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We present an evaluation update (or simply, update) algorithm for a full-featured functional programming
language, which synthesizes program changes based on output changes. Intuitively, the update algorithm
retraces the steps of the original evaluation, rewriting the program as needed to reconcile differences between
the original and updated output values. Our approach, furthermore, allows expert users to define custom
lenses that augment the update algorithm with more advanced or domain-specific program updates.

To demonstrate the utility of evaluation update, we implement the algorithm in Sketch-n-Sketch, a novel
direct manipulation programming system for generating HTML documents. In Sketch-n-Sketch, the user
writes an ML-style functional program to generate HTML output. When the user directly manipulates the
output using a graphical user interface, the update algorithm reconciles the changes. We evaluate bidirectional
evaluation in Sketch-n-Sketch by authoring ten examples comprising approximately 1400 lines of code
in total. These examples demonstrate how a variety of HTML documents and applications can be devel-
oped and edited interactively in Sketch-n-Sketch, mitigating the tedious edit-run-view cycle in traditional
programming environments.
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1 INTRODUCTION

Expert programmers often choose to write programs to generate digital objects that might otherwise
be created in graphical user interfaces (GUIs) using direct manipulation [Hutchins et al. 1985;
Shneiderman 1983], because GUIs typically lack powerful mechanisms for abstraction and reuse.
To name just a few example languages and libraries, LATEX is particularly popular for generating
documents; JavaScript, Ruby, and Elm for web applications; Processing and p5.js (http://p5js.org/)
for graphic designs; LATEX and Slideshow [Findler and Flatt 2006] for slide-based presentations; and
D3 [Bostock et al. 2011] for data visualizations.

The benefits of programming, however, come at a steep cost: to change the output of a program,
the user must edit the source code, run it again, and view the new output, often repeating this
loop ad nauseaum. Effort wasted in this way is particularly galling when successive program
changesÐand the resulting output changesÐare small and narrow in scope. Ideally, the user would
łdirectly manipulatež the program output, and the system would run the program łin reversež to
synthesize necessary program repairs.
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Prior Approaches. Two primary approaches help address the goal to run programs in reverse.
In bidirectional programming languages [Foster et al. 2007], data transformations are defined as
lenses, in which a дet-function for forward-evaluation is paired with a put-function for backward-
evaluationÐwhen the output ofдet is changed,put specifies how to change the input. A bidirectional
language provides a set of domain-specific lens primitives, from which programmers mold de-
sired transformations using lens combinators. Lenses have proven to be effective for defining
bidirectional transformations in a variety of domainsÐincluding structured data (relational ta-
bles), semi-structured data (trees), unstructured data (strings), and graphs. Nevertheless, lenses
are not a solution for automatically reversing the computation of an arbitrary programÐdata and
codeÐwritten in a general-purpose functional language (Limitation A).
Another approach, developed by Chugh et al. [2016], aims to reverse arbitrary programs as

follows. First, the interpreter records value traces to track the provenance of how values are
computed. Then, when the user makes small changes to the output, updated value-trace equations
are solved in order to synthesize repairs to the program. Although a useful step, this approach
suffers several limitations. First, the formulation supports tracing and updates for numeric values,
but not for other types of simple or more complex values (Limitation B). Second, the formulation
provides no way for expert users to customize the behavior of the algorithm (Limitation C). This is
a significant limitation in practice, because no single update algorithm for arbitrary programs can
work well in all use cases. Furthermore, even if extended to address the aforementioned limitations,
the approach requires that all computations be traced even if many (or most) values are not updated
by the user. For a large program where the subset of values that are directly manipulated becomes
a small fraction, the space overhead of this approach could become a bottleneck, as is often the
case for systems that record execution traces, such as omniscient debuggers [Pothier et al. 2007] and
query-based debuggers [Ko and Myers 2008] (Limitation D).

Our Approach: Bidirectional Evaluation. In contrast to prior approaches, we propose a notion
called bidirectional evaluation for programs in a full-featured, general-purpose functional program-
ming language. In addition to a standard evaluation relation e ⇒ v that evaluates expression e to
value v , we define an evaluation update (or simply, update) relation e ⇐ v ′ ⇝ e ′ that, given an
expected valuev ′, rewrites the original expression e to e ′. Evaluation update proceeds by comparing
the original output value v with the goal v ′, and synthesizing repairs to e such that, ideally, the
new program e ′ evaluates to v ′. Evaluation update is defined for arbitrary expressions e producing
arbitrary types of values v , thus addressing Limitations A and B, respectively. Our approach relies
on standard, uninstrumented evaluation; we re-evaluate expressions as needed during update. This
approach trades time for space, thus addressing Limitation D.
Furthermore, we allow expert users to define custom lenses that augment the update algo-

rithm with more advanced or domain-specific program updates, thus addressing Limitation C.
In particular, in place of an ordinary function application eget e , the program can define a lens

application applyLens {apply = eget ; update = eput} e , in which case, the update algorithm uses
the designated update function eput to help compute a new expression e ′ to replace the argument e .

Our Implementation: Direct Manipulation Programming for HTML. We implement bidirec-
tional evaluation within Sketch-n-Sketch [Chugh et al. 2016], an interactive programming system
for developing and editing graphical objects. In the new system, the user writes a program in a
functional, ML-style language to generate HTML output. When the user directly manipulates the
output using a graphical user interface, the update algorithm synthesizes repairs to reconcile the
changes. Our user interface provides a lightweight mechanism for previewing and choosing a
solution when there is ambiguity, inherent to the setting of a general-purpose language.
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We used our new version of Sketch-n-Sketch to author 10 examples comprising approximately
1400 lines in total, demonstrating how a variety of interactive documents and applicationsÐweb
pages, Markdown-to-HTML translators, scalable recipe editors, and what-you-see-is-what-you-get
(WYSIWYG) LATEX editorsÐcan be programmed in a way that allows direct manipulation changes
to propagate automatically back to the program. Moreover, our prototype implementation typically
synthesizes program repairs for our examples in between 0 and 2 seconds, which suggests that our
techniques can be further developed and optimized for more full-featured, interactive settings.

Contributions and Outline. To summarize, this paper provides the following contributions.

(1) We present the notion of bidirectional evaluation, where arbitrary programs in a general-purpose
functional language can be run in reverse in order to produce useful edits to the program. To
achieve this, we define an evaluation update algorithm thatÐcompared to typical evaluationÐ
receives an expected output value as an argument, used to synthesize repairs to the expression
such that it computes the expected value. (ğ3.1)

(2) We develop an approach for custom update lenses that allow experts to augment evaluation
update with more advanced or domain-specific program updates. To improve the utility of the
łbuilt-inž evaluation update algorithm, we show how to define custom update lenses for several
common functional programming patterns. (ğ3.2)

(3) We implement our approach within Sketch-n-Sketch; the new system is available on the web
at http://ravichugh.github.io/sketch-n-sketch/. Our implementation includes optimizations to
make the update algorithm perform well in practice, as well as programming conveniences
found in practical, ML-style functional languages. Our examples and experiments demonstrate
that the expressiveness and performance of bidirectional evaluation in Sketch-n-Sketch helps
integrate the benefits of programmatic and direct manipulation. (ğ4 and ğ5)

In the remainder of the paper, unqualified references to Sketch-n-Sketch refer to the new system.
Next, in ğ2, we describe an overview example to introduce the workflow enabled by bidirectional
evaluation in Sketch-n-Sketch, before describing the approach in detail.

2 OVERVIEW

Consider the task for a web developer to implement an HTML table that displays each of the United
States along with their capital cities. In Sketch-n-Sketch, the developer first writes a program in
LeoÐa functional language that resembles Elm (http://elm-lang.org/)Ðthat generates a prototype.
The initial programming effort required to encode all intended data and presentation constraints is
similar to when using traditional text-based programming environments. Afterwards, however,
Sketch-n-Sketch allows the developer to: (a) edit the data and design parameters through direct
manipulation interactions; and (b) add rows to the table through a custom, library-defined user
interface. Sketch-n-Sketch synthesizes program repairs based on these interactions.

2.1 Initial Programming Effort

Figure 1 shows a Leo program to generate an initial prototype. In the following, we typeset string
literals in the program with typewriter font (e.g. "California") and strings in the HTML output
with slanted font (e.g. "California"). Lines 1 through 8 define the table data; each element of states
is a three-element list, containing a state name, two-letter abbreviation, and capital city. For now,
the data is incompleteÐunknown abbreviations and capitals are marked with question marks
(e.g. "AL?" on lines 1ś2) and empty strings (i.e. "" on lines 4ś8).

The main definition, starting on line 10, generates the output HTML table. First, the developer
decides to produce two output columns: one for the state name (e.g. "Alabama"); and one for
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Fig. 1. A program written in Sketch-n-Sketch that generates an HTML table of state names and capital cities.
This initial programming effort is performed with traditional, text-based editing of source code.

its capital city, concatenated with the state abbreviation (e.g. "Montgomery, AL"). The headers

definition (line 11) contains text for the header row, and the rows definition (lines 12ś15) contains
the text to display in subsequent rows by mapping each three-element list [state, abbrev, cap]

in states to the two-element list [state, cap + ", " + abbrev]. The headerRow definition
(lines 18ś20) uses library functions Html.tr and Html.th to generate table row and header elements,
respectively, for the top of the table. These Html functions take three argumentsÐa list of HTML
style attributes, a list of additional HTML attributes, and a list of HTML child nodesÐand produce
straightforward encodings of HTML values to be rendered.
The stateRows definition (lines 22ś33) generates the remaining rows of the table. The colors

list (line 23) defines two initial colorsÐ"lightgray" and "white"Ðand the expression (line 25)
chooses one of these colors based on the parity of row index i (received as a parameter from the
List.indexedMap library function). The columns definition (lines 26ś29) places the text for each
state and its capital cityÐin a two-element list rowÐinside Html.td elements, which comprise a
row built from the Html.tr expression (line 31).

Lastly, the expression on line 35 builds the overall Html.table element comprising headerRows
and stateRows. The output Leo value is translated to HTML in a straightforward manner and
rendered graphically in the right half of Sketch-n-Sketch, as shown in Figure 1.
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Fig. 2. Direct Manipulation Text Edit. (1) In the "Capital" column, the user changes "AL?" in the first row to
"AL" and "AL?" in the second row to "AK". (2) The output is out of synchronization with the program, so the
editor displays a pop-up menu. (3) The user hovers the Update Program menu item, which then displays a
nested menu with one possible program repair. (4) The user hovers this option, which previews the new code
and output in the left and right panes, respectively. The screenshot captures this last step.

