N
N

N

HAL

open science

Regenerate: A Language Generator for Extended
Regular Expressions with an application to test case
generation

Gabriel Radanne, Peter Thiemann

» To cite this version:

Gabriel Radanne, Peter Thiemann. Regenerate: A Language Generator for Extended Regular Ex-
pressions with an application to test case generation. GPCE 2018: 17th International Conference on
Generative Programming: Concepts & Experiences, Nov 2018, Boston, United States. pp.202-214,
10.1145/3278122.3278133 . hal-01788827v2

HAL Id: hal-01788827
https://hal.science/hal-01788827v2

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01788827v2
https://hal.archives-ouvertes.fr

Regenerate: A Language Generator for Extended
Regular Expressions

with an application to test case generation

Gabriel Radanne
University of Freiburg
Germany
radanne@informatik.uni-freiburg.de

Abstract

Regular expressions are part of every programmer’s toolbox.
They are used for a wide variety of language-related tasks
and there are many algorithms for manipulating them. In
particular, matching algorithms that detect whether a word
belongs to the language described by a regular expression
are well explored, yet new algorithms appear frequently.
However, there is no satisfactory methodology for testing
such matchers.

We propose a testing methodology which is based on
generating positive as well as negative examples of words
in the language. To this end, we present a new algorithm
to generate the language described by a generalized regular
expression with intersection and complement operators. The
complement operator allows us to generate both positive and
negative example words from a given regular expression. We
implement our generator in Haskell and OCaml and show
that its performance is more than adequate for testing.

CCS Concepts + Theory of computation — Regular
languages; Grammars and context-free languages; « Soft-
ware and its engineering — Software testing and de-
bugging; Functional languages;

Keywords Regular expressions; parsing; formal languages;
power series; HASKELL; OCAML

ACM Reference Format:

Gabriel Radanne and Peter Thiemann. 2018. Regenerate: A Lan-
guage Generator for Extended Regular Expressions: with an ap-
plication to test case generation. In Proceedings of the 17th ACM
SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’18), November 5—6, 2018, Boston, MA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3278122.3278133

GPCE ’18, November 5-6, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 17th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE ’18), November 5-6, 2018,
Boston, MA, USA, https://doi.org/10.1145/3278122.3278133.

Peter Thiemann
University of Freiburg
Germany
thiemann@acm.org

1 Introduction

Regular languages are everywhere. Due to their apparent
simplicity and their concise representability in the form of
regular expressions, regular languages are used for many text
processing applications, reaching from text editors [Thomp-
son 1968] to extracting data from web pages.

Consequently, there are many algorithms and libraries
that implement parsing for regular expressions. Some of
them are based on Thompson’s translation from regular ex-
pressions to nondeterministic finite automata and then apply
the powerset construction to obtain a deterministic automa-
ton. Others are based on derivatives [Brzozowski 1964] and
map a regular expression directly to a deterministic automa-
ton. Partial derivatives [Antimirov 1996] provide another
transformation into a nondeterministic automaton. An imple-
mentation based on Glushkov automata has been proposed
[Fischer et al. 2010] with decent performance. Cox’s webpage
[Cox 2007] gives a good overview of efficient implementa-
tions of regular expression search. It includes a discussion
of his implementation of Google’s RE2 [Cox 2010]. Current
research still uncovers new efficient algorithms for matching
subclasses of regular expressions [Groz and Maneth 2017].

Some of the algorithms for regular expression matching
are rather intricate and the natural question arises how to
test these algorithms. Static test suites are somewhat unsatis-
factory as they only cover a finite number of cases when the
problem is infinite in two dimensions (regular expressions
and input words). Random testing seems more appropriate:
it can generate random expressions or it can draw exam-
ple expressions from online repositories with reams of real
life regular expressions [RegExLib [n. d.]], but then there
needs to be an oracle for the generated language and it is
non-trivial to define generators for test inputs.

We eliminate the oracle by providing generators for pos-
itive and negative example words. Generators for positive
examples, which match a given regular expression, have been
investigated [Ackerman and Shallit 2009; Groz and Maneth
2017; Mékinen 1997; Mcllroy 2004], although mainly in a
theoretical context. Generating negative examples, which do
not match an expression, has not been considered before.

The generators presented in this work are yet more gen-
eral. They apply to extended regular expressions that

https://doi.org/10.1145/3278122.3278133
https://doi.org/10.1145/3278122.3278133
https://doi.org/10.1145/3278122.3278133

GPCE 18, November 5-6, 2018, Boston, MA, USA

contain intersection and complement beyond the standard
regular operators. The presence of the complement operator
enables the algorithms to generate strings that certainly do
not match a given (extended) regular expression.

Our algorithms produce lazy streams, which are guaran-
teed to be productive (i.e., their next element is computed in
finite time). A user can limit the string length or the number
of generated strings without risking partiality.

Source code for implementations in Haskell' and in OCaml®
is available on GitHub. Examples can be run in a Web App°.
Although not tuned for efficiency they generate languages
at a rate between 1.3 - 10® and 1.4 - 10° strings per second,
for Haskell, and up to 3.6 - 10° strings per second, for OCaml.
The generation rate depends on the density of the language.

§ 2-5 investigate the overall design using Haskell. Fine
tuning of the underlying data structures is investigated using
OCaml in § 6. § 7 reports benchmarking results, § 8 considers
testing, § 9 discusses related work, and § 10 concludes.

We assume fluency with Haskell and OCaml. Familiarity
with formal languages is helpful, but not required as the
paper contains all relevant definitions.

2 Motivation

Suppose someone implemented a clever algorithm for reg-
ular expression matching, say match. We want to use this
implementation, but we also want to make sure it is largely
bug free by subjecting it to extensive testing. So we need to
come up with test cases and implement a test oracle.

A test case consists of a regular expression r and an input
string s. If matchOracle is the test oracle, then executing the
test case means to execute match r s and check whether the
result is correct by comparing it with matchOracle r s.

QuickCheck [Claessen and Hughes 2000] is a library for
property-based random testing, which is well suited for con-
ducting such a test. Using QuickCheck, we would write a
generator for regular expressions and then use the generator
for strings to generate many inputs for each expression.

However, this approach has a catch. Depending on the
language of the regular expression, the probability that a
uniformly distributed random string is a member of the lan-
guage can be severely skewed. As an example, consider the
language L = (ab)* over the alphabet ¥ = {a, b}. Although
L contains infinitely many words, the probability that a ran-
dom word of length n is an element of L is

e 0if nis odd and e 5 if nis even.
The probability p, that a uniformly random word of length
less than or equal to n is an element of L is very small:

Ln/2] < n

= on+l _ 1~ 2n+2_2

n

! https://github.com/peterthiemann/re-generate
Zhttps://github.com/regex-generate/regenerate
3https://regex-generate.github.io/regenerate/

Gabriel Radanne and Peter Thiemann

The density of L is the probability P(w € L) of (uniformly)
randomly selecting a word in L, which is zero in the limit.
Hence, there are two problems.

1. How do we know whether the test oracle is correct,
short of verifying it?

2. How do we generate relevant test cases, given that the
density of many regular languages is 0 or 1?

Wouldn'’t it be nice to have a systematic means of generat-
ing words inside of L and outside of L? Such a generation
algorithm would eliminate the oracle and it would give us
control over the number of test inputs in the language and
in the language’s complement.

