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A Derivation Framework for Dependent Security Label

Inference
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Dependent security labels (security labels that depend on program states) in various forms have been introduced

to express rich information flow policies. They are shown to be essential in the verification of real-world

software and hardware systems such as conference management systems, Android Apps, a MIPS processor and

a TrustZone-like architecture. However, most work assumes that all (complex) labels are provided manually,

which can both be error-prone and time-consuming.

In this paper, we tackle the problem of automatic label inference for static information flow analyses with

dependent security labels. In particular, we propose the first general framework to facilitate the design and

validation (in terms of soundness and/or completeness) of inference algorithms. The framework models label

inference as constraint solving and offers guidelines for sound and/or complete constraint solving. Under the

framework, we propose novel constraint solving algorithms that are both sound and complete. Evaluation

result on sets of constraints generated from secure and insecure variants of a MIPS processor suggests that

the novel algorithms improve the performance of an existing algorithm by orders of magnitude and offers

better scalability.
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1 INTRODUCTION

Information flow control is a promising way of protecting the confidentiality of information that
is manipulated by computer systems. Compared with conventional mechanisms such as access
control, information flow control provides fine-grained reasoning about information flows, as well
as a strong end-to-end security guarantee: secret inputs cannot be inferred by an attacker through
the observations of public outputs.

Compared to dynamic enforcements (e.g., [Bell and LaPadula 1973; Fenton 1974; Le Guernic and
Jensen 2005; Sabelfeld and Russo 2010; Shroff et al. 2007]), a static enforcement verifies information
flow policies at compile time so that all vulnerabilities are detected before program execution.
Hence, there is no computation or storage overhead at runtime. However, it is also well-known
that classic static information flow analysis sometimes lacks enough expressiveness for real-world
applications. This becomes a key barrier to wide adoption of those static methods.
To improve the expressiveness of static information flow analysis, dependent types in various

forms have been introduced. For instance, Jif [Myers et al. 2006] and its extensions [Arden et al.

Authors’ address: Peixuan Li; Danfeng Zhang, Department of Computer Science and Engineering, The Pennsylvania State

University, University Park, PA, 16801, United States, {pzl129,zhang}@cse.psu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART115

https://doi.org/10.1145/3276485

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 115. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276485
https://doi.org/10.1145/3276485
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3276485&domain=pdf&date_stamp=2018-10-24


115:2 Peixuan Li and Danfeng Zhang

2012; Liu et al. 2009] introduce dynamic security labels, security labels that can be manipulated at
runtime. More recent works [Chen et al. 2018; Ferraiuolo et al. 2017; Li and Zhang 2017; Lourenço
and Caires 2015; Murray et al. 2016; Polikarpova et al. 2018; Zhang et al. 2015] explore the theories
and techniques to apply dependent type theory [Martin-Löf 1982] to information flow control. In a
nutshell, dependent security labels (or dependent labels in short) are security types that may depend
on concrete program states. The added expressiveness leads to successful verification of real-world
systems, such as a MIPS processor [Zhang et al. 2015], conference management systems [Lourenço
and Caires 2015; Polikarpova et al. 2018], a TrustZone-like architecture [Ferraiuolo et al. 2017] and
Android Apps [Chen et al. 2018].

However, one big obstacle of verification via those promising dependent security labels is that
most work (except [Chen et al. 2018] and [Polikarpova et al. 2018] that support a restricted form of
dependent labels) requires programmers to write down all (dependent) labels. However, since the
dependent labels usually involve intricate security invariants, providing those labels requires a deep
understanding of the program being verified, making it a both time-consuming and error-prone
process. Moreover, when the provided labels are incorrect (i.e., program analysis fails with the
labels), it is unclear if the program being verified is insecure, or the program can be verified with
other correct labels.
For security labels without dependence, classic security type systems (such as Jif [Myers et al.

2006] and FlowCaml [Simonet 2003]) encode the restrictions on security labels into constraints
in a finite semi-lattice. Those constraints can be solved by customized solvers (such as the Rehof-
Mogensen algorithm [Rehof et al. 1999] and set-constraints solvers [Aiken 1999; Aiken et al. 1994]).
However, they cannot handle the infinite search space of dependence required for dependent labels.
In this paper, we introduce the first general framework for designing security label inference

algorithms and checking their correctness. For generality, we propose a core constraint language
that, to the best of our knowledge, can encode all static information flow analyses that allow
dependent security labels, except that the current encoding for dynamic labels may not be practically
efficient (we defer a more detailed discussion to Section 3.3). In particular, the framework models
security restrictions on a program as predicated constraints, in the form of P → τ1 ⊑ τ2, meaning
that security label τ2 must be more restrictive than τ1 whenever predicate P holds. A key feature of
the language, which also makes the inference challenging, is that a solution may have dependence.
For example, a constraint (b = 1→ α ⊑ P) ∧ (b , 1→ S ⊑ α ) has a dependent solution that α is P
(public) whenever b = 1; α is S (secret) whenever b , 1. But a solver that does not allow dependent
solution (e.g., an SMT solver with theory on semi-lattice) will simply reject the constraint, since
neither P nor S (without dependence) is a solution for α .
The framework models security label inference as an iterative process of solving derivations

(typically, simpler constraints) from the original constraint set. Hence, it allows great flexibility in
inference algorithm design. For example, one potential algorithm may simply work on the variant
of constraints where all predicates are removed; another potential algorithm may reject a set of
constraints whenever a subset of the constraints is found to be unsatisfiable. An algorithm (such as
the one in Chen et al. [2018]) may also directly work on an equivalent derivation of the original
constraints. More promising are the novel iterative algorithms we develop in this paper, which
allow early termination without hurting soundness and completeness.
To facilitate the design and validation (in terms of soundness and completeness) of algorithms

in the derivation framework, we distill the key properties for making an algorithm sound and/or
complete. We show that various algorithms, including an extension to the inference algorithm in
existing work [Chen et al. 2018], can be checked under the framework in a straightforward matter.
Moreover, we also designed three novel sound and complete algorithms, namely, early-accept
algorithm, early-reject algorithm, and hybrid algorithm. Based on a mix of both satisfiable and
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unsatisfiable constraint sets collected from the verification of an information flow policy on a MIPS
processor using SecVerilog [Ferraiuolo et al. 2017; Zhang et al. 2015], we found that the novel
algorithms solve predicated constraints faster than an existing algorithm [Chen et al. 2018] by
orders of magnitude.
In summary, this paper makes the following contributions:

• We define a core constraint language that, to the best of our knowledge, can encode label
inference for all static information flow using dependent labels, though at the moment not
all encodings are efficient in practice (Section 3).
• We propose the first general framework for the design and validation of label inference
algorithms for the core constraint language (Section 4). It formalizes the key properties for
an inference algorithm to be sound and/or complete.
• Under the framework, we propose three novel inference algorithms that allow early termina-
tion in a sound and complete manner (Section 5).
• We implement and evaluate the novel algorithms on a corpus of predicated constraints
collected from secure and insecure variants of a MIPS processor (Section 6). Evaluation result
suggests that the novel algorithms scale well, and they outperform existing algorithms.

2 BACKGROUND AND OVERVIEW

2.1 Information Flow Analysis and Security Labels

Conventionally, we assume security levels (e.g., P for public and S for secret) are associated with
information to describe the intended secrecy of the contents. As standard, we assume the security
levels form a lattice L whose partial ordering ⊑ specifies an information flow policy: information
flow from level ℓ1 to ℓ2 is allowed if and only if ℓ1 ⊑ ℓ2. For simplicity, we use two distinguished
security levels P ⊑ S throughout the paper, and assume variable s is labeled as S, and variable p is
labeled as P unless specified otherwise. However, note that our mechanism applies to any general
security lattice.