2.2 Direct Manipulation of Output Text

Having encoded the intended programmatic relationships for the data and design of the table, next
the developer wants to correct the missing data (lines 2ś8). In Sketch-n-Sketch, the developer
can edit text directly in the graphical user interface that displays the output (the right half of the
editor). The interactions described in this subsection, and the following ones, can be viewed in
screencast videos, available on the web.

Computing and Displaying ProgramUpdates. Figure 2 shows an example of how the developer
edits the data in the program through the graphical user interface interface; the screenshot shows
the editor state after the following sequence of user actions.
First, in the first state row of the output table, the user deletes the question mark after "AL" in

the string ", AL?". Next, in the second row, the user replaces the string "AL?" with "AK". As soon
as the user begins editing the output table, Sketch-n-Sketch detects that the program output is
no longer synchronized with the program. As a result, Sketch-n-Sketch highlights the code box
with a red border and displays a pop-up window with a menu item labeled Update Program.

When the user hovers over Update Program, Sketch-n-Sketch runs the evaluation update
algorithm to synthesize a repaired program that, when re-evaluated, generates the same result as
the directly manipulated output. In this case, the algorithm computes one solution that, along with
an option for reverting the changes, is displayed in a nested menu to the right of Update Program.
The screenshot in Figure 2 captures the editor state when the user hovers over the first item in the
nested menu, at which point Sketch-n-Sketch displays a preview of the updated program (resp.
output) directly in the left (resp. right) pane. The caption "L2 Removed [?] L3 Replaced [L?] by [K]"

summarizes the string differences, on lines 2 and 3, between the original and updated program text.
These differences are highlighted in red and orange in the code box to further help communicate
the proposed changes to the user. In this case, the new program matches the user’s expectations, so
the user clicks the menu item (not shown in the screenshot) to confirm the update, returning the
program and output to a synchronized state.

Ambiguity. Whereas each of the previous output changes resulted in a single solution, Figure 3
shows a change that leads to multiple. In the third row, the user replaces ", AR?" with "Phoenix, AZ".
When the Update Program menu item appears and is hovered, two solutions are displayed (in
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Fig. 3. Direct Manipulation Text Edit with Ambiguity. (1) In the "Capital" column, the user changes "?, AR?"
in the third row to "Phoenix, AZ". (2) The editor displays a pop-up menu. (3) The user hovers the Update
Program menu item, resulting in two candidate program repairs. (4) The user hovers over the second one,
which previews the (undesirable) changes to the code and output. The screenshot captures this last step.

addition to the option to revert the changes). The screenshot in Figure 3 captures the editor state
when the second solution is hovered. Both solutions replace "AR?" on line 4 with "AZ", as desired,
but the second solution inserts "Phoenix" as a prefix to the ", " separator string used in the
concatenation on line 14. By viewing the preview of the outputÐwith "Phoenix" appearing in all
rowsÐthe user quickly determines that this change, though consistent with the output edit, is
undesirable. So, the user hovers and selects the first option (not shown in the screenshot). Wanting
the separator string on line 14 always to remain constant, the developer edits the source code to
wrap the string "", "" in a call to Update.freeze (not shown), which instructs Sketch-n-Sketch
never to change this expression when computing program updates.

Browser Conveniences for Navigating Output Text. The user fills in missing data for the re-
maining rows directly in the output pane. Having frozen the separator string already, none of these
changes lead to ambiguity. During these interactions, the user benefits from text-editing features
built-in to the browserÐusing the Tab key to advance to subsequent columns and rows, and arrow
keys to navigate the text cursor within the selected cellÐwhich make it yet more convenient to
specify these changes in the graphical user interface rather than in the source code editor.

2.3 Direct Manipulation with DOM Inspector

Having corrected the table data (as shown in Figure 4), next the developer experiments with different
styles. Sketch-n-Sketch allows the developer to use the existing Developer Tools provided by
modern browsers to inspect and modify arbitrary elements and attributes in the DOM (i.e. the
HTML output of the program); these changes are used to trigger the update algorithm.

Browser Conveniences for Editing Styles. Suppose the user wants to try out different colors for
alternating rows, to replace the colors on line 23. Figure 4 shows how the user can affect such
changes. First, the user right-clicks the "Hartford, CT" cell and selects Inspect from the browser’s
pop-up menu. As a result, a Developer Tools pane appears at the bottom of editor (as shown in the
screenshot), with the selected cell in focus in the DOM Element Inspector. The rightmost panel
provides a Styles Editor, which the developer can use to change the background-color from the
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Fig. 4. Direct Manipulation DOM Inspector Edit. (1) The user right-clicks the "Hartford, CT" cell and selects
Inspect from a built-in browser pop-up menu. (2) The DOM Inspector pane appears at the bottom of the
editor window with the selected table data element in focus. (3) The user changes the background-color
of the selected table cell from lightgray to yellow. (4) The editor displays a pop-up menu. (5) The user
hovers the Update Program menu item, resulting in one program repair. (6) The user hovers over the option,
previewing the effect of the new color on all alternating rows. The screenshot captures this last step.

initial lightgray color. The developer starts typing ye and, then, using the built-in conveniences
provided by the Styles Editor for changing color valuesÐa dropdown menu of related colors,
equipped with tab completion and previewsÐdecides to try the color yellow.

As with the text changes before, Sketch-n-Sketch detects that the output is no longer synchro-
nized with the program, and so displays the Update Program menu. The screenshot in Figure 4
captures the editor state when the user hovers the single solution, which replaces "lightgray" on
line 23 with "yellow" to reconcile the change. In the result of this new program, the color of all
cells in alternating rows are changed, not just the one cell directly manipulated.

Automatic Synchronization. The developer wants to experiment with colors, but manually
hovering and clicking the Update Program menu will be tedious when trying several options. So,
the developer clicks the button labeled Auto Sync in the right toolbar. Now whenever the output
is changed, the program update algorithm is automatically run after a delayÐ1000ms by default,
but this choice can be configured by the program. When there is a single solution, it is applied
automatically. Thus, the developer can try several colors in the DOM Inspector in rapid fashion,
viewing how the change propagates (almost) immediately to the entire table.

Small Updates. Next, the developer wishes to add a background color to headerRow, whose styles
list on line 19 does not include a color. The following interactions are not depicted in screenshots,
but they are in the accompanying videos. After selecting the first column of the header row in the
browser DOM Inspector (either by right-clicking, or using the browser’s built-in Inspect cursor), the
developer, again, uses the Styles Editor, which provides an easy way (with a mouse click or Enter
key press) to add a new attribute. The user adds a new background-color attribute set to the value
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Fig. 5. Custom Add Row Button. (0) Initially, the last table row is "Connecticut". (1) The user clicks the "+"
button to the right of the "Connecticut" row. (2) The editor displays a pop-up menu. (3) The user hovers Update
Program, resulting in one program repair. (4) The user hovers over the option, which previews a new program
that generates an additional placeholder row after "Connecticut". The screenshot captures this last step.

orange, and the corresponding program update adds the pair ["background-color", "orange"]
to the styles list on line 19. Unlike all of the local updates, described above, which replaced only
constant literals in the program with new ones, this solution includes a structural update that alters
the structure of the abstract syntax tree. We call this structural update pretty local because the only
change to the structure is inserting a new literal at a leaf of the AST, i.e. inside another list literal.
In our experience (ğ5), even just łsmallž program updatesÐlocal and pretty localÐenable a variety
of desirable interactions.

2.4 Direct Manipulation with Custom User Interfaces

What about adding a new row with columns "Delaware" and "Dover, DE" to the bottom of the output
table? The desired program repair is to add a new three-element list ["Delaware", "DE","Dover"].
to the end of the states list. As we will explain in ğ3, our algorithm does not automatically perform
the complex reasoning requiredÐpushing the newly inserted value ["DE", "Dover, DE"] back
through the call to List.map on line 13 of Figure 3Ðto produce the desired program repair.

User-Defined ProgramUpdates with Lenses. For situations like this, Sketch-n-Sketch provides
users (or library writers) a mechanism to define a custom lens that augments a łbarež function with
a second update function that defines the łreverse semanticsž for the bare function.
Using lenses, the expert user can define a module called TableWithButtonsÐwhich performs

more advanced evaluation update than for basic List.mapÐto serve as a drop-in replacement for
the basic table-constructing functions in the Html library. Figure 5 shows how, using this library,
the user can click a button (labeled "+") to indicate that a new row should be added at that position.
Suppose the user clicks the button next to the "Connecticut" row, hovers Update Program, and then
hovers the single solution (as shown in the screenshot). The resulting program adds a dummy
row on line 9 in the states list, which can later be filled in through the basic direct manipulation
text interactions as before. Thus, by using lenses to augment the functionality of the built-in
update algorithm, expert users and library writers can implement custom user interface features
for manipulating the particular bidirectional functional documents under construction.
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Expressions e ::= c | x | λp.e | e1 e2 | e1 :: e2 | {e | f = ef } | e . f

| let p e1 e2 | letrec p e1 e2 | if e1 e2 e3 | case e (p1 e1) · · ·

| freeze e | applyLens e1 e2

Constants c ::= n | b | s | [] | {} | (+) | (*) | (++) | (&&) | not | · · ·

| updateApp | diff | merge

Patterns p ::= c | x | p1 ::p2 | {f1 = p1; · · · }

Environments E ::= − | E, p 7→ v

Values v ::= c | (E, λp.e ) | [v1, · · ·] | {f1 = v1; · · · }

Fig. 6. Syntax of LittleLeo.

3 LittleLeo: A BIDIRECTIONAL FUNCTIONAL PROGRAMMING LANGUAGE

In this section, we present the syntax and bidirectional evaluation semantics for LittleLeo, a
lambda-calculus that models the Leo language supported in our implementation.1

Syntax. The syntax of LittleLeo is defined in Figure 6. Constants include numbers n, booleans b,
strings s , the empty list [], the empty record {}, and primitive operators. The operators updateApp,
diff, and merge facilitate the definition of custom lenses, which will be presented after basic
evaluation update. Values v include constants, closures (E, λp.e ) where the environment E binds
free variables in the body of the function λp.e , and lists and records with multiple components.
The definition of expression forms is spread across three lines: those on the first two lines

are standardÐconstants c , variables x , function application e1 e2, list construction e1 ::e2, record
extension {e | f = ef }, record field projection e . f , (simple and recursive) let-bindings let x e1 e2,
conditionals if e1 e2 e3, and case expressions case e (p1 e1) · · ·; and those on the third line are
specific to the definition of custom update functions (discussed in ğ3.2).