To construct such an algorithm we tackle the more general
question of generating the language of a regular expression
extended with operators for intersection (&) and complement
(~). This algorithm can generate the complement of L(r) by
asking it to generate L(~r).

Requirements For the testing application, we propose some
requirements for the generation algorithm to avoid ineffi-
ciencies and spurious testing failures.

1. No repetitions in the output.

2. Output must not be partial.

3. Throttling output with respect to word length and
number of generated words should be possible.

4. Generation should be compositional.

5. Reasonable efficiency.

3 Previous Work
3.1 Brief Intermezzo on Formal Languages

Let ¥ be a finite set, the alphabet, totally ordered by <. We
write 2* for the set of finite words over X, which is defined
by U2, 2! where 30 = {¢} and Z'*! = 3 x /. The semantics
of a regular expression, [r]] € X7, is a set of words, defined
in Figure 1. We write ¢ for the empty word and u - v for the
concatenation of words u, v € 2*. We write |u| for the length
of word u. Unless otherwise specified, we use g, b,c, ... to
range over X and u, v, w, ... to range over X"

If U,V C ¥ are languages, then their concatenation (or
product) is definedas U -V = {u-v | u € U,v € V}. We
sometimes write u - V as an abbreviation for the product
{u} - V with a singleton language. The Kleene closure of a
language U C 3* is defined as U* = [J;2, U’ where U® = {¢}
and U = U - UL

An extended regular expression (Figure 1) is built from
the regular operators empty set, empty word, singleton word
consisting of a single letter a chosen from a finite alphabet
>, alternative, concatenation, and Kleene closure, intersec-
tion, and complement. The extra operators do not add extra
descriptive power as regular languages are closed under
intersection and complement [Hopcroft et al. 2003], but ex-
pressions can be more concise.

https://github.com/peterthiemann/re-generate
https://github.com/regex-generate/regenerate
https://regex-generate.github.io/regenerate/

N}

Regenerate: A Language Generator for Extended Regular Expressions

r,s [L1=
=0 empty 0
|1 empty word {e}
| (a€X) singleton {a}
| r+s alternative [[r] U [[s]
| r-s concatenation [[r] - [s]
| r* Kleene star [r]*
| r&s intersection [[r] N [[s]
| ~r complement 3\ [r]

GPCE ’18, November 5-6, 2018, Boston, MA, USA

data GRE sig

= Zero

| One

| Atom sig

| Or (GRE sig) (GRE sig)
Dot (GRE sig) (GRE sig)
Star (GRE sig)
And (GRE sig) (GRE sig)
Not (GRE sig)

Figure 1. Generalized regular expressions: syntax, semantics, and Haskell encoding

3.2 Mcllroy’s Approach

Mcllroy [2004] enumerates the words of a regular language

as a strictly increasingly ordered infinite stream using Haskell.
A key insight is to use the length-lexicographic ordering on

words, which is defined by u <j; v if |u| < |v] or |u| = |v|

and u < v in the usual lexicographic ordering. Here is a
definition in Haskell.*

T.Text -> T.Text

llocompare u v =

llocompare -> Ordering

case compare (T.length u) (T.length v) of
EQ -> compare u v
LT -> LT
GT -> GT

This ordering gives raise to an enumeration of all words over
the alphabet X via an order-preserving bijection from the
natural numbers to >*. Using this bijection we can show that
for each pair of words v <;; w the number of words u such
that v <j;; u and u <;; w is finite.

The Haskell code below defines a generator as a composi-
tional function in terms of the regular operations.

import qualified Data.Text as T

type Alphabet = [Char] -- ascendingly sorted
type Lang = [T.Text] -- lazy stream of words
generate Alphabet -> GRE Char -> Lang
generate sigma r = gen r
where

gen Zero = []

gen One = [T.empty]

gen (Atom t) = [T.singleton t]

gen (Or r s) = union (gen r) (gen s)

gen (Dot r s) = concatenate (gen r) (gen s)

gen (Star r) = star (gen r)

gen (And r s) = intersect (gen r) (gen s)

4The type Data.Text.Text, commonly imported as T.Text, is an efficient
string data type from the Haskell library. We only use T.empty for the
empty string, T.append for string append, T. singleton to create a single
letter word, and T. length.

16

2 star 1x@(x:xt) =

module Examples.McIlroy where
import qualified Data.Text as T
import Examples.LLO (llocompare)
-> Lang

union Lang -> Lang

union xs@(x:xs') ys@(y:ys') =

case llocompare x y of
EQ > x union xs' ys'
LT -> x union xs' ys
GT >y union xs ys'
union xs ys = xs ++ ys
concatenate :: Lang -> Lang -> Lang
concatenate []1 1y = []
concatenate 1x [] = []
concatenate (x:xt) ly@(y:yt) =

union (concatenate [x] yt)
(concatenate xt ly)

T.append x y

star Lang -> Lang
star [1 = [T.empty]
if x == T.empty
then star xt

else T.empty concatenate 1x (star 1x)

Figure 2. Mcllroy’s implementation of regular operators

gen (Not r) = complement sigma (gen r)

Figure 2 contains Mcllroy’s implementation of the regular
operators. His definitions for concatenate and star are more
general, but that generality is not needed for this application.

The union operation is implemented as a merge of two
strictly increasing streams; the last line only applies if one
of the streams is empty. This definition is productive and
yields a strictly increasing stream.

The concatenate operation is generic sequence multipli-
cation, which is productive. It yields a strictly increasing
stream because T.append x y is the smallest element in the
product of 1x and 1y if x is smallest in 1x and y is smallest in

GPCE 18, November 5-6, 2018, Boston, MA, USA

-- continuing module Examples.McIlroy

intersect Lang -> Lang -> Lang
intersect xs@(x:xs') ys@(y:ys') =
case llocompare x y of
EQ > x intersect xs' ys'
LT -> intersect xs' ys
GT ->
intersect

intersect xs ys'
xs ys = []

-- difference Lang -> Lang -> Lang
-- omitted for space reasons

complement Alphabet
complement sigma 1x =

-> Lang -> Lang
difference lsigmastar 1x
where

lsigmastar = star (map T.singleton sigma)

Figure 3. Additional operations in Mcllroy’s framework

ly. If one of the input languages is infinite, then there is a
union operation for each generated word.

The star operation is defined by closure under concatena-
tion. The definition is productive and the output is strictly
increasing as it is generated by concatenate.

This implementation is correct by construction as it closely
follows the mathematical definition of the operations. How-
ever, Mcllroy readily admits in the paper it is very inefficient.

3.3 Extending Mcllroy

Mcllroy’s paper does not mention that the same representa-
tion of a language enables the efficient implementation of
intersect, difference, and hence the complement operations!

Figure 3 shows that intersection and difference can be im-
plemented as simple variations of the union operation. They
run in linear time on finite lists. Moreover, given a stream cor-
responding to £*, which is easy to define, and the difference
operation, we obtain a definition of complement.