Most information-flow type systems (e.g., [Hunt and Sands 2006; Myers 1999; Pottier and Simonet
2002; Volpano et al. 1996]) associate one security level from the security lattice to each program
variable. To ensure information flow security (typically, some variant of the noninterference
property [Goguen and Meseguer 1982]), a type system checks security restrictions on information
flows in a program. For example, for an assignment s := p, the restriction is that the security level
of s is more restrictive than that of p (i.e., P ⊑ S). When the security levels of some variables are
missing, some systems (e.g., Jif [Myers et al. 2006] and FlowCaml [Simonet 2003]) try to infer
security levels for themwhenever possible. Since the security levels form a lattice, a typical inference
algorithm encodes inference as solving constraints in a semi-lattice, where sound and complete
algorithms exist (e.g., [Rehof et al. 1999]).
However, security levels from a security lattice cannot express several demands in real-world

applications. First, some applications require value-dependent security policies. For example, a
function łgetPwdž that takes a user name x should return a password with x ’s security level
attached. Second, analysis precision can be improved with value-dependent labels. For example,

y := 0;

if (p1 < 0) then y := s;

if (p1 > 0) then x := y;

p2 := x;

consider the program on the left. This is a secure program
since the secret value of s never affects the public variable p2
(the two assignments under łifž statements are never executed
together). However, no static security level for y will work,
even in a flow-sensitive system, since at the end of first łifž
the level of y can be neither P (the flow from s to y is insecure)

nor S (the flow from y to p2 is insecure).
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Original Constraints:

true→P ⊑ αx ∧ αz ⊑ αx ∧ αx ⊑ P

d > 0→S ⊑ αy

¬(d > 0) →P ⊑ αy

d < 0→αy ⊑ αx

(2.1)

Derivation 1: (a sound derivation)

true→P ⊑ αx ∧ αz ⊑ αx ∧ αx ⊑ P

∧S ⊑ αy ∧ P ⊑ αy ∧ αy ⊑ αx
(2.2)

Derivation 2: (a weaker yet sound derivation)

d > 0→P ⊑ αx ∧ αz ⊑ αx ∧ αx ⊑ P ∧ S ⊑ αy

d ≤ 0→P ⊑ αx ∧ αz ⊑ αx ∧ αx ⊑ p ∧ P ⊑ αy ∧ αy ⊑ αx
(2.3)

Derivation 3: (a sound and complete derivation)

d > 0→P ⊑ αx ∧ αz ⊑ αx ∧ αx ⊑ P ∧ S ⊑ αy

d = 0→P ⊑ αx ∧ αz ⊑ αx ∧ αx ⊑ P ∧ P ⊑ αy

d < 0→P ⊑ αx ∧ αz ⊑ αx ∧ αx ⊑ P ∧ P ⊑ αy ∧ αy ⊑ αx

(2.4)

Fig. 1. Constraints and Sound Derivations.

One promising approach for more expressive information flow security is to apply dependent type
theory [Martin-Löf 1982] to information flow control [Chen et al. 2018; Ferraiuolo et al. 2017; Li and
Zhang 2017; Lourenço and Caires 2015; Murray et al. 2016; Polikarpova et al. 2018; Zhang et al. 2015].
Such systems allow the security level associated with a variable to depend on the concrete program

state. The extra expressiveness is shown to be useful in the verification of real-world applications,
such as a MIPS processor [Zhang et al. 2015], conference management systems [Lourenço and
Caires 2015; Polikarpova et al. 2018], a TrustZone-like architecture [Ferraiuolo et al. 2017] and
Android Apps [Chen et al. 2018]. For example, an analysis that allows dependent security labels
(e.g., [Li and Zhang 2017]) can verify the secure code above if the following dependent label is
given manually to y: S when p1 < 0; P when p1 > 0.

While dependent security labels are very promising in closing the gap between static information
flow analysis and real-world applications, one limitation of existing works on dependent security
label is that they either support label inference but only in a restricted form [Chen et al. 2018;
Polikarpova et al. 2018], or assume that all (complex) security labels are annotated manually by
a programmer. In this paper, we tackle the problem of automatically inferring dependent security

labels for general static information flow analysis with an arbitrary security lattice.

2.2 Overview

To make label inference general, we model information flow restrictions on a program as predicated
constraints, in the form of P → τ1 ⊑ τ2, meaning that the security label τ2 must be more restrictive
than τ1 when condition P holds. We call the fragment without P (i.e., τ1 ⊑ τ2) a label constraint. For
example, (2.1)-(2.4) in Figure 1 are four sets of predicated constraints (we defer a more detailed
discussion on how the original constraints are generated to Section 3). Intuitively, each constraint
can be interpreted as: whenever some abstract event P (e.g., a program execution that satisfies
P ) happens, the constraint τ1 ⊑ τ2 is required for security. For example, the second constraint in
(2.1) requires that αy (a security label to be inferred) is confidential whenever the condition d > 0
holds. In general, the predicate P can be parameterized over a theory on program states, linear
inequalities over integers, boolean constraints, or finite sets.
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Fig. 2. Sound and Complete Derivations.

What makes it challenging to infer dependent labels is that a label may depend on an arbitrary

condition, for which we propose a derivation framework (Section 4). The key idea is to model
inference as an iterative process of transforming the original constraints into a (often) more
manageable format. To see why doing so is beneficial, let us consider two simple cases.

• Partition: When a set of constraints have no overlapping predicates, e.g., (2.3), we can easily
compute its solution by solving each label constraint without predicate (e.g., via the Rehof-
Mogensen algorithm [Rehof et al. 1999]) and merge all local solutions to a global solution.
• Counterexample: If under any predicate, the label constraints are unsatisfiable (i.e., there is
no local solution), then there is no global solution.

In general, the original constraints, such as (2.1), can be more challenging: they neither form
a partition, nor have an obvious counterexample. Our insight is that an inference algorithm can
proceed by transforming the original constraint set into its derivations, as illustrated in Figure 2,
where each circle represents one such derivation. Of particular interest for constraint solving are
three kinds of derivations and constraint solving strategies:

• Sound Derivation and Early-Accept A derivation is sound if its solution is also a solution
of the original constraints. For example, all three derivations: (2.2), (2.3) and (2.4) are sound
derivations of (2.1). An early-accept algorithm starts with a sound yet simple derivation (e.g.,
removing all predicates as shown in Derivation (2.2)) and proceeds to the next derivation only

if the current derivation has no solution. To make such an algorithm sound and complete,
an algorithm will intuitively work on a weaker derivation in each iteration until reaching a
sound and complete derivation (e.g., Derivation (2.4)), as illustrated by the green arrow in
Figure 2.
• Complete Derivation and Early-Reject A derivation is complete if any solution of the
original constraints is a solution of it (i.e., a complete derivation is unsatisfiable implies that
the original constraints are unsatisfiable). An early-reject algorithm starts with a complete
yet simple derivation (e.g., solving constraints under the same predicate) and moves to the
next derivation only if the current derivation has a solution. A sound and complete algorithm
can also be designed, as a dual to the early-accept strategy, as illustrated by the red arrow in
Figure 2.
• Equivalent Derivation and One-shot For both early-accept and early-reject algorithms,
their final derivation are both sound and complete. Another possible solving strategy may
directly work on an equivalent derivation without looking for the opportunities of early
termination. We call such a special case the one-shot approach. In fact, one existing algorithm
for inferring dependent labels [Chen et al. 2018] is a one-shot algorithm.

An eagle-eyed reader may find that under the derivation model, the main challenge of designing
an inference algorithm is to construct derivations and validate their soundness and/or completeness.
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Label τ ::= ℓ | α , where ℓ ∈ L, α ∈ CVars

Label Constraint C ::= τ1 ⊑ τ2 | C1 ∧ C2

Arithmetic Expr a ::= x | n | a op a

Boolean Expr b ::= true | false | a1 cop a2 | b1 bop b2 | ¬b

Predicates P ::= b

Predicated Constraint C ::= P → C | C ∧ C

Fig. 3. Syntax of Constraints.

The derivation framework offers a couple of core properties of derivations to check against for such
purposes (Section 4.2), so that the soundness and/or completeness of derivations can be validated
in a simple way.

3 CORE CONSTRAINT LANGUAGE

To enable label inference for various information flow analyses with dependent labels, we formalize
a core constraint language with predicated constraints.

3.1 Constraint Syntax

The syntax of predicated constraints is given in Figure 3. In this constraint language, a security
label is either a known security level ℓ from a lattice L, or an unknown constraint variable α to
be solved. A label constraint τ1 ⊑ τ2 denotes the security restriction that label τ2 must be at least
as restrictive as τ1 (i.e., the lattice allows τ1 ⊑ τ2). Concatenation of two label constraints C1 ∧ C2

denotes the restriction on both constraints.
A predicated constraint set C is a concatenation of predicated constraints, each in the form of

P → C , where P is a predicate on program state, andC is a label constraint. In general, any practical
theory of predicates, such as program logics in decidable theory, program permissions [Chen et al.
2018], are allowed in the core language. To be concrete, we use predicates of boolean program
expressions b to express program state in this paper without losing generality: in the inference
algorithm we only assume two abstract operations on the predicate logic: ◦∀(P ) (resp. ◦∃(P ))
is true iff when all free variables are universally (resp. existentially) quantified, P is true. In
the concrete syntax of P , we use op for arithmetic operations (e.g., +,−), cop for binary tests on
arithmetic expressions (e.g., <, ≥), and bop for boolean operations (e.g., ∧,∨).

For convenience, we also treat a predicated constraint set C as a set of constraints in this paper,
written as {P1 → C1, . . . , Pn → Cn }. Moreover, we use PC to denote the set of predicates in C (i.e.,
{P1, . . . , Pn }), and use CC to denote the set of label constraints in C (i.e., {C1, . . . ,Cn }).
Consider the sets of predicated constraints in Figure 1, where the predicates over-approximate

possible program states at certain program points. The second predicated constraint in (2.1) reads as:
whenever the program state satisfies d > 0, the restriction that S ⊑ αy must hold. We will provide
more examples that connect predicated constraints to information flow analysis in Section 3.3.

