadway St & W Grant St, Bayonne, NJ; (b)
Yelp results for the query: find the restaurants around River
Road, Edgewater, NJ within a 2mile biking distance.

accurate network distances are well worth computing in spatial
analytic applications.
Reviewing previous research work, we find none that are con-

cerned with general spatial analytic queries. Instead, they focus
on speeding up one specific type of query, e.g., KNN, CNN, and
distance matrix. However, these algorithms are not easy to extend
to include general spatial analytic queries. On the other hand, most
state-of-the-art methods such as HL [12], TNR [14], CH [22], etc,
focus on decreasing the latency time for a single source-target (s-t)
query, which is the basic unit of a spatial analytic query. Although
decreasing the latency time for one s-t query results in reducing
the total response time for a spatial analytic query, it is far from
enough since these methods don’t take into account considerations
such as cache results, multi-threads, and distributed systems that
can be used to speed up a spatial analytic query [27].
Our focus here is on throughput which is how to compute a spa-

tial analytic query as quickly as possible. This proposed work is an
extension of our demo work in CDO [28], and provides more details
on the end-to-end system, precomputation process, and querying
stack for very large road networks. This paper differs from our
prior work as follow: (1) The first attempt is our fundamental the-
ory work ϵ-distance oracle (ϵ-DO) [35] and PCPD [38] methods.
These two papers introduce the distance oracle, but is not scalable
to road networks with more than 80, 000 vertices. (2) Our previous
work SPDO [29] discussed how to obtain high throughput perfor-
mance using ϵ-DO in a distributed key-value store such as Apache
Spark for spatial analysis on the continental road networks such
as the entire USA. (3) Our previous demo work CDO [28] claimed
that the reaction of some companies, such as UPS, Uber, PlaceIQ,
etc, was that typical queries are concentrated in a small local re-
gion rather than the whole continental region, termed the spatial
concentration property. CDO utilized the spatial concentration prop-
erty to obtain an extremely high-throughput, e.g., 6.7M distance
computations per second for city-sized road networks. Note that
the spatial concentration property is only true for the mentioned
specific companies, not for general applications.
In this work, we propose a system called DOS (denoting Dis-

tance Oracle System) for spatial analytic queries on large road
networks. Its throughput achieves 5M distance computations per
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Figure 2: Route directness spectrum (RDS) of New York City
(NYC), the Bay Area (Bay), and Salt Lake City (SLC). In con-
trast, themaximumRDI, corresponding to themaximum ra-
tio of network distance to geodesic distance, is 10.6 in NYC,
30.4 in Bay, and 26.3 in SLC; the average RDI is 1.213 in NYC,
1.384 in Bay Area, abd 1.475 in SLC.

second, which is very close to the performance of CDO [28] on a
city-sized road network, but is also available for large road networks.
Contributions of DOS are:

(1) We developed an infrastructure to precompute the oracle
representation for large road networks. Our experimental
results show that the preprocessing needed to form the oracle
for the entire USA road network can be performed in 5.1
hours when using a modest size cluster of 45 Amazon EC2
machines incurring less than $50 in AWS charges.

(2) DOS extends our demo work CDO, which garnered a best
demo award at the SIGSPATIAL’16. It is an efficient imple-
mentation of using ϵ-DO on disk and cached in memory
instead of in a database [35] with multi-threads and query
optimization illustrated in [27]. As a result, we achieve 5
million distance computations per second for both city-sized
road networks, e.g., the Bay Area road network, and the
country-sized road networks, e.g., the USA road network.

(3) DOS utilizes FlatBuffers [3] to serialize distance oracles to
binary files. It reduces the storage space a lot. Then DOS uses
mmap to load binary files in program. It makes the preloading
time instant even for large size of distance oracles.

(4) We show how to solve some representative industrial queries
in DOS, and provide a detailed execution time evaluation for
DOS, CDO [28], DO [35], HLDB [11], and CH [22].

In addition, all applications mentioned in this paper are provided

in our distance oracle demo 1 and in our blog site 2.

2 RELATEDWORK

Figure 3 illustrates the problem domain in three dimensions: query
time complexity, space complexity, and result accuracy. Reviewing
previous research work, most focus on the trade-off between time
complexity and space complexity with exact shortest distance/time
results. However, most spatial analytic queries in industry allow
approximate results such as when using the Euclidean distance.
The state-of-the-art methods for computing shortest distances

fall into two main categories: latencymethods and throughputmeth-
ods. However, there is no method that could achieve more than 1M
throughput for general spatial road networks.

1http://sametnginx.umiacs.umd.edu/
2http://roadsindb.com/
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Figure 3: The target problem domain we focus on is spa-
tial analytic queries. To achieve a high throughput perfor-
mance and meaningful analytic results, it requires a trade-
off among query time complexity, space complexity of stor-
age, and result accuracy.