3.1 Bidirectional Evaluation

Figure 7, Figure 8, and Figure 9 define the bidirectional evaluation semantics for LittleLeo; the
big-step evaluation rules (prefixed łE-ž) are standard, while the evaluation update (or simply, update)
rules (prefixed łU-ž) are novel.2 We refer to an environment-expression pair E ⊢ e as a program.

The evaluation update judgement (E ⊢ e ) ⇐ v ′⇝ (E ′ ⊢ e ′) states that łwhen updating its output
value to v ′, the program E ⊢ e updates to E ′ ⊢ e ′.ž The parentheses are for clarity; we typically omit
them. When only the expression (resp. environment) changes, we sometimes say łthe expression
(resp. environment) updates to a new expression (resp. environment).ž We sometimes say łpush
v ′ (or changes to v) back to ež in reference to evaluation update. The judgement does not refer to
the original value v from forward-evaluation; if needed by a premise of an update rule, it is re-
computed. Update rules come in three varieties: replacement rules overwrite values (base constants
and closures) in the programwith new ones; primitive rules define how to update operations on base
values, lists, and dictionaries; and propagation rules carry the effects of replacement and primitive
rules to the rest of the program (through variables, function calls, conditionals, etc.).

3.1.1 Replacement Rules. There are two axioms, for replacing values. The rule U-Const says that,
when updating its output value to c ′, the expression c updates to c ′; the environment E remains
unchanged. The rule U-Fun says that, when updating its output value to the closure (E ′, λp.e ′),

1 LittleLeo is a backronym for ła Little language extended with Lenses, Eval, Objects, and other features.ž
2 By analogy to bidirectional type checking [Chlipala et al. 2005; Pierce and Turner 2000], evaluation may be thought of as
łvalue synthesisž and evaluation update as łvalue checking.ž
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Evaluation (E ⊢ e ) ⇒ v Evaluation Update (E ⊢ e ) ⇐ v ′⇝ (E ′ ⊢ e ′)

E ⊢ c ⇒ c
[E-Const]

E ⊢ c ⇐ c ′⇝ E ⊢ c ′
[U-Const]

E ⊢ λp.e ⇒ (E, λp.e )
[E-Fun]

E ⊢ λp.e ⇐ (E ′, λp.e ′)⇝ E ′ ⊢ λp.e ′
[U-Fun]

E = E1, x 7→ v, E2 x < dom(E2)

E ⊢ x ⇒ v
[E-Var]

E = E1, x 7→ v, E2 x < dom(E2)

E ⊢ x ⇐ v ′⇝ (E1, x 7→ v ′, E2) ⊢ x
[U-Var]

E ⊢ e1 ⇒ v1
E, x 7→ v1 ⊢ e2 ⇒ v2

E ⊢ let x e1 e2 ⇒ v2
[E-Let]

E ⊢ e1 ⇒ v1
E, x 7→ v1 ⊢ e2 ⇐ v ′2 ⇝ E2, x 7→ v ′1 ⊢ e

′
2

E ⊢ e1 ⇐ v ′1 ⇝ E1 ⊢ e
′
1

E ′ = E1 ⊕
e1 e2

E
E2

E ⊢ let x e1 e2 ⇐ v ′2 ⇝ E ′ ⊢ let x e ′1 e
′
2

[U-Let]

E ⊢ e1 ⇒ (Ef , λx .ef ) E ⊢ e2 ⇒ v2 Ef , x 7→ v2 ⊢ ef ⇒ v

E ⊢ e1 e2 ⇒ v
[E-App]

E ⊢ e1 ⇒ (Ef , λx .ef )

E ⊢ e2 ⇒ v2
Ef , x 7→ v2 ⊢ ef ⇐ v ′⇝ E ′

f
, x 7→ v ′2 ⊢ e

′
f

E ⊢ e1 ⇐ (E ′
f
, λx .e ′

f
)⇝ E1 ⊢ e

′
1

E ⊢ e2 ⇐ v ′2 ⇝ E2 ⊢ e
′
2

E ′ = E1 ⊕
e1 e2

E
E2

E ⊢ e1 e2 ⇐ v ′⇝ E ′ ⊢ e ′1 e
′
2

[U-App]

E ⊢ e1 ⇒ True

E ⊢ e2 ⇒ v

E ⊢ if e1 e2 e3 ⇒ v
[E-If-True]

E ⊢ e1 ⇒ True

E ⊢ e2 ⇐ v ′⇝ E2 ⊢ e
′
2 E ′ = E ⊕

e1 e2
E
E2

E ⊢ if e1 e2 e3 ⇐ v ′⇝ E ′ ⊢ if e1 e
′
2 e3

[U-If-True]

E ⊢ e ⇒ v

E ⊢ freeze e ⇒ v
[E-Freeze]

E ⊢ e ⇒ v

E ⊢ freeze e ⇐ v ⇝ E ⊢ freeze e
[U-Freeze]

Fig. 7. Bidirectional Evaluation for LittleLeo (selected rules).

the program E ⊢ λp.e updates to E ′ ⊢ λp.e ′. Although directly updating closures in the output of a
program will, perhaps, be less common than other types of values, this rule is nevertheless crucial
for łreceivingž changes propagated from elsewhere in the program.

3.1.2 Primitive Rules for Base Values. How to update primitive operations may vary in different
deployments of bidirectional evaluation. The replacement and propagation rules are agnostic to
these choices. Figure 8 shows several simple primitive rules, which we find useful in practice. For
example, there are two update rules, U-Plus-1 and U-Plus-2, which, respectively, re-evaluate the
left or right operand (e1 or e2) to a number (n1 or n2) and then push back the updated difference
(n′ − n1 or n′ − n2) entirely to that operand. Because there are two update rules, there are two valid
program updates for addition expressions.

3.1.3 Propagation Rules. How to update variables and variable binding forms is the heart of our
formulation; they are what allow changes to values at the leaves of the program to flow throughout
the program. To simplify the presentation, the evaluation and update rules for let-bindings and
function calls assume only variable patterns rather than arbitrary ones, as in our implementation.

Variables. When U-Var updates the output of x to v ′, the environment E updates to E ′ which is
like the original except that x is bound to the new value v ′; the expression x remains unchanged.
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[U-Plus-1]

E ⊢ e1 ⇒ n1
E ⊢ e1 ⇐ n′ − n1 ⇝ E1 ⊢ e

′
1

E ⊢ e1 + e2 ⇐ n′⇝ E1 ⊢ e
′
1 + e2

[U-Plus-2]

E ⊢ e2 ⇒ n2
E ⊢ e2 ⇐ n′ − n2 ⇝ E2 ⊢ e

′
2

E ⊢ e1 + e2 ⇐ n′⇝ E2 ⊢ e1 + e
′
2

[U-Lt]

E ⊢ e1 < e2 ⇒ b

E ⊢ e1 < e2 ⇐ ¬b ⇝ E ⊢ e1 >= e2

[U-And-True]

E ⊢ e1 ⇐ True⇝ E1 ⊢ e
′
1

E ⊢ e2 ⇐ True⇝ E2 ⊢ e
′
2 E ′ = E1 ⊕

e1 e2
E
E2

E ⊢ e1 && e2 ⇐ True⇝ E ′ ⊢ e ′1 && e
′
2

[U-And-False-1]

E ⊢ e1 ⇐ False⇝ E1 ⊢ e
′
1

E ⊢ e1 && e2 ⇐ False⇝ E1 ⊢ e
′
1 && e2

Fig. 8. Update for Primitive Operations (selected rules).

Let-Bindings. Like E-Let, the first premise of U-Let evaluates the expression e1 to a value v1,
to be bound to x and added to E when subsequently considering the expression body e2. Dual
to E-LetÐwhich, in the new environment, evaluates e2 to a value v2Ðthe second premise of
U-Let pushes back the expected value v ′2, producing a (potentially updated) expression body e ′2
and (potentially updated) environment E2, x 7→ v ′1 that is structurally equivalent to the original
environment E, x 7→ v1 (their domains are equal). Notice that, to produce this new program, the
value v ′1 bound to x may differ from the original value v1. To discharge this obligation, the third
premise pushes v ′1 back to e1, producing a (potentially updated) expression e ′1 and (potentially
updated) environment E1 that is structurally equivalent to E. Putting these pieces together, the
new expression is let x e ′1 e

′
2. What remains is to reconcile E1 and E2 with the original E. The rules

ensure that E1 and E2 are both structurally equivalent to E, but each may have induced updates to
one or more bindings in E. As demonstrated below, updated bindings may conflictÐthere may be
variablesy such that E1 (y) and E2 (y) are different. To produce the final environment, the conclusion
of U-Let uses an environment merge operation, E1 ⊕

e1 e2
E
E2, discussed next.

Environment, Value, and Expression Merge. The merge operationÐused by all rules that update
multiple subexpressionsÐtakes two structurally equivalent environments E1 and E2 to merge, as
well as several optional arguments: the original environment E, and the expressions e1 and e2 that
were updated when E1 and E2 were produced. We consider two implementations for this operation.

Definition 3.1 (Conservative Two-Way Merge). Two-way environment merge E1 ⊕
e1 e2E2, reconciles

bindings as follows (the subscript E is omitted because the original environment is ignored).

(E1, x 7→ v1) ⊕
e1 e2 (E2, x 7→ v2) = (E ′, x 7→ v ) where E ′ = E1 ⊕

e1 e2E2 and v =




v1 if v1 = v2
v1 if x < fv (e2)
v2 if x < fv (e1)

If neither environment updates the x binding, or if both update it to the same new value, the
first equation adds the new value to the merged environment. Otherwise, the second (resp. third)
equation adds the new value v1 from the left environment E1 (resp. v2 from the right environment
E2) only if x does not appear free in e2 (resp. e1).