3.2 Constraint Validity and Satisfiability

When a predicated constraint set C involves no variable, its validity is defined in a trivial way: C is
valid iff for any P → C in C, C is valid (i.e., all label constraints obey the partial ordering in lattice
L). Note that when P is false, a constraint is vacuously true; hence, such constraints are excluded
from further analysis.
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Predicated Constraint Set pconset ::= C

Level Solution η ∈ CVars→ ℓ

Type System Γ ∈ Vars→ e

V-Level

⟨s, ℓ⟩ ⇓ ℓ

V-Var

s (α ) = ℓ

⟨s,α⟩ ⇓ ℓ

V-LCon

⟨s,τ1⟩ ⇓ ℓ1 ⟨s,τ2⟩ ⇓ ℓ2 ℓ1 ⊑ ℓ2

Jτ1 ⊑ τ2Ks

V-And

JC1Ks JC2Ks

JC1 ∧ C2Ks

V-PCon

JCiKsj for any Pj → sj ∈ κ such that Pi ∧ Pj is satisfiable

κ |= {P1 → C1, . . . , Pn → Cn }

Fig. 4. Correctness of a Solution κ.

When C involves constraint variables, intuitively, C is satisfiable if and only if there is a so-

lution κ which maps constraint variables to security levels so that constraints after substitu-
tion are valid. Since constraints are dependent, it is not surprising that a constraint solution κ

also involves predicates, in the form of {P1 → s1, . . . , Pn → sn } where si is a label solution that
maps each constraint variable to a concrete security level.1 For example, a (predicated) solution
(d > 0→ {αx 7→ P},d ≤ 0→ {αx 7→ S}) means that the solution of αx is P iff d > 0 holds.
To simplify technical development in the constraint language theory, we further restrict that all

predicates in a solution form a partition, meaning that no two predicates intersect and the union of
all predicates is the same as true in the predicate logic:

Definition 1 (Predicate Partition). We say a predicate set {P1, . . . , Pn } is a partition iff it

satisfies both:

(1)
∧

1≤i<j≤n ¬(Pi ∧ Pj )

(2)
∨

1≤i≤n Pi

Although such a requirement seems to be restrictive at first glance, it actually allows all legal
solutions: a łsolutionž where some predicates overlap either has a conflict (e.g., (d > 0→ {αx 7→
P},d > 1→ {αx 7→ S})) or can be normalized into a solution by merging the shared solution for
the intersection. For condition 2), intuitively, a solution should provide an answer for any possible
predicate in the constraints.

Next, we formally define the correctness of a predicated solution κ for predicated constraints C,
written κ |= C. The rules are given in Figure 4. Rule (V-PCon) requires that for any label solution
sj such that the corresponding predicate Pj łoverlapsž with Pi in C (i.e., ◦∃(Pi ∧ Pj )), sj is a correct
solution for the corresponding labeled constraint Ci , written as JCiKsj . Checking a label solution
for label constraints (JCKs ) is more straightforward: we simply substitute constraint variables with
their corresponding security levels and check the validity of the result. Here, we use ⟨s,τ ⟩ ⇓ ℓ
to denote the concrete level of τ under label solution s . For example, (d > 0 → {αx 7→ P,αy 7→
S,αz 7→ P},d ≤ 0→ {αx 7→ P,αy 7→ P,αz 7→ P}) is a correct solution for the original constraints
set (2.1). It is easy to check that the predicates form a partition. Moreover, d > 0 intersects with

1Another (perhaps more intuitive) definition of solution could be a mapping from each variable to predicated security levels

in the form of {P1 → ℓ1, . . . , Pn → ℓn }. It is easy to check that these two forms are interchangeable. We use the form of

{P1 → s1, . . . , Pn → sn } in this paper to simplify some definitions (e.g., the correctness of a solution).
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1 // a, c,d : P; b : S;

2 x := a + z;

3 y := k;//k : (d > 0)?S : P;

4 if (d > 0) then y := b;

5 if (d < 0) then x := y;

6 c := x;

(a) Program

1 true→ P ⊑ αx ∧ αz ⊑ αx ;

2 d > 0→ S ⊑ αy ;

3 ¬(d > 0) → P ⊑ αy ;

4 d > 0→ S ⊑ αy ;

5 d < 0→ αy ⊑ αx ;

6 true→ αx ⊑ P;

(b) Core Constraints

1 P ⊔ αz ⊑ αx ;

2 (d > 0)?S : P ⊑ αy ;

3 d > 0⇒ S ⊑ αy ;

4 d < 0⇒ αy ⊑ αx ;

5 αx ⊑ P;

(c) Constraints in Li and Zhang [2017]

1 {true} ∪ αz ≤:{true} αx ;

2 {d ≤ 0} ≤:{true} αy ;

3 {false} ≤:{d>0} αy ;

4 αy ≤:{d<0} αx ;

5 αx ≤:{true} {true};

(d) Constraints in Murray et al. [2016]

Fig. 5. Program and Constraints using Boolean Expression Predicates.

the predicates of lines 1, 2 in the original constraints; it is easy to check that all label constraints
are valid under the label solution in this case. Furthermore, d ≤ 0 intersects with the predicates of
lines 1, 3, 4 in the original constraints; it is easy to check that all label constraints are valid under
the label solution in this case as well. Based on Figure 4, we define constraint satisfiability in the
standard way:

Definition 2 (Predicated Constraint Satisfiability). We say a constraint set C is satisfiable,

denoted as |= C, if and only if exists a correct solution κ:

|= C ⇐⇒ ∃κ . κ |= C

3.3 Expressiveness of the Core Constraint Language

Despite its simplicity, to our best knowledge, the core constraint language can formalize all static
information flow analyses with dependent labels. Next, we informally show how to encode four
very different kinds of static information flow analyses with dependent labels [Arden et al. 2012;
Chen et al. 2018; Ferraiuolo et al. 2017; Li and Zhang 2017; Liu et al. 2009; Lourenço and Caires 2015;
Murray et al. 2016; Myers et al. 2006; Polikarpova et al. 2018; Zhang et al. 2015] in the core language.
Since the security labels in Lourenço and Caires [2015] are defined as a function from predicates to
security levels, a trivial encoding exists. Here, we outline the encoding for other analyses.

Ternary Labels. Following the syntax of ternary expression in C, some prior works [Ferraiuolo
et al. 2017; Li and Zhang 2017; Zhang et al. 2015] employ dependent label in form of b?τ1 : τ2,
meaning that the concrete security level is τ1 when b evaluates to true; otherwise the level is τ2.
Consider the program in Figure 5(a), where the security labels of variables a,b, c,d,k are known,
while the labels of x ,y (αx and αy ) are to be inferred. The analysis in Li and Zhang [2017] generates
the raw constraints (in their syntax) shown in Figure 5(c). For instance, the third constraint
d > 0 ⇒ S ⊑ αy is generated from line 4 in the source code: the level of y must be at least as
restrictive as that on b whenever the łthenž branch is taken. The corresponding constraints in the
core language are shown in Figure 5(b), with the following key steps for transformation:

• Lifting dependence: the main mismatch between the raw constraints and our core constraints
is that the former allows nested predicates, such as ((d > 0)?S : P) ⊑ αy . We can lift all
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1 // p : lp ; q : lq;

2 test(p) r = info(p);

3 else r = 0;

4 test(q) r = r + info(q);

5 else r = r + 0;

(a) Program

1 (⊕p, lp ≤ α ),

2 (⊖p, P ≤ α ),

3 (⊕q, α ⊔ lq ≤ α ),

4 (⊖q, α ⊔ P ≤ α ),

(b) Raw Constraints from Chen et al. [2018]

1 p → lp ⊑ α;

2 ¬p → P ⊑ α;

3 q → α ⊑ α ∧ lq ⊑ α;

4 ¬q → α ⊑ α ∧ P ⊑ α;

(c) Core Constraints

Fig. 6. Program and Constraints using Permission Trace.

nested predicates into the predicates in the core language. For example, ((d > 0)?S : P) ⊑ αy
can be lifted to two constraints: (d > 0) → S ⊑ αy and ¬(d > 0) → P ⊑ αy .
• Removing join and meet: when a join operation ⊔ shows up on the left-hand-side of a
label constraint, we simply decompose it into two constraints. For example, L ⊔ αz ⊑ αx
decomposes into L ⊑ αx ∧ αz ⊑ αx . The dual can be done for the meet operation on the
right-hand-side.
• Default predicate: without any predicate, a raw constraint means that the label constraint
holds under all conditions. We make this explicit by adding a predicate true for such con-
straints.

Predicate as Labels. When a security lattice only has two labels P and S, some prior works use
predicates to specify dependent labels [Murray et al. 2016; Polikarpova et al. 2018]. A predicate
P in those analyses can be interpreted as P when P holds; otherwise, the level is S. For example,
{d ≤ 0} represents a dependent label that when d ≤ 0, the level is P; otherwise, the level is S. The
raw constraints from Murray et al. [2016] are shown in Figure 5(d), where constraints are in form
of P1 ≤:P P2, where the P serves as the condition under which the restriction P1 ≤: P2 holds. Their
analysis uses ∪ operation when multiple variables are used in an expression, such as line 2 in the
example. To encode such constraints, the key steps are:

• Union decomposition: unions semantically means łjoinž on security labels. Hence, we can
decompose them in a way similar to encoding join. For example, {true} ∪ αz ≤:{true} αx
decomposes into {true} ≤:{true} αx ∧ αz ≤:{true} αx .
• Lifting predicates: similar to lifting predicates for ternary labels, both P1 and P2 can be
lifted into P . For example, {d ≤ 0} ≤:{true} αy is encoded to {true} ≤:{d≤0} αy and
{false} ≤:{¬(d≤0) } αy .
• Replacing predicates with levels: after the previous two steps, other than constraint variables,
the remaining label constraints only involve {true} or {false}, where we replace the former
with P and the latter with S. For instance, {true} ≤:{d≤0} αy is encoded as d ≤ 0→ P ⊑ αy .

