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Abstract 
Accurate classification of human activities is significant particularly 

for remote monitoring of patients requiring orthopedic treatment and 

therapies in case of various injuries. Previously, we presented a 

Local Energy-based Shape Histogram (LESH) based approach that 

considers the energy expenditure for various activities and 

differentiates among the activities on the basis of energy level. 

Although the approach effectively recognized various activities, the 

recognition accuracy for the activities, such as walking forward, 

walk forward left circle, and walk forward right circle was 

significantly low. In this paper, we present a Convolutional Neural 

Network (CNN) based approach for recognizing human activities 

with sufficiently high accuracy. The experiments are conducted on 

the Wearable Action Recognition Database (WARD) dataset. 

Experimental results demonstrate that the CNN based approach (in 

general) not only achieves high recognition accuracy for all of the 

activities but also performed extremely well for the activities 

requiring frequent inter-posture transitions. Another important 

contribution of this research is that the CNN based approach is 

capable of finding a single combination of sensors to identify 

thirteen different activities with sufficiently high accuracy.

Keywords 
Activity recognition, convolutional neural networks, sensor data, 
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1 Introduction 
With the widespread availability of low-cost sensing devices in 

the recent years, the research on the human activity recognition 

using wearable devices has significantly increased [1]. The human 

activity recognition through wearable sensors is beneficial for 

various types of daily life activities, such as jogging, personal 

fitness, and elderly care. Moreover, the Body Area Networks 

(BANs) and Internet-of-Things (IoT) have also revolutionized the 

healthcare monitoring as the ubiquity of healthcare services has 

increased manifold [2]. Several types of wearable devices, such as 

sensors and smart jewelry are being used on the human body to 

measure several vital signs, for example blood pressure, heart rate, 

oxygen saturation, and energy expenditure due to their physical 

activities [3].  

Particularly, in the recent past the research on human activity 

recognition has attained significant attention due to the development 

of applications meant for patient monitoring and fall detection in 

elderly people. The aforesaid applications and several others utilize 

wearable sensors for monitoring activities, such as walking, 

standing, going upstairs, and going downstairs. The accurate 

recognition of human activities is highly dependent on the 

location/position of sensors on human body. Therefore, it is 

important to place the sensors at the appropriate positions on the 

human body to correctly identify the activities to support 

monitoring.  

Keeping in view how a human activity is performed in real-time, 

each activity is a set of many elementary and continuous 

movements. Conventionally, any human activity lasts for only few 

seconds (or less) and in these seconds a combination of basic 

activities can be involved. In light of sensor data, these continuous 

basic movements correspond to the flat signals. However, the 

transition between these basic movements is presented by a 

significant change in the signal value. Therefore, only an effective 

and complex feature extraction technique can be applied to such 

applications that have the capability to capture any salience feature 

in the dataset. In our previous work in [4], we presented a cloud 

based framework to investigate the effects of sensor location on the 

accuracy of human activity recognition. The aforementioned 

framework utilizes a Local Energy-based Shape Histogram (LESH) 

approach for transformation of human activities data into a feature 

space that subsequently is used by machine learning algorithms for 

classification of activities. Several classifiers were used to recognize 

the activities and in fact none of the classifiers performed very well 

particularly for the activities, such as walk forward, walk forward 

left circle, and walk forward right circle. In this paper, we improve 

the accuracy of human activity recognition by employing a 

Convolutional Neural Network (CNN) based approach for feature 

extraction. An important attribute of the CNNs is that they do not 

require excessive domain knowledge to achieve reasonable 

performance and are also capable of achieving the maximum 

performance by fine tuning the architecture.  
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In the previous LESH based approach [4], there was not a single 

combination of sensors that could identify all of the activities with 

high accuracy. Therefore, an important question was whether the 

CNN based model has the capability to identify all of the activities 

with a single combination of sensors. To evaluate the performance 

of the CNN based approach for human activity recognition, we 

conducted experiments on Wearable Action Recognition Database 

(WARD) [5] dataset comprising of the data from 20 subjects for 

thirteen activities using five sensors on the human body. For the 

details of the location of sensors on human body, interested readers 

are encouraged to refer to [4]. With the presented CNN based 

approach, the recognition accuracy for all of the activities in general 

and particularly for the three activities, such as walk forward, walk 

forward left circle, and walk forward right circle that in fact was 

significantly low using the LESH based approach is significantly 

improved. Moreover, with the CNN based approach all of the 

thirteen activities were accurately recognized with a single 

combination of sensors, which was not possible with the LESH 

based approach.   