Two-way merge is conservative; if a variable appears free in both expressions, two-way merge
requires that it be updated to the same new value in both environments. In other words, all
occurrences of an updated variable must be updated consistently for the overall update to succeed.
Though restrictive, this would be necessary to ensure that the new program evaluates to the
updated value; ğ3.1.5 describes a correctness property that depends on the use of two-way merge.
In practice, however, we prefer to support interactions where the user can update only a subset
of the usesÐoften just oneÐof a particular variable. To support this workflow, we propose an
alternative way to merge environments.
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Definition 3.2 (Optimistic Three-Way Merge). Three-way environment merge E1⊕EE2 performs
three-way value merge on variable bindings as follows (the superscripts e1 and e2 are omitted
because these expressions are ignored).

(E1, x 7→ v1)⊕(E, x 7→v ) (E2, x 7→ v2) = (E ′, x 7→ (v1⊕vv2)) where E
′
= E1⊕EE2

The value merge operation v1⊕vv2 (not shown) recursively traverses the subvalues of three struc-
turally equivalent values, until the rule for base casesÐfor merging constantsÐchooses v2 if it
differs from v (even if v2 and v1 conflict) and v1 otherwise.3 Closure values include expressions, so
we also define a three-way expression merge operation e1⊕ee2 (not shown) in similar fashion.

Three-way merge is optimistic; it succeeds despite conflicts. As a result, use of three-way merge
precludes the correctness property enjoyed by the use of two-way merge. Nevertheless, we expect
three-way merge to be the default mode of use in practice and choose it for our implementation
(ğ4). In our experience, we find that desirable updates are often produced by this configuration (ğ5).

Example 3.3. Consider the expression let x = 1 in [x, x ], which evaluates to [1, 1]. (The rule
U-Cons for updating lists, discussed in detail below, updates the list element expressions and then
merges the updated environments.) If updated to, say, [1, 2] or [0, 2], the U-Let, U-Cons, and
U-Var rulesÐtogether with the right-biased, three-way mergeÐcombine to update the program to
let x = 2 in [x, x ], which, when evaluated, produces [2, 2]. Using two-way merge, however,
update fails to produce a solution.

Function Application. Having seen the basic approach to propagating changes through environ-
ments, we now turn to the rule U-App for function application (Figure 7).4 The approach is like
that of U-Let, extended now to also deal with the closure through which a value flows. The first
two premises re-evaluate the function e1 to a closure (Ef , λx .ef ) and the argument e2 to a value v2.
The third premise pushes the updated value v ′ back through the function call, specifically, through
the function body ef , where the closure environment is extended with the binding x 7→ v2. This
produces a new function body e ′

f
and a new, structurally equivalent environment E ′

f
, x 7→ v2

′ with

a new argument value v ′2. Three terms must be reconciled with the original program: the function
environment (E ′

f
), the function body (e ′

f
), and the function argument (v ′2). The fourth premise

pushes the first and second terms, in the form of the closure (E ′
f
, λx .e ′

f
), back to the original

function expression e1; the result is a new program E1 ⊢ e
′
1. The fifth premise pushes the third term,

v ′2, back to the original argument expression e2; the result is a new program E2 ⊢ e
′
2. Environment

merge is used to combine E1 and E2, and the updated function application expression is e ′1 e
′
2.

Control-Flow. Rule U-If-True (Figure 7) pushes the updated value back to the then-branch, as-
suming that the same branch will be taken by the new program. Rule U-If-False (not shown)
does the same for the else-branch. Notice that new environment E ′ is the result of merging the
original environment E with the environment E2 produced when updating the then-branch. The
conservative two-way merge would ensure that all free variables of e1 must be bound to the same
values in E ′ as in E; thus, the guard expression in the new program would evaluate to the same
boolean value. As discussed above, however, our implementation is configured to use three-way
merge. Indeed, several of our example use cases for direct manipulation interaction (ğ5) purposely
alter control-flow, e.g. because of a change to a boolean flag.

Example 3.4. Consider the expression (λx .if x == 1 then x else 3) 1 which evaluates to 1. If
the user updates the value to 2, the change will be pushed back to the then-branch, and then back

3 An implementation could, instead, choose to favor updates from the left, or even propagate all combinations of choices.
4 Consistent with the standard rewriting of let x e1 e2 to (λx .e2) e1, U-Let is derivable from U-Fun and U-App.
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E ⊢ e1 ⇒ v1
E ⊢ e2 ⇒ [v2, · · ·]

E ⊢ e1 :: e2 ⇒ [v1,v2, · · ·]
[E-Cons]

E ⊢ e1 ⇐ v ′1 ⇝ E1 ⊢ e
′
1

E ⊢ e2 ⇐ [v ′2, · · ·]⇝ E2 ⊢ e
′
2 E ′ = E1 ⊕

e1 e2
E
E2

E ⊢ e1 :: e2 ⇐ [v ′1,v
′
2, · · ·]⇝ E ′ ⊢ e ′1 :: e

′
2

[U-Cons]

E ⊢ [e1, · · · , en ] ⇒ v ∆ = Diff (v,v ′) E ⊢ [e1, · · · , en ]⇐ Diff ∆⇝ E ′ ⊢ e ′

E ⊢ [e1, · · · , en ]⇐ v ′⇝ E ′ ⊢ e ′
[U-List]

E ⊢ []⇐ Diff []⇝ E ⊢ []

E ⊢ e2 ⇐ Diff ∆⇝ E ′ ⊢ e ′2

E ⊢ e1 :: e2 ⇐ Diff Keep ::∆⇝ E ′ ⊢ e1 :: e
′
2

E ⊢ e2 ⇐ Diff ∆⇝ E ′ ⊢ e ′2

E ⊢ e1 :: e2 ⇐ Diff Delete ::∆⇝ E ′ ⊢ e ′2

E ⊢ e ⇐ Diff ∆⇝ E ′ ⊢ e ′

E ⊢ e ⇐ Diff Insert (v ′) ::∆⇝ E ′ ⊢ exp(v ′) :: e ′

E ⊢ e1 ⇐ v ′⇝ E1 ⊢ e
′
1 E ⊢ e2 ⇐ Diff ∆⇝ E2 ⊢ e

′
2 E ′ = E1 ⊕

e1 e2
E
E2

E ⊢ e1 :: e2 ⇐ Diff Update(v ′) ::∆⇝ E ′ ⊢ e ′1 :: e
′
2

Fig. 9. Evaluation and Update for Lists.

through the variable use to the function argument. If using two-way merge, the update would
fail because the updated variable, x , is free in the guard expression. If using three-way merge, the
updated expression would be (λx .if x == 1 then x else 3) 2, which, when evaluated, takes the
else-branch and produces 3 instead of 2.

Expression Freeze. The update rules are applied łautomaticallyž to all relevant (sub)expressions
when trying to reconcile the program with a new output value. The freeze e expression is seman-
tically a no-op (E-Freeze in Figure 7) but is one simple way to control the update algorithm, by
requiring that the expression e and values v it computes remain unaltered (U-Freeze in Figure 7).

3.1.4 Primitive Rules for Lists and Dictionaries. We have considered replacement, primitive, and
propagation rules for a core language with base values. We now discuss primitive rules for updating
data structures in LittleLeo, namely, lists and dictionaries.

List Construction. Figure 9 shows a standard evaluation rule (E-Cons) for list construction,
and a corresponding update rule (U-Cons) that propagates changes to the head (resp. tail) value
back to the head (resp. tail) expression. Notice that these rules preserve the structure of existing
cons expressions; we choose not to include structure-changing rules that add and remove cons
expressions because of the amount of ambiguity they would introduce.

List Literals: Pretty Local Updates. The primitive rules presented in Figure 8 update expressions
without altering their structure. Even rules such as U-Lt, which update the operator, preserve the
arity of the application. This approach ensures a predictable class of łsmallž changes, but the same
restriction applied to data structures would preclude seemingly benign changesÐe.g. updating the
empty list expression [] with new value [1].

Our design includes the rule U-List (Figure 9) to allow insertion and deletion inside list literals
that appear in the programÐwe refer to this form of structural change as pretty local to emphasize
its limited effect on the program structure. We write [e1, · · · , en ] as syntactic sugar for the
nested list construction expression e1 :: · · · ::en ::[] that terminates with the empty list. The helper
procedure Diff (v,v ′) takes the original and updated list values and computes a value difference ∆ (a
łdeltaž), in this case, a sequence of list difference operationsÐKeep, Delete, Insert (v ′), or Update(v ′).
Our implementation of Diff uses a dynamic programming approach that, intuitively, attempts to
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preserve as many contiguous sequences from the original list as possible. We reuse the syntax
of the evaluation update judgement for one that pushes back value differences (rather than just
values), with the subscript Diff to help distinguish them: E ⊢ [e1, · · · , en ] ⇐ Diff ∆ ⇝ E ′ ⊢ e ′

computes the list literal e ′ that results from traversing the original list literal and the difference
operations, keeping, inserting, deleting, or updating expressions as dictated by the difference.

String, Records, and Dictionaries. Evaluation rules (not shown) for string concatenation e1 + e2,
record literals {f1 = e1; · · · }, and record extension {e | f = ef } are standard. Dictionary values
are built using primitive operators empty, get, insert, remove, and fromList. Update rules for
dictionaries work much the same way as those for lists, based on dictionary difference operations

that are analogous to the list difference operations, discussed above. Update rules for records and
record extension are also similar, except that there are no insertions or deletions. Update rules for
concatenating strings and appending lists require a more nuanced approach, as explained in ğ3.2.

3.1.5 Correctness. We now describe two correctness properties that relate evaluation and evalua-
tion update. The first correctness property is straightforward.

Theorem 3.5 (EvalUpdate). If E ⊢ e ⇒ v , then E ⊢ e ⇐ v ⇝ E ⊢ e . (i.e. If the program E ⊢ e

evaluates to v , pushing the same value back to the program does not change the program.)

Next, we define the notation E ⊢ e ⇐ v ′
✓

⇝ E ′ ⊢ e ′ (with a check mark above the right arrow)
to refer to the conservative version of update that uses two-way environment merge. The second
correctness property pertains only to this version.

Theorem 3.6 (Conservative UpdateEval). If E ⊢ e ⇐ v ′
✓

⇝ E ′ ⊢ e ′, then E ′ ⊢ e ′ ⇒ v ′. (i.e. If,

when using two-way merge, pushing v ′ back to the program E ⊢ e produces E ′ ⊢ e ′, the new program

evaluates to the updated value).