At this point, we have an implementation of all operations,
but concatenation (and hence star) is inefficient. Observe
further that neither intersect nor difference are productive:
intersect applied to two eventually disjoint infinite streams is
partial. For example, computing the intersection (ab)* N (ba)*
yields a partial list, which starts with the empty word, but
never produces another word. As another example, comput-
ing the difference (aa)* \ a* never produces any word. Hence,
the complement operation is not productive, either.

These definitions are not acceptable because they may pro-
duce spurious test failures due to timeouts. Moreover, they
make it impossible to reliably gauge test inputs by length or
number, because the generator may get stuck in an unpro-
ductive loop before reaching the proposed limit.

1

3

» concatenate 1x ly =

Gabriel Radanne and Peter Thiemann

concatenate SeglLang -> SeglLang -> Seglang
collect ©
where
collect n =
(foldr McIlroy.union []
$ map (combine n) [0
collect (n+1)
combine n i =

1iftA2 T.append (1x !!

nl)

i) (ly ' (n - 1))
Figure 4. Concatenation for segment representation

4 Generation by Cross Section

We address the problems outlined with Mcllroy’s approach
by switching to a different segment representation for the
generated language.

Let L C ¥* be a language and n be a natural number. The
n'" cross section of L or n'" segment of Lis L, := LNX",
the set of words of length nin L. As L = | J,,5¢ L, we define
the segment representation of L by the sequence of all
segments (Ly,)n>0-

The language operations can be expressed on this repre-
sentation by standard operations on sequences.

Sum: Uuv),=U,UV, (1)

Hadamard product: unv),=U,nV, (2)

Product: U-V), = U Ui -Voi (3)
i=0

In a language that supports streams, all operations become
executable. As the alphabet X is finite, each segment L, is a
finite set. Hence, the sum and Hadamard product yield effi-
cient definitions of language union and intersection. Due to
the change of representation, the intersection is productive:
it produces the next segment in finite time.

The Haskell representation of a language has the type

type SeglLang = [[T.Text]]

where the outer list is assumed to be an infinite lazy stream
and each inner list is a finite, strictly increasing list of words
of the same length. On words of the same length, the length-
lexicographic order is the same as the lexicographic order.

The union, intersection, and difference operators on SegLang
are defined according to Equations (1) and (2).

union = zipWith McIlroy.union
intersect = zipWith McIlroy.intersect
difference = zipWith McIlroy.difference

Concatenation As all words in U; - V;,_; in Equation (3)
have length n, they belong to the n'" segment of the re-
sult. Both U; and V,,_; are strictly increasingly sorted, so the
standard enumeration of pairs from U; X V,,_; is sorted in
the same way. Hence, our implementation of concatenate in

Regenerate: A Language Generator for Extended Regular Expressions

1 star SeglLang -> Seglang

2 star 1x = lstar

3 where

4 Istar = [T.empty] collect 1

5 collect n =
6 (foldr union []

$ map (combine n) [1 nl)
8 : collect (n + 1)
9 combine n i =
10 liftA2 T.append (1x !! i) (lstar !! (n - 1i))

Figure 5. Kleene closure for segment representation

1 complement Alphabet -> Seglang -> Seglang

2 complement sigma 1lx = difference lsigmastar 1x

3 where

4 lsigmastar =

5 [T.empty]

6 extend lsigmai =
[T.cons a w |

map extend lsigmastar

a <- sigma, w <- lsigmail]

Figure 6. Complementation for the segment representation

Figure 4. Function combine implements U; - V,,_; and collect
n computes the stream of segments starting from the n*".
Expression 1x !! i accesses the ith element of list 1x.

Kleene Closure It is well known that U* = (U \ {¢})".
Hence, a simple calculation yields an effective algorithm for
computing the sequence of cross sections for U*.

n
UY=1 UN=U-U)=JU - Ui @
i=1
The key observation is that Equation (4) is a proper induc-
tive definition of the sequence for U*. It never touches U
and the union only touches the elements (U*),,—; down to
(U")o. Hence, (U*),, is well defined as it only relies on U and
previously computed indexes!

Figure 5 contains the resulting implementation of Kleene
closure. The collect and combine functions are almost iden-
tical, 1star is defined recursively, but this recursion is well-
founded as we just argued.

Complement To define the complement operation, all we
need is to define the segment representation of £*, which
can be done analogously to computing the closure, and apply
the difference operator. Figure 6 puts it all together.

Discussion What have we gained?

Productivity: We can generate productive segment rep-
resentations from all extended regular expressions. The im-
plementation of each operation is guided by corresponding
operations on streams.

Easy Gauging: To restrict the generated segmented output,
say segs, to words of length less than a given bound n, all
we need to do is concat (take n segs). The result is a finite

1

3

» concatenate '

GPCE ’18, November 5-6, 2018, Boston, MA, USA

concatenate ' SeglLang -> SeglLang -> Seglang

collect 1y [1]

' lx ly =
where
collect (ysegn:ysegs) rly =
let rly' = ysegn rly in
(foldr McIlroy.union []
$ zipWith (liftA2 T.append) 1x rly')
collect ysegs rly'

Figure 7. Concatenation with convolution

list of words. In contrast, such filtering is not effective for
the LLO representation where takewhile (\w -> T.length w <

n) llo may yield a partial list.

There is a catch: As the output is always an infinite list,
we lose the information that a language is finite. The ad-
vantange of this choice is simplicity: index accesses into the
languages 1x and ly are always defined. However, the list
index operation used in the combine function requires time
linear in its index argument, which may be inefficient. The
next section discusses ways to address these shortcomings.

5 Improvements
5.1 Faster Concatenation by Convolution

Looking back at the code in Figure 4, we see that the invoca-
tion of collect nleads to n invocations of the list indexing
operations 1x !! iand1ly !! (n - i), which results in an
overall complexity of O(n?) for generating the segment n.

The combine operation is an example of a convolution
where indexing of the two lists proceeds in opposite direc-
tions. The collect operation could take advantage of this
pattern and build a reversed list rly of already processed
segments of 1y at O(1) extra cost. Using this additional data
structure, the convolution can be implemented in linear time
using zipWith as shown in Figure 7.

The code in the figure only handles infinite lists of seg-
ments. When extended with handling the case for finite
lists, it gives rise to an optimization. If 1x is finite, then the
zipWith automatically stops processing unnecessary indices
in ly. Conversely, if 1y starts with some empty segments be-
cause all its words are longer than some lower bound, then
these segments could safely be omitted from rly.

This consideration reveals that the algorithm implemented
in concatenate'' is inherently asymmetric because it does
not exploit the finiteness of ly. In the finiteness-aware ver-
sion, this asymmetry can be addressed easily. The code can
be enhanced to detect that 1y is finite. Then it just flips the
roles of 1x and 1y, so that from now on ly is traversed in
forward direction and 1x backwards. Flipping roles at length
n requires taking the initial (n+ 1) segments of 1x and revers-
ing the resulting list. The cost for this reversal is amortized
by the previous traversal of 1y up to this point, so it has no
impact on the asymptotic complexity.

GPCE 18, November 5-6, 2018, Boston, MA, USA

zero SeglLang
» zero = []
3 one SeglLang
one = [[T.empty]l]
5 atom Char -> Seglang
s atom t = [[]1, [T.singleton t1]]

Figure 8. Base cases for refined segment representation

We implemented the finiteness-aware algorithm including
role flipping, but we do not include the code in the paper, as
it is a tedious variation of the code in Figure 7.