Latency approaches are designed to answer a single or a small
number of shortest path or network distance queries on road net-
works. The original road network, or a processed representation
of it, is stored in memory and queries perform operations on this
in-memory representation. The most common latency approach
is Dijkstra’s algorithm [20]. Other methods [12–14, 17, 18, 22, 23,
25, 30, 33, 43] operate on the observation that some vertices in a
spatial network are more important than others in answering short-
est path queries. These methods offer different trade-offs between
preprocessing time, storage, and query time.
Other latency methods such as [39, 41] take advantage of the

spatial information associated with the vertices and edges of a road
network and use geometric techniques. Road Network Embedding
(RNE) [39] applies a Lipschitz embedding [24] to a road network,
such that vertices of the spatial network become points in a high-
dimensional vector space.
A characteristic of throughput methods is that the shortest paths

and distances are precomputed so that the query process only re-
quires a lookup as opposed to any real computation on the fly.
Among the throughput methods, [35–38] exploit the spatial coher-
ence of both sources and destinations in the sense that if a set of
vertices are sufficiently far away, then distances between pairs of
points in different clusters are similar. Details would be explained
in Section 3.2. SPDO [29] is another method of using ϵ-DO inside a
distributed key value store, e.g., Apache Spark. Another database-
centric method is HLDB [11] which can answer exact network
distance queries and full shortest-path even for an area as large as
Europe containing 18 million vertices with complex SQL queries.
In HLDB [11], the authors mention that most of the memory-

based latency approaches surveyed in [19] are difficult to embed
into a database system and to query using SQL queries because of
complicated data structures, e.g., graphs and priority queues. The
main contribution of HLDB is the embedding of the memory-based
hub labels (HL) [12] method into a database. HL precomputes the
hub nodes for each vertex such that the distance between any two
vertices can be obtained given only their hub nodes.
Wu et al. [42] evaluate several state-of-the-art methods (i.e., [14,

22, 35, 38]) for computing road network distance in the same envi-
ronment. Wu et al. [42] show that TNR [14] and CH [22] have fast
preprocessing, low space overhead, support for real time queries,
and the ability to easily handle continental road networks with tens

of millions of vertices. This inspired our decision to use CH [22]
for precomputing ϵ-DO. They also point out that although ϵ-DO
and PCPD are better for answering queries, they are not practical
because they are too expensive to precompute. This paper remedies
this perceived deficiency of ϵ-DO and enables it to scale to handle
continental road networks such as the entire USA.

3 PRELIMINARIES

3.1 Notations and Morton code

Table 1: Notation Summary

Symbol Meaning
n the number of vertices in the graph
N the number of s-t queries
ϵ the error bound of the ϵ-DO

mc () Morton code function
Z2 (p) Morton code for a quadtree node

Z4 (p1,p2) 4D Morton code for a pair of quadtree nodes
dG (s, t ) the shortest distance/time from s to t
dE (s, t ) the Euclidean/geodesic distance from s to t
dϵ (s, t ) the approximate distance/time from s to t bounded by ϵ
DO (G ) the distance oracle representation of a road network G

To make the discussion more general, we introduce some basic
concepts about spatial network and spatial analytic query. A spa-
tial network G is modeled as a weighted directed graph denoted
by G (V ,E,w,p), where V is a set of nodes or vertices, n = |V |,
E ⊂ V ×V is the set of edges,m = |E |, andw is a weight function
that maps each edge e ∈ E to a positive real number w (e ), e.g.,
distance or time. Without loss of generality, for each node v , p (v )
denotes the spatial position of v with respect to a spatial domain S ,
which is also referred to as an embedding space (e.g., a reference
coordinate system in terms of latitude and longitude). In this pro-
posal, all discussion is under a 2-dimensional space S , but note that
it is straightforward to extend our results to d-dimensional space.
We define the network distance dG (u,v ) to be the shortest distance
from u to v in the spatial network, and dE (u,v ) to be the Euclidean
distance or geodesic distance from u to v . In addition, we intro-
duce two values γL and γH termed the minimum and maximum
distortions of G as follows.

γL = min
u,v ∈V

dG (u,v )

dE (u,v )
γH = max

u,v ∈V
dG (u,v )

dE (u,v )

We assume that for some spatial networks (e.g., road networks), γL
and γH are two constants, albeit γH may be large.
We use theMorton (Z) order space-filling curve [31] that provides

a mapping, Z2 → Z, of a multidimensional object (e.g., a vertex or
a quadtree block) in a 2-dimensional embedding space to a positive
number. Given an object o, letmc (o) be the mapping function that
produces the Morton representation of o by interleaving the binary
representations of its coordinate values.
Given a spatial domain S , the Morton order of blocks in S can

be obtained by subdividing the space into 2L × 2L equal sized
blocks named unit blocks, where L is a positive integer named the
maximal decomposition level. Each unit block i is referenced by a
unique Morton codemc (i ). Figure 4(a) shows how a Morton order
of quadtree blocks in a two dimensional space with L = 2. A spatial

graphG (V ,E,w,p) on the domain S can also be divided into 2L×2L
unit blocks. Given vertexv in the unit block i ,v is assigned aMorton
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(a) (b)

Figure 4: (a) Morton code and ordering in a 4 × 4 space. (b)
Example illustrating key representation of distance oracle.

codemc (v ) asmc (i ),. All vertices located in the same block have
the same Morton code. Besides the unit blocks, every larger block b
has a unique Morton code, which is the longest common prefix of
all unit blocks contained in b, e.g., the Morton code of the top left
quadrant (1000, 1001, 1010, 1011) is 10. In this paper, given blocks
A and B, we define the relation A ≺ B, if and only if block A is
contained in block B, and thus mc (B) is a prefix of mc (A). Once
the data are sorted using this ordering, the resulting blocks can be
stored using any one-dimensional data structure such as, but not
limited to, a B-tree.

