
Bacatá: A Language Parametric Notebook Generator
(Tool Demo)

Mauricio Verano Merino

Eindhoven University of Technology

Eindhoven, The Netherlands

m.verano.merino@tue.nl

Jurgen Vinju

Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

Eindhoven University of Technology

Eindhoven, The Netherlands

jurgen.vinju@cwi.nl

Tijs van der Storm

Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

University of Groningen

Groningen, The Netherlands

storm@cwi.nl

Abstract
Interactive notebooks allow people to communicate and col-

laborate through a single rich document that might include

live code, multimedia, computed results, and documentation,

which is persisted as a whole for reproducibility. Notebooks

are currently being used extensively in domains such as data

science, data journalism, and machine learning. However,

constructing a notebook interface for a new language re-

quires a lot of e�ort. In this tool paper, we present Bacatá, a

language parametric notebook generator for domain-speci�c

languages (DSL) based on the Jupyter framework. Bacatá

is designed so that language engineers may reuse existing

language components (such as parsers, code generators, in-

terpreters, etc.) as much as possible. Moreover, we explain

the design of Bacatá and how DSL notebooks can be gener-

ated with minimum e�ort in the context of the Rascal meta

programming system and language workbench.

CCS Concepts • Software and its engineering → Ap-
plication speci�c development environments; Domain speci�c
languages;

Keywords Interactive computing, language workbenches,

domain-speci�c languages, literate programming

ACM Reference Format:
Mauricio VeranoMerino, Jurgen Vinju, and Tijs van der Storm. 2018.

Bacatá: A Language Parametric Notebook Generator (Tool Demo).

In Proceedings of the 11th ACM SIGPLAN International Conference
on Software Language Engineering (SLE ’18), November 5–6, 2018,
Boston, MA, USA. ACM, New York, NY, USA, 5 pages. h�ps://doi.
org/10.1145/3276604.3276981

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00

h�ps://doi.org/10.1145/3276604.3276981

1 Introduction
Interactive notebooks have received much attention in re-

cent years due to the bene�ts they provide regarding imme-

diate feedback, reproducibility, and collaborative features.

Notebooks capture a computational narrative interleaving
code, computed results, interactive visualizations, and docu-

mentation, in a single persisted document. Notebooks have

become immensely popular in �elds such as mathematics,

data science, data journalism, and machine learning.

The Jupyter notebook framework [11] is a popular plat-

form for writing and sharing computational narratives. This

platform comes with built-in support for Python (IPython),

but it provides an API for extending the framework to other

languages, called language kernels. These kernels capture

language speci�c aspects, such as how to highlight syntax

elements, how to call the interpreter or compiler, and how

to visualize computed results.

Developing a language kernel from scratch requires a lot

of e�ort and communication with Jupyter’s low-level wire

protocol. Nevertheless, interactive notebooks would provide

a valuable addition to the toolbox of generic language ser-

vices o�ered by language workbenches [4]. This would open

up the interactive notebook metaphor for DSLs developed

using these language workbenches.

In this tool paper, we present an extended view of Ba-

catá [14], a language parametric notebook generator, based

on the Jupyter platform. Bacatá hides the low-level complex-

ity of Jupyter’s wire protocol, providing generic hooks for

registering language services. Bacatá has been integrated

in the Rascal language workbench [10], which allows ex-

tensive reuse of language components de�ned with Rascal.

As a result, obtaining a notebook interface for a DSL be-

comes a matter of writing a few lines of code. In addition,

we present Bacatá’s support for fully interactive computed

results through Rascal’s web UI framework (Salix). DSLs

that use this library can thus be run from within a Bacatá

notebook, with virtually no additional e�ort.

2 Bacatá
Bacatá is a language parametric interface between the Jupyter

platform and the Rascal language workbench. This interface

https://doi.org/10.1145/3276604.3276981
https://doi.org/10.1145/3276604.3276981
https://doi.org/10.1145/3276604.3276981

SLE ’18, November 5–6, 2018, Boston, MA, USA Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm

generates Jupyter language kernels that reuse language com-

ponents such as grammars, parsers, and Read-Eval-Print

Loops (REPLs). In this section, we describe Bacatá’s general

architecture and Bacatá-Core.

2.1 Architecture
Figure 1 depicts a general overview of Bacatá’s architec-

ture, which highlights its most essential components. Two

primary actors interact with Bacatá, language engineers

and end-users. Language engineers use Bacatá to generate

Jupyter language kernels. Whereas end-users utilize a lan-

guage kernel, previously generated by a language engineer,

to interact with the language through a notebook front-end.

