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Abstract

We survey recent advances in algorithms for route planning in transportation networks.
For road networks, we show that one can compute driving directions in milliseconds
or less even at continental scale. A variety of techniques provide different trade-offs
between preprocessing effort, space requirements, and query time. Some algorithms
can answer queries in a fraction of a microsecond, while others can deal efficiently
with real-time traffic. Journey planning on public transportation systems, although
conceptually similar, is a significantly harder problem due to its inherent time-dependent
and multicriteria nature. Although exact algorithms are fast enough for interactive
queries on metropolitan transit systems, dealing with continent-sized instances requires
simplifications or heavy preprocessing. The multimodal route planning problem, which
seeks journeys combining schedule-based transportation (buses, trains) with unrestricted
modes (walking, driving), is even harder, relying on approximate solutions even for
metropolitan inputs.

∗This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft
Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato
F. Werneck were at Microsoft Research Silicon Valley.
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1 Introduction
This survey is an introduction to the state of the art in the area of practical algorithms for
routing in transportation networks. Although a thorough survey by Delling et al. [94] has
appeared fairly recently, it has become outdated due to significant developments in the last
half-decade. For example, for continent-sized road networks, newly-developed algorithms
can answer queries in a few hundred nanoseconds; others can incorporate current traffic
information in under a second on a commodity server; and many new applications can now
be dealt with efficiently. While Delling et al. focused mostly on road networks, this survey
has a broader scope, also including schedule-based public transportation networks as well
as multimodal scenarios (combining schedule-based and unrestricted modes).
Section 2 considers shortest path algorithms for static networks; although it focuses on

methods that work well on road networks, they can be applied to arbitrary graphs. Section 3
then considers the relative performance of these algorithms on real road networks, as well
as how they can deal with other transportation applications. Despite recent advances in
routing in road networks, there is still no “best” solution for the problems we study, since
solution methods must be evaluated according to different measures. They provide different
trade-offs in terms of query times, preprocessing effort, space usage, and robustness to
input changes, among other factors. While solution quality was an important factor when
comparing early algorithms, it is no longer an issue: as we shall see, all current state-of-the-
art algorithms find provably exact solutions. In this survey, we focus on algorithms that
are not clearly dominated by others. We also discuss approaches that were close to the
dominance frontier when they were first developed, and influenced subsequent algorithms.

Section 4 considers algorithms for journey planning on schedule-based public transporta-
tion systems (consisting of buses, trains, and trams, for example), which is quite different
from routing in road networks. Public transit systems have a time-dependent component,
so we must consider multiple criteria for meaningful results, and known preprocessing
techniques are not nearly as effective. Approximations are thus sometimes still necessary
to achieve acceptable performance. Advances in this area have been no less remarkable,
however: in a few milliseconds, it is now possible to find good journeys within public
transportation systems at a very large scale.
Section 5 then considers a true multimodal scenario, which combines schedule-based

means of transportation with less restricted ones, such as walking and cycling. This problem
is significantly harder than its individual components, but reasonable solutions can still be
found.
A distinguishing feature of the methods we discuss in this survey is that they quickly

made real-life impact, addressing problems that need to be solved by interactive systems
at a large scale. This demand facilitated technology transfer from research prototypes to
practice. As our concluding remarks (Section 6) will explain, several algorithms we discuss
have found their way into mainstream production systems serving millions of users on a
daily basis.

This survey considers research published until January 2015. We refer to the final (journal)
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version of a result, citing conference publications only if a journal version is not yet available.
The reader should keep in mind that the journal publications we cite often report on work
that first appeared (at a conference) much earlier.

2 Shortest Paths Algorithms
Let G = (V,A) be a (directed) graph with a set V of vertices and a set A of arcs. Each
arc (u, v) ∈ A has an associated nonnegative length `(u, v). The length of a path is the sum
of its arc lengths. In the point-to-point shortest path problem, one is given as input the
graph G, a source s ∈ V , and a target t ∈ V , and must compute the length of the shortest
path from s to t in G. This is also denoted as dist(s, t), the distance between s and t.
The one-to-all problem is to compute the distances from a given vertex s to all vertices
of the graph. The all-to-one problem is to find the distances from all vertices to s. The
many-to-many problem is as follows: given a set S of sources and a set T of targets, find
the distances dist(s, t) for all s ∈ S, t ∈ T . For S = T = V we have the all pairs shortest
path problem.
In addition to the distances, many applications need to find the corresponding shortest

paths. An out-shortest path tree is a compact representation of one-to-all shortest paths
from the root r. (Likewise, the in-shortest path tree represents the all-to-one paths.) For
each vertex u ∈ V , the path from r to u in the tree is the shortest path.
In this section, we focus on the basic point-to-point shortest path problem under the

basic server model. We assume that all data fits in RAM. However, locality matters,
and algorithms with fewer cache misses run faster. For some algorithms, we consider
multi-core and machine-tailored implementations. In our model, preprocessing may be
performed on a more powerful machine than queries (e. g., a machine with more memory).
While preprocessing may take a long time (e. g., hours), queries need to be fast enough for
interactive applications.

In this section, we first discuss basic techniques, then those using preprocessing. Since all
methods discussed could in principle be applied to arbitrary graphs, we keep the description
as general as possible. For intuition, however, it pays to keep road networks in mind,
considering that they were the motivating application for most approaches we consider. We
will explicitly consider road networks, including precise performance numbers, in Section 3.

2.1 Basic Techniques
The standard solution to the one-to-all shortest path problem is Dijkstra’s algorithm [108].
It maintains a priority queue Q of vertices ordered by (tentative) distances from s. The
algorithm initializes all distances to infinity, except dist(s, s) = 0, and adds s to Q. In each
iteration, it extracts a vertex u with minimum distance from Q and scans it, i. e., looks
at all arcs a = (u, v) ∈ A incident to u. For each such arc, it determines the distance to v
via arc a by computing dist(s, u) + `(a). If this value improves dist(s, v), the algorithm
performs an arc relaxation: it updates dist(s, v) and adds vertex v with key dist(s, v) to the
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Figure 1. Schematic search spaces of Dijkstra’s algorithm (left), bidirectional search (middle), and
the A* algorithm (right).

priority queue Q. Dijkstra’s algorithm has the label-setting property: once a vertex u ∈ V
is scanned (settled), its distance value dist(s, u) is correct. Therefore, for point-to-point
queries, the algorithm may stop as soon as it scans the target t. We refer to the set of
vertices S ⊆ V scanned by the algorithm as its search space. See Figure 1 for an illustration.

The running time of Dijkstra’s algorithm depends on the priority queue used. The running
time is O((|V | + |A|) log |V |) with binary heaps [254], improving to O(|A| + |V | log |V |)
with Fibonacci heaps [129]. For arbitrary (non-integral) costs, generalized versions of
binary heaps (such as 4-heaps or 8-heaps) tend to work best in practice [61]. If all
arc costs are integers in the range [0, C], multi-level buckets [103] yield a running time
of O(|A|+ |V |√logC) [8, 62] and work well in practice. For the average case, one can get
an O(|V |+ |A|) (linear) time bound [147,192]. Thorup [244] has improved the theoretical
worst-case bound of Dijkstra’s algorithm to O(|A|+|V | log log min{|V | , C}), but the required
data structure is rather involved and unlikely to be faster in practice.
In practice, one can reduce the search space using bidirectional search [67], which

simultaneously runs a forward search from s and a backward search from t. The algorithm
may stop as soon as the intersection of their search spaces provably contains a vertex x on
the shortest path from s to t. For road networks, bidirectional search visits roughly half as
many vertices as the unidirectional approach.
An alternative method for computing shortest paths is the Bellman-Ford algorithm [46,

127,198]. It uses no priority queue. Instead, it works in rounds, each scanning all vertices
whose distance labels have improved. A simple FIFO queue can be used to keep track of
vertices to scan next. It is a label-correcting algorithm, since each vertex may be scanned
multiple times. Although it runs in O(|V | |A|) time in the worst case, it is often much
faster, making it competitive with Dijkstra’s algorithm in some scenarios. In addition, it
works on graphs with negative edge weights.

Finally, the Floyd-Warshall algorithm [126] computes distances between all pairs of
vertices in Θ(|V |3) time. For sufficiently dense graphs, this is faster than |V | calls to
Dijkstra’s algorithm.
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2.2 Goal-Directed Techniques
Dijkstra’s algorithm scans all vertices with distances smaller than dist(s, t). Goal-directed
techniques, in contrast, aim to “guide” the search toward the target by avoiding the scans
of vertices that are not in the direction of t. They either exploit the (geometric) embedding
of the network or properties of the graph itself, such as the structure of shortest path trees
toward (compact) regions of the graph.

A* Search. A classic goal-directed shortest path algorithm is A* search [156]. It uses a
potential function π : V → R on the vertices, which is a lower bound on the distance dist(u, t)
from u to t. It then runs a modified version of Dijkstra’s algorithm in which the priority of
a vertex u is set to dist(s, u) + π(u). This causes vertices that are closer to the target t to
be scanned earlier during the algorithm. See Figure 1. In particular, if π were an exact
lower bound (π(u) = dist(u, t)), only vertices along shortest s–t paths would be scanned.
More vertices may be visited in general but, as long as the potential function is feasible (i. e.,
if `(v, w)− π(v) + π(w) ≥ 0 for (v, w) ∈ E), an s–t query can stop with the correct answer
as soon as it is about to scan the target vertex t.

The algorithm can be made bidirectional, but some care is required to ensure correctness.
A standard approach is to ensure that the forward and backward potential functions are
consistent. In particular, one can combine two arbitrary feasible functions πf and πr into
consistent potentials by using (πf − πr)/2 for the forward search and (πr − πf )/2 for the
backward search [163]. Another approach, which leads to similar results in practice, is to
change the stopping criterion instead of making the two functions consistent [148,166,216,
220].

u

t

li

lj

Figure 2.
Triangle in-
equalities for
ALT.

In road networks with travel time metric, one can use the geographi-
cal distance [217, 237] between u and t divided by the maximum travel
speed (that occurs in the network) as the potential function. Unfortunately,
the corresponding bounds are poor, and the performance gain is small or
non-existent [148]. In practice, the algorithm can be accelerated using more
aggressive bounds (for example, a smaller denominator), but correctness is
no longer guaranteed. In practice, even when minimizing travel distances
in road networks, A* with geographical distance bound performs poorly
compared to other modern methods.

One can obtain much better lower bounds (and preserve correctness) with
the ALT (A*, landmarks, and triangle inequality) algorithm [148]. During
a preprocessing phase, it picks a small set L ⊆ V of landmarks and stores
the distances between them and all vertices in the graph. During an s–
t query, it uses triangle inequalities involving the landmarks to compute
a valid lower bound on dist(u, t) for any vertex u. More precisely, for
any landmark li, both dist(u, t) ≥ dist(u, li) − dist(t, li) and dist(u, t) ≥
dist(li, t)− dist(li, u) hold. If several landmarks are available, one can take the maximum
overall bound. See Figure 2 for an illustration. The corresponding potential function is
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feasible [148].
The quality of the lower bounds (and thus query performance) depends on which vertices

are chosen as landmarks during preprocessing. In road networks, picking well-spaced
landmarks close to the boundary of the graph leads to the best results, with acceptable
query times on average [112, 150]. For a small (but noticeable) fraction of the queries,
however, speedups relative to bidirectional Dijkstra are minor.

Geometric Containers. Another goal-directed method is Geometric Containers. It pre-
computes, for each arc a = (u, v) ∈ A, an arc label L(a) that encodes the set Va of vertices
to which a shortest path from u begins with the arc a. Instead of storing Va explicitly, L(a)
approximates this set by using geometric information (i. e., the coordinates) of the vertices
in Va. During a query, if the target vertex t is not in L(a), the search can safely be pruned
at a. Schulz et al. [235] approximate the set Va by an angular sector (centered at u) that
covers all vertices in Va. Wagner et al. [251] consider other geometric containers, such
as ellipses and the convex hull, and conclude that bounding boxes perform consistently
well. For graphs with no geometric information, one can use graph layout algorithms and
then create the containers [55, 250]. A disadvantage of Geometric Containers is that its
preprocessing essentially requires an all-pairs shortest path computation, which is costly.

Arc Flags. The Arc Flags approach [157,178] is somewhat similar to Geometric Containers,
but does not use geometry. During preprocessing, it partitions the graph into K cells that
are roughly balanced (have similar number of vertices) and have a small number of boundary
vertices. Each arc maintains a vector of K bits (arc flags), where the i-th bit is set if the
arc lies on a shortest path to some vertex of cell i. The search algorithm then prunes arcs
which do not have the bit set for the cell containing t. For better query performance, arc
flags can be extended to nested multilevel partitions [197]. Whenever the search reaches
the cell that contains t, it starts evaluating arc flags with respect to the (finer) cells of the
level below. This approach works best in combination with bidirectional search [157].

The arc flags for a cell i are computed by growing a backward shortest path tree from each
boundary vertex (of cell i), setting the i-th flag for all arcs of the tree. Alternatively, one
can compute arc flags by running a label-correcting algorithm from all boundary vertices
simultaneously [157]. To reduce preprocessing space, one can use a compression scheme
that flips some flags from zero to one [58], which preserves correctness. As Section 3 will
show, Arc Flags currently have the fastest query times among purely goal-directed methods
for road networks. Although high preprocessing times (of several hours) have long been a
drawback of Arc Flags, the recent PHAST algorithm (cf. Section 2.7) can make this method
more competitive with other techniques [75].

Precomputed Cluster Distances. Another goal-directed technique is Precomputed Cluster
Distances (PCD) [188]. Like Arc Flags, it is based on a (preferably balanced) partition C =
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Figure 3. Left: Multilevel overlay graph with two levels. The dots depict separator vertices in the
lower and upper level. Right: Overlay graph constructed from arc separators. Each cell contains a
full clique between its boundary vertices, and cut arcs are thicker.

(C1, . . . , CK) with K cells (or clusters). The preprocessing algorithm computes the shortest
path distances between all pairs of cells.
The query algorithm is a pruned version of Dijkstra’s algorithm. For any vertex u

visited by the search, a valid lower bound on its distance to the target is dist(s, u) +
dist(C(u), C(t)) + dist(v, t), where C(u) is the cell containing u and v is the boundary
vertex of C(t) that is closest to t. If this bound exceeds the best current upper bound
on dist(s, t), the search is pruned. For road networks, PCD has similar query times to ALT,
but requires less space.