3.2 Distance Oracles

The ϵ-DO [35, 36] is based on the notion of spatial coherence, which
can be described intuitively as follows. Consider two cities A (e.g.,
Washington, DC) and B (e.g., Boston, MA) which are really the sets
of vertices that are in the cities such thatA and B are far away from
each other but the diameters ofA and B (i.e., the maximum distances
between two locations in Washington, DC) are significantly smaller
than the distance between the two cities A and B. If this property
holds, then the network distance between any vertex in A and
any vertex in B will be more or less similar, and hence can be
approximated by a single value. Furthermore, all the shortest paths
between a source inA and a destination in B will likely pass through
a single common vertex.
Formally, ϵ-DO [35, 36] describes a well-separated pair decompo-

sition (WSPD) [15, 16] of a road network in order to produce well-
separated pairs (e.g., (A,B) with particular network distance prop-
erties). Two sets of vertices A and B are said to be well-separated
as in Figure 5 if the minimum distance between any two vertices
in A and B is at least s · r , where s > 0 is a separation factor and r
is the larger diameter of the two sets. The pair (A,B) is termed a
well-separated pair (WSP), which satisfies the property that for any
pair of vertices (s, t ), s ∈ A and t ∈ B, we can find the approximate
distance dϵ (A,B), where ϵ =

2
s
, providing an approximate network

distance such that it satisfies the condition

(1 − ϵ ) · dϵ (A,B) ≤ dG (s, t ) ≤ (1 + ϵ ) · dϵ (A,B) (1)

As a result, ϵ-DO generatesO ( n
ϵ 2
) well-separated pairs, denoted

as (A,B,dϵ (A,B)). We denote the set of all WSPs as the distance
oracle representation, i.e., DO (G ). Both A and B are a pair of PR
quadtree blocks [31] at the same depth. In order to make a well-
separated pair easy to embed in a database as a key-value pair, ϵ-DO
uses the Morton (Z) order space-filling curve [31] to map a quadtree
block in a 2-dimensional embedding space to a positive number.

A B… …

(a)

A

B

A

B
(b)

Figure 5: A well-separated pair example: (a) A theoretical
WSP example. (b) A potential oracle containing blocksA and
B in Silver Spring, MD showing representative vertices pa , pb
and radii ra and rb .

Thus, each well-separated pair (A,B,dϵ (A,B)) is considered as a
key-value pair (mc (mc (A),mc (B)),dϵ (A,B)), where the value is the
distance and the key ismc (mc (A),mc (B)).

4 SYSTEM

DOS includes two stages, precomputing and querying. The first
stage is precomputing the DO (G ), and the other one is processing
spatial analytic queries utilizing DO (G ). In this section, we first
show the main picture of DOS, then explain how we speed up
precomputing theDO (G ), and finally discuss each component of the
querying stage of DOS, and how we process some spatial queries.

4.1 DOS framework

Our previous work [27–29] discussed how to utilize DO (G ) in dif-
ferent queries and settings. In SPDO [29], we proposed a general
distributed framework to achieve a high throughput relying on
the distance oracle of the whole USA road network. In contrast,
the CDO demo paper [28] claimed that such applications with the
spatial concentration property request a extremely high-throughput
solution such as CDO, which optimizes our distance oracle tech-
nique on a small road network (city-sized road network) and limited
computing resources (a commodity machine) to achieve millions of
distance computations per second.
Speeding up precomputing DO (G ) and extending the CDO solu-

tion, we propose the DOS system, illustrated in Figure 6, for large
road networks, not limited to a city. In the preparation stage, which
would be described in Section 4.2 in detail, we first extract the road
network for any given region such as the whole USA road network
from OpenStreetMap [7] and TAREEG [10], and then precompute
the DO (G ). The distance oracle result is ordered and partitioned
by Z4 code and stored in several text files. The number of text files
depends on the size of the road network. In particular, this partition
is the same as the WP method in SPDO [29], which puts the nearby
WSPs in the same text file to preserve the locality of WSPs. Each
text file stores around 100 million WSPs because of the limit of
Flatbuffers [3] (explained in detail in Section 4.4). In this way, given
a pair of two location (p1,p2) and itsZ4 (p1,p2) code, we can quickly
know which text file contains the WSP for Z4 (p1,p2). Next, each
text file is serialized by Flatbuffers to a binary file. The Flatbuffers
binary file reduces the disk size significantly, and enables the pro-
gram to flexibly access WSPs during the querying stage. The detail
of using Flatbuffers is explained in 4.4.
In the querying stage, our program preloads the required dataset

other than distance oracles in memory, e.g., all delivery locations
for delivery tasks, restaurant positions for nearby search, or home
and work places for traffic analysis. In order to use distance oracles,
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Delivery Locations
TMC codes

Traffic
POIs

Datasets
Spatial Partition on code

Extraction
Clean

Binary: Flatbuffers

Figure 6: The DOS framework: (a) Introduce the distributed architecture for precomputing DO (G ), which is also the distance
oracle workflow in (b); (b) Introduce the whole DOS framework that processes spatial analytic queries utilizing DO (G ).

we formalize queries as hundreds to millions one-to-one distance
queries [27]. Each one-to-one distance query could be answered by
binary search in time O (log n

ϵ 2
) [29], which means that each one-

to-one distance query would visit at most O (log n

ϵ 2
) WSPs. Thus,

at the beginning, all WSPs are in the Flatbuffers binary file on disk,
and our program only has the iterator pointers of the binary files.
While querying, our program caches the visited WSPs in memory
to speed up the binary search of further queries. Our experiments
in Section 5 proved that using Flatbuffers is an efficient way for
both storage size and querying time. Furthermore, our experiments
show how powerful our system is while utilizing multi-threads,
efficient query plans, and indices.