5.2 Refined Segment Representation

The refined segment representation attempts to represent
finite languages by finite segment sequences as much as pos-
sible. Hence, the base cases for the interpretation of a regular
expression may be defined as in Figure 8. The implementa-
tion of union, intersect, difference, and complement is an
easy exercise and thus omitted. We discuss the remaining
issues with the previous code for concatenation in Figure 7.

Function concatenate'' always returns an infinite list of
segments. To keep that list finite, we need a termination
criterion for collect to determine that all future calls will
only contribute empty segments.

To this end, we keep track of the lowest index seen in 1x
and ly where the respective segment list is exhausted, say,
m, and my, (if they exist). These indexes are upper bounds
for the length of the longest word in 1x and ly such that
Vx € 1x it must be that |x| < my — 1 and analogously for 1y.
Then we apply the following lemma.

Lemma 5.1. Let X,Y C X* be languages and suppose that
there are numbers my, my > 0 such that

Vx € X, |x| < my VyeY, |yl <my

ThenVw € X - Y, |w| < my + my — 1.

To prove the lemma, observe that the longest word in the
product is bounded by |xy| = |x| + [y| < my —1+m, —1.In
consequence, if n > m, + my — 1, then no word of length n
can be constructed by concatenation of elements from 1x and
ly. We omit the straightforward modification of the code.

The output of star is only finite in two cases as U* = {¢}
iff U C {e}. Otherwise |U”| is infinite. The finite cases are
straightforward to detect and thus not further discussed.

Segmentation yields a finite representation for all finite
languages defined without using the complement operation.
While [~(~0)] = 0is a finite language, the output of complement

(complement zero) is still an infinite list of empty segments.

§ 5.4 discusses ways to get finite representations from
more languages. Generally it is impossible to guarantee a
finite language is represented by a finite stream of segments.

o

Gabriel Radanne and Peter Thiemann

5.3 Faster Closure

The optimizations described for concatenation also apply
to the computation of the Kleene closure. The convolution
approach does not require any flipping in this case because it
is clear that only the input language can be finite, as the cases
where the output language is finite are treated separately.

5.4 More Finite Representations

We already remarked that we can keep segmented represen-
tations finite for finite languages constructed without using
complement. To extend the realm of finite representations we
propose to use a custom data types for segment lists.

data Segments 1
= Empty 2
| Cons Lang Segments 3
| Full [Lang] 4

data Lang
= Null

| Data [T.Text]

| Univ [T.Text]
Constructor Empty represents the empty set. A segment list
Cons x1 xsegs represents the union of the language x1 and
segments xsegs. If a Cons node appears at level n > 0 in a
Segments data structure, then all words in x1 have length
n. The constructor Full xls is the novelty of this type. If
it appears at level n, then it represents all words in =* of
length > n. For convenience, the argument x1s contains
these words, structured as a (standard) list of segments.

The definition of Segments relies on data type Lang to repre-
sent languages L C X", for some n. Constructor Null stands
for the empty set, Data ws stands for a non-empty set of
words represented by an increasingly ordered list ws, and
Univ ws, when encountered at level n, indicates that its ar-
gument ws represents the full set 3".

It is an easy exercise to implement the operations union,
intersect, and difference on Lang and Segments in a way
that preserves the above invariants as much as possible.

The resulting generation algorithm solves our previous
problem with [~(~0)]] = @, because it evaluates to Empty.
Also, [~a] evaluates to a finite representation:’

Cons (Univ [""1) (Cons (Data ["b"1) (Full _))

But a slight variation like [(~a)(~b)] = {a, b} would not be
represented finitely.

We can extend the range of languages with finite repre-
sentations by dualizing the idea for detecting finiteness in
§ 5.2. The following lemma captures this idea.

Lemma 5.2. Let X,Y C X* be languages and suppose that
there are numbers f, f, = 0 such that

VxeXh|x| > fi=xeX VyeXilyl>fy=yeY
ThenVw € X", |w| > fy + fy=>weX Y.

The generation algorithm can determine f; and f; by
detecting when a segment list is Full. Once f; and f; are

>We use string notation for elements of Data.Text.Text for readability.
The bar in Full _ stands for an unevaluated infinite list of full segments.

Regenerate: A Language Generator for Extended Regular Expressions

both determined and the generated word length n is greater
than or equal to f; + f;, then we can finish producing the
segments by outputting the appropriate Full.

This approach yields finite segment representations for
many finite and co-finite languages. But the algorithm is
easy to defeat. For example, both [a* + ~(a*)] = ¥* and
[a* & ~(a*)] = 0 are both mapped to infinite segment lists.

6 OCaMmL Implementation

We also implemented our language generation algorithm in
OCamL. The main goal of this implementation is to exper-
iment with strictness and various data structures for seg-
ments. The key idea is that the internal order on words
in a segment does not matter because each segment only
contains words of the same length. All we need is a data
structure that supports the stream operations. To facilitate
such experimentation, we implemented the algorithm as a
functor whose signature is shown in Figures 9 to 11. OCAML
functors are parameterized modules that take modules as
argument and return modules. Our implementation takes
two data structures as arguments, words and segments, to
test different representations without changing the code.

Characters and Words Figure 9 contains the signature
for words. It provides the empty word (for One), singleton
words (for Atom), and append. Neither an ordering nor a
length operation is needed: Comparison is encapsulated in
the segment data structure and the length of a word is the
index of the segment in which it appears. This signature
is satisfied by the OCAML string type (i.e., arrays of bytes),
arrays, lists of characters, or ropes. The type of individual
characters is unrestricted.

Segments Figure 10 contains the signature for segments.

The main requirement is to support the operations on power

series as described in section 4 and the set operations union,

inter and inter. The product described in Equation 3 is
decomposed in two parts:

e An append function to implement U;V,,_;. It computes the
product of two segments by appending their elements.

e A merge operation which computes the union of an ar-
bitrary number of segments. It collects the segments ob-
tained by invocations of append.

Experimentation with transient data-structures requires an

explicit memoize function that avoids recomputing segments

accessed multiple times. Finally, the functions of _list and
iter import and export elements to and from a segment.

6.1 Core Algorithm

The core algorithm follows the Haskell version. The power
series is implemented using a thunk list in the style of Pottier
[2017] with some special-purpose additions:

1 type node =

1

N}

GPCE ’18, November 5-6, 2018, Boston, MA, USA

module type WORD =
type char

sig

type t

val empty : t
val singleton
val append

char -> t
t >t >t
end

Figure 9. Operations on words

module type SEGMENT =
type elt (x Elements %)
type t (* Segments *)

sig

val empty: t
t -> bool
elt > t

val is_empty:

val singleton:

(x Set operations x)

val union: t -> t > t
val inter: t -> t -> t
val diff: t > t > t

val append: t > t -> t
val merge: t list > t

(* Import/Export %)

val of_list: elt list -> t
val iter: t -> (elt -> unit) -> unit
(x*x For transient data-structures *)
val memoize: t -> t
end

Figure 10. Operations on segments

module Regenerate

(Word WORD)
(Segment Segments.S with type elt = Word.t)
sig
type lang
val gen Segment.t -> Word.char regex -> lang
val iter lang -> (Word.t -> unit) -> unit
end
Figure 11. Language generation as a functor
| Nothing
| Everything
| Cons of Segment.t * lang
and lang = unit -> node

An enumeration is represented by a function which takes
a unit argument and returns a node. A node, in turn, is either
Nothing or a Cons of an element and the tail of the sequence.
The additional constructor Everything allow to manipulate
full languages symbolically, as in § 5.4.