Compressed Path Databases. The Compressed Path Databases (CPD) [52,53] method
implicitly stores all-pairs shortest path information so that shortest paths can be quickly
retrieved during queries. Each vertex u ∈ V maintains a label L(u) that stores the first
move (the arc incident to u) of the shortest path toward every other vertex v of the graph.
A query from s simply scans L(u) for t, finding the first arc (s, u) of the shortest path (to t);
it then recurses on u until it reaches t. Explicitly storing the first arc of every shortest
path (in Θ(|V |2) space) would be prohibitive. Instead, Botea and Harabor [53] propose a
lossless data compression scheme that groups vertices that share the same first move (out
of u) into nonoverlapping geometric rectangles, which are then stored with u. Further
optimizations include storing the most frequent first move as a default and using more
sophisticated compression techniques. This leads to fast queries, but space consumption
can be quite large; the method is thus dominated by other approaches. CPD can be seen
as an evolution of the Spatially Induced Linkage Cognizance (SILC) algorithm [228], and
both can be seen as stronger versions of Geometric Containers.

2.3 Separator-Based Techniques
Planar graphs have small (and efficiently-computable) separators [181]. Although road
networks are not planar (think of tunnels or overpasses), they have been observed to have
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small separators as well [79, 123,227]. This fact is exploited by the methods in this section.

Vertex Separators. We first consider algorithms based on vertex separators. A vertex
separator is a (preferably small) subset S ⊂ V of the vertices whose removal decomposes the
graph G into several (preferably balanced) cells (components). This separator can be used
to compute an overlay graph G′ over S. Shortcut arcs [249] are added to the overlay such
that distances between any pair of vertices from S are preserved, i. e., they are equivalent
to the distance in G. The much smaller overlay graph can then be used to accelerate (parts
of) the query algorithm.

Schulz et al. [235] use an overlay graph over a carefully chosen subset S (not necessarily a
separator) of “important” vertices. For each pair of vertices u, v ∈ S, an arc (u, v) is added
to the overlay if the shortest path from u to v in G does not contain any other vertex w
from S. This approach can be further extended [160, 236] to multilevel hierarchies. In
addition to arcs between separator vertices of the same level, the overlay contains, for each
cell on level i, arcs between the confining level i separator vertices and the interior level
(i− 1) separator vertices. See Figure 3 for an illustration.

Other variants of this approach offer different trade-offs by adding many more shortcuts
to the graph during preprocessing, sometimes across different levels [151,164]. In particular
High-Performance Multilevel Routing (HPML) [83] substantially reduces query times but
significantly increases the total space usage and preprocessing time. A similar approach,
based on path separators for planar graphs, was proposed by Thorup [245] and implemented
by Muller and Zachariasen [205]. It works reasonably well to find approximate shortest
paths on undirected, planarized versions of road networks.

Arc Separators. The second class of algorithms we consider uses arc separators to build
the overlay graphs. In a first step, one computes a partition C = (C1, . . . , Ck) of the vertices
into balanced cells while attempting to minimize the number of cut arcs (which connect
boundary vertices of different cells). Shortcuts are then added to preserve the distances
between the boundary vertices within each cell.

An early version of this approach is the Hierarchical MulTi (HiTi) method [165]. It builds
an overlay graph containing all boundary vertices and all cut arcs. In addition, for each
pair u, v of boundary vertices in Ci, HiTi adds to the overlay a shortcut (u, v) representing
the shortest path from u to v in G restricted to Ci. The query algorithm then (implicitly)
runs Dijkstra’s algorithm on the subgraph induced by the cells containing s and t plus the
overlay. This approach can be extended to use nested multilevel partitions. HiTi has only
been tested on grid graphs [165], leading to modest speedups. See also Figure 3.

The recent Customizable Route Planning (CRP) [76,77] algorithm uses a similar approach,
but is specifically engineered to meet the requirements of real-world systems operating
on road networks. In particular, it can handle turn costs and is optimized for fast up-
dates of the cost function (metric). Moreover, it uses PUNCH [79], a graph partitioning
algorithm tailored to road networks. Finally, CRP splits preprocessing in two phases:

8



metric-independent preprocessing and customization. The first phase computes, besides
the multilevel partition, the topology of the overlays, which are represented as matrices
in contiguous memory for efficiency. Note that the partition does not depend on the cost
function. The second phase (which takes the cost function as input) computes the costs
of the clique arcs by processing the cells in bottom-up fashion and in parallel. To process
a cell, it suffices to run Dijkstra’s algorithm from each boundary vertex, but the second
phase is even faster using the Bellman-Ford algorithm paired with (metric-independent)
contraction [100] (cf. Section 2.4), at the cost of increased space usage. Further acceleration
is possible using GPUs [87]. Queries are bidirectional searches in the overlay graph, as in
HiTi.

2.4 Hierarchical Techniques
Hierarchical methods aim to exploit the inherent hierarchy of road networks. Sufficiently
long shortest paths eventually converge to a small arterial network of important roads, such
as highways. Intuitively, once the query algorithm is far from the source and target, it
suffices to only scan vertices of this subnetwork. In fact, using input-defined road categories
in this way is a popular heuristic [115, 158], though there is no guarantee that it will
find exact shortest paths. Fu et al. [130] give an overview of early approaches using this
technique. Since the algorithms we discuss must find exact shortest paths, their correctness
must not rely on unverifiable properties such as input classifications. Instead, they use the
preprocessing phase to compute the importance of vertices or arcs according to the actual
shortest path structure.

Contraction Hierarchies. An important approach to exploiting the hierarchy is to use
shortcuts. Intuitively, one would like to augment G with shortcuts that could be used by
long-distance queries to skip over “unimportant” vertices.
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Figure 4. Illustrating a Con-
traction Hierarchies query.

The Contraction Hierarchies (CH) algorithm, proposed by
Geisberger et al. [142], implements this idea by repeatedly ex-
ecuting a vertex contraction operation. To contract a vertex v,
it is (temporarily) removed from G, and a shortcut is created
between each pair u,w of neighboring vertices if the shortest
path from u to w is unique and contains v. During prepro-
cessing, CH (heuristically) orders the vertices by “importance”
and contracts them from least to most important.

The query stage runs a bidirectional search from s and t onG
augmented by the shortcuts computed during preprocessing,
but only visits arcs leading to vertices of higher ranks (impor-
tance). See Figure 4 for an illustration. Let ds(u) and dt(u)
be the corresponding distance labels obtained by these upward
searches (set to ∞ for vertices that are not visited). It is easy
to show that ds(u) ≥ dist(s, u) and dt(u) ≥ dist(u, t); equality is not guaranteed due to
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pruning. Nevertheless, Geisberger et al. [142] prove that the highest-ranked vertex u∗ on
the original s–t path will be visited by both searches, and that both its labels will be exact,
i. e., ds(u∗) = dist(s, u∗) and dt(u∗) = dist(u∗, t). Therefore, among all vertices u visited by
both searches, the one minimizing ds(u) + dt(u) represents the shortest path. Note that,
since u∗ is not necessarily the first vertex that is scanned by both searches, they cannot
stop as soon as they meet.

Query times depend on the vertex order. During preprocessing, the vertex order is usually
determined online and bottom-up. The overall (heuristic) goal is to minimize the number
of edges added during preprocessing. One typically selects the vertex to be contracted
next by considering a combination of several factors, including the net number of shortcuts
added and the number of nearby vertices already contracted [142,168]. Better vertex orders
can be obtained by combining the bottom-up algorithm with (more expensive) top-down
offline algorithms that explicitly classify vertices hitting many shortest paths as more
important [5, 78]. Since road networks have very small separators [79], one can use nested
dissection to obtain reasonably good orders that work for any length function [100, 107].
Approximate CH has been considered as a way to accommodate networks with less inherent
hierarchy [143].

CH is actually a successor of Highway Hierarchies [225] and Highway Node Routing [234],
which are based on similar ideas. CH is not only faster, but also conceptually simpler.
This simplicity has made it quite versatile, serving as a building block not only for other
point-to-point algorithms [4, 15, 40,100], but also for extended queries (cf. Section 2.7) and
applications (cf. Section 3.2).

Reach. An earlier hierarchical approach is Reach [154]. Reach is a centrality measure on
vertices. Let P be a shortest s–t path that contains vertex u. The reach r(u, P ) of u with
respect to P is defined as min{dist(s, u), dist(u, t)}. The (global) reach of u in the graph G
is the maximum reach of u over all shortest paths that contain u. Like other centrality
measures [54], reach captures the importance of vertices in the graph, with the advantage
that it can be used to prune a Dijkstra-based search.

A reach-based s–t query runs Dijkstra’s algorithm, but prunes the search at any vertex u
for which both dist(s, u) > r(u) and dist(u, t) > r(u) hold; the shortest s–t path provably
does not contain u. To check these conditions, it suffices [149] to run bidirectional searches,
each using the radius of the opposite search as a lower bound on dist(u, t) (during the
forward search) or dist(s, u) (backward search).
Reach values are determined during the preprocessing stage. Computing exact reaches

requires computing shortest paths for all pairs of vertices, which is too expensive on large
road networks. But the query is still correct if r(u) represents only an upper bound on the
reach of u. Gutman [154] has shown that such bounds can be obtained faster by computing
partial shortest path trees. Goldberg et al. [149] have shown that adding shortcuts to the
graph effectively reduces the reaches of most vertices, drastically speeding up both queries
and preprocessing and making the algorithm practical for continent-sized networks.
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2.5 Bounded-Hop Techniques
The idea behind bounded-hop techniques is to precompute distances between pairs of
vertices, implicitly adding “virtual shortcuts” to the graph. Queries can then return the
length of a virtual path with very few hops. Furthermore, they use only the precomputed
distances between pairs of vertices, and not the input graph. A naïve approach is to use
single-hop paths, i. e., precompute the distances among all pairs of vertices u, v ∈ V . A
single table lookup then suffices to retrieve the shortest distance. While the recent PHAST
algorithm [75] has made precomputing all-pairs shortest paths feasible, storing all Θ(|V |2)
distances is prohibitive already for medium-sized road networks. As we will see in this
section, considering paths with slightly more hops (two or three) leads to algorithms with
much more reasonable trade-offs.

s

t

Figure 5. Illus-
trating hub labels of
vertices s (diamonds)
and t (squares).

Labeling Algorithms. We first consider labeling algorithms [215].
During preprocessing, a label L(u) is computed for each vertex u
of the graph, such that, for any pair u, v of vertices, the dis-
tance dist(u, v) can be determined by only looking at the labels L(u)
and L(v). A natural special case of this approach is Hub Label-
ing (HL) [64, 135], in which the label L(u) associated with vertex u
consists of a set of vertices (the hubs of u), together with their dis-
tances from u. These labels are chosen such that they obey the cover
property: for any pair (s, t) of vertices, L(s) ∩ L(t) must contain at
least one vertex on the shortest s–t path. Then, the distance dist(s, t)
can be determined in linear (in the label size) time by evaluat-
ing dist(s, t) = min{dist(s, u) + dist(u, t) | u ∈ L(s) and u ∈ L(t)}.
See Figure 5 for an illustration. For directed graphs, the label
associated with u is actually split in two: the forward label Lf (u)
has distances from u to the hubs, while the backward label Lb(u)
has distances from the hubs to u; the shortest s–t path has a hub in Lf (s) ∩ Lb(t).
Although the required average label size can be Θ(|V |) in general [135], it can be

significantly smaller for some graph classes. For road networks, Abraham et al. [4] have
shown that one can obtain good results by defining the label of vertex u as the (upward)
search space of a CH query from u (with suboptimal entries removed). In general, any vertex
ordering fully defines a labeling [5], and an ordering can be converted into the corresponding
labeling efficiently [5,12]. The CH-induced order works well for road networks. For even
smaller labels, one can pick the most important vertices greedily, based on how many
shortest paths they hit [5]. A sampling version of this greedy approach works efficiently for
a wide range of graph classes [78].
Note that, if labels are sorted by hub ID, a query consists of a linear sweep over two

arrays, as in mergesort. Not only is this approach very simple, but it also has an almost
perfect locality of access. With careful engineering, one does not even have to look at all the
hubs in a label [4]. As a result, HL has the fastest known queries for road networks, taking
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roughly the time needed for five accesses to main memory (see Section 3.1). One drawback
is space usage, which, although not prohibitive, is significantly higher than for competing
methods. By combining common substructures that appear in multiple labels, Hub Label
Compression (HLC) [82] (see also [78]) reduces space usage by an order of magnitude, at
the expense of higher query times.

Transit Node Routing. The Transit Node Routing (TNR) [15,28,30,224] technique uses
distance tables on a subset of the vertices. During preprocessing, it selects a small set T ⊆ V
of transit nodes and computes all pairwise distances between them. From those, it computes,
for each vertex u ∈ V \ T , a relevant set of access nodes A(u) ⊆ T . A transit node v ∈ T is
an access node of u if there is a shortest path P from u in G such that v is the first transit
node contained in P . In addition to the vertex itself, preprocessing also stores the distances
between u and its access nodes.
An s–t query uses the distance table to select the path that minimizes the combined s–

a(s)–a(t)–t distance, where a(s) ∈ A(s) and a(t) ∈ A(t) are access nodes. Note that the
result is incorrect if the shortest path does not contain a vertex from T . To account for
such cases, a locality filter decides whether the query might be local (i. e., does not contain
a vertex from T ). In that case, a fallback shortest path algorithm (typically CH) is run
to compute the correct distance. Note that TNR is still correct even if the locality filter
occasionally misclassifies a global query as local. See Figure 6 for an illustration of a TNR
query. Interestingly, global TNR queries (which use the distance tables) tend to be faster
than local ones (which perform graph searches). To accelerate local queries, TNR can be
extended to multiple (hierarchical) layers of transit (and access) nodes [28,224].
The choice of the transit node set is crucial to the performance of the algorithm. A

natural approach is to select vertex separators or boundary vertices of arc separators as
transit nodes. In particular, using grid-based separators yields natural locality filters and
works well enough in practice for road networks [28]. (Although an optimized preprocessing
routine for this grid-based approach was later shown to have a flaw that could potentially
result in suboptimal queries [256], the version with slower preprocessing reported in [28] is
correct and achieves the same query times.)
For better performance [3, 15,142,224], one can pick as transit nodes vertices that are

classified as important by a hierarchical speedup technique (such as CH). Locality filters are
less straightforward in such cases: although one can still use geographical distances [142,224],
a graph-based approach considering the Voronoi regions [189] induced by transit nodes
tends to be significantly more accurate [15]. A theoretically justified TNR variant [3] also
picks important vertices as transit nodes and has a natural graph-based locality filter, but
is impractical for large networks.

