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ABSTRACT
This paper presents GRAPE, a parallel GRAPh Engine for graph
computations. GRAPE differs from previous graph systems in
its ability to parallelize existing sequential graph algorithms as a
whole, without the need for recasting the entire algorithms into a
new model. Underlying GRAPE are a simple programming model,
and a principled approach based on fixpoint computation with par-
tial evaluation and incremental computation. Under a monotonic
condition, GRAPE guarantees to converge at correct answers as
long as the sequential algorithms are correct. We show how our fa-
miliar sequential graph algorithms can be parallelized by GRAPE.
In addition to the ease of programming, we experimentally verify
that GRAPE achieves comparable performance to the state-of-the-
art graph systems, using real-life and synthetic graphs.

1. INTRODUCTION
There has been increasing demand for graph computations, e.g.,

graph traversal, connectivity, pattern matching, and collaborative
filtering. Indeed, graph computations have found prevalent use in
mobile network analysis, pattern recognition, knowledge discov-
ery, transportation networks, social media marketing and fraud de-
tection, among other things. In addition, real-life graphs are typi-
cally big, easily having billions of nodes and trillions of edges [18].
With these comes the need for parallel graph computations. In re-
sponse to the need, several parallel graph systems have been devel-
oped, e.g., Pregel [25], GraphLab [16, 24], Trinity [29], GRACE
[35], Blogel [37], Giraph++ [31], and GraphX [17].

However, users often find it hard to write and debug paral-
lel graph programs using these systems. The most popular pro-
gramming model for parallel graph algorithms is the vertex-centric
model, pioneered by Pregel and GraphLab. For instance, to pro-
gram with Pregel, one needs to “think like a vertex", by writing
a user-defined function compute(msgs) to be executed at a vertex
v, where v communicates with other vertices by message pass-
ing (msgs). Although graph computations have been studied for
decades and a large number of sequential (single-machine) graph
algorithms are already in place, to use Pregel, one has to recast
the existing algorithms into vertex-centric programs. Trinity and

c©ACM 2017. This is a minor revision of the paper entitled Paralleliz-
ing Sequential Graph Computations, published in SIGMOD’17, ISBN978-
1-4503-4197-4/17/05, May 14-19, 2017, Chicago, Illinois, USA. DOI:
http://dx.doi.org/10.1145/3035918.3035942.

System Category Time(s) Comm.(MB)

Giraph vertex-centric 434.0 1.13× 105

GraphLab vertex-centric 41.7 1.07× 105

Blogel block-centric 112.3 1.23× 105

GRAPE think sequential 24.3 1.47× 104

Table 1: Graph traversal on parallel systems

GRACE also support vertex-centric programming. While Blo-
gel and Giraph++ allow blocks to have their status as a “vertex”
and support block-level communication, they still adopt the vertex-
centric programming paradigm. GraphX also recasts graph compu-
tation into its distributed dataflow framework as a sequence of join
and group-by stages punctuated by map operations, on Spark plat-
form (see [36] for a survey). The recasting is nontrivial for users
who are not very familiar with the parallel models. Moreover, none
of the systems provides guarantee on the correctness or even termi-
nation of parallel programs developed in their models. These make
the existing systems a privilege for experienced users only.

Is it possible to simplify parallel programming for graph com-
putations, from “think parallel” to “think sequential”? That is, can
we have a system that parallelizes existing sequential graph algo-
rithms across a cluster of processors? Better yet, is there a general
condition under which the parallelization guarantees to converge at
correct answers as long as the sequential algorithms are correct?
After all, the human’s brain is not wired to think parallel.

To answer these questions, we develop GRAPE, a parallel
GRAPh Engine. It differs from prior systems in the following.

(1) Ease of programming. GRAPE supports a simple programming
model. For a class Q of graph queries, users only need to provide
three sequential (incremental) algorithms for Q, with no need to
recast them into a new model, or revise the logic of the algorithms.
This makes parallel computations accessible to users who know
conventional graph algorithms covered in college textbooks.

(2) Parallelization. GRAPE parallelizes the computation across a
cluster of processors, based on a fixpoint computation with partial
evaluation and incremental computation. Under a monotonic con-
dition, it guarantees to converge with correct answers as long as the
three sequential algorithms provided are correct.

(3) Optimization. GRAPE inherits all optimization strategies avail-
able for sequential graph algorithms, e.g., indexing, compression
and partitioning. These are hard to implement for vertex programs.

(4) Scale-up. The ease of programming does not imply perfor-
mance degradation compared with the state-of-the-art systems such
as vertex-centric Giraph [3] (Pregel) and GraphLab, and block-
centric Blogel. For instance, Table 1 shows the performance of
the systems for shortest-path queries over Friendster [2] with 192
workers. GRAPE outperforms Giraph, GraphLab and Blogel in
both response time and communication costs (see Section 4).



This paper presents the programming and parallel models of
GRAPE (Section 2), shows how it parallelizes sequential algo-
rithms (Section 3), and empirically evaluates GRAPE (Section 4).

2. GRAPE PARALLELIZATION
We present the programming paradigm and parallel model of

GRAPE. Interested readers are invited to see [14] for details.

2.1 Graph Partition
We start with basic notations. We consider directed or undirected

graphs G = (V,E, L), where (1) V is a finite set of nodes; (2)
E ⊆ V × V is a set of edges; and (3) each node v in V (resp. edge
e ∈ E) carries L(v) (resp. L(e)), indicating its content, as found
in social networks, knowledge bases and property graphs.

Partition strategy. Given a graphG and an integerm, a graph par-
tition strategy P partitions G into fragments F = (F1, . . . , Fm).
Each fragment Fi = (Vi, Ei, Li) is a subgraph of G that re-
sides at processor Pi, for i ∈ [1,m]; and E =

⋃
i∈[1,m] Ei,

V =
⋃

i∈[1,m] Vi. Under edge-cut partition [8, 9], denote by
• Fi.I the set of nodes v ∈ Vi such that there exists edge

(v′, v) from a node v′ in Fj ;
• Fi.O the set of nodes v′ in some Fj such that there exists an

edge (v, v′) from v ∈ Vi; and
• F .O =

⋃
i∈[1,m] Fi.O, and F .I =

⋃
i∈[1,m] Fi.I .