4.2 Task Partition and Parallelism

ϵ-DO [35] describes how we precompute DO (G ) for a city-sized
road network. We first build a PR quadtree [31] on V based on
the spatial position of the vertices. Then the DO (G ) construction
algorithm is a top-down approach that starts with the WSP decom-
position [15] of the block pair (S, S ), which is the largest potential
oracle. Note that S is the “whole spatial domain”, which is defined
in Section 3. A potential oracle is a pair of blocks that has not yet
been examined, denoted as (A,B), where blocks A and B must be at
the same depth of the PR quadtree and represented by their Morton
codes. For example, a potential distance oracle denoted by (01, 10)
in Figure 4(b), where “01” denotes the bottom-right 2×2 unit blocks,
“10” denotes the upper-left 2 × 2 unit blocks. Starting at (S, S ) as
the first entry, a queue Q holds all current potential oracles. The
algorithm pops a potential oracle (A,B) from the head of the queue.
Figure 5(b) shows a potential oracle containing blocksA and B over-
laid on the road network of Silver Spring, MD. The potential oracle
(A,B) is first given to CheckOracle(A,B) [35], which returns true
if the network distances between all pairs of vertices in (A,B) can
indeed be approximated by a single approximate value, in which
case the potential oracle becomes an accepted oracle and we add it
to the result set of DO (G ). If CheckOracle() returns false, then we
subdivide the potential oracle (A,B) into 4×4 new potential oracles

by subdividing A and B once into their children quadtree blocks.
The resulting potential oracles are inserted intoQ and the algorithm
continues. From ϵ-DO [35], CheckOracle(A,B) includes three com-
ponents: choose representative vertex pA of a quadtree block A by
invoking ChooseRep(A), compute the radius of the block using
MaxDistance(A), and obtain the network distance d between pA
and pB (i.e., d = dG (pA,pB )) denoted as GetDistance(pA, pB ) .
However, as the size of the road network becomes larger, we

need a distributed architecture to compute DO (G ) since it takes a
long time with a single machine. The quadtree structure that we
use to represent the oracles lends itself to partitioning the workload.
We can observe that the task of examining each potential oracle
is essentially a data independent task. Based on this observation,
we design and implement a distributed architecture for DO (G )
precomputation showed in Figure 6(a).
Since precomputation takes a bit of time, we employ the Hadoop

framework to benefit from its in-built fault recovery feature. There
is a bank of machines that handle network distance queries needed
during precomputation. As mentioned before, we run the CH Al-
gorithm [22] (referred to as “CH servers”) in these machines that
are accessed through a load balancer. We also run a caching service
on the CH servers for saving and retrieval of information about
(pA, rA ). These are essentially key-value stores where the Morton
codes of the blocks form the keys. Finally, we use a distributed
queue (e.g., ActiveMQ) for task assignment.
We decompose the precomputation stage into two steps. In the

first step, the CH servers load the graph in their main memory
and perform extensive graph operations. The goal here is to load
the graph once, use it many times and store auxiliary information
for use later. In the second step, the map tasks simply query the
CH servers without requiring any graph information. Since in this
framework, the state information is stored in the queue, unless the
queue fails, the map process can terminate and restart.
In the first stage of computing, we compute ChooseRep() and

MaxDistance() for each quadtree block A and save the result to
the caching server. As shown in Figure 7, we decompose the road
network into 16 quadtree blocks in the Morton order such that
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1 16

Figure 7: Initial decomposition of the US dataset to partition
the task of precomputing DO (G )

each quadtree block fits in the main memory of the machine. This
is loaded from the HDFS into the main memory where it resides
until the first stage is complete. We then select the representative
vertex either by choosing a vertex near the geographic center of a
quadtree block or apply the graph center algorithm to compute the
center. Once we have obtained the representative, we compute the
radius by applying Dijkstra’s algorithm. We save the representative
vertex for each quadtree block and its radius in the caching server,
then subdivide the quadtree block and continue processing until
we reach the leaf blocks. These algorithms are implemented in the
graph algorithm module in Figure 6(a). Now, for every block in the
quadtree, we have stored a representative vertex and its radius.
In the second stage, we start by populating the distributed queue

with the potential oracles corresponding to an initially chosen depth.
For the US, we choose a depth of 4 as shown in Figure 7, so we

initialize the quadtree with 16 blocks and the queue with 162 poten-
tial oracles. We do this since starting with the root potential oracle
(S, S ) results in a “slow” start for our algorithm as the quadtree
blocks are really large and these may eventually not participate
in any accepted oracles. Moreover, the initial depth is chosen as 4
since the graph representation corresponding to the quadtree block
fits in the main memory of the machine. Then the checking pro-
cess invokes ChooseRep(), MaxDistance(), and GetDistance()
by making requests to the CH servers. Finally, check if the potential
oracle satisfies the WSP property. If it does not, then decompose the
potential oracle into its 4 × 4 children potential oracles and insert
them into the queue; otherwise, the potential oracle is saved to the
HDFS as an accepted oracle. When the process finishes, DO (G ) is
ready and can be loaded into DOS later.