Pruned Highway Labeling. The Pruned Highway Labeling (PHL) [11] algorithm can
be seen as a hybrid between pure labeling and transit nodes. Its preprocessing routine
decomposes the input into disjoint shortest paths, then computes a label for each vertex v
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containing the distance from v to vertices in a small subset of such paths. The labels are
such that any shortest s–t path can be expressed as s–u–w–t, where u–w is a subpath of a
path P that belongs to the labels of s and t. Queries are thus similar to HL, finding the
lowest-cost intersecting path. For efficient preprocessing, the algorithm uses the pruned
labeling technique [12]. Although this method has some similarity with Thorup’s distance
oracle for planar graphs [245], it does not require planarity. PHL has only been evaluated
on undirected graphs, however.

2.6 Combinations

Distance Table

s

t

Figure 6. Illustrating a TNR
query. The access nodes of s (t)
are indicated by three (two) dots.
The arrows point to the respective
rows/columns of the distance table.
The highlighted entries correspond
to the access nodes which minimize
the combined s–t distance.

Since the individual techniques described so far exploit
different graph properties, they can often be combined for
additional speedups. This section describes such hybrid
algorithms. In particular, early results [161, 235] consid-
ered the combination of Geometric Containers, multilevel
overlay graphs, and (Euclidean-based) A* on transporta-
tion networks, resulting in speedups of one or two orders
of magnitude over Dijkstra’s algorithm.

More recent studies have focused on combining hierarchi-
cal methods (such as CH or Reach) with fast goal-directed
techniques (such as ALT or Arc Flags). For instance, the
REAL algorithm combines Reach and ALT [149]. A ba-
sic combination is straightforward: one simply runs an
ALT query with additional pruning by reach (using the
ALT lower bounds themselves for reach evaluations). A
more sophisticated variant uses reach-aware landmarks:
landmarks and their distances are only precomputed for
vertices with high reach values. This saves space (only a
small fraction of the graph needs to store landmark dis-
tances), but requires two-stage queries (goal direction is
only used when the search is far enough from both source and target).
A similar space-saving approach is used by Core-ALT [40, 88]. It first computes an

overlay graph for the core graph, a (small) subset (e. g., 1%) of vertices (which remain after
“unimportant” ones are contracted), then computes landmarks for the core vertices only.
Queries then work in two stages: first plain bidirectional search, then ALT is applied when
the search is restricted to the core. The (earlier) HH* approach [95] is similar, but uses
Highway Hierarchies [225] to determine the core.

Another approach with two-phase queries is ReachFlags [40]. During preprocessing, it first
computes (approximate) reach values for all vertices in G, then extracts the subgraph H
induced by all vertices whose reach value exceeds a certain threshold. Arc flags are then
only computed for H, to be used in the second phase of the query.
The SHARC algorithm [39] combines the computation of shortcuts with multilevel
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arc flags. The preprocessing algorithm first determines a partition of the graph and then
computes shortcuts and arc flags in turn. Shortcuts are obtained by contracting unimportant
vertices with the restriction that shortcuts never span different cells of the partition. The
algorithm then computes arc flags such that, for each cell C, the query uses a shortcut
arc if and only if the target vertex is not in C. Space usage can be reduced with various
compression techniques [58]. Note that SHARC is unidirectional and hierarchical: arc
flags not only guide the search toward the target, but also vertically across the hierarchy.
This is useful when the backward search is not well defined, as in time-dependent route
planning (discussed in Section 2.7).

Combining CH with Arc Flags results in the CHASE algorithm [40]. During preprocessing,
a regular contraction hierarchy is computed and the search graph that includes all shortcuts
is assembled. The algorithm then extracts the subgraph H induced by the top k vertices
according to the contraction order. Bidirectional arc flags (and the partition) are finally
computed on the restricted subgraph H. Queries then run in two phases. Since computing
arc flags was somewhat slow, k was originally set to a small fraction (about 5%) of the
total number |V | of vertices [40]. More recently, Delling et al. showed that PHAST (see
Section 2.7) can compute arc flags fast enough to allow k to be set to |V |, making CHASE
queries much simpler (single-pass), as well as faster [75].
Finally, Bauer et al. [40] combine Transit Node Routing with Arc Flags to obtain the

TNR+AF algorithm. Recall that the bottleneck of the TNR query is performing the table
lookups between pairs of access nodes from A(s) and A(t). To reduce the number of lookups,
TNR+AF’s preprocessing decomposes the set of transit nodes T into k cells. For each
vertex s and access node u ∈ A(s), it stores a k-bit vector, with bit i indicating whether
there exists a shortest path from s to cell i through u. A query then only considers the
access nodes from s that have their bits set with respect to the cells of A(t). A similar
pruning is done at the target.

2.7 Extensions
In various applications, one is often interested in more than just the length of the shortest
path between two points in a static network. Most importantly, one should also be able to
retrieve the shortest path itself. Moreover, many of the techniques considered so far can
be adapted to compute batched shortest paths (such as distance tables), to more realistic
scenarios (such as dynamic networks), or to deal with multiple objective functions. In the
following, we briefly discuss each of these extensions.

2.7.1 Path Retrieval

Our descriptions so far have focused on finding only the length of the shortest path. The
algorithms we described can easily be augmented to provide the actual list of edges or
vertices on the path. For techniques that do not use shortcuts (such as Dijkstra’s algorithm,
A* search, or Arc Flags), one can simply maintain a parent pointer for each vertex v,
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updating it whenever the distance label of v changes. When shortcuts are present (such as
in CH, SHARC, or CRP), this approach gives only a compact representation of the shortest
path (in terms of shortcuts). The shortcuts then need to be unpacked. If each shortcut is
the concatenation of two other arcs (or shortcuts), as in CH, storing the middle vertex [142]
of each shortcut allows for an efficient (linear-time) recursive unpacking of all shortcuts on
the output path. If shortcuts are built from multiple arcs (as for CRP or SHARC), one
can either store the entire sequence for each shortcut [225] or run a local (bidirectional)
Dijkstra search from its endpoints [77]. These two techniques can be used for bounded-hop
algorithms as well.

2.7.2 Batched Shortest Paths

Some applications require computing multiple paths at once. For example, advanced
logistics applications may need to compute all distances between a source set S and a target
set T . This can be trivially done with |S| · |T | point-to-point shortest-path computations.
Using a hierarchical speedup technique (such as CH), this can be done in time comparable
to O(|S|+ |T |) point-to-point queries in practice, which is much faster. First, one runs a
backward upward search from each ti ∈ T ; for each vertex u scanned during the search
from ti, one stores its distance label dti(u) in a bucket β(u). Then, one runs a forward
upward search from each sj ∈ S. Whenever such a search scans a vertex v with a non-empty
bucket, one searches the bucket and checks whether dsj (v)+dti(v) improves the best distance
seen so far between sj and ti. This bucket-based approach was introduced for Highway
Hierarchies [172], but can be used with any other hierarchical speedup technique (such as
CH) and even with hub labels [81]. When the bucket-based approach is combined with
a separator-based technique (such as CRP), it is enough to keep buckets only for the
boundary vertices [99]. Note that this approach can be used to compute one-to-many or
many-to-many distances.
Some applications require one-to-all computations, i. e., finding the distances from a

source vertex s to all other vertices in the graph. For this problem, Dijkstra’s algorithm
is optimal in the sense that it visits each edge exactly once, and hence runs in essentially
linear time [147]. However, Dijkstra’s algorithm has bad locality and is hard to parallelize,
especially for sparse graphs [186, 193]. PHAST [75] builds on CH to improve this. The
idea is to split the search in two phases. The first is a forward upward search from s,
and the second runs a linear scan over the shortcut-enriched graph, with distance values
propagated from more to less important vertices. Since the instruction flow of the second
phase is (almost) independent of the source, it can be engineered to exploit parallelism and
improve locality. In road networks, PHAST can be more than an order of magnitude faster
than Dijkstra’s algorithm, even if run sequentially, and can be further accelerated using
multiple cores and even GPUs. This approach can also be extended to the one-to-many
problem, i. e., computing distances from a source to a subset of predefined targets [81].
Similar techniques can also be applied with graph separators (instead of CH), yielding
comparable query times but with faster (metric-dependent) preprocessing [113].
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2.7.3 Dynamic Networks

Transportation networks tend to be dynamic, with unpredictable delays, traffic, or closures.
If one assumes that the modified network is stable for the foreseeable future, the obvious
approach for speedup techniques to deal with this is to rerun the preprocessing algorithm.
Although this ensures queries are as fast as in the static scenario, it can be quite costly. As
a result, four other approaches have been considered.
It is often possible to just “repair” the preprocessed data instead of rebuilding it from

scratch. This approach has been tried for various techniques, including Geometric Con-
tainers [251], ALT [96], Arc Flags [66], and CH [142,234], with varying degrees of success.
For CH, for example, one must keep track of dependencies between shortcuts, partially
rerunning the contraction as needed. Changes that affect less important vertices can be
dealt with faster.
Another approach is to adapt the query algorithms to work around the “wrong” parts

of the preprocessing phase. In particular, ALT is resilient to increases in arc costs (due
to traffic, for example): queries remain correct with the original preprocessing, though
query times may increase [96]. Less trivially, CH queries can also be modified to deal
with dynamic changes to the network [142,234] by allowing the search to bypass affected
shortcuts by going “down” the hierarchy. This is useful when queries are infrequent relative
to updates.
A third approach is to make the preprocessing stage completely metric-independent,

shifting all metric-dependent work to the query phase. Funke et al. [131] generalize the
multilevel overlay graph approach to encode all k-hop paths (for small k) in an overlay
graph. Under the assumption that edge costs are defined by a small number of physical
parameters (as in simplified road networks) this allows setting the edge costs at query time,
though queries become significantly slower.

For more practical queries, the fourth approach splits the preprocessing phase into metric-
independent and metric-dependent stages. The metric-independent phase takes as input
only the network topology, which is fairly stable. When edge costs change (which happens
often), only the (much cheaper) metric-dependent stage must be rerun, partially or in full.
This concept can again be used for various techniques, with ALT, CH, and CRP being the
most prominent. For ALT, one can keep the landmarks, and just recompute the distances
to them [96,112]. For CH, one can keep the ordering, and just rerun contraction [107,142].
For CRP, one can keep the partitioning and the overlay topology, and just recompute the
shortcut lengths using a combination of contraction and graph searches [77]. Since the
contraction is metric-independent, one can precompute and store the sequence of contraction
operations and reexecute them efficiently whenever edge lengths change [77, 87]. The same
approach can be used for CH with metric-independent orders [107].
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2.7.4 Time-Dependence

In real transportation networks, the best route often depends on the departure time in
a predictable way [102]. For example, certain roads are consistently congested during
rush hours, and certain buses or trains run with different frequencies during the day.
When one is interested in the earliest possible arrival given a specified departure time (or,
symmetrically, the latest departure), one can model this as the time-dependent shortest
path problem, which assigns travel time functions to (some of) the edges, representing
how long it takes to traverse them at each time of the day. Dijkstra’s algorithm still
works [65] as long as later departures cannot lead to earlier arrivals; this non-overtaking
property is often called first-in first-out (FIFO). Although one must deal with functions
instead of scalars, the theoretical running time of Dijkstra-based algorithms can still be
bounded [71,128]. Moreover, many of the techniques described so far work in this scenario,
including bidirectional ALT [88,207], CH [32], or SHARC [72]. Recently, Kontogiannis and
Zaroliagis [175] have introduced a theoretical (approximate) distance oracle with sublinear
running time. Other scenarios (besides FIFO with no waiting at vertices) have been
studied [69,70,208,209], but they are less relevant for transportation networks.
There are some challenges, however. In particular, bidirectional search becomes more

complicated (since the time of arrival is not known), requiring changes to the backward
search [32,207]. Another challenge is that shortcuts become more space-consuming (they
must model a more complicated travel time function), motivating compression techniques
that do not sacrifice correctness, as demonstrated for SHARC [58] or CH [32]. Batched
shortest paths can be computed in such networks efficiently as well [141].
Time-dependent networks motivate some elaborate (but still natural) queries, such as

finding the best departure time in order to minimize the total time in transit. Such queries
can be dealt with by range searches, which compute the travel time function between two
points. There exist Dijkstra-based algorithms [71] for this problem, and most speedup
techniques can be adapted to deal with this as well [32, 72].
Unfortunately, even a slight deviation from the travel time model, where total cost is

a linear combination of travel time and a constant cost offset, makes the problem NP-
hard [9, 33]. However, a heuristic adaptation of time-dependent CH shows negligible errors
in practice [33].

2.7.5 Multiple Objective Functions

Another natural extension is to consider multiple cost functions. For example, certain
vehicle types cannot use all segments of the transportation network. One can either adapt
the preprocessing such that these edge restrictions can be applied during query time [140],
or perform a metric update for each vehicle type.

Also, the search request can be more flexible. For example, one may be willing to take a
more scenic route even if the trip is slightly longer. This can be dealt with by performing a
multicriteria search. In such a search, two paths are incomparable if neither is better than
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the other in all criteria. The goal is to find a Pareto set, i. e., a maximum set of incomparable
paths. Such sets of shortest paths can be computed by extensions of Dijkstra’s algorithm;
see [117] for a survey on multicriteria combinatorial optimization. More specifically, the
Multicriteria Label-Setting (MLS) algorithm [155,187,196,243] extends Dijkstra’s algorithm
by keeping, for each vertex, a bag of nondominated labels. Each label is represented as a
tuple, with one entry per optimization criterion. The priority queue maintains labels instead
of vertices, typically ordered lexicographically. In each iteration, it extracts the minimum
label L and scans the incident arcs a = (u, v) of the vertex u associated with L. It does so
by adding the cost of a to L and then merging L into the bag of v, eliminating possibly
dominated labels on the fly. In contrast, the Multi-Label-Correcting (MLC) algorithm [68,98]
considers the whole bag of nondominated labels associated with u at once when scanning
the vertex u. Hence, individual labels of u may be scanned multiple times during one
execution of the algorithm.
Both MLS and MLC are fast enough as long as the Pareto sets are small [109, 204].