A cut edge from Fi to Fj has a copy in each of Fi and Fj (i 6= j).
We refer to nodes in Fi.I (or Fi.O) as border nodes of fragment
Fi w.r.t. partition strategy P . Note that F .I = F .O.

Under vertex-cut partition [22], F .O and F .I correspond to en-
try vertices and exit vertices, respectively.

2.2 Programming Paradigm
Consider a graph computation problem Q. Using our familiar

terms, we refer to an instance Q of Q as a query of Q. To answer
Q ∈ Q with GRAPE, a user only needs to specify three functions.

PEval: a sequential algorithm forQ that given a query Q ∈ Q and
a graph G, computes the answer Q(G) to Q in G.

IncEval: a sequential algorithm IncEval for Q that given Q, G,
Q(G) and updates ∆G toG, incrementally computes changes ∆O
to the old output Q(G) such that Q(G ⊕ ∆G) = Q(G) ⊕ ∆O,
where G⊕∆G denotes graph G updated by ∆G.

Assemble: a function Assemble that collects partial answers com-
puted locally at each worker by PEval and IncEval, and assembles
them into complete answer Q(G). It is typically straightforward.

Functions PEval, IncEval and Assemble are referred to as a PIE
program forQ. Here PEval and IncEval are existing sequential (in-
cremental) algorithms forQ, with the following additions to PEval.

Update parameters. PEval declares status variables x̄ for a set Ci

of nodes and edges in a fragment Fi, which store contents of Fi

or intermediate results of a computation. Here Ci is a set of nodes
and edges within d-hops of the border nodes in Fi, e.g., Fi.O, for
an integer d. When d = 0, one may define Ci as, e.g., Fi.O.

We denote by Ci.x̄ the set of update parameters of Fi, which
consists of status variables of the nodes and edges in Ci, i.e., vari-
ables in Ci.x̄ are the candidates to be updated.
Aggregate function. PEval also specifies a function faggr, e.g., min,
max, to resolve conflicts when multiple workers attempt to assign
different values to the same update parameter.

The update parameters and aggregate function are specified in
PEval and are shared by IncEval. As will be seen shortly, IncEval
only needs to deal with changes ∆G to update parameters.

master P0

!
Q(F1) Q(Fm)

PEval

!
Q(F1 ⊕M1) Q(Fm⊕Mm)

master P0

worker worker

workerworker

master P0

IncEval

Assemble

Q(G)

query Q

Figure 1: Workflow of GRAPE

2.3 Parallel Model
Given a partition strategy P and a PIE program ρ (PEval,

IncEval, Assemble) for Q, GRAPE parallelizes ρ as follows. It
first partitions G into (F1, . . . , Fm) with P , and distributes frag-
ments Fi’s acrossm shared-nothing virtual workers (P1, . . . , Pm).
It maps m virtual workers to n physical workers. When n < m,
multiple virtual workers mapped to the same worker share memory.
Graph G is partitioned once for all queries Q ∈ Q on G.

We start with basic ideas behind GRAPE parallelization.

Partial evaluation. Given a function f(s, d) and the s part of its in-
put, partial evaluation is to specialize f(s, d) w.r.t. the known input
s [21]. That is, it performs the part of f ’s computation that depends
only on s, and generates a partial answer, i.e., a residual function
f ′ that depends on the as yet unavailable input d. For each worker
Pi in GRAPE, its local fragment Fi is its known input s, while
the data residing at other workers accounts for the yet unavailable
input d. As will be seen shortly, given a query Q ∈ Q, GRAPE
computes Q(Fi) in parallel as partial evaluation.

Incremental evaluation. Workers exchange changed values of their
local update parameters with each other. Upon receiving message
Mi that consists of changes to the update parameters at fragment
Fi, worker Pi treats Mi as updates to Fi, and incrementally com-
putes changes ∆Oi to Q(Fi) such that Q(Fi ⊕Mi) = Q(Fi) ⊕
∆Oi. This is often more efficient than recomputing Q(Fi ⊕Mi)
starting from scratch, since in practice Mi is often small. Better
still, the computation may be bounded: its cost can be expressed as
a function in |Mi| + |∆Oi|, i.e., the size of changes in the input
and output, instead of |Fi|, no matter how big Fi is [12, 28].

Parallelization. We use (BSP) (Bulk Synchronous Parallel model
[32]). Given a query Q ∈ Q at master P0, GRAPE answers Q in
the partitioned graph G. It posts the same Q to all the workers, and
computes Q(G) in three phases as follows, as shown in Fig. 1.

(1) Partial evaluation (PEval). In the first superstep, upon re-
ceiving query Q, each worker Pi applies function PEval to its
local fragment Fi, to compute partial results Q(Fi), in parallel
(i ∈ [1,m]). After Q(Fi) is computed, PEval generates a mes-
sage at each worker Pi and sends it to master P0. The message is
simply the set Ci.x̄ of update parameters at fragment Fi.

For each i ∈ [1,m], master P0 maintains update parameters
Ci.x̄. It deduces a messageMi to worker Pi based on the following
message grouping policy. (a) For each status variable x ∈ Ci.x̄, it
collects the group Sx of values for x from all messages, and com-
putes xaggr = faggr(Sx) by applying the aggregate function faggr.
(b) Message Mi includes only those xaggr’s such that xaggr 6= x,
i.e., only those changed values of the update parameters at Fi.