Recall that the two challenges for correctness of update are when variables uses are not updated
consistently and when control-flow decisions deviate from their original directions. The two-way
environment merge operator is defined and used precisely to curb these situations. A detailed proof
sketch is available in Supplementary Appendices [Mayer et al. 2018].

3.2 Customizing Evaluation Update

Because of the inherent expressiveness of the language, evaluation update cannot provide all
possible intended behaviors that users may desire. Consider the common evaluation and update
pattern, below, that is not well-handled by the update algorithm.

E ⊢ map ef [e1, e3, e4] ⇒ [v1, v3,v4 ]

E ⊢ map ef [e1, e3, e4]⇐ [v ′1,v2,v3,v
′
4,v5]⇝ E ′ ⊢ map e ′f [e

′
1, e2, e3, e

′
4, e5]

︸                                    ︷︷                                    ︸
Desired, but unavailable, program repair

The Diff operation computes the following alignment between the original and updated values:
that v1 and v4 have been updated to v ′1 and v

′
4, and new values v2 and v5 have been inserted after

(the updated versions of) v1 and v4. What would be desirable is an updated program of the form
indicated above, where e ′

f
, e ′1, and e

′
4 are updated because of the two updated function calls ef e1

and ef e4, and where the synthesized expressions e2 are e5 are passed to the function e ′
f
, ideally

producing the inserted values v2 and v5.
Unfortunately, the evaluation update approach described so far cannot synthesize repairs of the

desired form above. To understand why, consider the standard definition of map:
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E ⊢ e1.apply e2 ⇒ v

E ⊢ applyLens e1 e2 ⇒ v
[E-Lens]

E ⊢ e2 ⇒ v2 v3 = {input = v2; outputNew = v
′}

E, x 7→ v3 ⊢ e1.update x ⇒ {values = [ · · · , v ′2, · · ·]}

x fresh E ⊢ e2 ⇐ v ′2 ⇝ E ′ ⊢ e ′2

E ⊢ applyLens e1 e2 ⇐ v ′⇝ E ′ ⊢ applyLens e1 e
′
2

[U-Lens]

E ⊢ e ⇒ {fun = (E1, λx .ef ); input = v2; outputNew = v
′}

S = { v ′2 | (E1, x 7→ v2 ⊢ ef ⇐ v ′⇝ E1, x 7→ v ′2 ⊢ ef ) } |S | = n

E ⊢ updateApp e ⇒ {values = [S1, · · · , Sn ]}
[E-Update-App]

E ⊢ e1 ⇒ v1
E ⊢ e2 ⇒ v2 ∆ = Diff (v1,v2)

E ⊢ diff e1 e2 ⇒ val (∆)
[E-Diff]

E ⊢ e1 ⇒ v1
E ⊢ e2 ⇒ [v2, · · · , vn ] v = v2⊕v1

· · ·⊕v1
vn

E ⊢ merge e1 e2 ⇒ v
[E-Merge]

Fig. 10. Evaluation and Update for User-Defined Lenses and Primitive Helper Functions.

letrec map f list = case list of [] -> []; x::xs -> f x :: map f xs

Notice that the original list value [v1,v3,v4] is constructed completely within the body of map:
non-empty (cons) nodes are created in the list = x::xs branch and the empty node is created in
the list = [] branch. To reconcile the updated list,v5 would have to be inserted into the empty list
[] in map, and v2 would have to be inserted into the cons-node. Besides the fact that we disallow
structural updates anywhere but E-List (cf. the łList Literals: Pretty Local Updatesž discussion in
ğ3.1), such changes are not desirableÐthe new cons-node would not be the result of applying f to
anything; it would end up inserting the same element in between all elements in the output; and
we want the definition of map, a library function, to be frozen anyway.

In short, the evaluation update has no means to provide simultaneous reasoning about structural
changes to list values and computations they pass through. This is one simple programming pattern
not handled well; surely there are many others.

3.2.1 User-Defined Update Functions. Instead of providing built-in support for updating map and
other common building blocks, we expose an API for users (or libraries) to customize evaluation
update. Specifically, when a łbarež function is called, the program may optionally provide a second
łupdatež function that specifies how to push new argument values back to the call. A pair comprising
bare and update functions forms a lens [Foster et al. 2007], specified in LittleLeo as a record with
the following type (written in comments starting with ‘--’ because, currently, our presentation
and implementation do not include types):

-- type alias Lens a b =

-- { apply: a -> b, update: {input: a, outputNew: b} -> {values: List a} }

In lieu of types, the expression applyLens e1 e2 syntactically marks the function application as a lens
application. The E-Lens rule (Figure 10) projects the apply field of the lens argument e1 and then
applies it to the argument e2. To push a new value v ′ back to the lens application applyLens e1 e2,
the U-Lens rule uses the update function of the lens. The function argument is re-evaluated to
v2 and, together with the new output v ′, is passed to the e1.update function. Each value v ′2 in the
values list of results is pushed back to the expression argument e2 and then used as the argument
of the updated function call expression.

Because the lens mechanism in LittleLeo is intended to provide a way to customize the built-in
update algorithm, we expose several internal operatorsÐupdateApp, diff, and merge (Figure 6)Ð
that custom update functions can refer to. We will explain the semantics of these operations
(Figure 10) as they arise in the discussion below.
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-- type alias MaybeOne a = List a

-- maybeMapSimple : (a -> b) -> MaybeOne a -> MaybeOne b

maybeMapSimple f mx = case mx of [] -> []

[x] -> [f x]

-- maybeMapLens : a -> Lens (a -> b, MaybeOne a) (MaybeOne b)

maybeMapLens default =

{ apply (f, mx) = Update.freeze maybeMapSimple f mx

, update {input = (f, mx), outputNew = my} =

case my of

[] -> { values = [(f, [])] }

[y] ->

let z = case mx of [x] -> x; [] -> default in

let res = Update.updateApp {fun (g,w) = g w, input = (f,z), outputNew = y}

in { values = map (\(newF,newZ) -> (newF, [newZ])) res }

}

-- maybeMap : a -> (a -> b) -> MaybeOne a -> MaybeOne b

maybeMap default f mx =

Update.applyLens (maybeMapLens default) (f, mx)

Fig. 11. Custom Lens for MaybeOne.map.

3.2.2 Example Lenses. Before defining a custom lens for list map, we start with a simpler example:
mapping a łMaybeOnež value, encoded as a list with either zero or one elements.

Maybe Map. Figure 11 shows a straightforward definition of maybeMapSimple, which is frozen to
prevent changes to this łlibraryž function. When reversing calls to maybeMapSimple, the built-in
update algorithm cannot deal with adding or removing elements from the argument list (as with
list map, discussed above). Thus, Figure 11 defines a custom lens called maybeMapLens.

To deal with the case when the updated value includes an element when there was none before,
maybeMapLens is parameterized by a default element. The functions apply and update take
arguments f and mx as a pair. The maybeMap definition on the last line of Figure 11 is defined as
the application of this lens (wrapped in applyLens) to its arguments packaged up in a pair. In the
forward direction, the apply function simply invokes maybeMapSimple. In the backward direction,
the update function uses a record pattern to project the input and outputNew fields and handles
two cases. If the new output my is [], the updated MaybeOne value should be [], and the function
f is left unchangedÐthese are paired and returned as a singleton list of result values. If the new
output my is [y], the goal is to push y back through a call of f. If the original input maybe value mx
is [x], then the function call f z = f x needs to be updated. If the original input maybe value is [],
however, there was no original input; so, f z = f default needs to be updated.

To achieve this, the primitive updateApp operator is used to push y back through f z using the
built-in algorithm (starting with rule U-App). The semantics of this operation (E-Update-App in
Figure 10) computes all possible updated values v ′2 and puts them in a list returned to the source
program. In this way, updateApp exposes the U-App rule to custom update functions. Each value
that comes out in results.values is a pair of a possibly-updated function newF and possibly-
updated argument newX; to finish, the second is wrapped in list and this pair forms a solution. This
function łbootstrapsž from the primitive U-App rule, lifting its behavior to the MaybeOne type.
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For example, consider the function display [a, b, c] = [a, c + ", " + b] (essentially
the function on line 14 of Figure 1) and two calls to maybeMap defaultState display, where the
definition defaultState = ["?","?","?"] serves as placeholder state data:

maybeRow1 = maybeMap defaultState display [["New Jersey", "NJ", "Edison"]]

maybeRow2 = maybeMap defaultState display []

Updating the result of maybeRow1 to [] leads to updating the argument to []. Updating the
result of maybeRow2 to [["New Jersey", "Edison, NJ"]] leads to updating the argument
to [["New Jersey", "NJ", "Edison"]]. Furthermore, updating the result of maybeRow2 to
[["New Jersey", "Edison NJ"]] simultaneously inserts the appropriate three-element list and
changes the separator ", " to " ". None of these three interactions is possible if instead calling
maybeMapSimple display, which is updated by the built-in algorithm alone.

List Map and Append. The maybeMapLens definition demonstrates an approach for dealing with
updated transformed valuesÐpushing them back through function application, as usualÐand for
dealing with newly inserted valuesÐpushing them back through function application with a default
element. We can extend this approach to a listMapLens definition that operates on lists with
arbitrary numbers of elements rather than just zero or one. The definition (not shown) is a mostly
straightforward recursive traversal, with a few noteworthy aspects: (1) the use of primitive operator
diff (for which E-Diff in Figure 10 exposes the Diff operation used by E-List) to align the original
and updated output lists; (2) the use of primitive operator merge (for which E-Merge exposes the
three-way value merge operation) to combine multiple updates to the input function; and (3) when
inserting a new element into the output list, choosing to use an adjacent element from the original
list (rather than a caller-specified default) to push back through a function call.
Our library and examples implement several additional lenses for list functions. For example,

we define a lens for appending lists, which generates multiple candidate solutions when inserting
elements at the łsplitž between the two input lists. (Our built-in evaluation update for concatenating
strings does the same.)

Control-FlowRepair. As discussed in ğ3.1, our evaluation update rules for conditionalsÐU-If-True
andU-If-FalseÐassume that, after update, the predicate will evaluate to the same boolean and, thus,
the same branch will be taken. Our treatment of conditionals does not update guard expressions,
but we can define a lens that simulates that effect.
The if_ function in Figure 12 employs a lens to augment the built-in approach for updating

if-expressions with the ability to change the guard expression, by pushing a new boolean value
back to it. The lens simply wraps an if-expression in the forward direction, but provides different
behavior in the backward direction. If the original guard c evaluates to True and the original
else branch e evaluates to the new expected value v, then pushing False back to c constitutes a
second solution, called updateGuard. The treatment for when c evaluates to False is analogous.
For example, if_ True 1 2 evaluates to 1; when pushing 2 back to the lens application, False is
pushed back to the guard.