GPCE 18, November 5-6, 2018, Boston, MA, USA

module type OrderedMonoid = sig
type t
t > t > int

t >t >t

val compare
val append

5 end

s module ThunkList (Elt OrderedMonoid)
SEGMENTS with type elt = Elt.t

Figure 12. Signature for ThunkList

As an example, the implementation of language union is
shown below. The trailing unit argument () drive the evalua-
tion of the sequence lazily. With this definition, union s1 s2
cause no evaluation before it is applied to ().

let rec union s1 s2 () = match s1(),
| Nothing, x | x, Nothing -> x
| Everything, _ | _, Everything -> Everything
| Cons (x1, nextl), Cons (x2, next2) ->

Cons (Segment.union x1 x2, union nextl

s2() with

next2)

6.2 Data Structures

Our parameterized implementation enables experimentation
with various data structures for segments. We present several
possibilities before comparing their performance.

Ordered enumerations Ordered enumerations, represented
by thunk-lists, make for a light-weight set representation.
To use an order, we require compare and append on words.
The OrderedMonoid signature captures these requirements.
Figure 12 shows the resulting functor ThunkList.

The n-way merge, was implemented using a priority heap
which holds pairs composed of the head of an enumeration
and its tail. When a new element is required in the merged
enumeration, we pop the top element of the heap, decon-
struct the tail and insert it back in the heap.

Transience and Memoization During concatenation and
star, we iterate over segments multiple times. As thunk lists
are transient, iterating multiple times over the same list will
compute it multiple times. To avoid this recomputation, we
can implement memoization over thunk lists by using a
growing vector as cache. Such a memoization function in-
curs a linear cost on enumerations. To test if this operation is
worthwhile we implemented two modules: ThunkList with-
out memoization and ThunkListMemo with the implementa-
tion described above.

Lazy Lists OCaML also supports regular lazy lists using
the builtin Lazy. t type. We implemented a LazyList functor
which is identical to ThunkList but uses lazy lists.

Strict Sets As the main operations on segments are set
operations, one might expect a set implementation to per-
form well. We implemented segments as sets of words using

Gabriel Radanne and Peter Thiemann

OCaMmL’s built-in Set module which relies on balanced bi-
nary trees. The only operations not implemented by OCAaML’s
standard library are the n-way merge and the product.

Tries Tries [Fredkin 1960] are prefix trees where each branch
is labeled with a character and each node may contain a
value. Tries are commonly used as maps from words to val-
ues where a word belongs to its domain if there is a path
reaching a value labeled with the characters in the word.
Tries seem well adapted to our problem: since all words in a
segment have the same length, we only need values at the
leaves. Hence, we can implement tries like tries of integers
[Okasaki and Gill 1998]. For simplicity, we do not use path
compression, which means that branches are always labeled
with one character. A trie is either Empty, a Leaf or a Node
containing a map from characters to its child tries. The only
novel operation is append which computes the product of
two sets. It can be implemented in a single traversal which
grafts the appended trie to at each leaf of t, without copies.

type trie = Empty | Leaf | Node of trie CharMap.t

let rec append t t@ = match t with
| Empty -> Empty | Leaf -> to
| Node map ->
CharMap.map (fun t' -> append t' t@) map

7 Benchmarks

We consider the performance of our implementations in two
dimensions: first the successive algorithmic refinements in
the HaskEeLL implementation presented in § 4 and 5, then
the various segment representations in OCAML as described
in § 6.

Benchmarks were executed on a ThinkPad T470 with an
i5-7200U CPU and 12G of memory. The HASKELL bench-
marks use the Stackage LTS 10.8 release and the -02 option.
The OCaml benchmarks use OCAML 4.06.1 with the flambda
optimizer and the -03 option.

7.1 Comparing Algorithms in the HASKELL
Implementation

§ 4 and 5 develop the algorithm for generating languages in
a sequence of changes applied to a baseline algorithm. We
evaluate the impact of these changes on performance by mea-
suring the generation speed in words per second. This speed
depends heavily on the particular regular expression. Thus,
we select four representative regular expressions to highlight
the strengths and weaknesses of the different approaches.

e g": This expression describes a very small language with
P(w € L) = 0. Nevertheless, it puts a lot of stress on the
underlying append operation on words as their length
increases very quickly. The input language contains only
one segment whereas all segments of the output language

Regenerate: A Language Generator for Extended Regular Expressions

contain exactly one element. This combination highlights
the usefulness of sparse indexing and maps.

e (a-b*)*: On the opposite end of the spectrum, the language
of this regular expression is large with P(w € L) = 0.5.
The expression applies star to a language where segment
n + 1 consists of the word ab”. Its evaluation measures
the performance of star on a non-sparse language and of
concatenation applied to a finite and an infinite language.

e ~(a") - b: This regular expression exercises the comple-
ment operation and tests the concatenation of a very large
language, P(w € [~(a*)])) = 1, to a much smaller language.

e ~(a") & ~(b*): This regular expression applies intersection
to two large languages and make use of the complement.
Its goal is to measure the efficiency of set operations.

We consider five variants of the Haskell implementation.

e Mcllroy our implementation of Mcllroy [2004].

o The seg implementation uses the infinite list-based seg-
mented representation throughout (§ 5.2).

e The segConv implementation additionally applies the
convolution approach (§ 5.1 and 5.3).

e The refConv implementation combines symbolic seg-
ments (§ 5.2 and 5.4) with the convolution approach.

Performance is evaluated by iterating through the stream
of words produced by the generator, forcing their evalua-
tion® and recording the elapsed timed every 20 words for 5
seconds. The resulting graph plots the time (x-axis) against
the number of words (y-axis) produced so far. The slope of
the graph indicates the generation speed of the algorithm,
high slope is correlated to high generation speed. Figure 13
contains the results for the Haskell implementations.

Most algorithms generate between 1.3 - 103 and 1.4 - 10°
words in the first second, which seems sufficient for testing
purposes. The refConv implementation which uses sym-
bolic segments and convolutions is consistently in the lead-
ing group. This observation validates that the changes pro-
posed in § 5 actually lead to improvements. Looking at each
graph in detail, we can make the following remarks:

e All implementations are equally fast on a* except McIlroy,
which implements star inefficiently.

The graph of some implementations has the shape of
“skewed stairs”. We believe this phenomenon is due to
insufficient laziness: when arriving at a new segment, part
of the work is done eagerly which causes a plateau. When
that part is done, the enumeration proceeds lazily. As lazi-
ness and GHC optimizations are hard to control, we did
not attempt to correct this.

The expression (a - b*)* demonstrates that the convolution
technique presented in § 5.1 leads to significant improve-
ments when applying star to non-sparse languages.

%In Haskell, forcing is done using Control .DeepSeq.