(2) Incremental computation (IncEval). GRAPE iterates the fol-
lowing supersteps until it terminates. Following BSP, each super-



Input: Fi(Vi, Ei, Li), source vertex s
Output: Q(Fi) consisting of current dist(s, v) for all v ∈ Vi

Declaration: /*candidate set Ci is Fi.O*/
for each node v ∈ Vi, an integer variable dist(s, v);
message Mi := {dist(s, v) | v ∈ Fi.O};
aggregate function faggr = min(dist(s, v));

/*sequential algorithm for SSSP (pseudo-code)*/
1. initialize priority queue Que;
2. dist(s, s) := 0;
3. for each v in Vi do
4. if v! = s then
5. dist(s, v) :=∞;
6. Que.addOrAdjust(s, dist(s, s));
7. while Que is not empty do
8. u := Que.pop() // pop vertex with minimal distance
9. for each child v of u do // only v that is still in Que
10. alt := dist(s, u) + Li(u, v);
11. if alt < dist(s, v) then
12. dist(s, v) := alt;
13. Que.addOrAdjust(v, dist(s, v));
14. Q(Fi) := {dist(s, v) | v ∈ Vi}

Figure 2: Parallel SSSP: Partial evaluation PEval

step starts after the master P0 receives messages (possibly empty)
from all workers Pi for i ∈ [1,m]. A superstep has two steps itself,
one at P0 and the other at the workers.

(a) Master P0 routes (nonempty) messages from the last super-
step to workers, if there exists any.

(b) Upon receiving message Mi, worker Pi incrementally com-
putes Q(Fi ⊕Mi) by applying IncEval, and by treating Mi

as updates to Ci.x̄, in parallel for i ∈ [1,m].

At the end of the process of IncEval, worker Pi sends a message
to P0 that encodes updated values of Ci.x̄, if any. Upon receiving
messages from all workers, master P0 deduces messageMi to each
worker Pi following the message grouping policy given above; it
sends message Mi to worker Pi in the next superstep.

(3) Termination (Assemble). At each superstep, master P0 checks
whether for all i ∈ [1,m], Pi is inactive, i.e., Pi is done with its lo-
cal computation, and there exists no more change to the update pa-
rameters of Fi. If so, GRAPE pulls partial results from all workers,
and applies Assemble to group them together and get the final re-
sult at P0, denoted by ρ(Q,G). It returns ρ(Q,G) and terminates.

Example 1: We show how GRAPE parallelizes the computation
of Single Source Shortest Path (SSSP), a common graph computa-
tion problem. Consider a directed graph G = (V,E, L) in which
for each edge e, L(e) is a positive number. The length of a path
(v0, . . . , vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For a
pair (s, v) of nodes, denote by dist(s, v) the distance from s to v,
i.e., the length of a shortest path from s to v. Given graph G and a
node s in V , SSSP computes dist(s, v) for all v ∈ V .

Under edge-cut partition [9], GRAPE takes the set Fi.O of “bor-
der nodes” as Ci at each Pi (with edges across distinct fragments).
The PIE program for SSSP consists of (1) our familiar Dijkstra’s
algorithm for SSSP [15] as PEval, (2) a sequential incremental al-
gorithm of [27] as IncEval, and (3) a straightforward Assemble.

(1) PEval. As shown in Fig. 2, PEval (lines 1-14) is verbally
identical to Dijsktra’s algorithm [15]. One only needs to declare
(a) status variable as an integer variable dist(s, v) for each node
v, initially ∞ (except dist(s, s) = 0); (b) update parameters as
Ci.x̄ = {dist(s, v) | v ∈ Fi.O}, i.e., the status variables associ-
ated with nodes in Fi.O at fragment Fi; and (c) min as an aggregate
function faggr. If there are multiple values for the same dist(s, v),
the smallest value is taken by the order on positive numbers.

At the end of its process, PEval sends Ci.x̄ to master P0. At
P0, GRAPE maintains dist(s, v) for all v ∈ F .O = F .I . Upon
receiving messages from all workers, it takes the smallest value for

Input: Fi(Vi, Ei, Li), partial result Q(Fi), message Mi

Output: Q(Fi ⊕Mi)

Declaration: message Mi = {dist(s, v) | v ∈ Fi.O, dist(s, v) decreased};

1. initialize priority queue Que;
2. for each dist(s, v) in Mi do
3. Que.addOrAdjust(v, dist(s, v));
4. while Que is not empty do
5. u := Que.pop() /* pop vertex with minimum distance*/
6. for each children v of u do
7. alt := dist(s, u) + Li(u, v);
8. if alt < dist(s, v) then
9. dist(s, v) := alt;
10. Que.addOrAdjust(v, dist(s, v));
11. Q(Fi) := {dist(s, v) | v ∈ Vi}

Figure 3: Parallel SSSP: Incremental evaluation IncEval

each dist(s, v). It finds those variables with smaller dist(s, v) for
v ∈ Fj .O, groups them into message Mj , and sends Mj to Pj .

(2) IncEval. We give IncEval in Fig. 3. It is the sequential in-
cremental algorithm for SSSP in [28] that is mildly revised to
deal with changed dist(s, v) for v in Fi.I (deduced by leverag-
ing F .I = F .O). Using a queue Que, it starts with changes in
Mi, propagates the changes to affected area, and updates the dis-
tances (see [28]). The partial result now consists of the revised
distances (line 11). At the end of the process, it sends to master P0

the updated values of those status variables in Ci.x̄, as in PEval. It
applies the aggregate function min to resolve conflicts.

Following [28], one can show that IncEval is bounded: its cost
is determined by the sizes of “updates” |Mi| and the changes to the
output. This reduces the cost of iterative computation of SSSP.

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n]Q(Fi), the union of
the shortest distance for each node in each Fi.