Bacatá consists of two main components, Bacatá-Core and

Bacatá-Rascal. On the one hand, Bacatá-Core abstracts away

the communication layer between Jupyter and the language.

It provides a generic language protocol interface (similar to

Microsoft’s Language Server Protocol [15]), that could be

implemented for language workbenches other than Rascal.

This component is responsible for the interaction between

the executable code written in a notebook and its execution.

On the other hand, Bacatá-Rascal implements the inter-

face o�ered by Bacatá-Core, and provides the means for

languages developed using Rascal to be connected to Bacatá-

Core. To use those services, Bacatá-Rascal takes as input

an Algebraic Data Type (ADT) called Kernel. A Kernel ob-

ject is the entry-point for generating and re-using language-

speci�c artifacts such as CodeMirror [6] modes, language

interpreters, completion functions, and interactive visualiza-

tions. After a language engineer generates a language kernel

using Bacatá, this language becomes part of the supported

languages of the current Jupyter environment.

From the end-user perspective, Bacatá-Rascal and Bacatá-

Core are hidden, since they simply choose their desired lan-

guage kernel from the Jupyter notebook interface. After

selecting the language kernel, Jupyter automatically instan-

tiates the language REPL through Bacatá, which allows the

user to execute code.

2.2 Bacatá-Core
Jupyter o�ers a protocol called the wire protocol [8], which is

a communication protocol implemented using ZeroMQ sock-

ets [1]. This protocol describes a set of sockets and messages

that enable the interaction between third-party languages

and the Jupyter platform. Similarly, it describes the structure

of the messages and how to exchange those messages among

di�erent sockets used by Jupyter. To extend Jupyter’s default

set of languages, language engineers need to implement a

language kernel. A language kernel is a program that runs

user code. To create a language kernel from scratch, language

engineers must follow the low-level wire protocol.

Bacatá-Core o�ers the ILanguageProtocol interface that en-

ables the communication between Jupyter and a language

Kernel ADT

Bacatá
Rascal

User

Kernel.js

Language

Engineer

Bacatá-
Core

ILanguageProtocol

Bacatá

DSL 1 DSL 2 DSL n

generates

Jupyter …

ØMQ

load

defines

http

Figure 1. General overview of Bacatá’s architecture.

data REPL

= repl(Result(str) handler,

Completion(str) completor);

alias Completion

= tuple[int pos, list[str] suggestions];

data Result

= text(str result, list[Message] messages);

Listing 1. REPL ADT.

in a generic way. The primary purpose of this layer is to

abstract the implementation complexity of the wire protocol

and its related socket management. Therefore, the language

developer can focus on the language engineering layer. For

DSLs developed within Rascal, we have implemented this

interface in a language parametric way. In other words, it

pretends to be a particular language kernel, but delegating

all language speci�c service requests to a language imple-

mentation in Rascal.

3 Bacatá-Rascal
As explained before, to support new languages by Jupyter,

developers have to implement a language kernel. Bacatá

o�ers a Jupyter language kernel generator for DSLs written

within the Rascal LWB.

To use Bacatá’s kernel generator, a language engineer

needs to de�ne a function that produces a REPL ADT, which

will be used as the language’s interactive interpreter. The

REPL ADT is de�ned as shown in Listing 1.

1. The language engineer calls the Bacatá function bacata

which accepts one argument, a value of type Kernel.

Bacatá: A Language Parametric Notebook Generator (Tool Demo) SLE ’18, November 5–6, 2018, Boston, MA, USA

data Kernel

= kernel(str language, loc project,

str replFunction, loc logo = |tmp:///|);

Listing 2. Kernel ADT.

The Kernel type (shown in Listing 2), de�nes the con�g-

uration parameters for Bacatá-Core to obtain language

speci�c information (e.g., name and location of the

logo of the language) and �nd relevant resources, such

as the fully quali�ed name of the REPL implementation

to be used.

2. The generated kernel assumes that there is a replFunction

which returns a REPL value. The REPL data type is shown

in Listing 1. It encapsulates two functions, the handler

for interpreting code, and a completor for code comple-

tion. The respective result types of each function are

also shown in Listing 1.

3. Optionally, language engineers can generate CodeMir-

ror syntax-highlightingmodes. This is achieved by pro-

viding a value of the data type Mode (Listing 4), which

can be automatically derived from the language’s gram-

mar.

The function bacata takes a Kernel object to generate a

JSON �le called kernel.json (Listing 3). This �le contains dif-

ferent data such as Jupyter’s connection details (e.g., ZMQ

socket types and ports), language REPL execution instruc-

tions, and language-speci�c information (e.g., name and

logo). When an end-user requests to generate a notebook

for a speci�c language, all this data is being forwarded to

Bacatá. Then, after generating the JSON �le, Bacatá automat-

ically registers the language as part of the Jupyter supported

languages.