The encoded constraints in the core language are shown in Figure 5(b). This is identical to the
encoding of the raw constraints in Figure 5(c), suggesting a strong connection between the ternary
labels and predicates as labels. Though the analysis in Polikarpova et al. [2018] differs in certain
ways, its constraints can be encoded in a similar way.

Permission Predicates. Security level in Chen et al. [2018] depends on permissions granted to a
program. Their analysis generates constraints in form of (P , τ1 ≤ τ2), corresponding to P → τ1 ⊑ τ2
in the core constraint language except that P is a set of granted permissions (written as ⊕p) or
permissions that are not granted (written as ⊖p). Consider the program in Figure 6(a), adapted
from Chen et al. [2018]. The security label of p,q are known as lp , lq and the label of r is unknown
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and annotated as α . The encoding (shown in Figure 6(c)) is straightforward, where permissions are
encoded as boolean expressions in the core language.

Dynamic Labels. Dynamic labels that can be found in Jif [Myers et al. 2006] and its extensions [Ar-
den et al. 2012; Liu et al. 2009] has a restricted form of dependence: it depends on a label-typed
variable. For example, a constraint αx ⊑ l where l is a label-typed program variable specifies
a constraint that the level of x must be at most as restrictive as the run-time value of l when
the corresponding program statement is executed. For any finite lattice, such constraints can be
encoded by enumerating all possible values of l : αx ⊑ l can be encoded as l = P → αx ⊑ P and
l = S→ αx ⊑ S for a two-level lattice {P, S}. We note that such a naive encoding might be inefficient
for a complex lattice, since the encoding requires one extra constraint for each level in the lattice.
One more efficient alternative is to enrich the label constraints to include extra assumptions on
label-typed variables and utilize more sophisticated label-constraint solvers (e.g. the solver in Jif and
the SHErrLoc solver [Zhang and Myers 2014]) for the enriched label constraints with assumptions.
However, since the efficiency of encoding is largely an orthogonal issue, we leave that as future
work.

Converting Solution Back. In most cases of information flow analysis, what matters is the existence
of a solution (meaning that the program being verified is secure), rather than what a solution it is.
However, we note that if needed, a solution in the core language can be decoded as well, mostly
following the same idea for encoding. Taking the analysis in Li and Zhang [2017] as an example.
For any constraint variable α , a solution κ = {P1 → s1, . . . , Pn → sn } can be decoded as a ternary
label P1?s1 (α ) : . . . Pn−1?sn−1 (α ) : sn (α ) (recall that Pκ is a partition).

3.4 Alternative Formalizations

Various forms of constraints have been used for program verification tasks. However, to the best of
our knowledge, no existing form of constraints can directly handle dependent security labels with
an arbitrary security lattice. Next, we discuss the major hurdles of handling dependent security
labels via existing forms of constraints.

SMT Constraint. It is possible to encode dependent label subtyping as an SMT constraint with
alternating quantifiers; however, such constraints are in general undecidable and handled quite
poorly in practice. This stands in contrast to label subtyping without dependency, which can be
encoded using efficiently-solvable, quantifier-free SMT constraints. For example, a (predicated)
constraint (b = 1 → α ⊑ P) ∧ (b , 1 → S ⊑ α ) has a dependent solution that α is P whenever
b = 1; α is S whenever b , 1. But an SMT solver with theory on semi-lattice will simply reject the
constraint, since neither P nor S (without dependence) is a solution for α .

Constraint Horn Clauses (CHCs). CHCs is an intermediate constraint format commonly used
in functional verification. We note that in the simplest case of two-level security lattice, CHCs
is a promising alternative formalism of dependent security labels. For instance, dependent labels
can be encoded by predicates, as shown in Figure 5(d), which is adapted from prior work [Murray
et al. 2016]. Recall that the satisfaction of a predicate encodes P in such encoding. Hence, with
form of P1 ≤:P P2, the constraints can be converted to P ∧ P2 ⇒ P1 in CHCs. Lifty [Polikarpova
et al. 2018] employs a similar idea by encoding two security levels P and S into tagged types, with
predicates over stores and users. Lifty employs an inference engine that transforms constraints into
Horn Clauses. Although CHCs is a neat formalism for a two-level lattice, extending it to encode
constraints with a general security lattice is still an open and challenging problem.
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4 THE DERIVATION FRAMEWORK

The derivation framework enables the design and validation of label inference algorithms that
transform original constraints into a simplified form where a solution is more feasible to obtain.
In this section, we first describe three approaches under this model and then develop a proof
framework that validates the soundness and completeness of algorithms under the derivation
framework.

4.1 Derivation Framework and Its Instances

We first explore the large space of inference algorithms under our derivation framework by giving
derivation examples and show why they are useful. We defer the discussion of how to check their
soundness and completeness to Section 4.2.
We first define derivations as constraint set transformation:

Definition 3 (Derivation). A derivation abstracts a transformation from one constraint set C1
to another constraint set C2, denoted as C1⇒ C2.

Sound Derivations and Early-Accept Approach. For a derivation C1⇒ C2, we say it is sound if
any solution of C2 is a solution of C1 (intuitively, the derived constraints are stronger). Sound
derivations are useful since if a constraint solving algorithm derives constraints in a sound way,
the algorithm may terminate early, as long as there is a solution on the current derivation. We refer
to such an approach as the early-accept approach.

The early-accept approach is an iterative approach where a sound derivation is employed at each
iteration. To make the algorithm complete eventually, at each iteration, an early-accept algorithm
weakens the constraints in current iteration to produce weaker yet sound derivation for the next
iteration. If the final iteration is a sound and complete derivation, the algorithm becomes both
sound and complete.

A set of sound derivations are shown in Figure 1. At iteration 1, the derived constraint set simply
removes all predicates and check if the constraints can be solved without any dependence. This
derivation is unsatisfiable, thus, a weaker derivation is employed in iteration 2. At iteration 2,
constraints are solved under predicate d > 0 and its negation. This sound derivation has a solution
(the solution shown in Section 3.2 already). Hence, the algorithm stops with the solution. If the
derivation in iteration 2 were unsatisfiable, the algorithm continues to derivation 3, which is both
sound and complete.
When a set of constraints can be solved with a small number of dependences, the early-accept

approach might find a solution early. However, in the worst case (e.g., when constraints are
unsatisfiable), a sound and complete algorithm may either find a solution or find there is no solution
in the last derivation, which wastes computation resources.

Complete Derivation and Early-Reject Approach. For a derivation C1⇒ C2, we say the derivation
is complete if when there is no solution of C2, then C1 must be unsatisfiable (intuitively, the derived
constraints are weaker). Complete derivations are useful since if a constraint solving algorithm
derives constraints in a complete way, the algorithm may terminate early, as long as there is no
solution on the current derivation. We refer to such an approach as the early-reject approach.

The early-reject approach is dual to the early-accept approach. Starting from a complete deriva-
tion, an early-reject algorithm works on complete derivations in each iteration. If the final iteration
has a sound and complete derivation, then the algorithm is both sound and complete. For example,
an unsatisfiable constraint set and its complete derivations are shown in Figure 7.
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Unsatisfiable Constraint Set

a ≤ 0→ S ⊑ α ∧ α ⊑ S

a ≥ 0→ α ⊑ P
(4.1)

Derivaton 1 (A complete derivation)

a ≤ 0→ S ⊑ α (4.2)

Derivation 2: (A stronger yet
complete derivation)

a < 0→ S ⊑ α ∧ α ⊑ S

a = 0→ S ⊑ α ∧ α ⊑ S

a > 0→ α ⊑ P

(4.3)

Final Derivation:(A sound and
complete derivation)

a < 0→ S ⊑ α ∧ α ⊑ S

a = 0→ S ⊑ α ∧ α ⊑ S ∧ α ⊑ P

a > 0→ α ⊑ P

(4.4)

Fig. 7. Constraints and Complete Derivations.

Figure 7, derivations 1 and 2 are satisfiable. Hence, an early-reject algorithm continues to the final
derivation, where no solution exists due to the second constraint a = 0→ S ⊑ α ∧ α ⊑ S ∧ α ⊑ P.
Hence, the algorithm rejects the original constraints.

Comparedwith early-accept, early-reject has the potential to reject a constraint set early. However,
in the worst case (e.g., when constraints are satisfiable), a sound and complete algorithm may waste
considerable computation resources in the complete but not sound derivations.