The process converges at correct Q(G). Updates to Ci.x̄ are
“monotonic”: the value of dist(s, v) for each node v is computed
from the active domain of G and does not increase. Moreover,
dist(s, v) is the shortest distance from s to v as warranted by the
sequential algorithms [15, 28] (PEval and IncEval). 2

Fixpoint. The GRAPE parallelization of the PIE program can be
modeled as a simultaneous fixpoint operator φ(R1, . . . , Rm) de-
fined on m fragments. It starts with PEval for partial evaluation,
and conducts incremental computation by taking with IncEval as
the intermediate consequence operator, as follows:

R0
i = PEval(Q,F 0

i [x̄i]),

Rr+1
i = IncEval(Q,Rr

i , F
r
i [x̄i],Mi),

where i ∈ [1,m], r indicates a superstep,Rr
i denotes partial results

in step r at worker Pi, fragment F 0
i = Fi, F r

i [x̄i] is fragment Fi at
the end of superstep r carrying update parameters Ci.x̄, and Mi is
a message indicating changes to Ci.x̄. More specifically, (1) in the
first superstep, PEval computes partial answers R0

i (i ∈ [1,m]).
(2) At step r + 1, the partial answers Rr+1

i are incrementally up-
dated by IncEval, taking Q, Rr

i and message Mi as input. (3) The
computation proceeds until Rr0+1

i = Rr0
i at a fixpoint r0 for all

i ∈ [1,m]. At this point function Assemble is invoked to combine
all partial answers Rr0

i and get the final answer ρ(Q,G).

Convergence. The correctness of the fixpoint computation is char-
acterized as follows. Given a graph computation problemQ, (a) the
sequential algorithm PEval forQ is correct if for all queriesQ ∈ Q
and graphsG, it terminates and returnsQ(G); (b) the sequential in-
cremental algorithm IncEval forQ is correct if it correctly updates
old output Q(G) to Q(G⊕M), by computing the changes ∆O to
be applied to Q(G), for changes (messages) M to update param-
eters; (c) Assemble is correct for Q w.r.t. partition strategy P if it
correctly computes Q(G) by assembling the partial answers from
all workers, when GRAPE with PEval, IncEval and P terminates.



We say that GRAPE correctly parallelizes a PIE program ρ with
partition strategy P if for all Q ∈ Q and graphs G, GRAPE guar-
antees to reach a fixpoint such that ρ(Q,G) = Q(G).

It is shown [14] that under BSP, GRAPE correctly parallelizes a
PIE program ρ for a graph computation problem Q with any par-
tition strategy P if (a) PEval and IncEval of ρ are correct sequen-
tial algorithms for Q, and (b) Assemble correctly combines par-
tial results, and (c) PEval and IncEval satisfy a monotonic condi-
tion. The condition is as follows: for all status variables x ∈ Ci.x̄,
i ∈ [1,m], (a) the values of x are from a finite set computed from
the active domain ofG and (b) there exists a partial order px on the
values of x such that IncEval updates x in the order of px. That is,
x draws values from a finite domain (condition (a) above), and x is
updated “monotonically” following px (condition (b)).

Simulating other models. The simple parallel model of GRAPE
does not come with a price of degradation in the functionality. Fol-
lowing [33], we say that parallel modelM1 can optimally simulate
modelM2 if there is a compilation algorithm that transforms any
program with cost C onM2 to a program with cost O(C) onM1.

As shown in [14], GRAPE optimally simulates parallel mod-
els MapReduce [10], BSP [32] and PRAM (Parallel Random Ac-
cess Machine) [33]. That is, all algorithms in these models with
n workers can be simulated by GRAPE using n processors with
the same number of supersteps and the same complexity. (2) We
have shown that the simulation result above holds in the message-
passing model described above, referred to as the designated mes-
sage model in [14]. Hence, algorithms developed for graph systems
based on MapReduce or BSP, e.g., Pregel, GraphLab and Blogel,
can be migrated to GRAPE without extra complexity.

Features. GRAPE has the following unique features.

(1) As shown in Fig. 4, to program with GRAPE, one only needs to
provide a PIE program in the “plug” panel of GRAPE, which con-
sists of (existing) sequential algorithms with minor changes. Given
a partition strategy P , a graph G, a query Q and the number m of
processors in the “play” panel, GRAPE parallelizes the algorithms.

GRAPE aims to help users develop parallel programs, especially
those who are more familiar with conventional sequential program-
ming. This said, programming with GRAPE still requires to de-
clare update parameters and design an aggregate function.

(2) Under a monotone condition, GRAPE parallelization guaran-
tees to converge at the correct answer as long as the sequential al-
gorithms are correct. This works regardless of partitioning strategy
used, not limited to edge-cut and vertex-cut. Nonetheless, different
strategies may yield partitions with various degrees of skewness
and stragglers, which have an impact on the performance.

(3) GRAPE optimally simulates MapReduce, BSP and PRAM.

(4) GRAPE inherits existing optimization techniques developed for
sequential graph algorithms, since it executes sequential algorithms
on graph fragments, which are graphs themselves.

(5) GRAPE reduces the costs of iterative graph computations by
using IncEval, to minimize unnecessary recomputations. While the
speedup is more evident when IncEval is bounded [28], localizable
or relatively bounded [11], these properties are not necessary.

There have been methods for incrementalizing graph algorithms,
to get incremental algorithms from their batch counterparts [7].

3. PROGRAMMING WITH GRAPE
We next outline PIE programs for graph pattern matching (Sim),

connectivity (CC) and collaborative filtering (CF), under edge-cut.
PIE programs under vertex-cut can be developed similarly.

Figure 4: Programming Interface of GRAPE

Graph simulation (Sim). A graph pattern is a graph Q =
(VQ, EQ, LQ), in which (a) VQ is a set of query nodes, (b) EQ is a
set of query edges, and (c) each node u in VQ carries a labelLQ(u).

A graphG matches a patternQ via simulation if there is a binary
relation R ⊆ VQ × V such that (a) for each query node u ∈ VQ,
there exists a node v ∈ V such that (u, v) ∈ R, and (b) for each
pair (u, v) ∈ R, LQ(u) = L(v), and for each query edge (u, u′) in
EQ, there exists an edge (v, v′) in graph G such that (u′, v′) ∈ R.