GPCE ’18, November 5-6, 2018, Boston, MA, USA

600 -

Mcllroy (ab*)* e
L seg - e
500 segConv ===- ,,"
[refConv a
& 400 - srmm—————— ‘
5
X I
= 300 - ot
= rd
3 o
O 200 |- g
100 - D e S TS LR
0 ;
8 -
L a*
7+ Ly
61 5=
Y st T
— -7
X s
zoAr
c r Ak
3 3+ i
o L =
2+ Pt
1A
Lfr
0
450 -
~(a*)b
N
o
—
X
€
3
o
o
G 400 - Lt
X r ’1__.-_-_-_-_-_-..-‘-'
= 300 - ot
c t Lad
3 200 - g
o [4 e
100 | e
L - 02
0 s T | | | |
0 1 2 3 4 5
Time (s)

Figure 13. Benchmark for the HAskELL implementation with
various algorithms

o The refConv algorithm is significantly faster on ~(a*) - b
compared to seg and segConv. We have no good expla-
nation for this behavior as the code is identical up to the
symbolic representation of full and empty segments. How-
ever, the only sublanguage where this representation could
make a difference is []], which is also represented finitely
by segConv and should thus benefit from the convolution
improvement in the same way as refConv.

o The expression ~(a*) & ~(b*) shows that all our algorithm
have similar performance profiles on set-operation. They
are also significantly faster than Mcllroy.

GPCE 18, November 5-6, 2018, Boston, MA, USA

1400
b ThunkList (ab*)*

1200 | ThunkListMemo - - - - - ot
L LazyList ==-- Lo

1000 - StrictSet
L Trie —- — Lo

800 - e

600 - P

Count (x10%)
\

400 e
200 B e s AL

16 -

L e P
12 - £

10 - 27

Count (x10%)
[e¢]
T
<
N

700 | »
600 - A
500 | »

400 |- s

Count (x10%)

300 e
200 - P

100 - ot

. Lo

600 -

500 |- 2
400 - 7 oo

300 - el

Count (x10%)

200 - O et

P

100? #F

Time (s)

Figure 14. Benchmark for the OCamr implementation with
various data-structures

7.2 Comparing Data Structures in the OCamL
Implementation

We have now established that the refConv algorithm pro-
vides the best overall performance. The HASKELL implemen-
tation, however, uses lazy lists to represent segments. To
measure the influence of strictness and data structures on
performances, we conduct experiments with the functorized
OCaMmL implementation. We follow the same methodology
as the HASKELL evaluation using the regular expressions a*,
(a-b*)" and ~(a*) - b. The results are shown in Figure 14.

Gabriel Radanne and Peter Thiemann

Unlike the previous benchmark for algorithms, there is no
clear winner among the data structures. Lazy and Thunk lists,
with or without memoizations, are the most “well-rounded”
implementations and perform decently on most languages.

e The Trie module is very fast thanks to its efficient con-
catenation. It performs badly on a* due to the lack of path
compression: in the case of a*, where each segment con-
tains only one word, the trie degenerates to a list of char-
acters. We believe an implementation of tries with path
compression would perform significantly better.

o The other data structures exhibit a very pronounced slow-
down on a* when reaching 150000 words. We believe this
slowdown is due to garbage collection because the active
heap contained 10G of data before a collection was trig-
gered. Far less memory is consumed for other languages.

e Strict data structures showcase a marked “skewed stair”
pattern, which is completely absent for ThunkList and
LazyList. Thus, manual control of laziness works well in
OCamL. These results also demonstrate that strict data
structures should only be used when all elements up to a
given length are needed. In such a case the stair pattern
causes no problems.

o Memoization for thunk lists does not significantly improve
performance. It seems that the linear cost of memoizing
the thunk list and allocating the vectors is often higher
than simply recomputing the lists.

o The expression (a - b*)* shows that sorted enumerations
and tries perform well on set-operations, even compared
to strict sets.

7.3 The Influence of Regular Expressions on
Performance

The benchmark results so far demonstrate that the perfor-
mance of the language generator highly depends on the
structure of both the generated language and the regular
expression considered. To further explore this observation
we compare a range of regular expressions with the refConv
HaskELL implementation and the LazyList OCAML imple-
mentation. Before presenting the results, a word of warning:
We do not claim to offer a fair comparison between lan-
guages! The two implementations are not exactly the same
and we made no attempt to measure both languages under
exactly the same conditions. Figure 15 contains the results
with a logarithmic scale for the word count as it enables bet-
ter comparison between the regular expression specimens.

We add three new regular expressions to the range of
expressions already considered:

o (2X)*, the language of words of even length. This language
is neither finite nor cofinite, but it can make good use of
the symbolic representation of segments.

e (1(01%0)"1 + 0)*, the language of multiples of 3 in binary
representation. Again, this is a language that is neither fi-
nite nor cofinite, but its segments are never full nor empty.

Regenerate: A Language Generator for Extended Regular Expressions

Haskell with refConv
500

100

Count (x10%)

Time (s)

GPCE ’18, November 5-6, 2018, Boston, MA, USA

OCaml with LazyList

((alb)(a[b))*
(L(01*0)*1|0)* === ~-
~(@)&~(b%)

0 1 2 3 4 5
Time (s)

Figure 15. Benchmark on different regular expressions

e a*b and ba*, which together check whether the perfor-
mance of concatenation is symmetric.

Languages are roughly ordered by size/density, i.e., P(w €
L). We observed that the bigger the segments of a language,
the faster it is to generate its words. If each segment contains
many words, we do not need to compute many segments
to generate a large number of words. Moreover, most op-
erations, notably those involving the product of segments,
are more expensive when considering segments of higher
indices. Briefly put, long strings are harder to generate than
short ones. Regarding symmetry, we find that the generation
of a*b and ba™ has the same performance in both implemen-
tations, thanks to the improved convolution technique with
detection of finite languages described in § 5.1.

8 Testing

We implemented our algorithms in a library to implement
a test harness for the OCamL Re library’, a commonly used
OCamL regular expression implementation. We also created
a set of test cases for student projects in HASKELL to help
them write better implementations.

Both libraries provide test harnesses which generate reg-
ular expressions with positive and negative samples. The
implementation under test compiles the regular expression
and applies it to the samples. The library exposes a sample
generator in the style of property testing libraries such as
QuickCheck [Claessen and Hughes 2000]. This way we can
use the tooling already available in such libraries. The sim-
plified API of the OCAML version is shown below. The main
function arbitrary n alphabet returns a generator which
provides on average n samples using the given alphabet.

type test = {

re : Regex.t ;
pos Word.t list ;

"https://github.com/ocaml/ocaml-re

4

5

neg : Word.t list ;

3
val arbitrary:
int -> Word.char list -> test QCheck.arbitrary

Regular expressions are easy to generate using QuickCheck-
like libraries as they are represented by an algebraic datatype.
We restrict generated regular expressions to star-heights
less than 3. While our technique can be used for regular
expressions with arbitrarily nested repetitions, it can cause
slowdown and large memory consumption which are incon-
venient in the context of automated testing.