{

"argv": [

"java", "-jar",

"/Mauricio/bacata/bacata-dsl.jar",

"{connection_file}",

"home:///projects/Calc",

"Repl::myRepl",

"Calc"

],

"display_name": "Calc",

"language": "Calc"

}

Listing 3. Generated Jupyter kernel for Calc

3.1 Syntax Highlighting
Jupyter’s input cells highlighting is based on the CodeMirror

editor
1
, which supports easily customizable syntax high-

lighting using modes. Modes are like so-called “Textmate

1h�ps://codemirror.net

data Mode

= mode(str name, list[State] states);

data State = state(str name, list[Rule] rules);

data Rule

= rule(str regex, list[str] tokens,

str next = "", bool indent = false,

bool dedent = false);

Listing 4. Syntax Mode ADT

grammars”
2
, which are used by editors such as Textmate, VS

Code, SublimeText, and many others.

The Mode data type shown in Listing 4 models such modes.

A mode has a name and contains several state de�nitions.

Each State then de�nes a few rules that are applicable in that

state. A Rule de�nes a regular expression tomatch a particular

substring and assigns a list of token types to it that will

determine its visual appearance. After a rule has matched,

it may transit to another state via the next property. The

optional booleans indent and dedent control auto indentation

in block constructs.

To support syntax highlighting in Bacatá-generated note-

books, the bacata function supports an optional additional

argument for the mode:

Notebook bacata(Kernel k, Mode mode=mode("", [])) {...}

Language engineers can de�ne suchmodesmanually. How-

ever, Bacatá also features a function to generate simplemodes

for keyword highlighting from a Rascal grammar using re-

�ection.

3.2 Interactive Visualizations
Jupyter notebooks run in the browser, so this allows output

cells to contain almost arbitrary interactive visualizations,

beyond plain text output. Bacatá supports fully interactive,

stateful graphical user interfaces in output cells through

integration with Rascal’s web UI framework Salix
3
, which

emulates Elm’s
4
architecture. Salix supports all the standard

HTML and SVG elements, and features integration with

graph rendering libraries
5
, and chart frameworks

6
.

A Salix application is encapsulated as a value of type

App[&T] where the type parameter &T indicates the type of the

application data model. Under the hood, an App encapsulates

a view to draw UIs using HTML and SVG elements, and an

update function to update the model when a user event is

triggered. Bacatá makes use of such Salix applications by

2h�ps://manual.macromates.com/en/language_grammars
3h�ps://github.com/cwi-swat/salix
4h�p://www.elm-lang.org
5h�ps://github.com/dagrejs
6h�ps://developers.google.com/chart/

https://codemirror.net
https://manual.macromates.com/en/language_grammars
https://github.com/cwi-swat/salix
http://www.elm-lang.org
https://github.com/dagrejs
https://developers.google.com/chart/

SLE ’18, November 5–6, 2018, Boston, MA, USA Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm

Figure 2. Interactive debugging of a Calc expression.

allowing Salix Apps as output of the REPL. This is achieved

by extending the Result data type of Listing 1:

data Result

= ...

| app(App[&T] app, list[Message] messages);

This kind of result can be used to produce fully functional

stateful output cells, leveraging all UI features of Salix.

A Salix application consists of three functions. The �rst

one produces the initial model. The second one is the view

function, which takes a model and draws the UI. Finally, the

update function updates the model.

An example of a fully interactive output cell is illustrated

in Figure 2. It shows an interactive debugger for a simple

calculator language (Calc). The language consists of com-

mands and expressions. Commands consist of assignments

and expression evaluation. Expression forms are variables,

numbers, multiplication, and addition. Commands are exe-

cuted using a function, which returns a number and a (pos-

sibly updated) environment. Expressions simply evaluate to

numbers. In Figure 2 the user has typed in two assignments

to variables x and y, and then invokes the show-command to

inspect the e�ect of the current variable bindings on the ex-

pression 2 * y. The result is two slider widgets for variable x

and y, together with current evaluation of 2 * y. When chang-

ing the slider for x or y the new result will be live updated on

the last line. We required 50 SLOCs to de�ne the notebook

for the Calc language, including the de�nition of the REPL

and the Salix application for debugging expressions.

Additionally, we have generated notebooks for three other

DSLs, namely Halide* [17], QL [4], and SweeterJS
7
.