One-Shot Approach. To achieve soundness and completeness, one direction is to start from
a sound (resp. complete) derivation, and eventually reach a sound and complete derivation, as
sketched above. Another direction is to transform the original constraints directly into an equivalent
constraint set. We call such an approach the one-shot approach.
The one-shot approach uses one equivalent derivation in constraint solving. Consider the con-

straints in 5(b). The algorithm by Chen et al. [2018] (an instance of one-shot approach) enumerates
all combinations of predicates and their negations, generating an equivalent derivation:

{ p ∧ q → lp ⊑ α ∧ lq ⊑ α ; p ∧ ¬q → lp ⊑ α ; ¬p ∧ q → lq ⊑ α ; ¬p ∧ ¬q → P ⊑ α ; }

These constraints can be solved with a solution that combines local solutions under each predicate.
Both the advantage and the disadvantage of this approach are conspicuous: the transformations

are simple and intuitive to implement; however, the number of transformed constraints grows
exponentially: given n different predicates, the transformation results in O (2n ) constraints under
different predicates; this is confirmed in our evaluation (Section 6).

4.2 Proof Framework

The derivation framework allows a large space for constraint solving algorithms. One crucial
question for those potential algorithms is that whether a derivation is sound (i.e., any solution of a
derivation is a solution of the previous derivation) and/or complete (i.e., no solution of a derivation
implies no solution of the previous derivation). We identify a few key properties to make it easy to
check if a derivation is sound and/or complete.

Soundness. A derivation is sound if the derived constraints are stronger:

Definition 4 (Sound Derivation). We say a derivation is sound, if any solution of the derived

constraint set is also a solution of the original constraint set:

∀C1⇒ C2,κ . κ |= C2⇒ κ |= C1

To make a derivation sound, we first note that the derived set should at least łcoverž the same or
more predicates in the original set, as illustrated to the left of Figure 8. The reason is that a solution
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P1 P2 P1 P2P P1 P2

P

P

P “covers” P1 and P2 P “refines” P2 but not P1 P “refines” P1 and P2

Fig. 8. Illustrated Restrictions on Predicates.

on the stronger set should consider all cases constrained in the original set. For example, consider
the (unsound) derivation, (4.1) ⇒ (4.2) in Figure 7, where the case a > 0 is not covered in (4.2).
Then, a solution of (4.2) is not necessarily a solution of (4.1), since the former is łless constrainedž
under the uncovered case a > 0. This requirement is formalized as the Coverage property on the
predicate set:

Property 1 (Coverage). We say a predicate set P2 covers a predicate set P1, denoted as P2 ⋗ P1, if

they satisfy:

◦∀(
∨
P1 ⇒

∨
P2)

Moreover, for soundness, each label constraint in the original set should be łprojectedž (i.e.,
propagated) to the derived set. That means for each predicated constraint Pi → Ci in the derived
set, Ci should be stronger than any Cj in the original set if Pj → Cj is in the original set and Pi , Pj
may occur at the same time (i.e., ◦∃(Pi ∧ Pj )). Consider the unsound derivation (4.1) ⇒ (4.3) and
the sound derivation (4.1) ⇒ (4.4). We notice that the constraint α ⊑ P under a ≥ 0 is not included
under a = 0 in the (unsound) constraints (4.3). To check that the derivation (4.1) ⇒ (4.4) is sound,
we note that a = 0 has intersection with two predicates a ≤ 0 and a ≥ 0 in (4.1). Moreover, the
label constraints under a = 0 involve all label constraints in (4.1) (i.e., the derived label constraints
are stronger). Hence, the derivation (4.1) ⇒ (4.4) is sound. We formalize this observation as the
Projection property:

Property 2 (Projection). We say a constraint set C is projected to a constraint P → C , denoted

as C ⇝† P → C , if they satisfy:

∀s . JCKs ⇒ J
∧

Pi→Ci ∈C∧◦∃(P∧Pi )

CiKs

Note that when P has no intersectionwith any predicate in PC , the requirement is∀s . JCKs ⇒ J∅Ks .
Since any solution works on ∅, any C suffice in this case. Intuitively, this does not break soundness
since the original constraints put no restriction under P anyway.We can lift the projection definition
to constraint sets:

Property 3 (Full Projection). We say constraint set C1 is fully projected to C2, denoted as

C1⇝† C2, if every constraint in C1 is projected to constraints in C2:

∀P2 → C2 ∈ C2. C1⇝
† P2 → C2

Altogether, a derived constraint is sound if (1) the new predicates cover the original predicates,
and (2) the original constraint set is fully projected to the derived constraint set:
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Theorem 1 (Soundness). If the original constraint set is covered by and fully projected to the

derived constraint set, then the derivation is sound:

∀C1⇒ C2,κ . C1⇝† C2 ∧ PC2 ⋗ PC1 ∧ κ |= C2⇒ κ |= C1

Proof. By the definition of κ |= C1, we need to show that ∀Pi → Ci ∈ C1, Pk → sk ∈ κ . ◦ ∃(Pi ∧

Pk ) ⇒ JCiKsk . That is, we need to show JCiKsk under the condition that ◦∃(Pi ∧ Pk ). By Property 1,
we know that ◦∀(

∨
PC1 ⇒

∨
PC2). Hence, ◦∀(Pi ∧ Pk ⇒ Pi ⇒

∨
PC1 ⇒

∨
PC2). Therefore,

there there must be some Pj ∈ PC2 such that ◦∃(Pk ∧ Pj ∧ Pi ). That is, we have ◦∃(Pk ∧ Pj ) and
◦∃(Pj ∧ Pi ). From the former, we have JCjKsk due to validation rule V-PCon and the fact κ |= C2;
from the latter and Property 2 and 3, we have JCjKsk ⇒ JCiKsk . Therefore, we proved that JCiKsk . □

Completeness. A derivation is complete if its derived constraint set is weaker:

Definition 5 (Complete Derivation). We say a derivation is complete, if any solution of the

original set is also a solution of the derived set:

∀C1⇒ C2,κ . κ |= C1⇒ κ |= C2

To make a derivation complete, there is one restriction on the predicate sets of C2 (i.e., there
is no dual to the coverage property). The reason is that, a local view is sufficient in rejecting a
constraint set. For example,

a = 0→ S ⊑ α ∧ α ⊑ S ∧ α ⊑ P

which is unsatisfiable, allows us to reject (4.1) since when a = 0, all label constraints on the right
are required in (4.1), but they are not satisfiable.

To make a derivation complete, each label constraint with precondition P should be weaker than
the intersection of allCi where P łrefinesž the corresponding Pi (i.e., Pi łincludesž P , or ◦∀(P ⇒ Pi )),
as illustrated in the middle of Figure 8. For example, (4.2) is a complete derivation of (4.1) according
to this observation: first, a ≤ 0 refines a ≤ 0 but not a ≥ 0 in (4.1); second, S ⊑ α ∧ α ⊑ S⇒ S ⊑ α

(i.e., S ⊑ α is weaker than the corresponding label constraint of a ≤ 0 in (4.1)). However, a similar
derivation {a ≤ 0⇒ α ⊑ P} is not a complete derivation from (4.1), since its label constraint α ⊑ P
is not weaker than the original one under the same precondition. This observation is formalized as
the Inferred property:

Property 4 (Inferred Constraint). We say a constraint P → C is inferred from a constraint set

C, denoted as C ⇝⋄ P → C , if they satisfy:

∀s .J
∧

Pi→Ci ∈C∧◦∀(P⇒Pi )

CiKs ⇒ JCKs

This property is a dual of the projection property 2. When P does not refine any predicate in PC ,
the requirement is ∀s . J∅Ks ⇒ JCKs . Since any solution works on ∅, this property requires ∀s . JCKs ,
which essentially makes it impossible to reject the original constraints due to P → C . We can lift
the projection definition to constraint sets:

Property 5 (Fully-Inferred). We say constraint set C2 is fully-inferred from constraint set C1,
denoted as C1⇝⋄ C2 if all constraints are inferred constraints:

∀Pi → Ci ∈ C2. C1⇝
⋄ Pi → Ci

A derivation is complete if it is fully-inferred:

Theorem 2 (Completeness). If the derived constraint set is fully-inferred from the original con-

straint set, then the derivation is complete:

∀C1⇒ C2,κ . C1⇝⋄ C2 ∧ κ |= C1⇒ κ |= C2
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Proof. By the definition of κ |= C2, we need to show that ∀Pj → Cj ∈ C2, Pk → sk ∈ κ . ◦ ∃(Pj ∧

Pk ) ⇒ JCjKsk . Consider the set Q =
{

Pi | Pi ∈ PC1 ∧ ◦∀(Pj ⇒ Pi )
}

. When Q = ∅, we have Cj = ∅

by Property 4. Hence, JCjKsk is vacuously true.
Otherwise, for any Pi ∈ Q , we have ◦∀(Pj ⇒ Pi ). Given ◦∀(Pj ⇒ Pi ) and ◦∃(Pj ∧ Pk ), it must be

true that ◦∃(Pj ∧ Pi ∧ Pk ), which implies ◦∃(Pi ∧ Pk ). Since κ |= C1, we have JCiKsk by validation
rule V-PCon. Since this is true for any Ci ∈ Q , we have