It is known that if G matches Q, then there exists a unique max-
imum relation [20], referred to as Q(G). If G does not match Q,
Q(G) is the empty set. Given a directed graph G and a pattern Q,
graph simulation is to compute the maximum relation Q(G).

We show how GRAPE parallelizes graph simulation.

(1) PEval. GRAPE takes the sequential simulation algorithm of
[20] as PEval to compute Q(Fi) in parallel. PEval declares a
Boolean status variable x(u,v) for each node u in VQ and each node
v in fragment Fi, indicating whether v matches u, initialized true.
It takes Fi.I as candidate set Ci. For each node u ∈ VQ, PEval
computes a set sim(u) of candidate matches v in Fi, and iteratively
removes from sim(u) those nodes that violate the simulation con-
dition (see [20] for details). At the end of the process, PEval sends
Ci.x̄ = {x(u,v) | u ∈ VQ, v ∈ Fi.I} to master P0.

At master P0, GRAPE maintains x(u,v) for all v ∈ F .I . Upon
receiving messages from all workers, it changes x(u,v) to false if it
is false in one of the messages. This is specified by min as faggr,
taking the order false ≺ true. GRAPE finds those variables that
become false, groups them into messagesMj , and sendsMj to Pj .

(2) IncEval is the sequential incremental graph simulation algo-
rithm of [12] in response to edge deletions. If x(u,v) is changed
to false by message Mi, it is treated as deletion of “cross edges” to
v ∈ Fi.O. It starts with changed status variables in Mi, propa-
gates the changes to affected area, and removes from sim matches
that become invalid (see [12] for details). The partial result is now
the revised sim relation. At the end of the process, IncEval sends
to P0 updated values of status variables in Ci.x̄, as in PEval.

IncEval is semi-bounded [12]: its cost is decided by the sizes
of “updates” |Mi| and changes to the affected area necessarily
checked by all incremental algorithms for Sim, not by |Fi|.
(3) Assemble simply takes Q(G) =

⋃
i∈[1,n]Q(Fi), the union of

all partial matches, i.e., relation sim at each fragment Fi.

(4) Correctness is warranted by the convergence condition of
GRAPE, as the sequential algorithms [12,20] (PEval and IncEval)



are correct, and updates to Ci.x̄ are monotonic: x(u,v) is initially
true for each border node v, and is changed at most once to false.

Graph connectivity (CC). Given an undirected graph G, CC com-
putes all connected components of G, referred to as CCs.

(1) PEval declares an integer variable v.cid for each node v in frag-
ment Fi, initialized as its node id. It uses a standard sequential
traversal (e.g., DFS) to compute the local CCs of Fi and determines
v.cid for each v ∈ Fi. For each local CC C, (a) PEval creates a
“root” node vc carrying the minimum node id in C as vc.cid, and
(b) links all the nodes in C to vc, and sets their cid as vc.cid. These
can be completed in one pass of the edges of Fi via DFS. At the
end of process, PEval sends {v.cid | v ∈ Fi.I} to master P0.

At master P0, GRAPE maintains v.cid for each all v ∈ F .I .
It updates v.cid by taking the smallest cid if multiple cids are re-
ceived, by taking min as faggr in PEval. It groups the border nodes
with updated cids into messages Mj , and sends Mj to Pj .

(2) IncEval incrementally updates the cids of the nodes in Fi upon
receiving Mi. The message Mi sent to Pi consists of v.cid with
updated (smaller) values of its border nodes v. For each v in Mi,
IncEval (a) finds the root vc of v, and (b) for vc and all the border
nodes linked to it, directly changes their cids to v.cid.

Note that IncEval is bounded: it takes O(|Mi|) time to identify
the root nodes, and O(|AFF|) time to update cids by following the
direct links from the root nodes, where AFF consists of only those
nodes with their cid changed, independent of |Fi|.
(3) Assemble first updates the cid of each node to the cid of its
linked root node. It then merges all the nodes having the same cids
in a single bucket, and returns all buckets as CCs.

(4) Correctness. It is easy to see that the process terminates since
the cids of the nodes are monotonically decreasing by aggregate
function faggr until no changes can be made. Moreover, it correctly
merges two local CCs by propagating smaller component ids.

Collaborative filtering (CF). CF takes as input a bipartite graph
G that includes users U and products P , and a set of weighted
edges E ⊆ U × P [23]. (1) Each user u ∈ U (resp. product
p ∈ P ) carries latent factor vector u.f (resp. p.f ). (2) Each edge
e = (u, p) in E carries a weight r(e), estimated as u.fT ∗ p.f
(∅ for “unknown”) that encodes a rating from user u to product p.
The training set ET refers to edge set {e | r(e) 6= ∅, e ∈ E}, i.e.,
all the known ratings. Given these, CF computes the missing fac-
tor vectors u.f and p.f to minimize an error function ε(f,ET ) =
min

∑
((u,p)∈ET )(r(u, p) − u.fT p.f)2 + λ(‖u.f‖2 + ‖p.f‖2).

This is typically carried out by the stochastic gradient descent
(SGD) algorithm [23], which iteratively (1) predicts error ε(u, p) =
r(u, p) − u.fT ∗ p.f , for each e = (u, p) ∈ ET , and (2) updates
u.f and p.f accordingly to minimize ε(f,ET ).

GRAPE parallelizes CF by adopting SGD [23] as PEval, and the
incremental algorithm ISGD of [34] as IncEval, using master P0 to
synchronize the shared factor vectors u.f and p.f .