� We successfully employed the CNN for human activity 

recognition with high accuracy. We observe that activities, for 

example Rest at lying, walk left circle, walk right circle, turn 

right, go upstairs, jog, and jump can be identified with 100% 

precision using the CNN. 

� The performance of the proposed CNN based approach in 

terms of recognition accuracy was observed significantly better 

than several classifiers, such as the SLR, Naïve Bayes, and the 

SMO. On an average, the CNN has shown 26% higher F-

measure score for recognition of thirteen different human 

activities than different classifier used with LESH based 

approach in [4]. 

� The activities like walk forward, walk circle left, and walk right 

circle can now be identified with 97%, 99%, and 99% F-

measure score, respectively using the CNN despite very similar 

nature of the activities. 

� In contrast to the previous LESH based approach, the CNN 

based approach is also capable of recognizing all of the 

activities with a single combination of sensors. The 

combination of all five sensors in a body area network has 

shown 3.4 % higher F-measure score on an average than the 

combination of 3 sensors and individual sensors. 

The rest of the paper is organized as follows. Section II discusses 

the related work. The presented CNN approach for human activity 

recognition is presented in Section III. Section IV presents 

experimental results and discussion on tuning of the 

hyperparameters whereas Section V finally concludes the paper and 

highlights the direction for future work.  

2 Related Work 
This section overviews the works related to human activity 

recognition. The previous works have focused only on the 

recognition of human activities. In addition to the recognition of 

human activities, our presented approach is capable of identifying 

all activities with a single combination of sensors (using all five 

sensors).  

A deep learning methodology for activity recognition through 

on-Node sensors is proposed in [6]. In the proposed methodology, 

the authors have utilized both the deep and shallow features obtained 

though the sensors. Selection of both of the aforesaid features 

reduces the number of hidden layers in the deep learning process. 

Reduced number of layers in turn reduces the training time. Raw 

data is collected from the sensors in the form of the signals. The n 

samples are sent to the process (dealing with deep features) with 

segment length of 4—10 seconds. Authors in [6] utilized segments 

instead of single data point to improve the classification accuracy. 

Length of the segment depends upon the kind of application and 

sensor used. Deep features are extracted using spectrogram. 

Spectrogram is utilized due to the fact that spectrogram captures 

more interpretable features. For predefined shallow features, authors 

have utilized a vector of six manually selected features. After 

selection of deep and shallow features, they are passed through 

connected and soft-max layer. Unified deep neural networks are 

utilized to train both of the aforementioned features together. The 

training process calculates the weights of the hidden layers by 

backward propagation. To improve the weight assignment, concepts 

of weight decay, momentum, and dropout also utilized. The 

proposed methodology is evaluated on five different publicly 

available datasets. One of the datasets is developed by the authors 

themselves during the process and is made public. Precision and 

recall results obtained after experimentation show significant 

improvement after employing deep learning methodologies.  

Zeng et al. [1] proposed human activity recognition model based 

on Convolutional Neural Networks (CNN). The model is applied on 

the data obtained through mobile sensors. Important feature of the 

proposed methodology is the fact that it captures scale invariance 

and local dependencies of the input signal. Capturing of local 

dependencies and scale invariance results in effective determination 

of features in presence of varied postures of the same activity. 