∧
Ci ∈Q JCiKk . From Properties 4 and 5, we

know that ∀s . J
∧

Ci ∈Q CiKs ⇒ JCjKs . Hence, J
∧

Ci ∈Q CiKsk ⇒ JCjKsk , and therefore, JCjKsk . □

Equivalence. A derivation is equivalent if it is both sound and complete. We can check so by all of
the properties defined above. However, in practice, it is more desirable to develop algorithms that
start from sound (or complete) only derivations, and evolve to a sound and complete derivation
eventually, with respect to the original constraint set (as illustrated in Figure 2).
To make it happen, we first define the weakest derivation that complies Property 3 and the

strongest derivation that complies Property 5 :

Definition 6 (Weakest Sound Derivation). A derivation is the weakest sound derivation,

denoted as C1⇒† C2, if

PC2 ⋗ PC1 and ∀P2 → C2 ∈ C2. C2 =

∧

Pi→Ci ∈C1∧◦∃(Pi∧P2 )

Ci

By construction, the soundness of this derivation is trivial. Similarly, we define the strongest
complete derivation, whose completeness directly follows its construction:

Definition 7 (Strongest Complete Derivation). A derivation is the strongest complete deriva-

tion, denoted as C1⇒⋄ C2, if

∀P2 → C2 ∈ C2. C2 =

∧

Pi→Ci ∈C1∧◦∀(P2⇒Pi )

Ci

What makes weakest sound derivation and strongest complete derivation interesting is that they
are interchangeable when for any P1 ∈ PC1 and P2 ∈ PC2, P2 refines P1 whenever they intersect, as
illustrated to the right of Figure 8. This is called the Refinement property:

Property 6 (Refinement). We say a predicate set P2 is a refinement of a predicate set P1, denoted

as P1 ≪ P2, if we have

(1) ∀P2 ∈ P2, ◦∃(P2)

(2) ∀P1 ∈ P1, P2 ∈ P2. ◦ ∃(P1 ∧ P2) =⇒ ◦∀(P2 ⇒ P1)

Theorem 3. A refined weakest sound derivation is a strongest complete derivation:

∀C1⇒† C2,κ . PC1 ≪ PC2 ⇒ C1⇒
⋄ C2

Proof. Consider any P2 ∈ PC2. Consider any P1 ∈ PC1 such that ◦∀(P2 ⇒ P1). Since ◦∃(P2),
we know that ◦∃(P2 ∧ (P2 ⇒ P1)) = ◦∃(P2 ∧ P1). Hence, the refinement property implies that
◦∃((P1 ∧ P2)) ⇐⇒ ◦∀(P2 ⇒ P1). Hence, definitions 6 and 7 coincide.

□

This theorem provides a constructional strategy for evolving sound derivations to a sound and
complete derivation. For example, given original predicates PC = {P1, P2}, the following sequence
of covers of PC eventually satisfies the refinement property: {true}, {P1,¬P1}, {P1 ∧ P2, P1 ∧ ¬P2,
¬P1 ∧ P2,¬P1 ∧ ¬P2}. We discuss further on such an inference algorithm in Section 5.2.

On the other hand, a complete derivation becomes sound and complete if it satisfies refinement
and covers the original predicate set:
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Theorem 4. A refined strongest complete-derivate is a weakest sound-derivation, if the derived

constraint set covers the original one

∀C1⇒⋄ C2,κ . PC1 ≪ PC2 ∧ PC2 ⋗ PC1 ⇒ C1⇒
† C2

Proof. The proof is similar to that of Theorem 3. Note that the coverage requirement in weakest
sound derivation is in the assumption. □

5 ALGORITHMS

There are many approaches to utilize the derivation framework. In this section, we discuss how to
instantiate the major components of the framework, as well as provide four concrete constraint
solving algorithms.

5.1 Partition Method

The general framework allows great flexibility in the predicate set P of a derivation. Hereafter, we
explore one approach, where the predicate set P forms a partition (Definition 1) for two reasons:
(1) a partition satisfies the coverage requirement for sound derivation as well as sound and complete
derivations, and (2) a partition allows a solver to solve label constraints under each predicate in
isolation and combine sub-solutions to one solution. We call the procedure of generating predicate
set P of a derivation as a partition partition method.

Intuitively, a partition method controls the pace of the solving process (as illustrated by the lines
in Figure 2): in the one-shot approach, partition method directly generates a refinement of the
original constraint set; in early-accept or early-reject approach, partition algorithm is responsible
to provide a different set of predicates at each iteration and also guarantee that the final predicate
set is a refinement of the original constraint set.
Since the one-shot approach is straightforward, we next focus on two concrete partition algo-

rithms, following two different intuitions:

• Sequential Partitioning is an avid algorithm devoted to reaching the final refinement with the
least efforts wasted on the path;
• Combinational Partitioning is more adventurous, trying out all kindred cases along the way.

Both algorithms start from singleton partition {true} and eventually reach the same refinement
of the original constraint set at the final iteration. We know when one predicate P1 is given, the
space can be partitioned into two parts, P1 and ¬P1. When two predicates P1, P2 are given, the space
can be at most partitioned into four parts: P1 ∧ P2, P1 ∧ ¬P2, ¬P1 ∧ P2 and ¬P1 ∧ ¬P2. We call this
relationship Partition Space:

Definition 8 (Partition Space). Given predicates P1, P2, ..., Pn , a partition space of these predi-

cates, denoted as ⊞(P1, P2, ..., Pn ) is a set of predicates after partitioned :

⊞ (P1, P2, ..., Pn ) = { p1 ∧ p2 ∧ ... ∧ pn | p1 ∈ {P1,¬P1} ,p2 ∈ {P2,¬P2} , ...,pn ∈ {Pn ,¬Pn }}

Given predicates P1, . . . , Pn in the original set, the sequential partitioning algorithm constructs
predicate sets {true}, {P1,¬P1}, {P1 ∧ P2, P1 ∧ ¬P2,¬P1 ∧ P2,¬P1 ∧ ¬P2}, . . . , while the combina-
tional partitioning algorithm constructs sets {true}, {P1,¬P1}, {P2,¬P2} , . . . as follows.

Sequential Partitioning. Sequential partitioning refines the partition sequentially one predicate at
a time. For a predicate set {P1, P2, ..., Pn }, the sequential partitioning algorithm produces:

Iteration 0: Starting : {true}
Iteration 1: Partition by P1 : ⊞(P1)
Iteration 2: Partition by P1, P2: ⊞(P1, P2)
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...

Iteration n: Partition by P1, P2, . . . , Pn : ⊞(P1, P2, ...Pn )

Consider the predicates used in the sound derivations in Figure 1. It follows a sequential parti-
tioning: derivation (2.2) uses {true}, derivation (2.3) uses {d > 0,d ≤ 0}, and derivation (2.4) uses
{d > 0 ∧ d < 0,d > 0 ∧ d ≥ 0,d ≤ 0 ∧ d < 0,d ≤ 0 ∧ d ≥ 0}, which is equivalent to {d > 0,d =
0,d = 0}. The last predicate set is a refinement of the original predicates.

While sequential partitioning is intuitive and simple to implement, we observe that it is not stable
at performance: the execution time of constraint solving may differ dramatically depending on the
order of the input predicates. Consider a special case that only the sound derivation partitioned by
P1 can be solved. In the best case, sequential partitioning picks P1 in the first iteration, resulting a
partition⊞(P1) of size 2; however, in the worse case, P1 gets picked at the last iteration. In this case,
the partition algorithm will go generate a last-level partition ⊞(P1, P2, ..., Pn ), with 2n predicated
constraints.

Combinational Partitioning. Combinational partitioning is designed to be more stable for the
performance. It tries out all partitions at the same level before going to the next level. For a
predicates set: {P1 → C1, P2 → C2, ..., Pn → Cn }, the partition procedure is as follows:

Iteration 0: Starting : {true}
Comb 1 - Iteration 1: Partition by P1: ⊞(P1)
Comb 1 - Iteration 2: Partition by P2: ⊞(P2)

...

Comb 1 - Iteration n: Partition by Pn : ⊞(Pn )
Comb 2 - Iteration 1: Partition by P1, P2 : ⊞(P1, P2)
Comb 2 - Iteration 2: Partition by P1, P3 : ⊞(P1, P3)

...

Comb 2 - Iteration C2
n : Partition by Pn−1, Pn : ⊞(Pn−1, Pn )

...

Comb n - Iteration 1: Partition by P1, P2, ..., Pn : ⊞(P1, P2, ...Pn )

For the special case that only the sound derivation partitioned by P1 can be solved, in the worse
case, the combinational partition picks P1 at Comb 1 - Iteration n with partition ⊞(P1) of size 2.
Though the sequential partitioning also finds the result at the n-th iteration, the size of the partition
set grows exponentially at each iteration. For combinational partitioning, partition in Comb 1 are
all of size 2; thus, the efforts to reach the n-th iteration is just linear, rather than exponential.