(1) PEval. It sets Ci = Fi.I and declares status variable v.x =
(v.f, t) for v ∈ Ci, where v.f is the factor vector of v (initially ∅),
and t bookkeeps a timestamp at which v.f is lastly updated. PEval
is essentially the sequential SGD of [23]. It processes a “mini-
batch” of training examples independently of others, to compute
prediction error ε(u, p), and updates factor vectors f by a magni-
tude proportional to γ in the opposite direction of the gradient as:

u.f t = u.f t−1 + γ(ε(u, p) ∗ v.f t−1 − λ ∗ u.f t−1); (1)

p.f t = p.f t−1 + γ(ε(u, p) ∗ u.f t−1 − λ ∗ p.f t−1). (2)
At the end of its process, PEval sends messages Mi that consists

of updated v.x for each v ∈ Ci = Fi.O to master P0.
At P0, GRAPE maintains v.x = (v.f, t) for all border nodes

v ∈ F .I = F .O. Upon receiving updated values (v.f ′, t′) with
t′ > t, it changes v.f to v.f ′, i.e., it takes max as aggregate func-
tion faggr on timestamps. GRAPE then groups the updated vectors
into messages Mj , and sends Mj to Pj as usual.

(2) IncEval is the incremental algorithm ISGD of [34]. Upon re-
ceiving message Mi at worker Pi, it computes Fi⊕Mi by treating
Mj as updates to factor vectors of nodes in Fi.I , and only modifies
affected factor vectors as in PEval based solely on new observa-
tions. It sends the updated vectors in Ci as in PEval.

(3) Assemble simply takes the union of all the factor vectors of
nodes from the workers (to be used for recommendation).

(4) Correctness. The convergence condition in a sequential SGD
algorithm [23, 34] is specified either as a predetermined maximum
number of supersteps (e.g.,GraphLab), or when ε(f,ET ) is smaller
than a threshold. In either case, GRAPE correctly infers CF models
guaranteed by the correctness of SGD and ISGD, and by monotonic
updates with the latest changes as in sequential SGD algorithms.

4. PERFORMANCE STUDY
We have implemented GRAPE [13]. We next empirically evalu-

ate its efficiency and communication cost, using real-life and syn-
thetic graphs. We compared the performance of GRAPE with three
systems: Giraph (an open-source version of Pregel), GraphLab,
and Blogel (the fastest block-centric system we are aware of).

Experimental setting. We used five real-life graphs of different
types, including (1) traffic [5], an (undirected) US road network
with 23 million nodes (locations) and 58 million edges; (2) UKWeb
[6], a large Web graph with 133 million nodes and 5 billion edges;
(3) Friendster [2], a social network with 65 million users and 1.8
billion relations; (4) DBpedia [1], a knowledge base with 5 mil-
lion entities and 54 million edges, and in total 411 distinct labels;
and (5) movieLens [4], a dense recommendation network (bipartite
graph) with 20 million movie ratings (as weighted edges) between
a set of 138000 users and 27000 movies. To test Sim with unla-
beled Friendster, we generated 100 random node labels. We also
randomly assigned weights to all graphs for testing SSSP.

Queries. We randomly generated the following queries. (a) We
sampled 10 source nodes in each graph, and constructed an SSSP
query for each node. (b) We generated 20 pattern queries for Sim,
controlled by |Q| = (|VQ|, |EQ|), the number of nodes and edges,
respectively, using labels drawn from the graphs.

We remark that GRAPE can process query load without reload-
ing the graph, but GraphLab, Giraph and Blogel need to reload the
graph each time a query is issued, which is costly over large graphs.

Algorithms. We implemented the PIE programs for those query
classes given in Sections 2 and 3. We used XtraPuLP [30] as the
default graph partition strategy. We adopted basic sequential algo-
rithms for all the systems without further optimization.

We also implemented algorithms for the queries for Giraph,
GraphLab and Blogel. We used “default” code provided by the
systems when available, and made our best efforts to develop “op-
timal” algorithms otherwise (see [14] for more details). We imple-
mented synchronized algorithms for both GraphLab and Giraph
for the ease of comparison. We expect the observed relative perfor-
mance trends to hold on other similar graph systems.

We deployed the systems on a cluster of up to 12 machines, each
with 16 threads of Intel Xeon 2.2GHz, and 128G memory. On
each thread, a worker is deployed (thus in total 192 workers). Each
experiment was run 5 times and the average is reported here.



Experimental results. We next report our findings.
Exp-1: Efficiency. We first evaluated the efficiency of GRAPE by
varying the number n of workers used, from 64 to 192. For SSSP
and CC, we experimented with UKWeb, traffic and Friendster. For
Sim, we used over Friendster and DBpedia. We used movieLens
for CF as its application in movie recommendation.

(1) SSSP. Figures 5a-5c report the performance of the four systems
for SSSP over traffic, UKWeb and Friendster, respectively. From
the results we can see the following.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 14842,
3992 and 756 times, respectively, over traffic with 192 workers
(Fig 5a). In the same setting, it is 556, 102 and 36 times faster over
UKWeb (Fig. 5b), and 18, 1.7 and 4.6 times faster over Friendster
(Fig. 5c). These tell us that by simply parallelizing sequential algo-
rithms without further optimization, GRAPE already outperforms
the state-of-the-art systems in response time.

The improvement of GRAPE over all the systems on traffic is
much larger than on Friendster and UKWeb. (i) For Giraph and
GraphLab, this is because synchronous vertex-centric algorithms
take more supersteps to converge on graphs with larger diameters,
e.g., traffic. With 192 workers, Giraph take 10749 supersteps over
traffic and 161 over UKWeb; similarly for GraphLab. In contrast,
GRAPE is not vertex-centric and it takes 31 supersteps on traffic
and 24 on UKWeb. (ii) Blogel also takes more (1690) supersteps
over traffic than over UKWeb (42) and Friendster (23). It gener-
ates more blocks over traffic (with larger diameter) than UKWeb
and Friendster. Since Blogel treats blocks as vertices, the benefit
of parallelism is degraded with more blocks. (iii) GRAPE reduces
redundant computation by the use of incremental IncEval.