4.3 Binary Search Querying

Our previous demo work CDO [28] illustrated an efficient way to
obtain the network distance from distance oracles, given a source lo-
cation p1 = (lat1, lng1) and a destination location p2 = (lat2, lng2).
Once DO (G ) has been computed, CDO loads all well-separated
pairs, for which the schema is (code,d ), in memory as an array
sorted by code, where code is a succinct representation of the well-
separated pair and d is the approximate network distance. Although
such a schema is similar to the one proposed in ϵ-DO [35], our
method uses the default integer comparator instead of redefining
the string comparator operators (i.e., < and =) while doing binary
search. This is important since the default integer comparator saves
much time in contrast to the redefined string comparator.
To illustrate our method for packing the code, we first start

with a simpler two-dimensional example (i.e., Z2). Suppose that we
have a number of various length Morton codes in two-dimensions,
whichmeans that the corresponding quadtree blocks are at different
depths. The simpler problem we want to solve is that we are given

a point p, and we need to efficiently find a unique quadtree block A
containing p. Here we assume that the uniqueness property from
the property of WSP [15] is also true in this simpler example. The
uniqueness property here means that there is exactly one quadtree
block containing p such as in Figure 4. This search problem is
equivalent to finding the uniquemc (A) such that p ≺ A.
Our approach is to make all the Morton codes have the same

length by padding themwith enough zeros, so that all Morton codes
are always the same length, i.e., 2·L bits long in two-dimensions. For
anyMorton codemc (A), padding with enough zeros is equivalent to
choosing a unit-sized block that is a descendant ofA in the quadtree
that has the smallest Morton code. This needs to be done carefully
as we illustrate with the following example. Suppose that our two-
dimensional oracles has ten quadtree blocks as in Figure 4 whose
Morton codes are 0000, 0001, 0010, 0011, 01, 10, 1100, 1101, 1110,
and 1111. Only two Morton codes 01 and 10 are not 4 digits long.
Thus, consider the quadtree blocks 01 and 10 in Figure 4, which we
convert to 0100 and 1000 respectively by padding zeros to the right
hand side. The codes of our oracle become: 0000, 0001, 0010, 0011,
0100, 1000, 1100, 1101, 1110, and 1111 in order. Given a query point
p = 0111 that is contained by a unique quadtree block A. To find
A, we need to find a quadtree block in the B-tree such that it is the
largest value that is less than or equal to p, which in this case is
0100 (i.e., quadtree block 01, which is the correct answer).
Now going back to DOS, we obtain a four dimensional Morton

code by interleavingmc (A) andmc (B) two digits at a time. This
packing is given by the function Z4 (A,B). Next, we define func-
tion Z 04 (A,B) by padding Z4 (A,B) with zeros to the right side. For

example for the blocks in Figure 4, Z4 and Z
0
4 should be

Z4 (01, 10) = 0110 Z 04 (01, 10) = 01100000

Z4 (0000, 1111) = Z 04 (0000, 1111) = 00110011

This packing Z 04 produces a Morton code of 4 · L bits length. This
forms the code attribute. At this point, given a source location p1
and a destination location p2, the approximate network distance
query first calculates key = Z 04 (mc (p1),mc (p2)) in O (1) time using
bitwise operations and then issues a binary search call to obtain
the network distance.
The reason this scheme works is because of the uniqueness

property of WSP. For any two points in the domain S , there is
exactly one WSP containing them.

4.4 Flatbuffers Binary Representation

Obviously, each WSP is a bigint for the Z 04 value and a float for
the network distance value, which should amount to 12 bytes. In
the CDO demo [28], we stored all WSPs as an array in memory.
However, the size of distance oracles of some road networks is too
large to fit in the memory of a commodity machine. For example,
the distance oracles for the USA road network contains 4.6 billion
WSPs with ϵ = 0.25. If each WSP requires 12 bytes, it is expected at
least a storage of 55.2GB. To solve it, our previous work [27] stored
such big distance oracles in PostgreSQL, and SPDO [29] enables
it to work in a distributed memory system. Both these methods
have a heavy overhead in storage due to the extra bytes of the data
header, plus the space for index. In fact, these two methods need
more than 300GB to store 4.6 billion WSPs, and the throughput
performance is less than 100K distance computations per second
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Algorithm 1: Oracle.fbs structure for Flatbuffers in C++

1 namespace MyOracle.Sample;

2 struct Wsp {

3 code:long;

4 d:float;

5 }

6 table Oracle {

7 wsps: [Wsp];

8 }

9 root_type Oracle;

Algorithm 2: oracle_serialize.cpp for serialization preparation

1 #include "oracle_generated.h"

2 using namespace MyOracle::Sample;

3 std::vector<Wsp> wsp_vector;

4 Void PrepareSerialization{

5 flatbuffers::FlatBufferBuilder builder;

6 foreach text file f storing WSPs do
7 wsp_vector.clear();

8 wsp_vector load all WSPs from file f ;