5.2 Derivation Method

A derivation method, the core component of a solving algorithm, constructs derivations to be
checked under the current iteration. In particular, a derivation method takes in two parameters: the
original predicated constraint set {P1 → C1, . . . , Pn → Cn }, as well as a predicate set P (constructed
by a partition method from Section 5.1), under which a set of label constraints are to be generated.
For each predicate P ∈ P, a sound derivation method (SoundDerive) computes predicated

constraints under P following Definition 6:

SoundDerive({P1 → C1, . . . , Pn → Cn } ,P) ≜
⋃

P ∈P

{P → Ci | ◦∃(P ∧ Pi )}

Similarly, a complete derivation method (CompleteDerive) computes predicated constraints
under P following Definition 7:

CompleteDerive({P1 → C1, . . . , Pn → Cn } ,P) ≜
⋃

P ∈P

{P → Ci | ◦∀(P ⇒ Pi )}
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Since we simply construct the sound/complete sets as the weakest sound derivation/strongest
complete derivation (Definitions 6 and 7), their correctness is easy to validate. Since the partition
method ensures coverage and refinement in the last step, both derivations are eventually sound
and complete (Theorems 3 and 4).

5.3 Constraint Solving Algorithms

Based on derivation and partition methods, we present four concrete algorithms.

• One-Shot Algorithm: this algorithm is equivalent to the solver in Chen et al. [2018]. It directly
works on a refinement of the original constraint set.
• Iterative Early-Accept Algorithm: this algorithm iteratively uses weakest sound derivations.
Hence, if an iteration is satisfiable, the algorithm accepts the original constraint set; otherwise,
the algorithm continues until the final equivalent derivation.
• Iterative Early-Reject Algorithm: this algorithm iteratively uses strongest complete deriva-
tions. Hence, if an iteration is unsatisfiable, the algorithm rejects the original constraint set;
otherwise, the algorithm continues until the final equivalent derivation.
• Hybrid Algorithm The hybrid algorithm takes advantages of both sound and complete deriva-
tions and seeks for early termination whenever possible.

Next, we discuss each algorithm in details.

One-Shot Algorithm. One-shot algorithm directly works on a refinement of the original constraint
set, where its sound derivation is equivalent to its complete derivation. The pseudo code is shown
in Algorithm 1. It first initializes the partition algorithm and obtains the final refinement partition

Algorithm 1 One-Shot Solver

1: function Solve-one-shot(cons-set )
2: solution ← ∅

3: partition.init(cons-set )

4: partt ← partition.final-partt()

5: derive ← SoundDerive(cons-set , partt )
6: for i ← 0, lenдth(partt ) do
7: if rmSolver .Solve(derive[i]) then
8: solution[partt[i]]← rmSolver .solution()

9: else

10: unsolve ← partt[i]
11: return false

12: end if

13: end for

14: return true

15: end function

(Section 5.1). Sound derivation method is then employed at line 5 to generate label constraints for
each predicate in the partition set.
At line 7, a label constraint solver, rmSolver (an implementation of the Rehof-Mogensen algo-

rithm [Rehof et al. 1999]) is used to solve label constraints under each predicate. rmSolver solves
label constraints without predicates. Since the derivation at line 5 is indeed equivalent, if any
constraint is unsatisfiable, the original set is rejected at line 11. Only when all label constraints are
solved, a global solution is found by combining the local solutions.
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Iterative Early-Accept Algorithm. Early-accept algorithm makes use of sound derivations so that
if any sound derivation is satisfiable, the algorithm accepts the constraint set with the solution
found; otherwise, the algorithm continues until the final equivalent derivation. The pseudo code is
show in Algorithm 2.

Algorithm 2 Early-Accept Solver

1: function Solve-Early-Accept(cons-set )
2: new-partt , solution ← ∅
3: partition.init(cons-set )

4: while partition.stop() == false do

5: partt ← partition.next-partt(new-partt )
6: new-partt ← ∅
7: derive ← SoundDerive(cons-set , partt )
8: for i ← 0, lenдth(partt ) do
9: if rmSolver .Solve(derive[i]) then
10: solution[partt[i]]← rmSolver .solution()

11: else

12: new-partt .append(partt[i])
13: end if

14: end for

15: if new-partt == ∅ then
16: return true

17: end if

18: end while

19: unsolve ← new-partt
20: return false

21: end function

In Algorithm 2, the partition algorithm is initialized and the current partition is obtained at line 5.
The sound-derivation of each predicate is then generated and solved by the label constraint solver.
The difference from the One-Shot approach is when the derived constraint is unsatisfiable: as sound,
but not equivalent, derivation, it does not lead to a rejection. Instead, the predicate is recorded in
new-partt , at line 12, to be further partitioned in the next iteration. If a derived constraint is solved,
then the solution is strong enough that it does not need to be further partitioned. If the new-partt
is empty at line 15, meaning that all the constraints in the current derivation are solved, then an
early-accept solution is found. The algorithm thus accepts the constraint set at line 16. When the
partition algorithm reaches the final partition and there still exists unsatisfiable constraints, the
algorithm rejects the constraint set as unsatisfiable at line 20.

Iterative Early-Reject Algorithm. Early-reject algorithm makes use of complete derivations and
intends to early terminate with rejection. We omit the pseudo code since it is very similar to
Algorithm 2. The main difference is that it employs a complete derivation rather a sound derivation.
When any label constraint is unsatisfiable, the algorithm rejects the constraint set immediately. It
only accepts the input constraint set when where all the derived constraints are solved, including
those from the final refinement partition.

Hybrid Algorithm. The hybrid algorithm takes advantages of both sound and complete derivations
and seeks for early termination whenever possible. The pseudo code is shown in Algorithm 3.
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For each predicate in the current partition, it firsts solve the sound-derivation at line 10. If the
sound derivation is unsatisfiable, it solves the complete derivation at line 13 to see whether an early
rejection is feasible. If not, the partition will be recorded in new-partt to be further partitioned.
When new-partt is empty at line 20, early-accept is trigged. A correct implementation should never
reach line 24, since the final iteration is indeed an equivalence derivation.

Algorithm 3 Hybrid Solver

1: function Solve-Early-Accept(cons-set )
2: new-partt , solution ← ∅
3: partition.init(cons-set )

4: while partition.stop() == false do

5: partt ← partition.next-partt(new-partt )
6: new-partt ← ∅
7: derive-sound ← SoundDerive(cons-set , partt )
8: derive-complete ← CompleteDerive(cons-set , partt )
9: for i ← 0, lenдth(partt ) do
10: if rmSolver .Solve(derive-sound[i]) then
11: solution[partt[i]]← rmSolver .solution()

12: else

13: if rmSolver .Solve(derive-complete[i]) then
14: unsolve ← partt[i]
15: return false

16: end if

17: new-partt .append(partt[i])
18: end if

19: end for

20: if new-partt == ∅ then
21: return true

22: end if

23: end while

24: return false ▷ Should not reach here
25: end function

6 EVALUATION

We have implemented all four algorithms: One-Shot, Early-Accept, Early-Reject and Hybrid al-
gorithms, as described in Section 5. We use Z3 [Moura and Bjùrner 2008], version 4.5.1, to solve
arithmetic and logical constraints (arising from predicates) and implement the Rehof-Mogensen
algorithm [Rehof et al. 1999] for security-level constraints. The implementation is publicly available
at https://github.com/psuplus/DerivationSolver. All experiments are run on a desktop with 16 GB
of RAM and an Intel i7 processor at 2.2 GHz. During the evaluation, we were mostly interested in
answering the following questions:

(1) How efficient are those algorithms in solving predicated constraints?
(2) How scalable are those algorithms in solving predicated constraints?
(3) Between sequential and combinational partitioning, which one scales better?
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Fig. 9. Performance on the MIPS benchmark. Each algorithm times out after 180s (3 mins). The gray area

shows executions that time out after 180s. The X-axis represents file ID.

6.1 Benchmarks

To evaluate constraint solving algorithms on constraints from realistic applications with information
flow control, we obtain the source code of a formally verified MIPS processor with information
flow control [Zhang et al. 2015]. This processor is based on a classic 5-stage in-order pipeline with
separate instruction and data caches. The processor also includes typical pipelining techniques,
such as data hazard detection, stalling and data bypassing.

The processor consists of 1719 lines of Verilog code, separated into 18 files. In the original version,
all security labels are explicitly marked. We extend the SecVerilog compiler [Myers et al. 2015] to
generate fresh label variables (to be inferred) for unannotated variables and created 50 variants
mutating from the original files as follows (all removed labels are randomly picked):

• partially remove manually annotated labels, or
• split multiple modules in one file into multiple files and remove labels, making label inference
more local (i.e., removing cross-module constraints), or
• remove labels and inject errors by modifying some annotated labels, or removing checks
needed for security(e.g., checking b is true before copying a value with label b?P : S to P). In
total, 14 errors were injected to the 50 variants.