Moreover, no domain knowledge is required for features extraction 

as the process is carried out automatically by the CNN layers. The 

aforesaid is performed through local connectivity of the adjacent 

layers. The max-pooling layer computes weights and divides the 

features into multiple partitions. Weights are regularized by using 

weight decay, momentum, and drop out processes. Afterwards, local 

features are mapped onto global sets. Training process is carried out 

through forward and backward propagations. Unlike traditional 

CNNs, the proposed methodology contains only one pair of 

convolutional and max-pooling layers along with two fully 

connected neural networks. Three publicly available data sets 

(Skoda, Opportunity, and Actitracker) are used to evaluate the 

proposed methodology. Seven different activities were evaluated. 

Results show improved precision and recall than the traditional 

methodologies. A methodology for collective recognition of human 

activity and sensor location is proposed in [7].  The base of the 

aforesaid work is sparse signal theory. Authors in [7] employed 

traditional methodologies of manual feature extraction and Bayesian 

sparse signal classification. Same authors have also jointly 

recognized the human activity and sensor location in [8], where the 

authors have reconstructed the sparse signal by using compressed 

sensing theory. The reconstructed signals were then used to 

recognize the activity and sensor location on human body. Though 

the presented methodologies improved the results from the 

traditional technologies in few cases, the limitation of robust 

automatic feature extraction existed.  

 Authors in Ref. [9] made use of time series data to recognize 

human activities. The authors claim to recognize 
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both atomic and complex activities. The proposed methodology 

converts the atomic and complex activities into shapelets. Later on 

the shapelets are compared with the recorded signal to classify the 

activities. However, the proposed methodology is not able to capture 

variations in the signal obtained from the same activity. A similar 

approach based on shapelets was also proposed in [10].    

3 The CNN Based Approach for Human Activity 
Recognition 
The convolution neural network (CNN) is a class of deep feed-

forward neural networks. The CNN architecture consists of 

multilayer perceptron with variations that require minimal pre-

processing. Therefore, the CNN is also known as Space Invariant 

Artificial Neural Networks (SIANN). The CNN decomposes the big 

and complex problems into small problems. Therefore, it gathers 

variance in the signals for the same activity but on different subjects. 

Our CNN model is built upon that of presented in [11] that was 

originally built for sentence classification and we adapt the model 

for the WARD dataset for human activity recognition. The 

conventional design of the CNN has an input-output layer and 

multiple hidden layers in between. The hidden layers consist of (a) 

convolution layer, (b) pooling layer, (c) flatten layer, and (d) dense 

layer.  Fig. 1 presents the CNN architecture for the sensor based 

human activity recognition whereas Fig. 2 shows the position of 

sensors on human body.  

The CNN input is the sensor data of length m×n, where m = 5 

represents the dimensions of the sensor data from 3-axis 

accelerometer and 2-axis gyroscope and n represents the length of 

trail sequence (each dimension) of the sensor data. Let  

corresponds to the i-th sensor attached on the human body with five 

dimensions. The sensor data is represented as: 

      =[ ] ,                                (1) 

where  corresponds to the i-th sensor attached on the human 

body and h is the number of values per window. 

In the first step, the matrix  is fed into the convolution layer for 

extracting high level features. In convolution operation, a filter  of 

window size  is applied on the matrix . In response, a feature  

is generated from the window by using Eq. 2.  

                                                              (2) 

where  is the bias term associated with each window  and  is 

a non-linear function. The filter  is applied on each possible 

window made on the length of each trail sequence to produce a 

feature map as: 

                          ,                                   (3) 

where,  is the total number of features extracted from the total 

windows made.  

In the second step, we apply the max-over-time pooling 

operation on the feature map given in Eq. 3 [12]. The purpose of the 

pooling layer is to further abstract the features that were extracted 

from the convolution layer. We, then take the maximum value 

 as the dominating/ important feature among all the 

abstract features for a particular filter. 

A. Classification 
 In the third step, the max pooling score of each applied filter is 

flattened to get a feature of a single dimension. The flatten feature is 

represented as: 

                           ,                                  (4) 

where,  is the total number of applied filters and  is the 

maximum pooling score of the  filter. The dense layer performs 

the classification on the features extracted in the convolutional layer 

and down sampled by the pooling layer. The last layer is a dense 

layer. The dense layer represents the matrix multiplication. The 

values in the matrix are trainable parameters and output is the m 

dimension vector where m represents the number of output classes.  