9 sort(wsp_vector), order by code;

10 auto wsps = builder.CreateVectorOfStructs(wsp_vector);

11 auto oracle = CreateOracle(builder, wsps);

12 builder.Finish(oracle);

13 std::ofstream filew("f_oracle_flatbuffer.out");

14 filew.write(builder.GetBufferPointer(), builder.GetSize());

15 filew.close();

16 }

per machine. Although these methods are faster than all other state-
of-the-art methods, they are much lower than 6.7M per second in
CDO because of the heavy I/O cost,
In order to enable distance oracles for large road networks to also

fit in a commodity machine without sacrificing performance, we
need a way to serialize distance oracles on disk and cache the WSPs
during querying. After investigation, we use FlatBuffers to serialize
distance oracles. FlatBuffers is an efficient cross platform serial-
ization library for performance-critical applications [3]. Although
Protocol Buffers [8] is relatively similar to FlatBuffers, since Flat-
Buffers does not need a parsing/unpacking step before we access
data, FlatBuffers is faster than Protocol Buffers in our setting.
The way of using FlatBuffers is as follows: 1) Take the oracle rep-

resentation of a road network and represent eachWSP as a proto; 2)
Use FlatBuffers to serialize the representation; 3) Load FlatBuffers
into through mmap; 4) Use their support for binary search. We use
FlatBuffers in C + +. To generate our distance oracle C + + header
called oracle_generated.h, we define a schema, say Oracle.fbs in Al-
gorithm 1, and use the compiler (e.g. flatc -c Oracle.fbs) to generate
oracle_generated.h. After that, we use Algorithm 2 to serialize each
distance oracle text file to a binary Flatbuffers file.
In the querying stage illustrated in Algorithm 3, we use mmap

from sys/mman.h to virtually load all binary files in program, and
thread library to enable multi-thread processing similar to CDO [28].
Recall that each distance oracle text file stores around 100 mil-

lion WSPs. This is because Algorithm 2 needs to load all WSPs

Algorithm 3: oracle_run.cpp for the querying stage

1 #include <thread>

2 #include <sys/mman.h>

3 #include "oracle_generated.h"

4 using namespace std;

5 namespace ofb = MyOracle::Sample;

6 const int N = number of binary files;

7 const flatbuffers::Vector<const ofb::Wsp *> *wspsdata[N];

8 Void Process{

9 foreach binary FlatBuffers file f do
10 long long filesize = getFileSize(f );

11 int fd = open(f , O_RDONLY, 0);

12 void* mmappedData = mmap(NULL, filesize, PROT_READ,

MAP_PRIVATE , fd, 0);

13 auto result = ofb::GetOracle(mmappedData);

14 wspsdata[f ] = result→wsps();
15 Load all one-to-one distance queries;

16 Partition queries tom threads;

17 for i ← 0 tomthread do
18 thread[i]← initial thread i , process distance queries using

function GetDist(p1, p2) in Algorithm 4;

19 for i ← 0 tomthread do
20 thread[i].join();

21 }

Algorithm 4: GetDist(lat1, lng1, lat2, lng2)

1 code ← Z 04 ( Z2((lat1, lng1)), Z2((lat2, lng2)) );

2 f ← which file would have the WSP of code;

3 le f t ← 0;

4 riдht ← wspsdata[f ]→size();
5 p ← compute the index that wspsdata[f ]→Get(p)→code() is
the maximal code value and ≤ code using a binary search;

6 return wspsdata[f ]→Get(p)→d();

in memory for one text file and then serialize it to a binary file.
Storing 100 million WSPs usually takes 7.4GB in a plain text file.
After using FlatBuffer, each WSP is represented as 12 bytes, and
the total size of the binary file on disk is 1.6GB. Note that it is not
12 bytes for each WSP because of the extra header. In this way, for
the USA road network, the 4.6 billion WSPs are separated into 46
binary files, and each binary file occupies around 1.6GB on disk.

5 EXPERIMENTS

From OpenStreetMap [7], we extracted the Bay Area road net-
work with 758K vertices, the New York City road network with
407K vertices, and the whole USA road network with 24M ver-
tices ignoring the vertices not bidirectionally connected to the
main graph. In addition, we add the Florida road network from the

9th DIMACS Implementation Challenge [1]. A demo is set up at
http://sametnginx.umiacs.umd.edu/. Table 2 provides the charac-
teristics of the road network datasets used in our evaluation.
From our past experiments and previous theoretical work, we

conclude that the value of ϵ greatly influences the size of the dis-
tance oracles, but it does not have much of an influence on the
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Table 2: Dataset Characteristics

Name NY Bay FL US
Region NYC Bay Area Florida USA

# of Nodes 407,582 758,104 1,070,376 23,947,347
# of Arcs 977,106 1,663,662 2,712,798 58,333,344

# of WSPs with ϵ = 0.25 84.6M 146M 199M 4.6B
# of WSPs with ϵ = 0.1 431M 765M 929M -
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Figure 8: Precomputation performance varying ϵ

querying time as the time complexity is just O (log n

ϵ 2
). Thus, for

the small road network, we set ϵ = 0.1, but let ϵ = 0.25 for the
whole USA road network. We implemented four methods as follows
for distance computations. All of them are implemented in C++,
and are processed with multi-threads, and in the same environment
consisting of a Macbook Pro 15-inch, 2.8 GHz Quad-core Intel Core
i7, 16 GB memory.