Unfortunately, Pareto sets may contain exponentially many solutions, even for the restricted
case of two optimization criteria [155], which makes it hard to achieve large speedups [47,97].
To reduce the size of Pareto sets, one can relax domination. In particular, (1 + ε)-Pareto
sets have provable polynomial size [212] and can be computed efficiently [182, 246, 253].
Moreover, large Pareto sets open up a potential for parallelization that is not present for a
single objective function [124,222].
A reasonable alternative [138] to multicriteria search is to optimize a linear combina-

tion αc1 +(1−α)c2 of two criteria (c1, c2), with the parameter α set at query time. Moreover,
it is possible to efficiently compute the values of α where the path actually changes. Funke
and Storandt [133] show that CH can handle such functions with polynomial preprocessing
effort, even with more than two criteria.

2.8 Theoretical Results
Most of the algorithms mentioned so far were developed with practical performance in mind.
Almost all methods we surveyed are exact: they provably find the exact shortest path. Their
performance (in terms of both preprocessing and queries), however, varies significantly with
the input graph. Most algorithms work well for real road networks, but are hardly faster
than Dijkstra’s algorithm on some other graph classes. This section discusses theoretical
work that helps understand why the algorithms perform well and what their limitations are.

Most of the algorithms considered have some degree of freedom during preprocessing (such
as which partition, which vertex order, or which landmarks to choose). An obvious question
is whether one could efficiently determine the best such choices for a particular input so as
to minimize the query search space (a natural proxy for query times). Bauer et al. [36] have
determined that finding optimal landmarks for ALT is NP-hard. The same holds for Arc
Flags (with respect to the partition), SHARC (with respect to the shortcuts), Multilevel
Overlay Graphs (with respect to the separator), Contraction Hierarchies (with respect to
the vertex order), and Hub Labels (with respect to the hubs) [252]. In fact, minimizing the
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number of shortcuts for CH is APX-hard [36, 194]. For SHARC, however, a greedy factor-k
approximation algorithm exists [38]. Deciding which k shortcuts (for fixed k) to add to a
graph in order to minimize the SHARC search space is also NP-hard [38]. Bauer et al. [35]
also analyze the preprocessing of Arc Flags in more detail and on restricted graph classes,
such as paths, trees, and cycles, and show that finding an optimal partition is NP-hard
even for binary trees.
Besides complexity, theoretical performance bounds for query algorithms, which aim to

explain their excellent practical performance, have also been considered. Proving better
running time bounds than those of Dijkstra’s algorithm is unlikely for general graphs; in fact,
there are inputs for which most algorithms are ineffective. That said, one can prove nontrivial
bounds for specific graph classes. In particular, various authors [37,194] have independently
observed a natural relationship between CH and the notions of filled graphs [214] and
elimination trees [232]. For planar graphs, one can use nested dissection [180] to build a CH
order leading to O(|V | log |V |) shortcuts [37,194]. More generally, for minor-closed graph
classes with balanced O(

√
|V |)-separators, the search space is bounded by O(

√
|V |) [37].

Similarly, on graphs with treewidth k, the search space of CH is bounded by O(k log |V |) [37].
Road networks have motivated a large amount of theoretical work on algorithms for planar

graphs. In particular, it is known that planar graphs have separators of size O(
√
|V |) [180,

181]. Although road networks are not strictly planar, they do have small separators [79,123],
so theoretically efficient algorithms for planar graphs are likely to also perform well in road
networks. Sommer [238] surveys several approximate methods with various trade-offs. In
practice, the observed performance of most speedup techniques is much better on actual
road networks than on arbitrary planar graphs (even grids). A theoretical explanation of
this discrepancy thus requires a formalization of some property related to key features of
real road networks.
One such graph property is Highway Dimension, proposed by Abraham et al. [3] (see

also [1, 7]). Roughly speaking, a graph has highway dimension h if, at any scale r, one
can hit all shortest paths of length at least r by a hitting set S that is locally sparse, in
the sense that any ball of radius r has at most h elements from S. Based on previous
experimental observations [30], the authors [7] conjecture that road networks have small
highway dimension. Based on this notion, they establish bounds on the performance
of (theoretically justified versions of) various speedup techniques in terms of h and the
graph diameterD, assuming the graph is undirected and that edge lengths are integral. More
precisely, after running a polynomial-time preprocessing routine, which adds O(h log h logD)
shortcuts to G, Reach and CH run in O((h log h logD)2) time. Moreover, they also show
that HL runs in O(h log h logD) time and long-range TNR queries take O(h2) time. In
addition, Abraham et al. [3] show that a graph with highway dimension h has doubling
dimension log(h+ 1), and Kleinberg et al. [171] show that landmark-based triangulation
yields good bounds for most pairs of vertices of graphs with small doubling dimension. This
gives insight into the good performance of ALT in road networks.
The notion of highway dimension is an interesting application of the scientific method.

It was originally used to explain the good observed performance of CH, Reach, and TNR,
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and ended up predicting that HL (which had not been implemented yet) would have good
performance in practice.

Generative models for road networks have also been proposed and analyzed. Abraham et
al. [3,7] propose a model that captures some of the properties of road networks and generates
graphs with provably small highway dimension. Bauer et al. [42] show experimentally that
several speedup techniques are indeed effective on graphs generated according to this model,
as well as according to a new model based on Voronoi diagrams. Models with a more
geometric flavor have been proposed by Eppstein and Goodrich [123] and by Eisenstat [118].

Besides these results, Rice and Tsotras [220] analyze the A* algorithm and obtain bounds
on the search space size that depend on the underestimation error of the potential function.
Also, maintaining and updating multilevel overlay graphs have been theoretically analyzed
in [57]. For Transit Node Routing, Eisner and Funke [120] propose instance-based lower
bounds on the size of the transit node set. For labeling algorithms, bounds on the label
size for different graph classes are given by Gavoille et al. [135]. Approximation algorithms
to compute small labels have also been studied [16,64,80]; although they can find slightly
better labels than faster heuristics [5, 78], their running time is prohibitive [80].
Because the focus of this work is on algorithm engineering, we refrain from going into

more detail about the available theoretical work. Instead, we refer the interested reader
to overview articles with a more theoretical emphasis, such as those by Sommer [238],
Zwick [261], and Gavoille and Peleg [134].

3 Route Planning in Road Networks
In this section, we experimentally evaluate how the techniques discussed so far perform
in road networks. Moreover, we discuss applications of some of the techniques, as well as
alternative settings such as databases or mobile devices.

3.1 Experimental Results
Our experimental analysis considers carefully engineered implementations, which is very
important when comparing running times. They are written in C++ with custom-built
data structures. Graphs are represented as adjacency arrays [190], and priority queues
are typically binary heaps, 4-heaps, or multilevel buckets. As most arcs in road networks
are bidirectional, state-of-the-art implementations use edge compression [233]: each road
segment is stored at both of its endpoints, and each occurrence has two flags indicating
whether the segment should be considered as an incoming and/or outgoing arc. This
representation is compact and allows efficient iterations over incoming and outgoing arcs.

We give data for two models. The simplified model ignores turn restrictions and penalties,
while the realistic model includes the turn information [255]. There are two common
approaches to deal with turns. The arc-based representation [59] blows up the graph
so that roads become vertices and feasible turns become arcs. In contrast, the compact
representation [76, 144] keeps intersections as vertices, but with associated turn tables. One
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can save space by sharing turn tables among many vertices, since the number of intersection
types in a road network is rather limited. Most speedup techniques can be used as is for
the arc-based representation, but may need modification to work on the compact model.

Most experimental studies are restricted to the simplified model. Since some algorithms
are more sensitive to how turns are modeled than others, it is hard to extrapolate these
results to more realistic networks. We therefore consider experimental results for each
model separately.

3.1.1 Simplified Model

An important driving force behind the research on speedup techniques for Dijkstra’s
algorithm was its application to road networks. A key aspect for the success of this
research effort was the availability of continent-sized benchmark instances. The most widely
used instance has been the road network of Western Europe from PTV AG, with 18.0
million vertices and 42.5 million directed arcs. Besides ferries (for which the traversal
time was given), it has 13 road categories. Category i has been assigned an average
speed of 10i km/h. This synthetic assignment is consistent with more realistic proprietary
data [77,82]. Another popular (and slightly bigger) instance, representing the TIGER/USA
road network, is undirected and misses several important road segments [6]. Although
the inputs use the simplified model, they allowed researchers from various groups to run
their algorithms on the same instance, comparing their performance. In particular, both
instances were tested during the DIMACS Challenge on Shortest Paths [101].
Figure 7 succinctly represents the performance of previously published implementations

of various point-to-point algorithms on the Western Europe instance, using travel time
as the cost function. For each method, the plot relates its preprocessing and average
query times. Queries compute the length of the shortest path (but not its actual list
of edges) between sources and targets picked uniformly at random from the full graph.
For readability, space consumption (a third important quality measure) is not explicitly
represented.1 We reproduce the numbers reported by Bauer et al. [40] for Reach, HH, HNR,
ALT, (bidirectional) Arc Flags, REAL, HH*, SHARC, CALT, CHASE, ReachFlags and
TNR+AF. For CHASE and Arc Flags, we also consider variants with quicker PHAST-
based preprocessing [75]. In addition, we consider the recent ALT implementation by
Efentakis and Pfoser [112]. Moreover, we report results for several variants of TNR [15,40],
Hub Labels [5, 82], HPML [83], Contraction Hierarchies (CH) [142], and Customizable
Contraction Hierarchies (CCH) [107]. CRP (and the corresponding PUNCH) figures [77]
use a more realistic graph model that includes turn costs. For reference, the plot includes
unidirectional and bidirectional implementations of Dijkstra’s algorithm using a 4-heap.
(Note that one can obtain a 20% improvement when using a multilevel bucket queue [147].)
Finally, the table-lookup figure is based on the time of a single memory access in our
reference machine and the precomputation time of |V | shortest path trees using PHAST [75].

1The reader is referred to Sommer [238] for a similar plot (which inspired ours) relating query times to
preprocessing space.
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Figure 7. Preprocessing and average query time performance for algorithms with available
experimental data on the road network of Western Europe, using travel times as edge weights.
Connecting lines indicate different trade-offs for the same algorithm. The figure is inspired by [238].

Note that a machine with more than one petabyte of RAM (as required by this algorithm)
would likely have slower memory access times.

Times in the plot are on a single core of an Intel X5680 3.33GHz CPU, a mainstream
server at the time of writing. Several of the algorithms in the plot were originally run on
this machine [5, 75, 77, 82]; for the remaining, we divide by the following scaling factors:
2.322 for [40,83], 2.698 for [142], 1.568 for [15], 0.837 for [107], and 0.797 for [112]. These were
obtained from a benchmark (developed for this survey) that measures the time of computing
several shortest path trees on the publicly available USA road network with travel times [101].
For the machines we did not have access to, we asked the authors to run the benchmark for
us [112]. The benchmark is available from http://algo.iti.kit.edu/~pajor/survey/,
and we encourage future works to use it as a base to compare (sequential) running times
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Table 1. Performance of various speedup techniques on Western Europe. Column source indicates
the implementation tested for this survey.

data structures queries

impl. space time scanned time
algorithm source [GiB] [h:m] vertices [µs]
Dijkstra [75] 0.4 – 9 326 696 2 195 080
Bidir. Dijkstra [75] 0.4 – 4 914 804 1 205 660
CRP [77] 0.9 1:00 2 766 1 650
Arc Flags [75] 0.6 0:20 2 646 408
CH [77] 0.4 0:05 280 110
CHASE [75] 0.6 0:30 28 5.76
HLC [82] 1.8 0:50 – 2.55
TNR [15] 2.5 0:22 – 2.09
TNR+AF [40] 5.4 1:24 – 0.70
HL [82] 18.8 0:37 – 0.56
HL-∞ [5] 17.7 60:00 – 0.25
table lookup [75] 1 208 358.7 145:30 – 0.06

with existing approaches.
The figure shows that there is no best technique. To stress this point, techniques with at

least one implementation belonging to the Pareto set (considering preprocessing time, query
time, and space usage) are drawn as solid circles; hollow entries are dominated. The Pareto
set is quite large, with various methods allowing for a wide range of space-time trade-offs.
Moreover, as we shall see when examining more realistic models, these three are not the
only important criteria for real-world applications.

Table 1 has additional details about the methods in the Pareto set, including two versions
of Dijkstra’s algorithm, one Dijkstra-based hierarchical technique (CH), three non-graph-
based algorithms (TNR, HL, HLC), and two combinations (CHASE and TNR+AF). For
reference, the table also includes a goal-directed technique (Arc Flags) and a separator-based
algorithm (CRP), even though they are dominated by other methods. All algorithms were
rerun for this survey on the reference machine (Intel X5680 3.33GHz CPU), except those
based on TNR, for which we report scaled results. All runs are single-threaded for this
experiment, but note that all preprocessing algorithms could be accelerated using multiple
cores (and, in some cases, even GPUs) [75,144].
For each method, Table 1 reports the total amount of space required by all data struc-

tures (including the graph, if needed, but excluding extra information needed for path
unpacking), the total preprocessing time, the number of vertices scanned by an average
query (where applicable) and the average query time. Once again, queries consist of
pairs of vertices picked uniformly at random. We note that all methods tested can be
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parametrized (typically within a relatively narrow band) to achieve different trade-offs
between query time, preprocessing time, and space. For simplicity, we pick a single “reason-
able” set of parameters for each method. The only exception is HL-∞, which achieves the
fastest reported query times but whose preprocessing is unreasonably slow.
Observe that algorithms based on any one of the approaches considered in Section 2

can answer queries in milliseconds or less. Separator-based (CRP), hierarchical (CH), and
goal-directed (Arc Flags) methods do not use much more space than Dijkstra’s algorithm,
but are three to four orders of magnitude faster. By combining hierarchy-based pruning and
goal direction, CHASE improves query times by yet another order of magnitude, visiting
little more than the shortest path itself. Finally, when a higher space overhead is acceptable,
non-graph-based methods can be more than a million times faster than the baseline. In
particular, HL-∞ is only 5 times slower than the trivial table-lookup method, where a
query consists of a single access to main memory. Note that the table-lookup method itself
is impractical, since it would require more than one petabyte of RAM.
The experiments reported so far consider only random queries, which tend to be long-

range. In a real system, however, most queries tend to be local. For that reason, Sanders and
Schultes [223] introduced a methodology based on Dijkstra ranks. When running Dijkstra’s
algorithm from a vertex s, the rank of a vertex u is the order in which it is taken from
the priority queue. By evaluating pairs of vertices for Dijkstra ranks 21, 22, . . . , 2blog|V |c for
some randomly chosen sources, all types (local, mid-range, global) of queries are evaluated.
Figure 8 reports the median running times for all techniques from Table 1 (except TNR+AF,
for which such numbers have never been published) for 1 000 random sources and Dijkstra
ranks ≥ 26. As expected, algorithms based on graph searches (including Dijkstra, CH, CRP,
and Arc Flags) are faster for local queries. This is not true for bounded-hop algorithms.
For TNR, in particular, local queries must actually use a (significantly slower) graph-based
approach. HL is more uniform overall because it never uses a graph.