Our library returns a finite number of samples even for
an infinite language. We want to generate test-cases that
exercise the implementation under test as much as possi-
ble. For this purpose, we use a technique similar to the fast
approximation for reservoir sampling [Vitter 1987]. When
considering the sequence of words in the language, we skip
k elements where k follows a power law of mean n. We then
return the given sample, and stop the sampling with a prob-
ability 1/n. This technique results on average in k samples
that are regularly spaced at the beginning of the stream,
but will occasionally skip ahead and return very long words.
This approach has proven satisfactory at finding good testing
samples in practice.

9 Related Work
Regular Language Generation

Mikinen [1997] describes a method to enumerate the words
of a regular language L, given by a deterministic finite au-
tomaton, in length-lexicographic ordering. To generate words
up to length n, this method precomputes in time O(n), for
each i < n, the lexicographically minimal and maximal word
of length i in L. Enumeration starts with the minimal word
of length n and repeatedly computes the lexicographically
next word in L until it reaches the maximal word of length
n. Each step requires time O(n).

https://github.com/ocaml/ocaml-re

GPCE 18, November 5-6, 2018, Boston, MA, USA

In comparison, Makinen requires a deterministic finite
automaton, which can be obtained from a regular expres-
sion in worst-case exponential time. Complementation is
not mentioned, but it could be handled. Mékinen would give
rise to a productive definition by cross sections because the
computation of minimal and maximal words could be done
incrementally, but which is not mentioned in the paper.

Mcllroy [2004] implements the enumeration of all strings
of aregular language in Haskell. He develops two approaches,
one based on interpreting regular expressions inspired by
Misra [2000] and discussed in Section 3.2, the other (unre-
lated to ours) using a shallow embedding of nondeterministic
finite automata.

Ackerman and Shallit [2009] improve Makinen’s algo-
rithm by working on a nondeterministic finite automaton
and by proposing faster algorithms to compute minimal
words of a given length and to proceed to the next word of
same length. An empirical study compares a number of varia-
tions of the enumeration algorithm. Ackerman and Makinen
[2009] present three further improvements on their enumer-
ation algorithms with better asymptotic complexity. The
improved algorithms perform better in practice, too.

Ackerman’s approach and its subsequent improvement
does not incur an exponential blowup when converting from
aregular expression. As it is based on nondeterministic finite
automata, complementation cannot readily be supported.
Moreover, the approach is not compositional.

Language Generation

Some authors discuss the generation of test sentences from
grammars for exercising compilers (e.g., [Paracha and Franek
2008; Zheng and Wu 2009] for some recent work). This line
of work goes back to Purdom’s sentence generator for test-
ing parsers [Purdom 1972], which creates sentences from a
context-free grammar using each production at least once.

Compared to our generator, the previous work starts from
context-free languages and aims at testing the apparatus
behind the parser, rather than the parser itself. Hence, it
focuses on generating positive examples, whereas we are
also interested in counterexamples.

Grammar Testing [Lammel 2001] aims to identify and
correct errors in a grammar by exercising it on example
sentences. The purpose is to recover “lost” grammars of
programming languages effectively. Other work [Li et al.
2004] also targets testing the grammar, rather than the parser.

Test Data Generation

Since the introduction of QuickCheck [Claessen and Hughes
2000], property testing and test-data generation has been
used successfully in a wide variety of contexts. In property
testing, input data for the function to test is described via
a set of combinators while the actual generation is driven
by a pseudo-random number generator. One difficulty of
this approach is to find a distribution of inputs that will

Gabriel Radanne and Peter Thiemann

generate challenging test cases. This problem already arises
with recursive data types, but it is even more pronounced
when generating test inputs for regular expressions because,
as explained in § 2, many languages have a density of zero,
which means that a randomly generated word almost never
belongs to the langer. Generating random regular expressions
is much easier. We can thus combine property testing to
generate regular expressions and then apply our language
generator to generate targeted positive and negative input
for these randomly generated regular expressions.

New et al. [2017] enumerate elements of various data
structures. Their approach is complementary to test-data
generators. It exploits bijections between natural numbers
and the data domain and develops a quality criterion for data
generators based on fairness.

Crowbar [Dolan and Preston 2017] is a library that com-
bines property testing with fuzzing. In QuickCheck, the gen-
eration is driven by a random number generator. Crowbar
replaces this generator by afl-fuzz [Zalewski 2014]. Afl is
a fuzzer that relies on runtime instrumentation to provide
good code coverage, thus eliminating the need to specify the
distribution of random generators. This approach, however,
is not sufficient to generate both regular expressions and
inputs, as we would still require an oracle. Our language gen-
erator could allow to easily fuzz regular expression parsers.

10 Conclusions and Future Work

In this article, we presented an algorithm to generate the lan-
guage of a generalized regular expression with union, inter-
section and complement operators. Using this technique, we
can generate both positive and negative instance of a regular
expression, thus enabling easier testing of regular expression
parsers without an oracle. We provide two implementations:
one in HASKELL which explores different algorithmic im-
provements and one in OCAML which evaluates choices in
data structures. We then measured the performance of these
implementations.

Even though our implementations are not heavily opti-
mized, our approach generates languages at a rate that is
more than sufficient for testing purposes, between 1.3 - 10°
and 1.4 - 10° strings per seconds. We can then combine our
generator with property based testing to test regular ex-
pression parsers on randomly-generated regular expressions.
While our approach eliminated the need for an oracle, the
burden of correctness now lies on the language generator.
We would like to implement our algorithm in Agda and prove
its correctness and its productivity.

We also want to extend our approach to a more general
context. Notably, we can consider new regular expression
operators. While some operators are very easy to implement,
such as option and generalized repetition, other would cause
some additional challenge, such as lookaround and bound-
aries operators. We can also consider non-regular operators!

Regenerate: A Language Generator for Extended Regular Expressions

Indeed, our approach is compositional, and can thus scale
to decidable languages. It remains to be seen if context free
languages can also be generated with this method. Repre-
senting regular languages as formal power series provides
numerous avenues for extensions. In this article, we used the
semiring of languages of size n. Other semirings might also
yield interesting algorithms. For instance, using the stream
of boolean coefficients would allow to generate the language
and its complement in one go. We could also use a richer
semiring to generate weighted words.

Finally, in § 7, we saw that the performance of our gener-
ator highly depends both on the shape of the language and
the shape of the regular expression. We noticed a rough cor-
relation with the size of each segments, but did not provide a
more precise account. One might wonder if such an account
is possible and if yes, can we use this information to improve
language generation by transforming a regular expression
to an equivalent yet more efficient one.

References

Margareta Ackerman and Erkki Mékinen. 2009. Three New Algorithms for
Regular Language Enumeration. In COCOON (Lecture Notes in Computer
Science), Vol. 5609. Springer, 178-191.

Margareta Ackerman and Jeffrey Shallit. 2009. Efficient Enumeration of
Words in Regular Languages. Theor. Comput. Sci. 410, 37 (2009), 3461—
3470.

Valentin M. Antimirov. 1996. Partial derivatives of regular expressions
and finite automaton constructions. Theoretical Computer Science 155, 2
(1996), 291-319.

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. . ACM 11,
4 (1964), 481-494.