Figure 12 shows an absolute value function, defined in terms of if_ rather than if. The expression
map abs (List.range -2 2) evaluates to [-2,-1,0,-1,-2], which is not what is intended;
the desired fix would change the guard predicate (the first argument) to (n >= 0). Suppose the
programmer updates the last element in the output (-2, produced by the else-branch (-1 * n)) to 2.
Because the branch not taken (the then-branch, n) produces the desired value, True is pushed back
to (n < 0) (cf. updateGuard). To resolve this update, the U-Lt rule (Figure 8) flips the relational
operator (keeping the operands the same), thus producing the new guard (n >= 0).
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if_ cond thn els =

Update.applyLens

{ apply (c, t, e) = if c then t else e

, update {input=(c,t,e), outputNew=v} =

let updateSameBranch =

if c then (c, v, e) else (c, t, v)

in

let updateGuard =

if (c && e == v) || (not c && t == v) then [(not c, t, e)] else []

in

{ values = updateSameBranch::updateGuard }

}

(cond, thn, els)

abs n =

-- if (n < 0) then n else (-1 * n)

if_ (n < 0) n (-1 * n)

Fig. 12. Custom Lens for Control-Flow Repair.

4 Sketch-n-Sketch: DIRECT MANIPULATION PROGRAMMING FOR HTML

We implemented bidirectional evaluation in the Sketch-n-Sketch direct manipulation program-

ming system [Chugh et al. 2016]. In addition to the novel update algorithm, our new system supports
writing programs in LeoÐan Elm-like language that extends LittleLeo with several program-
ming conveniences (http://elm-lang.org/)Ðfor generating HTML output. Users can edit the HTML
output of the program using graphical user interfaces, which trigger the evaluation update to
reconcile the changes. Our implementation is written in a combination of Elm and JavaScript,
extending the implementation of Sketch-n-Sketch by Chugh et al. [2016]. Our changes consti-
tute more than 12,000 lines of code. The new system, Sketch-n-Sketch v0.7.1, is available at
http://ravichugh.github.io/sketch-n-sketch/.
Our implementation of program update is configured to use three-way environment merge, fa-

voring the flexibility to update only some uses of a variable over the correctness guarantees afforded
by two-way merge (ğ3.1). In this section, we describe: optimizations and other enhancements to
turn the evaluation update relation into an algorithm suitable in a practical setting; features in
Leo to support programming practical applications; and a user interface for manipulating HTML
output values and choosing program updates.

4.1 Enhancements for Program Update in Practice

Our implementation addresses several concerns necessary for the evaluation update relation
described in ğ3 to form the basis for a practical algorithm.

Optimization 1: Tail-Recursive Update. A direct implementation of the update algorithm would
result in a call stack that increases with each recursive call. Because the stack space in current
browsers is relatively limited, this approach leads to exceptions for many benchmarks, even
relatively small ones. Because the heap space is usually less limited than stack space, we applied a
rewriting of the update procedure to continuation-passing style, which makes the update procedure
tail-recursive and, thus, compile to a JavaScript while loop. This transformation is also compatible
with another feature that returns a lazy list of all solutions computed by the algorithm. In the future,
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we could also use this transformation to repeatedly pause the computation, so that it would not
block the user interface (which is single-threaded in JavaScript).

Optimization 2: Merging Closures. Three-way merging environments naïvelyÐfollowing the
definition of E1⊕EE2Ðwould require exponential time. Each closure in the environment refers to
the prefix of the environment (which might have been modified). Hence, to compare closures, we
need to compare their environments, and so on. A simple, but crucial, optimization consists of
merging bindings for only those variables which appear free in the associated function bodies.

Optimization 3: Propagating and Merging Edit Differences. Another fundamental scalability
issue is that the evaluation update judgement propagates expected values v ′, even though large
portions of v ′ may be identical to the original values v . Instead, our implementation computes an
edit difference between v and v ′ that, together with those values, serves as a compact but complete
characterization of the changes. For example, for numbers and booleans, the edit difference is a
boolean flag indicating whether the value has changed (i.e. whether U-Const needs to process this
value). For lists, the edit difference is a list of index ranges associated with a number of insertions,
a number of removals, or an update based on a value differenceÐcomparable to the list differences
described in łList Literals: Pretty Local Updatesž (ğ3). Edit differences for other types of values, for
expressions, and for environments are similar. These edit differences are propagated through the
evaluation update algorithm.

We also expose edit differences to user-defined lenses, so that they can benefit from this optimized
representation. First, compared to the presentation of U-Lens in Figure 10, we also include the field
outputOld in the record argumentv3 to update: its valuev is the original result of the function call
e1.apply e2. The update function can choose to take outputOld into account when returning its
list of new argument values. Furthermore, to take advantage of the optimized representation, the
record argument also contains a diffs field that describes the edit differences that turn outputOld

into outputNew. The update function can optionally return a diffs field (in addition to values), in
which case, the evaluation update algorithm can continue to propagate changes using the optimized
representation.5 In our library, we implement a foldDiff helper function and use it to define edit
difference-based versions of the reversible map and append lenses described in ğ3.2.

Usability: Whitespace and Formatting. So that updated programs remain readable and con-
ducive to subsequent programmatic edits, our implementation takes care to insert and remove
whitespace in a way that respects the whitespace conventions of surrounding expressions (cf. the
list highlighted in green in Figure 5). To achieve this, our abstract syntax tree explicitly records
whitespace in between expressions and concrete syntax tokens, and these are used to determine
how much whitespace to insert before and after newly created expressions.

4.2 Enhancements for Programming in Practice

In addition to the constants, lists, and records presented in LittleLeo (Figure 6), Leo also supports
tuples, user-defined datatypes, and value-indexed dictionaries with an arbitrary number of bindings.
Our current implementation does not perform type checking, but a standard ML-style type system
is fully compatible with our approach and is planned for future work.
Programs that generate HTML typically perform a large amount of string processing and

JavaScript code generation. We briefly describe language extensions that facilitate such tasks.

5 Reasoning with values and diffs can be thought of as łstatesž and łoperationsž, respectively, in the terminology of
synchronization, as explained by Foster et al. [2007].
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Regular Expressions. Our implementation provides two common regular expression operators.
The first operation, extract re s , takes a regular expression re (as a string) and a string s to transform,
and optionally returns a list of all the groups of the first match of re to s . The update semantics
consists of taking a set of non-overlapping modified groupsÐtaken greedily from the rightÐand
pushing them back to their original place in the original string. For example, extract "b(.)" "bab"
produces Just ["a"]. If the result is updated to Just ["x"], the string s is updated to "bxb".

The second operation, replace re f s , takes a regular expression re, a function f , and a string s to
transform. The function argument provides access to thematch information, including the index into
the string, the subgroups and their positions, the global match, and the replacement number. The
function uses this information to produce a string. Interestingly, the final string after replacement
is an interleaved concatenation of strings that did not change and applications of the lambda to the
record associated to each match. For example, in the string "arrow", if we replace "(rr|w)" with
the function f = λm. if m.match == "w" then "r" else "rm", we build an expression that looks
like "a" + f {match = "rr"} + "o" + f {match = "w"}. We use this expression both for evaluation
and update. For the latter, we first run the update procedure on this expression. Then, in the
environment, we recover an updated function f ′. To update the original string s , we gather the
information about the matches that changed (including the subgroups) and apply them to s .

Using the reversible extract operation, we are able to build a String library with reversible vari-
ants of several common operations: take, drop, match, find, toInt, trim, uncons, and sprintf.

Long String Literals. Many languages allow string literals to refer to variables or expressions,
which are then expanded (a.k.a. interpolated). Our implementation of Leo provides long string
literalsÐdistinguished by triple double quotes and which may span multiple linesÐthat support
string interpolation of expressions (written """@(e)"""). To further facilitate string processing
tasks, we also allow variables to be defined within long string literals (written """@let x e; s""").

Dynamic Code Evaluation. As is common in web programming, several of our examples use a
dynamic code evaluation primitive, eval e , to dynamically compute strings that are meant to parse
and evaluate as Leo expressions. The evaluation and update rules (not shown) are straightforward;
the former employs the parser to convert a code string value s into an expression to evaluate,
and the latter additionally employs the unparser to push an updated code string s ′ back to the
expression that generated it.

HTML-to-String Lens. We designed a lens for parsing an HTML string to a list of Leo-encoded
HTML nodes. Challenges for this implementation include: tolerating a variety of malformed
documents (as most practical HTML parsers do); and carefully tracking whitespace, quotation
marks, and other characters that are not stored in the resulting DOM (these details are needed
to respect the formatting conventions of the program). As a result, for convenience, users can
copy-and-paste HTML strings into long string literals.

4.3 Direct Manipulation User Interface for Updating HTML Output Values

Our last major extension to Sketch-n-Sketch is the user interface for updating output values
and interacting with the program update algorithm. Below, we describe several different direct
manipulation value editors. Regardless of which value editor is used tomake changes, the connection
to the update algorithm is as described in ğ2 (cf. łComputing and Displaying Program Updates,ž
łAmbiguity,ž and łAutomatic Synchronizationž).

Value Editors. We implement three kinds of user interfaces for manipulating output. The first
mode is a Graphical User Interface, which allows the user to make edits directly in the HTML-
rendered output. Currently, the main edits we support are text-based: in our translation of HTML
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text nodes, we add the "contenteditable" attribute to allow changes to the text. In the future,
we could add direct manipulation widgets for common properties of other kinds of elements, such
as color, position, size, padding, etc. The second mode is a Text Interface, which allows the user to
make edits to the output value rendered as a string. The interface allows the string to be rendered
either as łrawž HTML or in the syntax of Leo values. The final mode integrates with the built-in
DOM Inspector provided by modern web browsers. The features provided by the browser allow
users to, for example, select DOM elementsÐeither by right-clicking or by navigating in a separate
view of the DOM treeÐand then use built-in text- and GUI-based panels for adding, removing, and
editing elements and their attributes.