As a result, there are 2455 variables requiring security labels among all 50 files, where 1509 variables
are unlabeled (i.e. to be inferred). Among the 50 files, 41 of them can only be verified with dependent
labels.
The modified SecVerilog compiler generates predicated constraints in the syntax shown in

Figure 5(c), which we then encode into our core language as sketched in Section 3.3. Note that
since the variants of original files contain insecure code, the generated constraints tests have a mix
of satisfiable and unsatisfiable constraints.
The SecVerilog compiler generates rich sets of predicates: the predicates include both path

conditions and approximation of program states (details can be found in Zhang et al. [2015]). To
evaluate the effect of predicates on constraint solving, we also generated predicated constraints
that only contain path conditions. Our benchmark contains 100 constraint files in total: 50 set of
constraints with all predicates, as well as 50 set of constraints with path conditions only.
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Fig. 10. Performance on the MIPS benchmark in log-log scale. The X-axis represents unique predicates

involved in all constraints.

6.2 Performance of Inference Algorithms

We first compare the constraint solving time of three algorithms (one-shot, early-accept and
hybrid algorithms) on the MIPS benchmark under combinational partition. The comparison under
sequential partitioning shows similar results, so we omit that in this section. The execution time
(in log scale) for each constraint file is shown in Figure 9. In the evaluation, each algorithm times
out after 3 minutes. Each timed-out case is plotted in the gray area, where the number on the right
counts the total number of such cases for each algorithm.
We note that in most cases, the hybrid algorithm consistently performs better than the other

two algorithms: the improvement is typically by orders of magnitude compared with the one-shot
algorithm, and it only times-out for 3 tests, compared with 30 tests for the one-shot algorithm. The
reason is that early-termination works well in practice: for most of the constraint files, a sound and
complete answer can be returned without going all the way to the exponential case as the one-shot
algorithm does. The result confirms the importance of early termination. We do notice that in some
hard cases (e.g., the 3 cases that the hybrid algorithm times out), all algorithms time out. For such
cases, we plan to improve the hybrid algorithm as future work.

Compared with the early-accept algorithm, the hybrid algorithm has a comparable performance
when both algorithms terminate. This is expected since for satisfiable constraints, the early-reject
component of the hybrid algorithm has no effect. However, the hybrid algorithm only times-out for
3 tests, compared with 19 tests for the early-accept algorithm. When we inspect those 16 cases that
these two algorithms differ, all of them are unsatisfiable constraints that require an exponential
search in the early-accept algorithm. The result confirms the intuition that for a mix of satisfiable
and unsatisfiable constraints, the hybrid algorithm is the most efficient.

6.3 Scalability

Figure 10 shows the execution time in terms of the number of unique predicates in the original
constraints in a log-log scale (we use the number of predicates instead of the number of raw
constraints since empirically, the former dominates the execution time). The hybrid method scales
the best: its execution time grows slowest as the number of predicates increases (the higher plots
for the hybrid algorithm suggests roughly a square-time complexity in practice). A possible reason
is that most constraints can be either accepted or rejected with a small number of dependences.
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Fig. 11. Partition: Sequential vs. Combinational.

The early-accept algorithm has mixed cases: for the satisfiable ones, it scales well as the hybrid
algorithm; but for the unsatisfiable ones, it not very scalable. The execution time of one-shot
algorithm grows consistently in an exponential manner: it time-out for most constraints with over
20 predicates.
We note that early-accept method may grow faster than the one-shot algorithm in some cases.

We believe this demonstrates the trade-off between solving a large number of small-size label
constraints (the one-shot algorithm) and a small number of big-size label constraints (the early-
accept algorithm). For easy cases, this trade-off inclines towards the iterative approach, but for
the hard cases, as the iteration goes deeper, the size of the partition is no longer small and the
accumulated efforts to generate new partitions, produce derivations and validate the derived set do
not pay off. Hence, in a worse case scenario (e.g., for unsatisfiable constraints), the early-accept
algorithm may scale much worse than the one-shot algorithm.

6.4 Sequential vs. Combinational Partitioning

Figure 11 shows the performance of the hybrid algorithm under different partition algorithms.
Almost all test cases yield a better solution on the combinational partitioning. The cases, where
two partitioning has similar performance, are mostly simple cases where a solution can be found
within 10−2 seconds. The cases, where their performance diverges, are mostly hard cases and still
combinational partitioning has a better result. This confirms the intuition that the combinational
partitioning is a more stable algorithm that handles the worse case at the earliest combination level
possible to avoid going to the exponential cases.

7 RELATED WORK

Security Label Inference. Typical label inference algorithms, such as those employed in Jif [Myers
et al. 2006] and FlowCaml [Simonet 2003], encode the restrictions on known and unknown security
levels into constraints in a finite semi-lattice. Those constraints can be solved by customized solvers
(such as the Rehof-Mogensen algorithm [Rehof et al. 1999] and set-constraints solvers [Aiken
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1999; Aiken et al. 1994]). However, constraints in finite semi-lattices cannot encode predicates on
program states, which are essential for inferring dependent security labels.2

When dependent labels come to picture, various ad-hoc inference algorithms have been proposed.
Lifty [Polikarpova et al. 2018] encodes information flow constraints into logical constraints (as
illustrated in Section 3.3), and proposes an inference algorithm based on the inference engine
of liquid types [Rondon et al. 2008; Vazou et al. 2014]. While this is a neat solution for a two-
level security lattice, the encoding does not apply to applications that require multiple security
labels. Recent work by Chen et al. [2018] considers security labels that depend on permissions
granted to a program. Their inference algorithm is an instance of the one-shot approach: the
algorithm constructs a complete partition of all (exponential) combinations of existence/absence of
permissions. However, as we show in the evaluation, exploring all combinations does not scale
with the increasing number of predicates in original constraints.

Vaughan and Chong [2011] propose a system for inferring declassification policies. But their
work is largely orthogonal to ours: their work infers declassification policies, while our work infers
dependent labels given a security policy.

To the best of our knowledge, no existing work offers a framework for designing and checking
the soundness and completeness of dependent-label inference algorithms. Although proving a
variant of one-shot algorithms as did in Chen et al. [2018] might be feasible, proving the soundness
and completeness for advanced algorithms such as the hybrid algorithm can be extremely difficult
without our derivation framework.

Information Flow Analysis with Dependent Security Labels. To improve the precision of static
information flow analysis, dependent security labels have been introduced in various forms [Arden
et al. 2012; Chen et al. 2018; Ferraiuolo et al. 2017; Li and Zhang 2017; Liu et al. 2009; Lourenço and
Caires 2015; Murray et al. 2016; Myers et al. 2006; Polikarpova et al. 2018; Zhang et al. 2015]. Except
for Chen et al. [2018]; Polikarpova et al. [2018], none of those works has dependent label inference;
dependent security labels are annotated manually. Some prior type systems for information flow
support limited forms of dependent labels [Grabowski and Beringer 2009; Jia et al. 2008; Myers
1999; Tse and Zdancewic 2007; Zheng and Myers 2007]. However, they only allow dependence
on special łpolicyž or łlabelž variables, rather than run-time program states. Rich dependent type
systems like Fable [Chen et al. 2010; Swamy et al. 2008], F∗ [Swamy et al. 2011] can encode rich
information flow policies, but policy inference in those systems is arguably more challenging than
within our constraint language, and hence, less likely to be fully automated.

Dependent Types. Dependent types [Martin-Löf 1982] have been widely studied and applied to
practical programming languages, but most of them (e.g., Augustsson [1998]; Condit et al. [2007];
Rondon et al. [2008]; Vazou et al. [2014]; Xi [2000]; Xi and Pfenning [1999]) verifies functional
correctness rather than information flow security. Though it might be possible to encode certain
restricted policies into those systems (such as the encoding in Polikarpova et al. [2018]), at least
there is no direct encoding for our full constraint language with a mix of predicates and security
label constraints.

8 CONCLUSION AND FUTURE WORK

We present the first framework for designing and checking label inference algorithms for informa-
tion flow analysis with dependent security labels. The framework models an inference algorithm as
an iterative process where each step works on a sound and/or complete derivation of the original

2Conditional type [Aiken et al. 1994] integrates limited control flow information (as types) into constraints. But that work

does not handle general program predicates in constraints.
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constraint set. Based on the framework, we developed novel inference algorithms that are both
sound and complete. Evaluation result suggests that the novel algorithms improve performance by
orders of magnitude and offers better scalability compared with existing work.
There are a few directions to further improve the efficiency of our framework. First of all, it is

very promising to obtain a practically efficient encoding for dynamic labels by directly adding the
assumptions on dynamic labels directly into the right-hand-side constraints on security levels. Doing
so requires extending the solving algorithm for label constraints (e.g., Rehof-Mogensen) to make
use of the assumptions on dynamic labels, which is already implemented in Jif [Myers et al. 2006].
Second, the efficiency of the framework can be further boosted up by designing more sophisticated
partitioning algorithms, such as using feedback from the solver to guide the search for predicates.
A potential candidate is to use the unsatisfiable core from the current iteration to determine the
predicates used in next iteration. However, the challenge is to compute a łminimumž unsatisfiable
core, since a trivial core could be all constraints in the current iteration, making all predicates be
added for the next iteration.
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