(b) In all cases, GRAPE takes less time when n increases. On av-
erage, it is 1.4, 2.3 and 1.5 times faster for n from 64 to 192 over
traffic, UKWeb and Friendster, respectively. (i) Compared with
the results in [14] using less workers, this improvement degrades a
bit. This is mainly because the larger number of fragments leads to
more communication overhead. On the other hand, such impact is
significantly mitigated by IncEval that only ships changed update
parameters. (ii) In contrast, Blogel does not demonstrate such con-
sistency in scalability. It takes more time on traffic when n is larger.
When n varies from 160 to 192, it takes longer over Friendster. Its
communication cost dominates the parallel cost as n grows, “can-
celing out” the benefit of parallelism. (iii) GRAPE has scalability
comparable to GraphLab over Friendster and scales better over
UKWeb and traffic. Giraph has better improvement with larger n,
but with constantly higher cost (see (a)) than GRAPE.

(c) GRAPE significantly reduces supersteps. It takes on average
22 supersteps, while Giraph, GraphLab and Blogel take 3647,
3647 and 585 supersteps, respectively. This is because GRAPE
runs sequential algorithms over fragmented graphs with cross-
fragment communication only when necessary, and IncEval ships
only changes to status variables. In contrast, Giraph, GraphLab
and Blogel pass vertex-vertex (vertex-block) messages.

(2) CC. Figures 5d-5f report the performance for CC, and tell us the
following. (a) Both GRAPE and Blogel substantially outperform
Giraph and GraphLab. For instance, when n = 192, GRAPE is on
average 12094 and 1329 times faster than Giraph and GraphLab,
respectively. (b) Blogel is faster than GRAPE in some cases, e.g.,
3.5s vs. 17.9s over UKWeb when n = 192. This is because Blogel
embeds the computation of CC in its graph partition phase as pre-
computation, while this graph partition cost (on average 357 sec-
onds using its built-in Voronoi partition) is not included in its re-

sponse time. In other words, without taking advantage of precom-
putation, the performance of GRAPE is already comparable to the
near “optimal” case reported by Blogel.

(3) Sim. Fixing |Q| = (6, 10), i.e., patterns Q with 6 nodes
and 10 edges, we evaluated graph simulation over DBpedia and
Friendster. As shown in Figures 5g-5h, (a) GRAPE consistently
outperforms Giraph, GraphLab and Blogel over all queries. It is
109, 8.3 and 45.2 times faster over Friendster, and 136.7, 5.8
and 20.8 times faster over DBpedia on average, respectively, when
n = 192. (b) GRAPE scales better with the number n of work-
ers than the others. (c) GRAPE takes at most 21 supersteps, while
Giraph, GraphLab and Blogel take 38, 38 and 40 supersteps, re-
spectively. This empirically validates the convergence guarantee of
GRAPE under monotonic status-variable updates and its positive
effect on reducing parallel and communication cost.

(4) Collaborative filtering (CF). We used movieLens [4] with a
training set |ET | = 90%|E|. We compared GRAPE with the
built-in CF code in GraphLab, and with CF programs implemented
for Giraph and Blogel. Note that CF favors “vertex-centric” pro-
gramming since each node only needs to exchange data with their
neighbors, as indicated by that GraphLab and Giraph outperform
Blogel. Nonetheless, Figure 5i shows that GRAPE is on average
4.1, 2.6 and 12.4 times faster than Giraph, GraphLab and Blogel,
respectively. Moreover, it scales well with n.

(5) Scale-up of GRAPE. The speed-up of a system may degrade
over more workers [26]. We thus evaluate the scale-up of GRAPE,
which measures the ability to keep the same performance when
both the size of graph G (denoted as (|V |, |E|)) and the number
n of workers increase proportionally. We varied n from 64 to 192,
and for each n, deployed GRAPE over a synthetic graph. The graph
size varies from (50M, 500M) to (250M, 2.5B) (denoted as G5),
with fixed ratio between edge number and node number and pro-
portional to n . The scale up at e.g., (128, G3) is the ratio of the
time using 64 workers over G1 to its counterpart using 128 work-
ers over G3. As shown in Fig. 5j, GRAPE preserves a reasonable
scale-up (close to linear scale-up, the optimal scale-up).

Compared to single-threaded computation, GRAPE incurs extra
communication overhead, just like other parallel systems. How-
ever, large graphs such as UKWeb are beyond the capacity of a
single machine, and parallel computation is a must for such graphs.

Exp-2: Communication cost. The communication cost (in bytes)
reported by Giraph, GraphLab and Blogel depends on their own
implementation of message blocks and protocols [19]. For a fair
comparison, we tracked the total bytes sent by each machine during
a run, by monitoring the system file /proc/net/dev, following [19].

In the same setting as Exp-1, Figures 5l-5t report the communi-
cation costs of the systems. We observe that Giraph and GraphLab
ship roughly the same amount of messages. GRAPE ships much
less data than Giraph and GraphLab. On datasets excluding traffic,
with 192 workers, it ships on average 0.095%, 0.62%, 0.3%, and
26.2% of the data shipped for SSSP, Sim, CC and CF by Giraph
(GraphLab), respectively, and reduces cost up to 6 orders of magni-
tude on traffic! While it ships more data than Blogel for CC due to
the precomputation of Blogel, it only ships 1.9%, 6.2% and 4.8%
of the data shipped by Blogel for SSSP, Sim and CF, respectively.