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP "00),
September 18-21, 2000., Martin Odersky and Philip Wadler (Eds.). ACM,
Montreal, Canada, 268-279. https://doi.org/10.1145/351240.351266

Russ Cox. 2007. Implementing Regular Expressions. (2007). https://swtch.
com/~rsc/regexp/.

Russ Cox. 2010. Regular Expression Matching in the Wild. (March 2010).
https://swtch.com/~rsc/regexp/regexp3.html.

Stephen Dolan and Mindy Preston. 2017. Testing with Crowbar. (2017).

Sebastian Fischer, Frank Huch, and Thomas Wilke. 2010. A play on regular
expressions: functional pearl. In Proceeding of the 15th ACM SIGPLAN
international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, Paul Hudak and Stephanie Weirich
(Eds.). ACM, 357-368. https://doi.org/10.1145/1863543.1863594

Edward Fredkin. 1960. Trie Memory. 3 (Sept. 1960), 490-499. Issue 9.
https://doi.org/10.1145/367390.367400

Benoit Groz and Sebastian Maneth. 2017. Efficient testing and matching of
deterministic regular expressions. J. Comput. Syst. Sci. 89 (2017), 372-399.
https://doi.org/10.1016/j.jcss.2017.05.013

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2003. Introduction
to automata theory, languages, and computation - international edition (2.
ed). Addison-Wesley.

Ralf Limmel. 2001. Grammar Testing. In Fundamental Approaches to Software
Engineering, 4th International Conference, FASE 2001 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2001 Genova, Italy, April 2-6, 2001, Proceedings (Lecture Notes in Computer
Science), Heinrich HufSmann (Ed.), Vol. 2029. Springer, 201-216. https:
//doi.org/10.1007/3-540-45314-8_15

GPCE ’18, November 5-6, 2018, Boston, MA, USA

Hu Li, Maozhong Jin, Chao Liu, and Zhongyi Gao. 2004. Test Criteria
for Context-Free Grammars. In 28th International Computer Software
and Applications Conference (COMPSAC 2004), Design and Assessment of
Trustworthy Software-Based Systems, 27-30 September 2004, Hong Kong,
China, Proceedings. IEEE Computer Society, 300-305. https://doi.org/10.
1109/CMPSAC.2004.1342847

Erkki Mékinen. 1997. On Lexicographic Enumeration of Regular and
Context-Free Languages. Acta Cybern. 13,1 (1997), 55-61.

M. Douglas Mcllroy. 2004. Enumerating the Strings of Regular Lan-
guages. J. Funct. Program. 14, 5 (2004), 503-518. https://doi.org/10.
1017/50956796803004982

Jayadev Misra. 2000. Enumerating the Strings of a Regular Expression. (Aug.
2000). https://www.cs.utexas.edu/users/misra/Notes.dir/RegExp.pdf.

Max S. New, Burke Fetscher, Robert Bruce Findler, and Jay A. McCarthy.
2017. Fair enumeration combinators. J. Funct. Program. 27 (2017), e19.
https://doi.org/10.1017/S0956796817000107

Chris Okasaki and Andrew Gill. 1998. Fast Mergeable Integer Maps. In In
Workshop on ML. 77-86.

A. M. Paracha and Frantisek Franek. 2008. Testing Grammars For Top-
Down Parsers. In Innovations and Advances in Computer Sciences and
Engineering, Volume I of the proceedings of the 2008 International Confer-
ence on Systems, Computing Sciences and Software Engineering (SCSS),
part of the International Joint Conferences on Computer, Information, and
Systems Sciences, and Engineering, CISSE 2008, Bridgeport, Connecticut,
USA, Tarek M. Sobh (Ed.). Springer, 451-456. https://doi.org/10.1007/
978-90-481-3658-2_79

Francois Pottier. 2017. Verifying a Hash Table and its Iterators in Higher-
Order Separation Logic. In Proceedings of the 6th ACM SIGPLAN Con-
ference on Certified Programs and Proofs, CPP 2017, Paris, France, jan-
uary 16-17, 2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 3-16.
https://doi.org/10.1145/3018610.3018624

Paul Purdom. 1972. A Sentence Generator for Testing Parsers. BIT 12, 3
(1972), 366-375. https://doi.org/10.1007/BF01932308

RegExLib [n. d.]. Regular Expression Library. http://www.regexlib.com/.

Ken Thompson. 1968. Regular Expression Search Algorithm. Commun.
ACM 11, 6 (1968), 419-422. https://doi.org/10.1145/363347.363387

Jeffrey Scott Vitter. 1987. An efficient algorithm for sequential random
sampling. ACM Trans. Math. Softw. 13, 1 (1987), 58-67. https://doi.org/
10.1145/23002.23003

M. Zalewski. 2014. http://lcamtuf.coredump.cx/afl/

Lixiao Zheng and Duanyi Wu. 2009. A Sentence Generation Algorithm for
Testing Grammars. In Proceedings of the 33rd Annual IEEE International
Computer Software and Applications Conference, COMPSAC 2009, Seattle,
Washington, USA, July 20-24, 2009. Volume 1, Sheikh Igbal Ahamed, Elisa
Bertino, Carl K. Chang, Vladimir Getov, Lin Liu, Hua Ming, and Rajesh
Subramanyan (Eds.). IEEE Computer Society, 130-135. https://doi.org/
10.1109/COMPSAC.2009.193

https://doi.org/10.1145/351240.351266
https://swtch.com/~rsc/regexp/
https://swtch.com/~rsc/regexp/
https://swtch.com/~rsc/regexp/regexp3.html
https://doi.org/10.1145/1863543.1863594
https://doi.org/10.1145/367390.367400
https://doi.org/10.1016/j.jcss.2017.05.013
https://doi.org/10.1007/3-540-45314-8_15
https://doi.org/10.1007/3-540-45314-8_15
https://doi.org/10.1109/CMPSAC.2004.1342847
https://doi.org/10.1109/CMPSAC.2004.1342847
https://doi.org/10.1017/S0956796803004982
https://doi.org/10.1017/S0956796803004982
https://www.cs.utexas.edu/users/misra/Notes.dir/RegExp.pdf
https://doi.org/10.1017/S0956796817000107
https://doi.org/10.1007/978-90-481-3658-2_79
https://doi.org/10.1007/978-90-481-3658-2_79
https://doi.org/10.1145/3018610.3018624
https://doi.org/10.1007/BF01932308
http://www.regexlib.com/
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/23002.23003
https://doi.org/10.1145/23002.23003
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/COMPSAC.2009.193
https://doi.org/10.1109/COMPSAC.2009.193

	Abstract
	1 Introduction
	2 Motivation
	3 Previous Work
	3.1 Brief Intermezzo on Formal Languages
	3.2 McIlroy's Approach
	3.3 Extending McIlroy

	4 Generation by Cross Section
	5 Improvements
	5.1 Faster Concatenation by Convolution
	5.2 Refined Segment Representation
	5.3 Faster Closure
	5.4 More Finite Representations

	6 OCaml Implementation
	6.1 Core Algorithm
	6.2 Data Structures

	7 Benchmarks
	7.1 Comparing Algorithms in the Haskell Implementation
	7.2 Comparing Data Structures in the OCaml Implementation
	7.3 The Influence of Regular Expressions on Performance

	8 Testing
	9 Related Work
	10 Conclusions and Future Work
	References