4 Related Work
Bacatá can be positioned in an extensive line of research in

program environment generation [2, 4, 7, 9, 18, 20, 22]. Cur-

rently, this work is centered around the concept of language

7h�ps://github.com/cwi-swat/hack-your-javascript

workbenches, a term popularized by Fowler [5]. In his essay,

he explains a brief history of the language-oriented program-

ming, their pros and cons, and how IDE tooling has become

essential for the viability of language oriented programming,

and learning and using DSLs.

Languageworkbenches provide language parametric tools,

meta languages, and techniques to lower the cost of DSL en-

gineering. Bacatá aims to do the same for notebooks. Speci�-

cally, interactive notebooks provide a di�erent user interface

for code and documentation. Orthogonal to, but not in con-

�ict with more traditional IDE or editor styles.

Concerning interactive computing, Cook [3] andNagar [16]

have highlighted the importance of this paradigm of soft-

ware development. Cook [3], shows the consequences of

adopting this paradigm and how it a�ects the way we write

code based on immediate responses. While Nagar [16] shows

a Python way of working using interactive computing, and

how it has reduced the learning curve of a programming

language if the user can experiment with commands and

expressions.

Notebooks integrate the use of narrative in software de-

velopment, literate programming [12, 19], interactive com-

puting, and collaboration. Turner et al. [21] found notebooks

useful as a way of supporting cooperative work and shar-

ing information with non-technical sta�. This is aligned

with the perspective of using notebooks for DSLs that have

a non-programmer audience. However, they found it di�-

cult to di�erentiate between formal an informal information.

Similarly, Malony et al. [13] performed computational ex-

periments using a notebook environment, called the Virtual

Notebook Environment (ViNE).

5 Conclusions
Constructing interactive notebooks for new languages re-

quires a lot of e�ort, especially in the context of DSLs, where

the engineering trade-o�s and design cycle is di�erent from

general purpose languages. In this tool paper, we have pre-

sented Bacatá, a language parametric notebook generator

based on the Jupyter framework. Given existing language

components, such as parsers, interpreters, type checkers,

etc., Bacatá reduces the e�ort of obtaining an interactive

notebook interface to writing a few lines of code that wires

language components together.

We described the core architecture of Bacatá and presented

how the interface is exposed within the Rascal language

workbench. Next to the usual notebook features (executing

code, code completion, and highlighting), we have shown

how Bacatá supports fully interactive output cells using Ras-

cal’s web-based GUI framework Salix.

Acknowledgments
This material is based upon work supported by the Impuls II

cooperation project between Océ and TU Eindhoven.

https://github.com/cwi-swat/hack-your-javascript

Bacatá: A Language Parametric Notebook Generator (Tool Demo) SLE ’18, November 5–6, 2018, Boston, MA, USA

References
[1] Faruk Akgul. 2013. ZeroMQ. Packt Publishing.
[2] Philippe Charles, RobertM Fuhrer, StanleyM Sutton Jr, EvelynDuester-

wald, and Jurgen Vinju. 2009. Accelerating the creation of customized,

language-Speci�c IDEs in Eclipse. In ACM Sigplan Notices, Vol. 44.
ACM, 191–206.

[3] Joshua Cook. 2017. Interactive Programming. Apress, Berkeley, CA,
49–70. h�ps://doi.org/10.1007/978-1-4842-3012-1_3

[4] Sebastian Erdweg, Tijs van der Storm, Markus Volter, Laurence Tratt,

Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,

Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik,

Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,

Vlad Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,

and Jimi van der Woning. 2015. Evaluating and comparing lan-

guage workbenches: Existing results and benchmarks for the fu-

ture. Computer Languages, Systems & Structures 44 (2015), 24 – 47.

h�ps://doi.org/10.1016/j.cl.2015.08.007 Special issue on the 6th and

7th International Conference on Software Language Engineering (SLE

2013 and SLE 2014).

[5] Martin Fowler. 2015. Language Workbenches: The Killer-App for

Domain Speci�c Languages? (2015). Retrieved June 18, 2018 from

h�ps://www.martinfowler.com/articles/languageWorkbench.html
[6] Marijn Haverbeke. 2007–2018. CodeMirror. (2007–2018). h�p://

codemirror.net/
[7] Jan Heering and Paul Klint. 2000. Semantics of Programming Lan-

guages: A Tool-oriented Approach. SIGPLAN Not. 35, 3 (March 2000),

39–48. h�ps://doi.org/10.1145/351159.351173
[8] Jupyter. 2015. The wire protocol. (2015). Retrieved July 24, 2017

from h�p://jupyter-client.readthedocs.io/en/latest/messaging.html#
the-wire-protocol