3.1.2 Realistic Setting

Although useful, the results shown in Table 1 do not capture all features that are important
for real-world systems. First, systems providing actual driving directions must account for
turn costs and restrictions, which the simplified graph model ignores. Second, systems must
often support multiple metrics (cost functions), such as shortest distances, avoid U-turns,
avoid/prefer freeways, or avoid ferries; metric-specific data structures should therefore be as
small as possible. Third, query times should be robust to the choice of cost functions: the
system should not time out if an unfriendly cost function is chosen. Finally, one should be
able to incorporate a new cost function quickly to account for current traffic conditions (or
even user preferences).

CH has the fastest preprocessing among the algorithms in Table 1 and its queries are fast
enough for interactive applications. Its performance degrades under realistic constraints [77],
however. In contrast, CRP was developed with these constraints in mind. As explained in
Section 2.3, it splits its preprocessing phase in two: although the initial metric-independent
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Figure 8. Performance of speedup techniques for various Dijkstra ranks.

phase is relatively slow (as shown in Table 1), only the subsequent (and fast) metric-
dependent customization phase must be rerun to incorporate a new metric. Moreover,
since CRP is based on edge separators, its performance is (almost) independent of the cost
function.
Table 2 (reproduced from [77]) compares CH and CRP with and without turn costs, as

well as for travel distances. The instance tested is the same in Table 1, augmented by turn
costs (set to 100 seconds for U-turns and zero otherwise). This simple change makes it
almost as hard as fully realistic (proprietary) map data used in production systems [77].
The table reports metric-independent preprocessing and metric-dependent customization
separately; “DS” refers to the data structures shared by all metrics, while “custom” refers
to the additional space and time required by each individual metric. Unlike in Table 1, space
consumption also includes data structures used for path unpacking. For queries, we report
the time to get just the length of the shortest path (dist), as well as the total time to retrieve
both the length and the full path (path). Moreover, preprocessing (and customization)
times refer to multi-threaded executions on 12 cores; queries are still sequential.

As the table shows, CRP query times are very robust to the cost function and the presence
of turns. Also, a new cost function can be applied in roughly 370ms, fast enough to even
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Table 2. Performance of Contraction Hierarchies and CRP on a more realistic instance, using
different graph representations. Preprocessing and customization times are given for multi-threaded
execution on a 12-core server, while queries are run single-threaded.

CH CRP

DS queries DS custom queries
turn time space nmb. dist path time space time space nmb. dist path

metric info [h:m] [GiB] scans [ms] [ms] [h:m] [GiB] [s] [GiB] scans [ms] [ms]
dist none 0:12 0.68 858 0.87 1.07 0:12 3.11 0.37 0.07 2942 1.91 2.49
time none 0:02 0.60 280 0.11 0.21 0:12 3.11 0.37 0.07 2766 1.65 1.81

arc-based 0:23 3.14 404 0.20 0.30 – – – – – – –
compact 0:29 1.09 1998 2.27 2.37 0:12 3.11 0.37 0.07 3049 1.67 1.85

support user-specific cost functions. Customization times can be even reduced to 36ms with
GPUs [87], also reducing the amount of data stored in main memory by a factor of 6. This
is fast enough for setting the cost function at query time, enabling realistic personalized
driving directions on continental scale. If GPUs are not available or space consumption is
an issue, one can drop the contraction-based customization. This yields customization times
of about one second on a 12-core CPU, which is still fast enough for many scenarios. In
contrast, CH performance is significantly worse on metrics other than travel times without
turn costs.
We stress that not all applications have the same requirements. If only good estimates

on travel times (and not actual paths) are needed, ignoring turn costs and restrictions is
acceptable. In particular, ranking POIs according to travel times (but ignoring turn costs)
already gives much better results than ranking based on geographic distances. Moreover, we
note that CH has fast queries even with fully realistic turn costs. If space (for the expanded
graph) is not an issue, it can still provide a viable solution to the static problem; the same
holds for related methods such as HL and HLC [82]. For more dynamic scenarios, CH
preprocessing can be made parallel [144] or even distributed [168]; even if run sequentially,
it is fast enough for large metropolitan areas.

3.2 Applications
As discussed in Section 2.7, many speedup techniques can handle more than plain point-
to-point shortest path computations. In particular, hierarchical techniques such as CH or
CRP tend to be quite versatile, with many established extensions.
Some applications may involve more than one path between a source and a target.

For example, one may want to show the user several “reasonable” paths (in addition to
the shortest one) [60]. In general, these alternative paths should be short, smooth, and
significantly different from the shortest path (and other alternatives). Such paths can either
be computed directly as the concatenation of partial shortest paths [6,60,77,173,184] or

26



compactly represented as a small graph [17,174,213]. A related problem is to compute a
corridor [86] of paths between source and target, which allows deviations from the best
route (while driving) to be handled without recomputing the entire path. These robust
routes can be useful in mobile scenarios with limited connectivity. Another useful tool to
reduce communication overhead in such cases is route compression [31].

Extensions that deal with nontrivial cost functions have also been considered. In particular,
one can extend CH to handle flexible arc restrictions [140] (such as height or weight
limitations) or even multiple criteria [133,138] (such as optimizing costs and travel time).
Minimizing the energy consumption of electric vehicles [43,44,122,152,240,241] is another
nontrivial application, since batteries are recharged when the car is going downhill. Similarly,
optimal cycling routes must take additional constraints (such as the amount of uphill cycling)
into account [239].
The ability of computing many (batched) shortest paths fast enables interesting new

applications. By quickly analyzing multiple candidate shortest paths, one can efficiently
match GPS traces to road segments [119, 121]. Traffic simulations also benefit from
acceleration techniques [183], since they must consider the likely routes taken by all drivers
in a network. Another application is route prediction [177]: one can estimate where a vehicle
is (likely) headed by measuring how good its current location is as a via point towards
each candidate destination. Fast routing engines allow more locations to be evaluated more
frequently, leading to better predictions [2,121,162,176]. Planning placement of charging
stations can also benefit from fast routing algorithms [132]. Another important application
is ride sharing [2, 110, 139], in which one must match a ride request with the available offer
in a large system, typically by minimizing drivers’ detours.
Finally, batched shortest-path computations enable a wide range of point-of-interest

queries [2, 99, 114, 119, 137, 179, 221, 259]. Typical examples include finding the closest
restaurant to a given location, picking the best post office to stop on the way home, or
finding the best meeting point for a group of friends. Typically using the bucket-based
approach (cf. Section 2.7.2), fast routing engines allow POIs to be ranked according to
network-based cost functions (such as travel time) rather than geographic distances. This
is crucial for accuracy in areas with natural (or man-made) obstacles, such as mountains,
rivers, or rail tracks. Note that more elaborate POI queries must consider concatenations
of shortest paths. One can handle these efficiently using an extension of the bucket-based
approach that indexes pairs of vertices instead of individual ones [2, 99].

3.3 Alternative Settings
So far, we have assumed that shortest path computations take place on a standard server
with enough main memory to hold the input graph and the auxiliary data. In practice,
however, it is often necessary to run (parts of) the routing algorithm in other settings, such
as mobile devices, clusters, or databases. Many of the methods we discuss can be adapted
to such scenarios.

Of particular interest are mobile devices, which typically are slower and (most importantly)
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have much less available RAM. This has motivated external memory implementation of
various speedup techniques, such as ALT [150], CH [226], and time-dependent CH [167]. CH
in particular is quite practical, supporting interactive queries by compressing the routing
data structures and optimizing their access patterns.

Relational databases are another important setting in practice, since they allow users to
formulate complex queries on the data in SQL, a popular and expressive declarative query
language [230].
Unfortunately, the table-based computational model makes it hard (and inefficient) to

implement basic data structures such as graphs or even priority queues. Although some
distance oracles based on geometric information could be implemented on a database [229],
they are approximate and very expensive in terms of time and space, limiting their applica-
bility to small instances. A better solution is to use HL, whose queries can very easily be
expressed in SQL, allowing interactive applications based on shortest path computations
entirely within a relational database [2].
For some advanced scenarios, such as time-dependent networks, the preprocessing effort

increases quite a lot compared to the time-independent scenario. One possible solution is to
run the preprocessing in a distributed fashion. One can achieve an almost linear speedup
as the number of machine increases, for both CH [168] and CRP [116].

4 Journey Planning in Public Transit Networks
This section considers journey planning in (schedule-based) public transit networks. In this
scenario, the input is given by a timetable. Roughly speaking, a timetable consists of a set of
stops (such as bus stops or train platforms), a set of routes (such as bus or train lines), and a
set of trips. Trips correspond to individual vehicles that visit the stops along a certain route
at a specific time of the day. Trips can be further subdivided into sequences of elementary
connections, each given as a pair of (origin/destination) stops and (departure/arrival) times
between which the vehicle travels without stopping. In addition, footpaths model walking
connections (transfers) between nearby stops.
A key difference to road networks is that public transit networks are inherently time-

dependent, since certain segments of the network can only be traversed at specific, discrete
points in time. As such, the first challenge concerns modeling the timetable appropriately
in order to enable the computation of journeys, i.e., sequences of trips one can take within a
transportation network. While in road networks computing a single shortest path (typically
the quickest journey) is often sufficient, in public transit networks it is important to solve
more involved problems, often taking several optimization criteria into account. Section 4.1
will address such modeling issues.

Accelerating queries for efficient journey planning is a long-standing problem [45, 235,
247, 248]. A large number of algorithms have been developed not only to answer basic
queries fast, but also to deal with extended scenarios that incorporate delays, compute
robust journeys, or optimize additional criteria, such as monetary cost.
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Figure 9. Realistic time-expanded (left) and time-dependent (right) models. Different vertex types
are highlighted by shape: diamond (arrival), circle (transfer) and square (departure) for the left
figure; and circle (stop) and square (route) for the right figure. Connection arcs in the time-expanded
model are annotated with its trips ti, and route arcs in the time-dependent model with its routes ri.

4.1 Modeling
The first challenge is to model the timetable in order to enable algorithms that compute
optimal journeys. Since the shortest-path problem is well understood in the literature, it
seems natural to build a graph G = (V,A) from the timetable such that shortest paths
in G correspond to optimal journeys. This section reviews the two main approaches to do
so (time-expanded and time-dependent), as well as the common types of problems one is
interested to solve. For a more detailed overview of these topics, we refer the reader to an
overview article by Müller-Hannemann et al. [203].

Time-Expanded Model. Based on the fact that a timetable consists of time-dependent
events (e. g., a vehicle departing at a stop) that happen at discrete points in time, the
idea of the time-expanded model is to build a space-time graph (often also called an event
graph) [211] that “unrolls” time. Roughly speaking, the model creates a vertex for every
event of the timetable and uses arcs to connect subsequent events in the direction of time
flow. A basic version of the model [196, 235] contains a vertex for every departure and
arrival event, with consecutive departure and arrival events connected by connection (or
travel) arcs. To enable transfers between vehicles, all vertices at the same stop are (linearly,
in chronological order) interlinked by transfer (or waiting) arcs. Müller-Hannemann and
Weihe [204] extend the model to distinguish trains (to optimize the number of transfers taken
during queries) by subdividing each connection arc by a new vertex, and then interlinking the
vertices of each trip (in order of travel). Pyrga et al. [218, 219] and Müller-Hannemann and
Schnee [200] extend the time-expanded model to incorporate minimum change times (given
by the input) that are required as buffer when changing trips at a station. Their realistic
model introduces an additional transfer vertex per departure event, and connects each
arrival vertex to the first transfer vertex that obeys the minimum change time constraints.
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See Figure 9 for an illustration. If there is a footpath from stop pi to stop pj , then for
each arrival event at stop pi one adds an arc to the earliest reachable transfer vertex at pj .
This model has been further engineered [90] to reduce the number of arcs that are explored
“redundantly” during queries.

A timetable is usually valid for a certain period of time (up to one year). Since the
timetables of different days of the year are quite similar, a space-saving technique (compressed
model) is to consider events modulo their traffic days [202,219].
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Figure 10. Travel time function on an arc.

Time-Dependent Model. The main disad-
vantage of the time-expanded model is that
the resulting graphs are quite large [218].
For smaller graphs, the time-dependent ap-
proach (see Section 2.7) has been considered
by Brodal and Jacob [56]. In their model, ver-
tices correspond to stops, and an arc is added
from u to v if there is at least one elementary
connection serving the corresponding stops
in this order. Precise departure and arrival
times are encoded by the travel time func-
tion associated with the arc (u, v). Figure 10
shows the typical shape of a travel time function: each filled circle represents an elementary
connection; the line segments (with slope −1) reflect not only the travel time, but also the
waiting time until the next departure. Pyrga et al. [219] further extended this basic model
to enable minimum change times by creating, for each stop p and each route that serves p,
a dedicated route vertex. Route vertices at p are connected to a common stop vertex by arcs
with constant cost depicting the minimum change time of p. Trips are distributed among
route arcs that connect the subsequent route vertices of a route, as shown in Figure 9. They
also consider a model that allows arbitrary minimum change times between pairs of routes
within each stop [219]. Footpaths connecting nearby stops are naturally integrated into the
time-dependent model [109]. For some applications, one may merge route vertices of the
same stop as long as they never connect trips such that a transfer between them violates
the minimum change time [85].