5 EXAMPLES AND EXPERIMENTS

To validate our approach, we implemented 10 example programs in Sketch-n-SketchÐcomprising
approximately 1400 lines of Leo code in totalÐthat are designed to facilitate a variety of useful
direct manipulation interactions enabled through bidirectional evaluation. Figure 13 summarizes
our examples and experiments. Examples marked with asterisks have accompanying videos on the
web. Next, we describe noteworthy aspects of the example programs. Then, we report results from
performance experiments for the update algorithm.

5.1 Examples

We describe several example programs and corresponding direct manipulation interactions.

States Table (Overview Example). The States Table A benchmark in Figure 13 includes direct
manipulation text and DOM edits (like those described in ğ2.2 and ğ2.3), and the States Table B
benchmark corresponds to interactions with custom buttons (like those in ğ2.4). Although the
implementation details are not crucial, the main takeaway is that custom user interface features
can be built by: (i) defining a lens that, in the forward direction, attaches extra łstatež to some data
and, in the backward direction, refers to the updated state to determine how to update the data;
and (ii) exporting HTML elements that store the state and handle eventsÐusing JavaScript code
generated as Leo stringsÐthat update the state in response to browser events.

Scalable Recipe Editor. A recipe is presented in such a way that ingredient amounts can be
scaled easily with respect to a desired number of servings. The source of the recipe is stored as
a string containing HTML code. There, every occurrence of "multdivby(p,q)" is first replaced
using regexes (ğ4.2) by the number (p/q)*servings, where servings is defined for the entire
recipe. The resulting string is then evaluated by a string-to-HTML lens. To insert the quantity
ł5 eggsž proportional to a current number of servings of 10, users can simply enter "_5_ egg" in
the output, and the "_5_" is replaced by custom lenses to "multdivby(5,10)" in the source text.
Similarly, inserting "_5s_" inserts a conditional plural in "s". Because all proportional quantities
are connected to servings through invertible arithmetic operations, the user can edit any of the
values as desiredÐe.g. to scale the recipe to make 32 servings, or to find how many servings can be
made with 12 eggsÐall others are updated accordingly.

Mini Markdown-to-HTML Editor. We ported a regular expression-based PHP program that
converts Markdown strings to HTML strings.6 We can, for example, demarcate a string in the
output text with underscores that get pushed back to the Markdown string. Then, after evaluation,
the text is italicized due to <em> tags inserted by regular expression transformations. For more
advanced functionality, we implemented lenses to: translate Markdown headers (#, ##, etc.) to their

6 Markdown: https://daringfireball.net/projects/markdown/; PHP program: https://gist.github.com/jbroadway/2836900
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Example LOC Eval #Upd #Sol Fastest Upd Slowest Upd Average Upd

States Table A* 37 304±20 11 1.18 57±5 154±20 85±20 200×
States Table B* 126 774±70 7 1 256±40 456±50 331±80 700×
Recipe* 193 1455±80 17 1.05 243±30 2237±200 1328±500 16×
Budgetting 37 328±11 7 2 7±0.9 13±2 9±2 80×
MVC 71 720±50 10 1 216±10 483±120 289±80 40×
Linked-Text 91 855±40 5 1.2 1886±140 2252±300 2025±200 5×
Markdown 128 1179±110 6 1 1369±90 1889±150 1607±200 13×
Dixit 130 705±40 15 1 87±6 2205±4000 417±1500 120×
Translation 122 357±20 8 2 187±12 1085±200 415±200 50×
LATEX in HTML 534 1648±200 6 1 413±50 3183±500 943±1000 150×
Total / Average 1469 833±400 92 1.18 (723±900) (70×)

Fig. 13. LOC: Lines of code in Leo; Eval: Time to evaluate program (in milliseconds) before any di-
rect manipulation changes; #Sol is the average of number of solutions obtained during interaction.
Fastest/Slowest/Average Upd: Of the #Upd invocations of program update, the fastest/slowest/average
time taken by the optimized version (in milliseconds)Ðaveraged from 10 trialsÐwith the speedup against an
average of 10 trials of the unoptimized. Asterisks mark examples for which screencast videos are available.

HTML counterparts (<h1>, <h2>, etc.); translate unordered and ordered list elements (e.g. <li> to
either "* A" or "1. A"); and translate <div> and <br> elements to the correct number of newlines.

Additional Examples. Common to all examples is that textÐtext elements, links, buttons, place-
holders, attributes, etc.Ðcan be changed from the output. Here, we briefly describe the remain-
ing examples. Budgetting is the computation of a budget for which, if we update the surplus
(income - expenses) to be zero, program updates include all choices for changing the cost
values of lunch, registration, or incomes such as sponsors. Model-View-Controller (MVC)
demonstrates an interactive page that manipulates the state of the application with buttons and
user-defined functions. In Linked-Text, users can create links (łvariablesž) between portions of text
so that updating any clone updates them all. Dixit is a game scoresheet to track bets and compute
scores. Translation is an instruction manual in two languages where users can change the language,
add, and clone translations. LATEX in HTML supports writing programs in a miniature LATEX subset,
including \newcommand, \section, \ref, \label, and simple math commands such as \frac. An
interesting lens for this example allows reference numbers in the output to be updated and pushed
back to corresponding reference names in the LATEX program.

5.2 Performance of Update Algorithm

To validate that our program update algorithm is fast enough to support an interactive direct
manipulation workflow, we measured the running time for several benchmarks. Figure 13 shows a
summary of our results. Each benchmark consists of an example program and an interactive editing

session. The łLOCž column shows the number of Leo lines of code for the initial program and łEvalž
shows the running time (in milliseconds) averaged over 10 trials. For each example, we performed
a series of direct manipulation edits and program updatesÐeach session produced a sequence of
calls to the update algorithm. ł#Updž shows the number of calls to the program update algorithm
during the session. The interactive sessions for programs marked with asterisks were recorded and
are available on the web.
We conducted an offline performance evaluation by replaying the sequence of updates in each

session.We ran our benchmarks onNode.js 6.9.5 underWindows 10 running on an Intel(R) Core(TM)
i7-6820HQ CPU@ 2.70GHz with 32 GB of RAM, allocating 4GB of RAM and one of the 8 processors
because JavaScript is single-threaded. For each call to program update, we measured the time to
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compute solutions with an unoptimized version of the algorithmÐwhich includes Optimizations
1 and 2 described in ğ4.1Ðand a łfully-optimizedž versionÐwhich also includes Optimization 3
regarding edit differences. Note that without Optimizations 1 and 2, the algorithm runs out of stack
or heap stack on most benchmarks. We performed each of these calls 10 times; the running times in
the last three columns of Figure 13 are averages over the 10 trials. The łFastest Updž column shows
the (average) running time of the fastest call to update (using the optimized algorithm) for the
given session; łSlowest Updž shows the slowest; łAverage Updž shows the (average) running time
off all calls in the session, with the speedup of running time between optimized and unoptimized.

Results. The data in Figure 13 lends support to three observations.

Edit Difference Optimization is Crucial for Performance. Consider the łAverage Updž column of the
last row; these averages are in parentheses to indicate that they are averages across calls to update,
as opposed to averages of the rows above. Across all 92 calls to update across all benchmarks, the
average running time for the fully-optimized algorithm is 723ms. This is a 70× speedup compared
to the unoptimized version. Thus, the use of edit differences, rather than plain values, is crucial for
making evaluation update feasible in our setting.

Performance of Evaluation Update is Similar to Evaluation. The average evaluation update time
(723ms) is nearly the same as the average evaluation time (833ms). Because the evaluation update
algorithm performs much the same work as evaluation, this suggests that our optimizations achieve
most opportunities for speedup. Further gains, both for evaluation and update, are likely to result
from optimizing the interpreterÐor compiling to łnativež JavaScript codeÐas opposed to additional
optimizations of the current approach. Extending evaluation update to the setting of compiled code
is a direction for future work.

Little Ambiguity in Our Example Interactions. Across all 92 calls to update across all benchmarks,
the average number of solutions is 1.18. The degree of ambiguity for program repairs is heavily
dependent on the programs and interactions under consideration, so this number should not be
interpreted too broadly. However, we argue that our example programs and interactions demonstrate
a variety of useful and realistic scenarios for interactive editing. Together with the data, this suggests
that experts can develop programs in such a way that direct manipulation edits lead to the desirable
repairs without an overwhelming amount of ambiguity.

6 RELATED WORK

The motivations and approach of our work overlap with various efforts towards bidirectional
programming, automated program repair, and combining programming languages with direct
manipulation user interfaces.

Bidirectional Programming. Lenses [Foster et al. 2007] have been an effective way to build
bidirectional transformations in a variety of domains, including relational data [Bohannon et al.
2006], semi-structured data [Foster et al. 2007; Kawanaka and Hosoya 2006], strings [Barbosa et al.
2010; Bohannon et al. 2008], and graphs [Hidaka et al. 2010].
Our work involves two notions of łbidirectionality.ž First, we seek to reverse all programs in a

general-purpose language; that is, we define a łbackward interpreter.ž Second, we allow user-defined
functions to customize the behavior of the backward interpreter, by exposing its operations in an
API inspired by lenses.

Round-Trip Laws. The foundational work on bidirectional programming requires that lenses satisfy
various round-trip laws. In contrast, our approach is simply for users to write arbitrary pairs of (well-
typed) apply and update functions. Many of the lenses we write to achieve custom user interface
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interactions (cf. ğ5.1) violate even the basic laws, by introducing extra state that is unconditionally
łresetž in the reverse direction. We validate our more practically motivated design choices by
demonstrating a variety of desirable interactions. In future work, static and dynamic mechanisms
for checking round-trip laws could be incorporated for situations in which programmers wish them
to be enforced.

Alignment. Our update algorithm uses a Diff operation based on a single heuristic, and this op-
eration is exposed to user-defined lenses through the diff primitive. For example, given a list
[a,b] updated to [a,c,b'], the alignment computed by Diff says that b is updated to c and that
b' is a new element inserted at the end. However, aligning b and b', and treating c as an insertion,
may be preferable in a particular setting. Furthermore, nested differences are not supported by
Diff . For example, if [x,y,z] is updated to [x, ["b",[],[y]], z], alignment fails because the
expression which produced y is assumed to be updated with ["b",[],[y]]. Instead, that expression
should be updated with y and then propagated upwards. In future work, it would be useful to
integrate alternate alignment mechanismsÐand expose these choices to user-defined lensesÐas in
the matching lenses framework proposed by Barbosa et al. [2010].