[9] P. Klint. 1993. A Meta-environment for Generating Programming

Environments. ACM Trans. Softw. Eng. Methodol. 2, 2 (April 1993),

176–201. h�ps://doi.org/10.1145/151257.151260
[10] Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2009. RASCAL:

A Domain Speci�c Language for Source Code Analysis and Manip-

ulation. In Proceedings of the 2009 Ninth IEEE International Work-
ing Conference on Source Code Analysis and Manipulation (SCAM
’09). IEEE Computer Society, Washington, DC, USA, 168–177. h�ps:
//doi.org/10.1109/SCAM.2009.28

[11] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian

Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica

Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Sa�a

Abdalla, and Carol Willing. 2016. Jupyter Notebooks – a publishing

format for reproducible computational work�ows. In Positioning and
Power in Academic Publishing: Players, Agents and Agendas, F. Loizides
and B. Schmidt (Eds.). IOS Press, 87 – 90.

[12] Donald E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (May

1984), 97–111. h�ps://doi.org/10.1093/comjnl/27.2.97
[13] Allen D. Malony, Jenifer L. Skidmore, and Matthew J. Sottile. 1999.

Computational experiments using distributed tools in a web-based

electronic notebook environment. In High-Performance Computing
and Networking, Peter Sloot, Marian Bubak, Alfons Hoekstra, and Bob

Hertzberger (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

381–390.

[14] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. 2017.

Bacatá: a generic notebook generator for DSLs (Domain-Speci�c Lan-
guage Design and Implementation workshop, DSLDI ’17).

[15] Microsoft. 2018. Language Server Protocol. (2018). h�ps://microso�.
github.io/language-server-protocol

[16] Sandeep Nagar. 2018. IPython. Apress, Berkeley, CA, 31–45. h�ps:
//doi.org/10.1007/978-1-4842-3204-0_3

[17] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,

Saman Amarasinghe, and Frédo Durand. 2012. Decoupling Algorithms

from Schedules for Easy Optimization of Image Processing Pipelines.

ACM Trans. Graph. 31, 4 (July 2012), 32:1–32:12.

[18] Thomas Reps and Tim Teitelbaum. 1984. The synthesizer generator.

ACM SIGSOFT Software Engineering Notes 9, 3 (1984), 42–48.
[19] Johannes Sametinger. 1997. Literate Programming. Springer Berlin

Heidelberg, Berlin, Heidelberg, 211–216. h�ps://doi.org/10.1007/
978-3-662-03345-6_18

[20] Emma Söderberg and Görel Hedin. 2011. Building semantic editors

using JastAdd: tool demonstration. In Proceedings of the Eleventh Work-
shop on Language Descriptions, Tools and Applications. ACM, 11.

[21] Phil Turner and Susan Turner. 1997. Supporting Cooperative Working
Using Shared Notebooks. Springer Netherlands, Dordrecht, 281–295.
h�ps://doi.org/10.1007/978-94-015-7372-6_19

[22] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M.

de Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J.

Vinju, E. Visser, and J. Visser. 2001. The ASF+SDF Meta-Environment:

A Component-Based Language Development Environment. Electronic
Notes in Theoretical Computer Science 44, 2 (2001), 3 – 8. h�ps://doi.org/
10.1016/S1571-0661(04)80917-4 LDTA’01, First Workshop on Language

Descriptions, Tools and Applications (a Satellite Event of ETAPS 2001).

https://doi.org/10.1007/978-1-4842-3012-1_3
https://doi.org/10.1016/j.cl.2015.08.007
https://www.martinfowler.com/articles/languageWorkbench.html
http://codemirror.net/
http://codemirror.net/
https://doi.org/10.1145/351159.351173
http://jupyter-client.readthedocs.io/en/latest/messaging.html#the-wire-protocol
http://jupyter-client.readthedocs.io/en/latest/messaging.html#the-wire-protocol
https://doi.org/10.1145/151257.151260
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1093/comjnl/27.2.97
https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/language-server-protocol
https://doi.org/10.1007/978-1-4842-3204-0_3
https://doi.org/10.1007/978-1-4842-3204-0_3
https://doi.org/10.1007/978-3-662-03345-6_18
https://doi.org/10.1007/978-3-662-03345-6_18
https://doi.org/10.1007/978-94-015-7372-6_19
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1016/S1571-0661(04)80917-4

	Abstract
	1 Introduction
	2 Bacatá
	2.1 Architecture
	2.2 Bacatá-Core

	3 Bacatá-Rascal
	3.1 Syntax Highlighting
	3.2 Interactive Visualizations

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