Frequency-Based Model. In real-world timetables trips often operate according to specific
frequencies at times of the day. For instance, a bus may run every 5 minutes during rush
hour, and every 10 minutes otherwise. Bast and Storandt [27] exploit this fact in the
frequency-based model: as in the time-dependent approach, vertices correspond to stops,
and an arc between a pair of stops (u, v) is added if there is at least one elementary
connection from u to v. However, instead of storing the departures of an arc explicitly,
those with coinciding travel times are compressed into a set of tuples consisting of an initial
departure time τdep, a time interval ∆, and a frequency f . The corresponding original
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departures can thus be reconstructed by computing each τdep + fi for those i ∈ Z≥0 that
satisfy τdep + fi ≤ τdep + ∆. Bast and Storandt compute these tuples by covering the set
of departure times by a small set of overlapping arithmetic progressions, then discarding
duplicate entries (occurring after decompression) at query time [27].

Problem Variants. Most research on road networks has focused on computing the shortest
path according to a given cost function (typically travel times). For public transit networks,
in contrast, there is a variety of natural problem formulations.
The simplest variant is the earliest arrival problem. Given a source stop ps, a target

stop pt, and a departure time τ , it asks for a journey that departs ps no earlier than τ and
arrives at pt as early as possible. A related variant is the range (or profile) problem [206],
which replaces the departure time by a time range (e. g. 8–10 am, or the whole day). This
problem asks for a set of journeys of minimum travel time that depart within that range.
Both the earliest arrival and the range problems only consider (arrival or travel) time

as optimization criterion. In public-transit networks, however, other criteria (such as the
number of transfers) are just as important, which leads to the multicriteria problem [204].
Given source and target stops ps, pt and a departure time τ as input, it asks for a (maximal)
Pareto set J of nondominating journeys with respect to the optimization criteria considered.
A journey J1 is said to dominate journey J2 if J1 is better than or equal to J2 in all criteria.
Further variants of the problem relax or strengthen these domination rules [200].

4.2 Algorithms without Preprocessing
This section discusses algorithms that can answer queries without a preprocessing phase,
which makes them a good fit for dynamic scenarios that include delays, route changes, or
train cancellations. We group the algorithms by the problems they are meant to solve.

Earliest Arrival Problem. Earliest arrival queries on the time-expanded model can be
answered in a straightforward way by Dijkstra’s algorithm [235], in short TED (time-
expanded Dijkstra). It is initialized with the vertex that corresponds to the earliest event
of the source stop ps that occurs after τ (in the realistic model, a transfer vertex must be
selected). The first scanned vertex associated with the target stop pt then represents the
earliest arrival s–t journey. In the compressed time-expanded model, slight modifications to
Dijkstra’s algorithm are necessary because an event vertex may appear several times on the
optimal shortest path (namely for different consecutive days). One possible solution is to
use a bag of labels for each vertex as in the multicriteria variants described below. Another
solution is described in Pyrga et al. [219].
On time-dependent graphs, Dijkstra’s algorithm can be augmented to compute shortest

paths [65, 111], as long as the cost functions are nonnegative and FIFO [208,209]. The only
modification is that, when the algorithm scans an arc (u, v), the arc cost is evaluated at
time τ + dist(s, u). Note that the algorithm retains the label-setting property, i. e., each
vertex is scanned at most once. In the time-dependent public transit model, the query is
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run from the stop vertex corresponding to ps and the algorithm may stop as soon as it
extracts pt from the priority queue. The algorithm is called TDD (time-dependent Dijkstra).
Another approach is to exploit the fact that the time-expanded graph is directed and

acyclic. (Note that overnight connections can be handled by unrolling the timetable for
several consecutive periods.) By scanning vertices in topological order, arbitrary queries
can be answered in linear time. This simple and well-known observation has been applied
for journey planning by Mellouli and Suhl [191], for example. While this idea saves the
relatively expensive priority queue operations of Dijkstra’s algorithm, one can do even
better by not maintaining the graph structure explicitly, thus improving locality and cache
efficiency. The recently developed Connection Scan Algorithm (CSA) [105] organizes the
elementary connections of the timetable in a single array, sorted by departure time. The
query then only scans this array once, which is very efficient in practice. Note that CSA
requires footpaths in the input to be closed under transitivity to ensure correctness.

Range Problem. The range problem can be solved on the time-dependent model by
variants of Dijkstra’s algorithm. The first variant [68,206] maintains, at each vertex u, a
travel-time function (instead of a scalar label) representing the optimal travel times from s
to u for the considered time range. Whenever the algorithm relaxes an arc (u, v), it first
links the full travel-time function associated with u to the (time-dependent) cost function
of the arc (u, v), resulting in a function that represents the times to travel from s to v via u.
This function is then merged into the (tentative) travel time function associated with v,
which corresponds to taking the element-wise minimum of the two functions. The algorithm
loses the label-setting property, since travel time functions cannot be totally ordered. As
a result the algorithm may reinsert vertices into the priority queue whenever it finds a
journey that improves the travel time function of an already scanned vertex.

Another algorithm [34] exploits the fact that trips depart at discrete points in time, which
helps to avoid redundant work when propagating travel time functions. When it relaxes an
arc, it does not consider the full function, but each of its encoded connections individually.
It then only propagates the parts of the function that have improved.

The Self-Pruning Connection Setting algorithm (SPCS) [85] is based on the observation
that any optimal journey from s to t has to start with one of the trips departing from s. It
therefore runs, for each such trip, Dijkstra’s algorithm from s at its respective departure
time. SPCS performs these runs simultaneously using a shared priority queue whose entries
are ordered by arrival time. Whenever the algorithm scans a vertex u, it checks if u has
been already scanned for an associated (departing) trip with a later departure time (at s),
in which case it prunes u. Moreover, SPCS can be parallelized by assigning different subsets
of departing trips from s to different CPU cores.
Bast and Storandt [27] propose an extension of Dijkstra’s algorithm that operates on

the (compressed) frequency-based model directly. It maintains with every vertex u a set of
tuples consisting of a time interval, a frequency, and the travel time. Hence, a single tuple
may represent multiple optimal journeys, each departing within the tuple’s time interval.
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Whenever the algorithm relaxes an arc (u, v), it first extends the tuples from the bag at u
with the ones stored at the arc (u, v) in the compressed graph. The resulting tentative bag
of tuples (representing all optimal journeys to v via u) is then merged into the bag of tuples
associated with v. The main challenge of this algorithm is efficiently merging tuples with
incompatible frequencies and time intervals [27].
Finally, the Connection Scan Algorithm has been extended to the range problem [105].

It uses the same array of connections, ordered by departure time, as for earliest arrival
queries. It still suffices to scan this array once, even to obtain optimal journeys to all stops
of the network.

Multicriteria Problem. Although Pareto sets can contain exponentially many solutions (see
Section 2.7), they are often much smaller for public transit route planning, since common
optimization criteria are positively correlated. For example, for the case of optimizing
earliest arrival time and number of transfers, the Layered Dijkstra (LD) algorithm [56, 219]
is efficient. Given an upper bound K on the number of transfers, it (implicitly) copies the
timetable graph into K layers, rewiring transfer arcs to point to the next higher level. It
then suffices to run a time-dependent (single criterion) Dijkstra query from the lowest level
to obtain Pareto sets.

In the time-expanded model, Müller-Hannemann and Schnee [200] consider the Multicri-
teria Label-Setting (MLS) algorithm (cf. Section 2.7) to optimize arrival time, ticket cost,
and number of transfers. In the time-dependent model, Pyrga et al. [219] compute Pareto
sets of journeys for arrival time and number of transfers. Disser et al. [109] propose three
optimizations to MLS that reduce the number of queue operations: hopping reduction, label
forwarding, and dominance by early results (or target pruning). Bast and Storandt [27]
extend the frequency-based range query algorithm to also include number of transfers as
criterion.

A different approach is RAPTOR (Round-bAsed Public Transit Optimized Router) [92].
It is explicitly developed for public transit networks and its basic version optimizes arrival
time and the number of transfers taken. Instead of using a graph, it organizes the input as
a few simple arrays of trips and routes. Essentially, RAPTOR is a dynamic program: it
works in rounds, with round i computing earliest arrival times for journeys that consist
of exactly i transfers. Each round takes as input the stops whose arrival time improved
in the previous round (for the first round this is only the source stop). It then scans the
routes served by these stops. To scan route r, RAPTOR traverses its stops in order of
travel, keeping track of the earliest possible trip (of r) that can be taken. This trip may
improve the tentative arrival times at subsequent stops of route r. Note that RAPTOR
scans each route at most once per round, which is very efficient in practice (even faster than
Dijkstra’s algorithm with a single criterion). Moreover, RAPTOR can be parallelized by
distributing non-conflicting routes to different CPU cores. It can also be extended to handle
range queries (rRAPTOR) and additional optimization criteria (McRAPTOR). Note that,
like CSA, RAPTOR also requires footpaths in the input to be closed under transitivity.
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4.3 Speedup Techniques
This section presents an overview of preprocessing-based speedup techniques for journey
planning in public transit networks. A natural (and popular) approach is to adapt methods
that are effective on road networks (see Figure 7). Unfortunately, the speedups observed in
public transit networks are several orders of magnitude lower than in road networks. This
is to some extent explained by the quite different structural properties of public transit and
road networks [22]. For example, the neighborhood of a stop can be much larger than the
number of road segments incident to an intersection. Even more important is the effect
of the inherent time-dependency of public transit networks. Thus, developing efficient
preprocessing-based methods for public transit remains a challenge.
Some road network methods were tested on public transit graphs without performing

realistic queries (i. e., according to one of the problems from Section 4.1). Instead, such
studies simply perform point-to-point queries on public-transit graphs. In particular, Holzer
et al. [161] evaluate basic combinations of bidirectional search, goal directed search, and
Geometric Containers on a simple stop graph (with average travel times). Bauer et al. [41]
also evaluated bidirectional search, ALT, Arc Flags, Reach, REAL, Highway Hierarchies,
and SHARC on time-expanded graphs. Core-ALT, CHASE, and Contraction Hierarchies
have also been evaluated on time-expanded graphs [40].

A* Search. On public transit networks, basic A* search has been applied to the time-
dependent model [109,219]. In the context of multicriteria optimization, Disser et al. [109]
determine lower bounds for each vertex u to the target stop pt (before the query) by running
a backward search (from pt) using the (constant) lower bounds of the travel time functions
as arc cost.

ALT. The (unidirectional) ALT [148] algorithm has been adapted to both the time-
expanded [90] and the time-dependent [207] models for computing earliest arrival queries.
In both cases, landmark selection and distance precomputation is performed on an auxiliary
stop graph, in which vertices correspond to stops and an arc is added between two stops pi, pj

if there is an elementary connection from pi to pj in the input. Arc costs are lower bounds
on the travel time between their endpoints.

Geometric Containers. Geometric containers [235,251] have been extensively tested on
the time-expanded model for computing earliest arrival queries. In fact, they were developed
in the context of this model. As mentioned in Section 2, bounding boxes perform best [251].

Arc Flags and SHARC. Delling et al. [90] have adapted Arc Flags [157,178] to the time-
expanded model as follows. First, they compute a partition on the stop graph (defined as in
ALT). Then, for each boundary stop p of cell C, and each of its arrival vertices, a backward
search is performed on the time-expanded graph. The authors observe that public transit
networks have many paths of equal length between the same pair of vertices [90], making
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the choice of tie-breaking rules important. Furthermore, Delling et al. [90] combine Arc
Flags, ALT, and a technique called Node Blocking, which avoids exploring multiple arcs
from the same route.
SHARC, which combines Arc Flags with shortcuts [39], has been tested on the time-

dependent model with earliest arrival queries by Delling [72]. Moreover, Arc Flags with
shortcuts for the Multi-Label-Setting algorithm (MLS) have been considered for computing
full (i. e., using strict domination) Pareto sets using arrival time and number of transfers as
criteria [47]. In time-dependent graphs, a flag must be set if its arc appears on a shortest
path toward the corresponding cell at least once during the time horizon [72]. For better per-
formance, one can use different sets of flags for different time periods (e. g., every two hours).
The resulting total speedup is still below 15, from which it is concluded that “accelerating
time-dependent multicriteria timetable information is harder than expected” [47]. Slight
additional speedups can be obtained if one restricts the search space to only those solutions
in the Pareto set for which the travel time is within an interval defined by the earliest
arrival time and some upper bound. Berger et al. [49] observed that in such a scenario
optimal substructure in combination with lower travel time bounds can be exploited and
yield additional pruning during search. It is worth noting that this method does not require
any preprocessing and is therefore well-suited for a dynamic scenario.

Overlay Graphs. To accelerate earliest arrival queries, Schulz et al. [235] compute single-
level overlays between “important” hub stations in the time-expanded model, with impor-
tance values given as input. More precisely, given a subset of important stations, the overlay
graph consists of all vertices (events) that are associated with these stations. Edges in the
overlay are computed such that distances between any pair of vertices (events) are preserved.
Extending this approach to overlay graphs over multiple levels of hub stations (selected by
importance or degree) results in speedups of about 11 [236].

Separator-based techniques. Strasser and Wagner [242] combine the Connection Scan
Algorithm [105] with ideas of customizable route planning (CRP) [77] resulting in the
Accelerated Connection Scan Algorithm (ACSA). It is designed for both earliest arrival and
range queries. ACSA first computes a multilevel partition of stops, minimizing the number
of elementary connections with endpoints in different cells. Then, it precomputes for each
cell the partial journeys (transit connections) that cross the respective cell. For queries,
the algorithm essentially runs CSA restricted to the elementary connections of the cells
containing the source or target stops, as well as transit connections of other (higher-level)
cells. As shown in Section 4.5, it achieves excellent query and preprocessing times on
country-sized instances.