Alternatives to Lens Combinators. The łpoint-freež combinator-style programming modelÐwhich
prohibits giving names to the results of intermediate computationsÐcan pose significant usability
challenges. One line of recourse is to forgo programming transformations at all, instead synthesizing
them from specifications of the desired input and output data formats and examples connecting
the two; Miltner et al. [2018] and Maina et al. [2018] present such techniques for useful classes
of bidirectional string transformations. Several other approaches aim to provide programming
conveniences for writing bidirectional transformations.
Bidirectionalization aims to automatically derive backward-functions for programs written with

fewer syntactic restrictions. Syntactic bidirectionalization approachesÐwhich inspect the syntax of
function definitionsÐhave been developed for domain-specific languages, including a first-order,
affine, treeless language [Matsuda et al. 2007] and a graph transformation language [Hidaka et al.
2010]. The semantic bidirectionalization approach of Voigtländer [2009]Ðwhich inspects only the
types of function definitionsÐderives backward-functions for polymorphic functions written in the
general-purpose programming language Haskell. This approach relies on the fact that polymorphic
functions can discriminate data structures but not the values contained within: evaluation is
instrumented with index information, later used to align updated values with the originals. This
approach can handle a variety of examples, as long as output changes preserve the shape of the
original output data.
Matsuda and Wang [2015, 2018] propose techniques that bring lens programming closer to

an unrestricted style of functional programming. With applicative lenses [Matsuda and Wang
2015], lenses are lifted into lens functions, which can be manipulated with familiar higher-order
programming constructs. Although written in a general-purpose functional language, programs
must explicitly manipulate lens functions in an applicative style (rather than as plain łunliftedž
functions). Furthermore, although explicit lambdasÐwhich introduce names (i.e. łpointsž) for the
results of intermediate computationsÐare allowed, variable uses are restricted: when duplicating a
value (by using a variable more than once), each copy must be wrapped with a tag that specifies
whether or not it is relevant for subsequent updates.

In HOBiT [Matsuda and Wang 2018], bidirectional transformations can be specified as unlifted
functions. To achieve this, they stage evaluation of a surface expression into a partially evaluated
residual expression, which contains no function applications in evaluation positions. Given an
environment that binds its free variables, a second łget-evaluatorž reduces the residual expression
to a value. A łput-evaluatorž pushes an updated value back to the residual expression, producing an
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updated environment. The latter two evaluators form a lens, by viewing the residual expression as
a forward-function and the original environment as its input. Akin to the aforementioned approach
of tagging variable uses, HOBiT employs an environment weakening operation to tolerate updates
to variables that do not appear free in the expression being updatedÐtwo-way environment merge
plays a similar role in our approach (cf. łEnvironment, Value, and Expression Mergež in ğ3.1).
Unlike our approach, however, the HOBiT backward-evaluator is limited to first-order values, and
the resulting changesÐto the environmentÐare not pushed back to the surface program. Our
approach eliminates the distinction between surface and residual expressions, so that all expression
formsÐincluding function applicationÐin a general-purpose language benefit from bidirectionality.
The result is that both data and code can be smoothly updated within our system.

Two additional aspects of HOBiT are noteworthy. One is its treatment of control-flow: each
branch of a case expression is equipped with an exit condition and reconciliation function to support
łbranch switchingž as in the approach of Foster et al. [2007]. The expectation is that, in practice,
branching decisions will often differ between forward- and backward-evaluation. In contrast, our
examples mostly exercise updates which preserve branching decisions (though ğ3.2.2 shows how
some branch switching can be supported in our approach). The second noteworthy aspect is the
inclusion of an appLens operation (similar to our applyLens) to allow new primitive lenses to be
defined. For the class of bidirectional transformations that can be programmed in both HOBiT and
Sketch-n-Sketch, it would be interesting to perform detailed case studies in future work.

Applications to Documents and Web Applications. Several authors have employed bidirectional
transformations to develop structured documents and web applications.

Hu et al. [2008] design a programmable editor for tree-structured documents, where tree trans-
formations are defined in an invertible language of (injective) functions [Mu et al. 2004a,b]. Several
aspects of their work are noteworthy in relation to ours. One is the presence of a duplication
operator. To restore the equality invariant between copies of duplicated data, the reverse semantics
for this operation gives precedence to the value of an updated copy; the process fails if copies are
updated inconsistently. Our three-way merge operation similarly gives precedence to updated uses
of a variable, but our default choice is to allow conflicting updates (cf. łEnvironment, Value, and
Expression Mergež in ğ3.1). Second, their support for duplication precludes the round-trip laws of
[Foster et al. 2007]. Instead, they prove a weaker łstabilityž law that, intuitively, says that only one
update needs to be performed per user edit. Third, their system tracks edit tags which demarcate
inserted, deleted, and updated values. To further optimize our update algorithm, our user interface
could track edit tags and then push back edit differences only to modified sub-values, rather than
the entire output value (cf. łPropagating and Merging Edit Differencesž in ğ4.1).
Rajkumar et al. [2014] define lens combinators in Haskell for creating HTML form lenses that

push updated data (including insertions and deletions) back to the program. As with the approach
of Matsuda and Wang [2015], this approach requires programming explicitly with lenses to obtain
bidirectionality, and updates are limited to data.
Within this category of work, the goals of Nakano et al. [2009] are closest to ours: to provide a

programming system in which both data and code can be updated through direct manipulation
GUIs. In their system, Vu-X , programs are written in Bi-X , a bidirectional XQuery-like language
for transforming XML databases into HTML pages [Liu et al. 2007]. Compared to the language
used by Hu et al. [2008], Bi-X is more expressive, including support for variable binding, multi-
argument functions, and paths for addressing nodes in an XML document. Regarding their language,
user-defined functions are limited to the top-level of the program, and transformations on data
structures (e.g. map) are primitive. In contrast, our approach supports a general-purpose, higher-
order language and allows transformations of lists, records, and user-defined data structures to be
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customized. Regarding their user interface, there are two editing modes in Vu-X , one for updating
content and one for editing code. In the former mode, as in our system, data and style values can be
directly manipulated, triggering synchronization and re-evaluation. In the latter mode, a separate
code builder interface allows the user to interactively change the structure of the program, using
concrete sample data to aid the development process. Our system does not currently provide any
user interface support for changing the structure of the program; this would be useful to pursue
in future work. We will also want to expose different editing modes for different users; this may
be useful even without a code builder, as some constants (e.g. the separator string on line 14 of
Figure 1) may be thought of as code rather than data. Similar to when using three-way merge in
our approach, their approach does not provide a strong correctness property, because user updates
may influence other parts of the output due to duplication. Finally, Vu-X provides some support
for distributed editing and access control. Providing such mechanisms in future work is needed to
truly allow a wide range of usersÐfrom łexpert programmersž to łdesignersž to łend usersžÐto
interact with and modify the application, as permissions allow, within the same system.

Program Repair. Monperrus [2018] defines automatic repair as łthe transformation of an unac-
ceptable behavior of a program execution into an acceptable one according to a specificationž and
provides a comprehensive bibliography of static and dynamic repair techniques. Most relevant
among these techniques are two that repair PHP programs based on changes to HTML output.

Samimi et al. [2012] present two tools: a first-pass static analysis tool, PHPQuickFix, that repairs
individual print statements which produce malformed HTML; and a second-pass dynamic analysis
tool, PHPRepair , that instruments the evaluation of print statements on a given test suite. Using
these print traces, together with the expected HTML output for each input test, PHPRepair generates
string constraints where solutions correspond to the addition, removal, and modification of print
statements to satisfy the input-output behavior of the test suite. Although limited to modifying
constant string arguments to print statements (but not strings that flow through primitive operations,
variables, and function calls), the PHPRepair achieves good results in practice.

The approach of Wang et al. [2012] performs dynamic taint analysis of strings with finer granu-
larity than PHPRepair . When the user makes a change to the HTML output (for a single run, unlike
multiple runs as in PHPRepair), the string trace is used to repair string constants in the program.
Then they perform a combination of static and dynamic analysis to determine the impact of the
repair on the output. This analysis may conclude that automated repair is not possible (e.g. due to
ambiguity, effects on unrelated parts of the output, or because the origins of the transformed string
are not in the source program), in which case the user is prompted to intervene. The trace-based
approach in earlier versions of Sketch-n-Sketch [Chugh et al. 2016] is akin to that of Wang
et al. [2012]. In contrast, our approach is also dynamic but employs evaluation update rather than
recording traces. Currently, our system allows the user to preview changes to the code and output,
but does not attempt to characterize and communicate the overall impact of the changes.

Programming with Direct Manipulation in Prior Sketch-n-Sketch. Chugh et al. [2016] and
Hempel and Chugh [2016] developed a direct manipulation programming system for generating
and manipulating SVG graphic designs. Hempel and Chugh [2016] propose that graphical user
interface features should be co-designed with program transformations that aim to make łlarge,ž
structural, and often semantics-changing edits that codify the user actions. In future work, it would
be useful to develop analogous łcode buildersž for our HTML setting.
More closely related to our work is the approach of Chugh et al. [2016], which allows łsmallž

changes to output values to be reconciled with the program. Their approach records value traces
for all numeric values. When the user updates a number, the corresponding value-trace equation
is immediately solved, applied to the program, and the new output is renderedÐthe resulting
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workflow provides a continuous, łlivež interaction for equations that can be solved in almost real-
time. When there are multiple solutions, their approach employs simple heuristics to automatically
choose, favoring continuous updates over user interaction to resolve intent. The primary technical
differences in our evaluation update algorithm are that: arbitrary types of values can be changed;
custom update behavior can be defined; and time overhead (from re-evaluation) is traded to save
space overhead (from recording traces). The tradeoff between time and space overhead suggests
that a hybrid, demand-driven approach may be worth investigating, for large programs where both
time and memory are limited resources.

7 CONCLUSION

We presented bidirectional evaluation, which allows arbitrary programs in a general-purpose func-
tional language to be run łin reverse.ž When the output of a program is changed, bidirectional
evaluation synthesizes program repairs based on differences between the original and modified
output values. We demonstrated the practicality of our approach by implementing it within the
Sketch-n-Sketch direct manipulation programming system, using it to develop a variety of HTML
documents and applications that can be interactively edited because of bidirectional evaluation. We
believe these techniques serve as a foundation for a variety of systems to allow users to combine
programming with direct manipulation.
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