(1) DOS.We implement our DOS framework with FlatBuffers.
The representation of WSPs in FlatBuffers is in binary files
on disk. Loading binary files through mmap is instant as
DOS does not actually load binary files in memory, but still
on disk. During querying, DOS caches the block containing
visited WSPs to reduce further I/O cost.

(2) CDO.We implement the CDO solution from [28] in memory.
But it is only for small road networks. The time of preloading
WSPs in memory is not counted in any querying time.

(3) DO. We compare against the distance oracle DO method
of [35] In this case, we load distance oracles as a relational
table in PostgreSQL and index it using a B-tree.

(4) CH. We implement the CH method proposed in [22] as a
representative of methods that optimize the execution of
single source shortest paths.

(5) HLDB.We implement HLDB [11] in memory for small road
networks same as in the CDO demo [28], but in PostgreSQL
for the USA road network.

5.1 Precomputing DO (G )
First of all, we show the performance of precomputing the DO (G )
for different road networks and ϵ settings.
Figure 8(a) shows the time to compute the DO (G ) using a single

machine. DO (G ) for the NY, BAY, and FL datasets can be computed
in less than an hour for a fairly useful ϵ value of 0.25 and in a
little over 7 hours for ϵ = 0.1. Note that these are large datasets
comprising road networks of states in US and being able to compute
themwithin a few hours on a single machine means that computing
the oracles is a practical proposition. Furthermore, we later show
for the US dataset that by adding more machines to the computing
infrastructure, we can significantly speed up this process. Next,
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Figure 9: Time performance by varying the number of a
batch of queries : (a) results for a single thread; (b) results
for sixteen threads. As DOS is cold-start and caches WSPs
during querying, the performance of DOS is close to CDO as
the number of queries increases.

Figure 8(b) plots the ratio of the number of oracles and n

ϵ 2
versus ϵ .

Here we let ϵ vary taking on the values 0.5, 0.25, 0.2, and 0.1. As
all values are between 8 − 15 in Figure 8(b), it confirms that the
number of oracles conforms to C · ( n

ϵ 2
) for the NY, BAY and FL

datasets, where the value of C ranges between 8 and 15. Moreover,
Figure 8(b) shows that C decreases as ϵ decreases, which is a good
news for applications that require higher accuracy.

Table 3: Precomputation for DO (G ) on US Dataset

Performance DOS-0.25
Cluster Size

4
45

Time
1.8 days
5.1 hours

Number of oracles 4.6 billion

Number of oracles / (n/ϵ2) 11.9

Next we show scalability results in Table 3 for the DO (G ) of the
US dataset with ϵ of 0.25. For this experiment, we used two clusters
running on the distributed framework in Figure 6(a): an in-house
cluster of 4 machines and an Amazon EC2 cluster with 45m4.xlarge
machines. From the table, it can be seen that precomputing DO (G )
can reduce the time needed from 1.8 days when using 4 machines to
a little over 5 hours when using 45 machines. Moreover, the cluster
compute and storage cost for precomputing the oracle is less than
$50 based on AWS April 2018 prices. These results provide powerful
support for our claim vis-a-vis the feasibility of our method since
it is cheap to precompute and can be further sped up by simply
adding more machines.

5.2 Querying Performance

There are two group of comparison methods. One is DO and HLDB
for large road networks, which their variant representations of the
graph for distance computations are stored in PostgreSQL database.
The other group is CDO, CH, and HLDB for small road networks,
for which their graph representations are preloaded in memory.
Among this group, CDO and HLDB in memory are only available
for small road networks, e.g., number of vertices is less than one
million, but CH in memory is available for large road networks.
Figures 9 and 10 show the time performance of DOS in a small

road network, i.e., the NY road network, and compare it with CDO,
CH, and HLDB in memory. The memory and cache were cleaned
every time before running the code. Figure 9 shows the influence
of the number of queries for DOS and CDO. Note that our DOS
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Figure 10: Time performance for processing a batch of
source-target queries by varying the number of threads: (a)
results for one million; (b) results for ten million source-
target queries. Remember that only DOS is cold-start as it
loads WSPs in the FlatBuffers format from disk. All of the
other methods are after preloading the variant representa-
tion of the graph in memory, and the time of preloading is
not counted in the query time.

10-2

10-1

100

101

102

103

104

102 103 104 105 106 107

T
im

e 
(s

ec
s)

Number of s-t queries

DOS
DO

HLDB
CH

Figure 11: Time performance for DOS, DO, HLDB, and CH
under the whole USA road network: DOS and CH is run-
ning with 16 threads, while DO and HLDB are running in
PostgreSQL. In order to make the queries reasonable, each
source-target query is generated by randomly picking one
road vertex and the other road vertex within 200km.

is extended from CDO, and is available for large road networks.
When the number of queries is small, DOS is much slower than
CDO. This is because that DOS needs to searchWSPs from disk, but
CDO does the binary search in memory directly without counting
tens of seconds to preloading WSPs. As the number of queries
gets larger, DOS cached more blocks containing visited WSPs, so
that the query performance of DOS gets closer to CDO. Especially
for the first 10M queries, DOS takes 4.07 seconds with 16 threads,
and the throughput of DOS is 2.45M distance computations per
second. Moreover, the throughput of DOS for the next 10M queries
increases to 5.01M per second. Thus, after the cold-start stage, DOS
would be very close to CDO, e.g., 6.7M per second.