Contraction Hierarchies. The Contraction Hierarchies algorithm [142] has been adapted
to the realistic time-dependent model with minimum change times for computing earliest
arrival and range queries [136]. It turns out that simply applying the algorithm to the

35



route model graph results in too many shortcuts to be practical. Therefore, contraction
is performed on a condensed graph that contains only a single vertex per stop. Minimum
change times are then ensured by the query algorithm, which must maintain multiple labels
per vertex.

Transfer Patterns. A speedup technique specifically developed for public transit networks
is called Transfer Patterns [24]. It is based on the observation that many optimal journeys
share the same transfer pattern, defined as the sequence of stops where a transfer occurs.
Conceptually, these transfer patterns are precomputed using range queries for all pairs of
stops and departure times. At query time, a query graph is built as the union of the transfer
patterns between the source and target stops. The arcs in the query graph represent direct
connections between stops (without transfers), and can be evaluated very fast. Dijkstra’s
algorithm (or MLS) is then applied to this much smaller query graph.
If precomputing transfer patterns between all pairs of stops is too expensive, one may

resort to the following two-level approach. It first selects a subset of (important) hub
stops. From the hubs, global transfer patterns are precomputed to all other stops. For
the non-hubs, local transfer patterns are computed only towards relevant hub stops. This
approach is similar to TNR, but the idea is applied asymmetrically: transfer patterns
are computed from all stops to the hub stops, and from the hub stops to everywhere. If
preprocessing is still impractical, one can restrict the local transfer patterns to at most three
legs (two transfers). Although this restriction is heuristic, the algorithm still almost always
finds the optimal solution in practice, since journeys requiring more than two transfers to
reach a hub station are rare [24].

TRANSIT. Finally, Transit Node Routing [28, 30, 224] has been adapted to public transit
journey planning in [14]. Preprocessing of the resulting TRANSIT algorithm uses the (small)
stop graph to determine a set of transit nodes (with a similar method as in [28]), between
which it maintains a distance table that contains sets of journeys with minimal travel
time (over the day). Each stop p maintains, in addition, a set of access nodes A(p), which
is computed on the time-expanded graph by running local searches from each departure
event of p toward the transit stops. The query then uses the access nodes of ps and pt and
the distance table to resolve global requests. For local requests, it runs goal-directed A*
search. Queries are slower than for Transfer Patterns.

4.4 Extended Scenarios
Besides computing journeys according to one of the problems from Section 4.1, extended
scenarios (such as incorporating delays) have been studied as well.

Uncertainty and Delays. Trains, buses and other means of transport are often prone to
delays in the real world. Thus, handling delays (and other sources of uncertainty) is an
important aspect of a practical journey planning system. Firmani et al. [125] recently
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presented a case study for the public transport network of the metropolitan area of Rome.
They provide strong evidence that computing journeys according to the published timetable
often fails to deliver optimal or even high-quality solutions. However, incorporating real-time
GPS location data of vehicles into the journey planning algorithm helps improve the journey
quality (e. g., in terms of the experienced delay) [13,84].
Müller-Hannemann and Schnee [201] consider the online problem where delays, train

cancellations, and extra trains arrive as a continuous stream of information. They present
an approach which quickly updates the time-expanded model to enable queries according to
current conditions. Delling et al. [74] also discuss updating the time-dependent model and
compare the required effort with the time-expanded model. Cionini et al. [63] propose a new
graph-based model which is tailored to handle dynamic updates, and they experimentally
show its effectiveness in terms of both query and update times. Berger et al. [48] propose
a realistic stochastic model that predicts how delays propagate through the network. In
particular, this model is evaluated using real (delay) data from Deutsche Bahn. Bast et
al. [25] study the robustness of Transfer Patterns with respect to delays. They show that the
transfer patterns computed for a scenario without any delays give optimal results for 99%
of queries, even when large and area-wide (random) delays are injected into the networks.
Disser et al. [109] and Delling et al. [93] study the computation of reliable journeys

via multicriteria optimization. The reliability of a transfer is defined as a function of the
available buffer time for the transfer. Roughly speaking, the larger the buffer time, the
more likely it is that the transfer will be successful. According to this notion, transfers with
a high chance of success are still considered reliable even if there is no backup alternative
in case they fail.

To address this issue, Dibbelt et al. [105] minimize the expected arrival time (with respect
to a simple model for the probability that a transfer breaks). Instead of journeys, their
method (which is based on the CSA algorithm) outputs a decision graph representing
optimal instructions to the user at each point of their journey, including cases in which a
connecting trip is missed. Interestingly, minimizing the expected arrival time implicitly
helps minimizing the number of transfers, since each “unnecessary” transfer introduces
additional uncertainty, hurting the expected arrival time.
Finally, Goerigk et al. [146] study the computation of robust journeys, considering both

strict robustness (i. e., computing journeys that are always feasible for a given set of delay
scenarios) and light robustness (i. e., computing journeys that are most reliable when given
some extra slack time). While strict robustness turns out to be too conservative in practice,
the notion of light robustness seems more promising. Recoverable robust journeys (which can
always be updated when delays occur) have recently been considered in [145]. A different,
new robustness concept has been proposed by Böhmová et al. [51]. In order to propose
solutions that are robust for typical delays, past observations of real traffic situations are
used. Roughly speaking, a route is more robust the better it has performed in the past
under different scenarios.
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Night Trains. Gunkel et al. [153] have considered the computation of overnight train
journeys, whose optimization goals are quite different from regular “daytime” journeys.
From a customer’s point of view, the primary objective is usually to have a reasonably long
sleeping period. Moreover, arriving too early in the morning at the destination is often
not desired. Gunkel et al. present two approaches to compute overnight journeys. The
first approach explicitly enumerates all overnight trains (which are given by the input) and
computes, for each such train, the optimal feeding connections. The second approach runs
multicriteria search with sleeping time as a maximization criterion.

Fares. Müller-Hannemann and Schnee [199] have analyzed several pricing schemes, in-
tegrating them as an optimization criterion (cost) into MOTIS, a multicriteria search
algorithm that works on the time-expanded model. In general, however, optimizing exact
monetary cost is a challenging problem, since real-world pricing schemes are hard to capture
by a mathematical model [199].

Delling et al. [92] consider computing Pareto sets of journeys that optimize fare zones with
the McRAPTOR algorithm. Instead of using (monetary) cost as an optimization criterion
directly, they compute all nondominated journeys that traverse different combinations of
fare zones, which can then be evaluated by cost in a quick postprocessing step.

Guidebook Routing. Bast and Storandt [26] introduce Guidebook Routing, where the user
specifies only source and target stops, but neither a day nor a time of departure. The desired
answer is then a set of routes, each of which is given by a sequence of train or bus numbers
and transfer stations. For example, an answer may read like take bus number 11 towards
the bus stop at X, then change to bus number 13 or 14 (whichever comes first) and continue
to the bus stop at Y. Guidebook routes can be computed by first running a multicriteria
range query, and then extracting from the union of all Pareto-optimal time-dependent
paths a subset of routes composed by arcs which are most frequently used. The Transfer
Patterns algorithm lends itself particularly well to the computation of such guidebook
routes. For practical guidebook routes (excluding “exotic” connections at particular times),
the preprocessing space and query times of Transfer Patterns can be reduced by a factor of
4 to 5.

4.5 Experiments and Comparison
This section compares the performance of some of the journey planning algorithms discussed
in this section. As in road networks, all algorithms have been carefully implemented in
C++ using mostly custom-built data structures.

Table 3 summarizes the results. Running times are obtained from a sequential execution
on one core of a dual 8-core Intel Xeon E5-2670 machine clocked at 2.6 GHz with 64GiB
of DDR3-1600 RAM. The exceptions are Transfer Patterns and Contraction Hierarchies,
for which we reproduce the values reported in the original publication (obtained on a
comparable machine).
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For each algorithm, we report the instance on which it has been evaluated, as well as its
total number of elementary connections (a proxy for size) and the number of consecutive days
covered by the connections. Unfortunately, realistic benchmark data of country scale (or
larger) has not been widely available to the research community. Some metropolitan
transit agencies have recently started making their timetable data publicly available, mostly
using the General Transit Feed format2. Still, research groups often interpret the data
differently, making it hard to compare the performance of different algorithms. The largest
metropolitan instance currently available is the full transit network of London3. It contains
approximately 21 thousand stops, 2.2 thousand routes, 133 thousand trips, 46 thousand
footpaths, and 5.1 million elementary connections for one full day. We therefore use this
instance for the evaluation of most algorithms. The instances representing Germany and
long-distance trains in Europe are generated in a similar way, but from proprietary data.

The table also contains the preprocessing time (where applicable), the average number of
label comparisons per stop, the average number of journeys computed by the algorithm,
and its running time in milliseconds. Note that the number of journeys can be below 1
because some stops are unreachable for certain late departure times. References indicate the
publications from which the figures are taken (which may differ from the first publication);
TED was run by the authors for this survey. (Our TED implementation uses a single-level
bucket queue [104] and stops as soon as a vertex of the target stop has been extracted.)
The columns labeled “criteria” indicate whether the algorithm minimizes arrival time (arr),
number of transfers (tran), fare zones (fare), reliability (rel), and whether it computes
range queries (rng) over the full timetable period of 1, 2, or 7 days. Methods with multiple
criteria compute Pareto sets.

Among algorithms without preprocessing, observe that those that do not use a graph (RAP-
TOR and CSA) are consistently faster than their graph-based counterparts. Moreover,
running Dijkstra on the time-expanded graph model (TED) is significantly slower than
on the time-dependent graph model (TDD), since time-expanded graphs are much larger.
For earliest arrival queries on metropolitan areas, CSA is the fastest algorithm without
preprocessing, but preprocessing-based methods (such as Transfer Patterns) can be even
faster. For longer-range transit networks, preprocessing-based methods scale very well. CH
takes 210 seconds to preprocess the long-distance train connections of Europe, while ACSA
takes 8 hours to preprocess the full transit network of Germany. Transfer Patterns takes
over 60 times longer to preprocess (a full week of) the full transit network of Germany, but
has considerably lower query times.

For multicriteria queries, RAPTOR is about an order of magnitude faster than Dijkstra-
based approaches like LD and MLS. RAPTOR is twice as fast as TDD, while computing
twice as many journeys on average. Adding further criteria (such as fares and reliability)
to MLS and RAPTOR increases the Pareto set, but performance is still reasonable for
metropolitan-sized networks. Thanks to preprocessing, Transfer Patterns has the fastest

2https://developers.google.com/transit/gtfs/
3http://data.london.gov.uk/
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Table 3. Performance of various public transit algorithms on random queries. For each algorithm,
the table indicates the implementation tested (which may not be the publication introducing the
algorithm), the instance it was tested on, its total number of elementary connections (in millions) as
well as the number of consecutive days they cover. A “p” indicates that the timetable is periodic
(with a period of one day). The table then shows the criteria that are optimized (a subset of
arrival times, transfers, full range, fares, and reliability), followed by total preprocessing time,
average number of comparisons per stop, average number of journeys in the Pareto set, and average
query times in milliseconds. Missing entries either do not apply (–) or are well-defined but not
available (n/a).

input criteria query

conn. prep. comp. time
algorithm im

pl
.

name [106] dy. ar
r.

tr
an
.

rn
g.

fa
re

re
l. [h] /stop jn. [ms]

TED London 5.1 1 • ◦ ◦ ◦ ◦ – 50.6 0.9 44.8
TDD [93] London 5.1 1 • ◦ ◦ ◦ ◦ – 7.4 0.9 11.0
CH [136] Europe (lng) 1.7 p • ◦ ◦ ◦ ◦ < 0.1 < 0.1 n/a 0.3
CSA [105] London 4.9 1 • ◦ ◦ ◦ ◦ – 26.6 n/a 2.0
ACSA [242] Germany 46.2 2 • ◦ ◦ ◦ ◦ – n/a n/a 8.7
T. Patterns [27] Germany 90.4 7 • ◦ ◦ ◦ ◦ 541 – 1.0 0.4
LD [93] London 5.1 1 • • ◦ ◦ ◦ – 15.6 1.8 28.7
MLS [93] London 5.1 1 • • ◦ ◦ ◦ – 23.7 1.8 50.0
RAPTOR [93] London 5.1 1 • • ◦ ◦ ◦ – 10.9 1.8 5.4
T. Patterns [27] Germany 90.4 7 • • ◦ ◦ ◦ 566 – 2.0 0.8
CH [136] Europe (lng) 1.7 p • ◦ • ◦ ◦ < 0.1 < 0.1 n/a 3.7
SPCS [105] London 4.9 1 • ◦ • ◦ ◦ – 372.5 98.2 843.0
CSA [105] London 4.9 1 • ◦ • ◦ ◦ – 436.9 98.2 161.0
ACSA [242] Germany 46.2 2 • ◦ • ◦ ◦ 8 n/a n/a 171.0
T. Patterns [27] Germany 90.4 7 • ◦ • ◦ ◦ 541 – 121.2 22.0
rRAPTOR [105] London 4.9 1 • • • ◦ ◦ – 1634.0 203.4 922.0
CSA [105] London 4.9 1 • • • ◦ ◦ – 3824.9 203.4 466.0
T. Patterns [27] Germany 90.4 7 • • • ◦ ◦ 566 – 226.0 39.6
MLS [93] London 5.1 1 • • ◦ • ◦ – 818.2 8.8 304.2
McRAPTOR [93] London 5.1 1 • • ◦ • ◦ – 277.5 8.8 100.9
MLS [93] London 5.1 1 • • ◦ ◦ • – 286.6 4.7 239.8
McRAPTOR [93] London 5.1 1 • • ◦ ◦ • – 89.6 4.7 71.9

queries overall, by more than an order of magnitude. Note that in public transit networks
the optimization criteria are often positively correlated (such as arrival time and number of
transfers), which keeps the Pareto sets at a manageable size. Still, as the number of criteria
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increases, exact real-time queries become harder to achieve.
The reported figures for Transfer Patterns are based on preprocessing leveraging the

frequency-based model with traffic days compression, which makes quadratic (in the number
of stops) preprocessing effort feasible. Consequently, hub stops and the three-leg heuristic
are not required, and the algorithm is guaranteed to find the optimal solution. The data
produced by the preprocessing is shown to be robust against large and area-wide delays,
resulting in much less than 1% of suboptimal journeys [25] (not shown in the table).
For range queries, preprocessing-based techniques (CH, ACSA, Transfer Patterns) scale

better than CSA or SPCS. For full multicriteria range queries (considering transfers),
Transfer Patterns is by far the fastest method, thanks to preprocessing. Among search-
based methods, CSA is faster than rRAPTOR by a factor of two, although it does twice
the amount of work in terms of label comparisons. Note, however, that while CSA cannot
scale to smaller time ranges by design [105], the performance of rRAPTOR depends linearly
on the number of journeys departing within the time range [92]. For example, for 2-hour
range queries rRAPTOR computes 15.9 journeys taking only 61.3ms on average [93] (not
reported in the table). Guidebook routes covering about 80% of the optimal results (for
the full period) can be computed in a fraction of a millisecond [26].