(1) SSSP. Figures 5k-5m show that both GRAPE and Blogel incur
communication costs that are orders of magnitudes less than those
of GraphLab and Giraph. This is because vertex-centric program-
ming incurs a large number of inter-vertex messages. Both block-
centric programs (Blogel) and PIE programs (GRAPE) effectively
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(g) Varying n: Sim (Friendster)

 0.25

 1

 4

 16

 64

64 96 128 160 192

T
im

e 
(S

ec
o
n
d
s) GRAPE

GraphLab
Giraph
Blogel

(h) Varying n: Sim (DBpedia)
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(i) Varying n: CF (movieLens)
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(k) Varying n: SSSP (traffic)
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(m) Varying n: SSSP (Friendster)

 0.1

 1

 10

 100

 1000

 10000

 100000

64 96 128 160 192

C
o
m

m
u
n
ic

at
io

n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel
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(o) Varying n: CC (UKWeb)
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(p) Varying n: CC (Friendster)
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(q) Varying n: Sim (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

C
o
m

m
u
n
ic

at
io

n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(r) Varying n: Sim (DBpedia)

 10000

 100000

 1x10
6

64 96 128 160 192

C
o
m

m
u
n
ic

at
io

n
 (

M
)

GRAPE
GraphLab

Giraph
Blogel

(s) Varying n: CF (movieLens)

 0

 2000

 4000

 6000

 8000

 10000

 12000

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

C
o
m

m
u
n
ic

at
io

n
 (

M
) GRAPE

(t) SSSP (Synthetic)

Figure 5: Efficiency and communication cost of GRAPE

reduce unnecessary messages, and trigger inter-block messages
only when necessary. Moreover, GRAPE ships 0.9% and 10% of
the data shipped by Blogel over UKWeb and Friendster, respec-
tively. Indeed, GRAPE ships only updated values. This signifi-
cantly reduces the amount of messages that need to be shipped.

(2) CC. Figures 5n-5p show similar improvement of GRAPE over
GraphLab and Giraph. It ships on average 0.17% of the data
shipped by Giraph and GraphLab. As Blogel precomputes CC
(see Exp-1(2)), it ships little data. This said, GRAPE is not far
worse than the near “optimal” case of Blogel, sometimes better.

(3) Sim. Figures 5q and 5r report the communication cost for
graph simulation over Friendster and DBpedia, respectively. One
can see that GRAPE ships substantially less data, e.g., on average
0.9%, 0.1% and 4.9% of the data shipped by Giraph, GraphLab
and Blogel, respectively. Observe that the communication cost of
Blogel is much higher than that of GRAPE, even though it adopts

inter-block communication. This shows that the extension of
vertex-centric to block-centric by Blogel has limited improvement
for more complex queries. GRAPE works better than these systems
by employing incremental IncEval to reduce excessive messages.

(4) CF. Figure 5s reports the result for CF over movieLens. On
average, GRAPE ships 5.6%, 43.3% and 3.2% of the data shipped
by Giraph, GraphLab and Blogel, respectively.

(5) Communication cost (synthetic). In the same setting as Fig-
ure 5j, Figure 5t reports the communication cost for SSSP over
large synthetic graphs. It takes higher cost over larger graphs and
more workers due to increased “border nodes”, as expected. The
results for other algorithms are consistent and hence not shown.

Summary. We find the following. (1) Over traffic [5], GRAPE
is on average 4, 3 and 2 orders of magnitude faster than Giraph,
GraphLab and Blogel for SSSP, respectively, with 192 processors,



due to the large diameter of the graph. On other real-life graphs ex-
cluding traffic, GRAPE is on average 484, 36 and 15 times faster
than the three systems for SSSP, 151, 6.8 and 16 times for Sim,
and 4.6, 2.6 and 12.4 times for CF, respectively, when the number
of workers ranges from 64 to 192. For CC, it is 1377 and 212 times
faster than Giraph and GraphLab, respectively, and is comparable
to the “optimal” case of Blogel. (2) In the same setting (excluding
traffic), GRAPE ships on average 0.07%, 0.12% and 1.7% of the
data shipped across machines by Giraph, GraphLab and Blogel for
SSSP, 0.89%, 0.14% and 4.9% for Sim, 5.6%, 43.3% and 3.2%
for CF, respectively. When traffic is also included, GRAPE out-
performs these systems by up to 6 orders of magnitude in commu-
nication cost for SSSP. For CC, it incurs 0.23% and 0.3% of data
shipment of Giraph and GraphLab, and is comparable with “op-
timized” Blogel. (3) GRAPE demonstrates good scale-up when
using more workers, since its incremental computation mitigates
the impact of more border nodes and fragments. Moreover, incre-
mental steps effectively reduce unnecessary recomputation.

5. CONCLUSION
The main objective of GRAPE is to simplify parallel program-

ming for graph computations, from “think parallel” to “think se-
quential”. For users who are used to conventional programming,
they can start with (existing) sequential algorithms, add declara-
tions for handling messages, and let GRAPE parallelize the compu-
tation across a cluster of machines. Moreover, GRAPE guarantees
to converge at correct answers under a general condition as long
as it is provided with correct sequential algorithms, and it inherits
optimization strategies developed for sequential graph algorithms.

As proof of concept (PoC), we have deployed and evaluated
GRAPE at three companies. At a large online payment company,
GRAPE serves as the graph computing infrastructure supporting
its financial risk control system. The company employs graphs
in which vertices denote customers, and edges represent transac-
tions and associations with other customers; it needs to evaluate
the customers and assign a credit. The company used to deploy its
system on Neo4j + Hive + Spark. However, none of the systems
can process the tasks alone; the workflow spans three systems and
takes 15 minutes on average for a single query. In contrast, GRAPE
provides a unified solution for this scenario. It supports real-time
ad-hoc queries without the need to couple with other systems. It
improves the performance of financial risk analyses: it is 9.0 times
faster in graph batch ingesting and streaming, 128.8 times faster in
association analysis, and is faster by up to 5 orders of magnitude in
batch processing of real-life business applications.

GRAPE works well for other applications. We have also carried
out PoC at a big-data service company and a telecommunication
service company. The results are consistent and very promising.

We are currently extending GRAPE to support a new parallel
model that adaptively switches between synchronous and asyn-
chronous models, to reduce stragglers and stale computations.
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