Figure 10 describes the time performance varying with the num-
ber of concurrent threads for DOS, CDO, HLDB, and CH. Fig-
ure 10(a) is under 1M distance computations, and Figure 10(b) is
under 10M distance computations. From Figure 9, we know DOS
is under the cold-start during the first 1M distance computations,
e.g., in Figure 10(a). This is the reason that DOS is even slower
than HLDB in Figure 10(a), and its time performance does not
significantly decrease with more threads. On the other hand, in Fig-
ure 10(b), DOS performs better than HLDB and gets closer to CDO
as it passes the cold-start for last millions of distance computations.
Figure 11 shows the time performance for the methods that are

available for large road networks. Note that our previous work
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Figure 12: Response time for the KNN query including 6, 070
university sources and 49, 573 restaurant destinations.

CDO is not available here. To generate the source-target queries,
as the source-target queries do not distribute uniformly in fact, we
randomly pick one road vertex and randomly select the other road
vertex within 200km. From Figure 11, DOS performs much better
than DO, HLDB, and CH, especially after the cold-start stage.

5.3 Spatial Analytic Queries

DOS can efficiently process analytic queries as it can process a large
number of network distance queries. The querying performance
of DOS in the following experiments is after the cold-start stage.
Figure 12 provides the time performance of Dijkstra’s algorithm,
the CH algorithm, the HLDB in PostgreSQL, DO in PostgreSQL,
and our DOS for a common spatial query, KNN, which is described
in http://roadsindb.com/. One location list contains 6,070 locations
of universities from [4], and another location list contains 49,573
locations of fast food restaurants from [2]. The record in both lists
is (id, Z2 code, latitude, longitude) with the precomputed Z2 code.
The KNN query with which we experimented obtains theK near-

est restaurants for each university in Figure 12. DOS first used a k-d
tree index to retrieve a candidate set of restaurants that have the po-
tential to be the K nearest neighbors for each university (or restau-
rant), then computed the network distances for each university-
restaurant pair (or restaurant-restaurant). Dijkstra’s algorithm is
implemented using a heap to speed it up. It starts at each university
to search, and stops if the search for this university has visited
K restaurants. The CH algorithm finds the restaurant candidate
set using a k-d tree as well, then computes the distances between
the pairs, and finally sorts the result to get the top K restaurants
for each university. Both HLDB and DO used the GiST index in
PostgreSQL to find the restaurant candidate set.
From Figure 12, we can see that DOS is much faster than Dijk-

stra’s algorithm, CH, HLDB, and DO. Although Dijkstra’s algorithm
is considered efficient for the KNN query, it is not faster than DOS
yet even when K is very small, e.g, 5.
In addition, here we provide an application that can be efficiently

solved by DOS. It is to measure the accessibility of jobs, i.e., how
many job opportunities exist nearby each census block. We use the
LEHD dataset [6] to obtain the job locations around the Bay Area.
This workload shown in Figure 13 contains 120 million distance
computations, where DOS takes 22 seconds under only the Bay Area
road network, while CDO needs 18 seconds. In a general setting,
i.e., DOS with the whole USA road network, this task can be also
finished in 25 seconds. This is because of the spatial concentration
property that make most WSPs in the Bay Area be usually in one
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Figure 13: Nearby job opportunities (e.g., within 10 kms) for
each census block in the Bay Area, requiring 120 million
distance computations, which DOS finished it within 22 sec-
onds for just the Bay Area road network, and 25 seconds for
the whole USA road network.

or two FlatBuffers binary files. Then after the cold-start stage, these
WSPs in the Bay Area would be all in memory, so that the hit rate
of cache in DOS is much higher than random queries. It makes the
performance of DOS more similar to CDO for the small regions.
Obviously, using DOS, many analytic queries could be solved

and visualized in a much quicker way. All applications implemented

in our previous work [27–29] and in our blog site 3 could be set up
in DOS as well to obtain better performance. Moreover, DOS could
be also sped up by multi-machines as it is easy to copy one set-up
machine to many.

6 CONCLUDING REMARKS

DOS is a practical system that utilizes all our previous distance
oracle techniques such as ϵ-DO [35, 36], PCPD [38], SPDO [29],
and CDO [28] . DOS is the first system that achieves 5M distance
computations per second per machine for general spatial analytic
queries on any-sized road networks. Although the shortest distance
result is approximate, it is bounded by ϵ . Our previous work has
shown that ϵ = 0.25 is enough for most use-cases. As DOS uses
mmap to virtually load distance oracles from disk, it accepts larger
sizes of distance oracles, or with smaller ϵ , e.g., ϵ = 0.1 or 0.05,
where the only limit is the disk storage. In addition, DOS has a
cold-start stage for querying. It starts at a throughput of 10K per
second without caching any WSP in memory, but would achieve a
throughput of 5M per second after ten seconds.
Future work includes incorporating traffic and changes in the

road networks such as road closures. This requires devising ways
of computing the oracle in piecemeal-fashion so as to avoid doing
it from scratch. We also want to incorparate our work into a spatial
browser [21, 32] as well as using a distributed spatial index [40].
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