5 Multimodal Journey Planning
We now consider journey planning in a multimodal scenario. Here, the general problem
is to compute journeys that reasonably combine different modes of transportation by a
holistic algorithmic approach. That is, not only does an algorithm consider each mode of
transportation in isolation, but it also optimizes the choice (and sequence) of transporta-
tion modes in some integrated way. Transportation modes that are typically considered
include (unrestricted) walking, (unrestricted) car travel, (local and long-distance) public
transit, flight networks, and rental bicycle schemes. We emphasize that our definition of
“multimodal” requires some diversity from the transportation modes, i. e., both unrestricted
and schedule-based variants should be considered by the algorithm. For example, journeys
that only use buses, trams, or trains are not truly multimodal (according to our definition),
since these transportation modes can be represented as a single public transit schedule and
dealt with by algorithms from Section 4.

In fact, considering modal transfers explicitly by the algorithm is crucial in practice, since
the solutions it computes must be feasible, excluding sequences of transportation modes
that are impossible for the user to take (such as a private car between train rides). Ideally,
even user preferences should be respected. For example, some users may prefer taxis over
public transit at certain parts of the journey, while others may not.

A general approach to obtain a multimodal network is to first build an individual graph
for each transportation mode, then merge them into a single multimodal graph with link
arcs (or vertices) added to enable modal transfers [89, 210,257]. Typical examples [89, 210]
model car travel and walking as time-independent (static) graphs, public transit networks
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using the realistic time-dependent model [219], and flight networks using a dedicated flight
model [91]. Beyond that, Kirchler et al. [169,170] compute multimodal journeys in which
car travel is modeled as a time-dependent network in order to incorporate historic data on
rush hours and traffic congestion (see Section 2.7 for details).

Overview. The remainder of this section discusses three different approaches to the
multimodal problem. The first (Section 5.1) considers a combined cost function of travel time
with some penalties to account for modal transfers. The second approach (Section 5.2) uses
the label-constrained shortest path problem to obtain journeys that explicitly include (or
exclude) certain sequences of transportation modes. The final approach (Section 5.3)
computes Pareto sets of multimodal journeys using a carefully chosen set of optimization
criteria that aims to provide diverse (regarding the transportation modes) alternative
journeys.

5.1 Combining Costs
To aim for journeys that reasonably combine different transport modes, one may use penalties
in the objective function of the algorithm. These penalties are often considered as a linear
combination with the primary optimization goal (typically travel time). Examples for this
approach include Aifadopoulou et al. [10], who present a linear program that computes
multimodal journeys. The TRANSIT algorithm [14] also uses a linear utility function and
incorporates travel time, ticket cost, and “inconvenience” of transfers. Finally, Modesti and
Sciomachen [195] consider a combined network of unrestricted walking, unrestricted car
travel, and public transit, in which journeys are optimized according to a linear combination
of several criteria, such as cost and travel time. Moreover, their utility function incorporates
user preferences on the transportation modes.

5.2 Label-Constrained Shortest Paths
The label-constrained shortest paths [21] approach computes journeys that explicitly obey
certain constraints on the modes of transportation. It defines an alphabet Σ of modes of
transportation and labels each arc of the graph by the appropriate symbol from Σ. Then,
given a language L over Σ as additional input to the query, any journey (path) must obey
the constraints imposed by the language L, i. e., the concatenation of the labels along the
path must satisfy L. The problem of computing shortest label-constrained paths is tractable
for regular languages [21], which suffice to model reasonable transport mode constraints in
multimodal journey planning [18,20]. Even restricted classes of regular languages can be
useful, such as those that impose a hierarchy of transport modes [50,89,169,170,210,257] or
Kleene languages that can only globally exclude (and include) certain transport modes [140].

Barrett et al. [21] have proven that the label-constrained shortest path problem is solvable
in deterministic polynomial time. The corresponding algorithm, called label-constrained
shortest path problem Dijkstra (LCSPP-D), first builds a product network G of the input (the
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multimodal graph) and the (possibly nondeterministic) finite automaton that accepts the
regular language L. For given source and target vertices s, t (referring to the original input),
the algorithm determines origin and destination sets of product vertices from G, containing
those product vertices that refer to s/t and an initial/final state of the automaton. Dijkstra’s
algorithm is then run on G between these two sets of product vertices. In a follow-up
experimental study, Barrett et al. [20] evaluate this algorithm using linear regular languages,
a special case.

Basic speedup techniques, such as bidirectional search [67], A* [156], and heuristic A* [237]
have been evaluated in the context of multimodal journey planning in [159] and [19]. Also,
Pajor [210] combines the LCSPP-D algorithm with time-dependent Dijkstra [65] to compute
multimodal journeys that contain a time-dependent subnetwork. He also adapts and
analyzes bidirectional search [67], ALT [148], Arc Flags [157, 178], and shortcuts [249] with
respect to LCSPP.

Access-Node Routing. The Access-Node Routing (ANR) [89] algorithm is a speedup
technique for the label-constrained shortest path problem (LCSPP). It handles hierarchical
languages, which allow constraints such as restricting walking and car travel to the beginning
and end of the journey. It works similarly to Transit Node Routing [28–30, 224] and
precomputes for each vertex u of the road (walking and car) network its relevant set of
entry (and exit) points (access nodes) to the public transit and flight networks. More
precisely, for any shortest path P originating from vertex u (of the road network) that
also uses the public transit network, the first vertex v of the public transit network on P
must be an access node of u. The query may skip over the road network by running a
multi-source multi-target algorithm on the (much smaller) transit network between the
access nodes of s and t, returning the journey with earliest combined arrival time.
The Core-Based ANR [89] method further reduces preprocessing space and time by

combining ANR with contraction. As in Core-ALT [40,88], it precomputes access nodes
only for road vertices in a much smaller core (overlay) graph. The query algorithm
first (quickly) determines the relevant core vertices of s and t (i. e., those covering the
branches of the shortest path trees rooted at s and t), then runs a multi-source multi-target
ANR query between them.

Access-Node Routing has been evaluated on multimodal networks of intercontinental size
that include walking, car travel, public transit, and flights. Queries run in milliseconds,
but preprocessing time strongly depends on the density of the public transit and flight
networks [89]. Moreover, since the regular language is used during preprocessing, it can no
longer be specified at query time without loss of optimality.

State-Dependent ALT. Another multimodal speedup technique for LCSPP is State-
Dependent ALT (SDALT) [170]. It augments the ALT algorithm [148] to overcome the
fact that lower bounds from a vertex u may depend strongly on the current state q of the
automaton (expressing the regular language) with which u is scanned. SDALT thus uses
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the automaton to precompute state-dependent distances, providing lower bound values
per vertex and state. For even better query performance, SDALT can be extended to use
more aggressive (and potentially incorrect) bounds to guide the search toward the target,
relying on a label-correcting algorithm (which may scan vertices multiple times) to preserve
correctness [169]. SDALT has been evaluated [169,170] on a realistic multimodal network
covering the Île-de-France area (containing Paris) incorporating rental and private bicycles,
public transit, walking, and a time-dependent road network for car travel. The resulting
speedups are close to 30. Note that SDALT, like ANR, also predetermines the regular
language constraints during preprocessing.

Contraction Hierarchies. Finally, Dibbelt et al. [106] have adapted Contraction Hier-
archies [142] to LCSPP, handling arbitrary mode sequence constraints. The resulting
User-Constrained Contraction Hierarchies (UCCH) algorithm works by (independently)
only contracting vertices whose incident arcs belong to the same modal subnetwork. All
other vertices are kept uncontracted. The query algorithm runs in two phases. The first
runs a regular CH query in the subnetworks given as initial or final transport modes of the
sequence constraints until the uncontracted core graph is reached. Between these entry and
exit vertices, the second phase then runs a regular LCSPP-Dijkstra restricted to the (much
smaller) core graph. Query performance of UCCH is comparable to Access-Node Routing,
but with significantly less preprocessing time and space. Also, in contrast to ANR, UCCH
also handles arbitrary mode sequence constraints at query time.

5.3 Multicriteria Optimization
While label constraints are useful to define feasible journeys, computing the (single) shortest
label-constrained path has two important drawbacks. First, in order to define the constraints,
users must know the characteristics of the particular transportation network; second,
alternative journeys that combine the available transportation modes differently are not
computed. To obtain a set of diverse alternatives, multicriteria optimization has been
considered.

The criteria optimized by these methods usually include arrival time and, for each mode of
transportation, some mode-dependent optimization criterion [23,73]. The resulting Pareto
sets will thus contain journeys with different usage of the available transportation modes,
from which users can choose their favorites.
Delling et al. [73] consider networks of metropolitan scale and use the following criteria

as proxies for “convenience”: number of transfers in public transit, walking duration for the
pedestrian network, and monetary cost for taxis. They observe that simply applying the
MLS algorithm [155,187,196,243] to a comprehensive multimodal graph turns out to be
slow, even when partial contraction is applied to the road and pedestrian networks, as in
UCCH [106]. To get better query performance, they extend RAPTOR [92] to the multimodal
scenario, which results in the multimodal multicriteria RAPTOR algorithm (MCR) [73].
Like RAPTOR, MCR operates in rounds (one per transfer) and computes Pareto sets of

44



optimal journeys with exactly i transfers in round i. It does so by running, in each round,
a dedicated subalgorithm (RAPTOR for public transit; MLS for walking and taxi) which
obtains journeys with the respective transport mode as their last leg.
Since with increasing number of optimization criteria the resulting Pareto sets tend to

get very large, Delling et al. identify the most significant journeys in a quick postprocessing
step by a scoring method based on fuzzy logic [258]. For faster queries, MCR-based
heuristics (which relax domination during the algorithm) successfully find the most significant
journeys while avoiding the computation of insignificant ones in the first place.

Bast et al. [23] use MLS with contraction to compute multimodal multicriteria journeys
at a metropolitan scale. To identify the significant journeys of the Pareto set, they propose
a method called Types aNd Thresholds (TNT). The method is based on a set of simple
axioms that summarize what most users would consider as unreasonable multimodal paths.
For example, if one is willing to take the car for a large fraction of the trip, one might as
well take it for the whole trip. Three types of reasonable trips are deduced from the axioms:
(1) only car, (2) arbitrarily much transit and walking with no car, and (3) arbitrarily much
transit with little or no walking and car. With a concrete threshold for “little” (such as 10
minutes), the rules can then be applied to filter the reasonable journeys. As in [73], filtering
can be applied during the algorithm to prune the search space and reduce query time. The
resulting sets are fairly robust with respect to the choice of threshold.

6 Final Remarks
The last decade has seen astonishing progress in the performance of shortest path algorithms
on transportation networks. For routing in road networks, in particular, modern algorithms
can be up to seven orders of magnitude faster than standard solutions. Successful approaches
exploit different properties of road networks that make them easier to deal with than general
graphs, such as goal direction, a strong hierarchical structure, and the existence of small
separators. Although some early acceleration techniques relied heavily on geometry (road
networks are after all embedded on the surface of the Earth), no current state-of-the-art
algorithm makes explicit use of vertex coordinates (see Table 1). While one still sees the
occasional development (and publication) of geometry-based algorithms they are consistently
dominated by established techniques. In particular, the recent Arterial Hierarchies [260]
algorithm is compared to CH (which has slightly slower queries), but not to other previously
published techniques (such as CHASE, HL, and TNR) that would easily dominate it. This
shows that results in this rapidly-evolving area are often slow to reach some communities;
we hope this survey will help improve this state of affairs.

Note that experiments on real data are very important, as properties of production data
are not always accurately captured by simplified models and folklore assumptions. For
example, the common belief that an algorithm can be augmented to include turn penalties
without significant loss in performance turned out to be wrong for CH [76].

Another important lesson from recent developments is that careful engineering is essential
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to unleash the full computational power of modern computer architectures. Algorithms
such as CRP, CSA, HL, PHAST, and RAPTOR, for example, achieve much of their good
performance by carefully exploiting locality of reference and parallelism (at the level of
instructions, cores, and even GPUs).
The ultimate validation of several of the approaches described here is that they have

found their way into systems that serve millions of users every day. Several authors of
papers cited in this survey have worked on routing-related projects for companies like
Apple, Esri, Google, MapBox, Microsoft, Nokia, PTV, TeleNav, TomTom, and Yandex.
Although companies tend to be secretive about the actual algorithms they use, in some cases
this is public knowledge. TomTom uses a variant of Arc Flags with shortcuts to perform
time-dependent queries [231]. Microsoft’s Bing Maps4 use CRP for routing in road networks.
OSRM [185], a popular route planning engine using OpenStreetMap data, uses CH for
queries. The Transfer Patterns [24] algorithm has been in use for public-transit journey
planning on Google Maps5 since 2010. RAPTOR is currently in use by OpenTripPlanner6.
These recent successes do not mean that all problems in this area are solved. The

ultimate goal, a worldwide multimodal journey planner, has not yet been reached. Systems
like Rome2Rio7 provide a simplified first step, but a more useful system would take into
account real-time traffic and transit information, historic patterns, schedule constraints, and
monetary costs. Moreover, all these elements should be combined in a personalized manner.
Solving such a general problem efficiently seems beyond the reach of current algorithms.
Given the recent pace of progress, however, a solution may be closer than expected.

4http://www.bing.com/blogs/site_blogs/b/maps/archive/2012/01/05/bing-maps-new-routing-engine.
aspx

5http://www.google.com/transit
6http://opentripplanner.com
7http://www.rome2rio.com
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