We used forward propagation method of the dense layer in our 

model. The forward propagation model comprises of three inputs: 

(i) input features, (ii) weights, (iii) and bias. The output of the 

forward propagation consists of only one vector. Finally, the output 

 is computed as: 

                         ,                                    (5) 

where,  is the element by element multiplication operator. 

 

 

 

Fig. 1: The CNN architecture for human activity recognition from sensor data 
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4 Experimental Results 
We carried out experiments on Amazon EC2 [14] to meet the 

requirements of high computational resources for the 

implementation of the CNN. We used the WARD dataset [5] to 

evaluate the human activity recognition using convolutional neural 

network. The dataset contains the data collected from sensors 

located at five different locations on 20 different people. The data 

was recorded for thirteen different activities presented performed by 

the people and are presented in Table 1. For convolutional neural 

network, we  used Keras and Tensorflow libraries of Python 

programming language. The performance is measured using 

Precision, Recall, and F-measure [13]. We used the technique of 

splitting the dataset into three portions, training, development, and 

test datasets. We used 60% dataset as training data, 20% as 

development data, and 20% as test data.  

Table 1. Activities in the WARD Dataset 

Activity Action Class Activity Action Class 
1 Rest at Standing 8 Turn right 

2 Rest at Sitting 9 Go upstairs 

3 Rest at Lying 10 Go downstairs 

4 Walk Forward 11 Jog 

5 Walk left circle 12 Jump 

6 Walk right circle 13 Push Wheelchair 

7 Turn left   

 

Table 2. Hyperparameter values after tuning 

 Parameter Value 
Conv2D   

 # of neurons in a layer  1000 

 Kernal Size (1 60) 

 Activation Relu 

MaxPool2D Pool Size (1 20) 

Dense Activation Sigmoid 

Compile Optimizer Adam 

Fit Epochs 10 

 Batch Size 30 

Input data Window Size 90 

Table 3: Output shapes and no. of parameters 

4.1 Hyperparameters’ Tuning 
The convolutional neural networks are notoriously difficult to 

configure because there are a lot of parameters that must be set for 

the efficient working of the models. We used the grid search 

capability from the scikit-learn library of Python programming 

language to find the best values for the parameters being used in the 

model. Moreover, the input data reshaped to fixed size windows. 

The reshaped data is taken as input to the convolutional neural 

network model. A separate channel is used for each dimension. The 

data from each sensor consists of five dimensions. Therefore, when 

data from all five sensors is used, 25 channels are required to feed 

data to CNN model. Table 2 presents the values of the parameters 

that we obtained after hyperparameters’ tuning of our CNN model. 

The hypertuning of the parameters was performed on the 

development dataset.  Fig. 2 shows shape of the output layers of our 

model. The model used 1,514,013 parameters in the training of the 

model. 

We evaluated the recognition accuracy of thirteen different 

human activities listed in Table 1 using the data from: (i) one sensor, 

(ii) different combinations of three sensors, and (iii) all five sensors 

at the same time. Due to space limitations, the F-measure scores for 

activity recognition using the CNN methodology are presented in 

Table 4. The highest values in the results are presented with bold-

font in the tables. Results demonstrate that the convolutional neural 

network is extremely accurate in recognizing the human activities. 

Table 2 shows the output shape and the number of parameters in 

different layers. The precision, recall, and F-measure scores have 

remained above 90% in most of the cases. Seven out of thirteen 

activities can be recognized with 100% precision with different 

combination of sensors. These activities include activity number 3 

(Rest at Lying), activity number 5 (Walk left circle), activity number 

6 (walk right circle), activity number 8 (Turn right), activity number 

9 (Go upstairs), activity number 11 (Jog), and activity number 12 

Remaining 5 activities can also be recognized with 99% precision 

with different combination of sensors. Looking only at the highest 

values, it appears that in recognition for each activity, we will 

require a separate combination of sensors. For example, turning 

right that is the activity number 8 in Table I can be recognized with 

100% precision using the data from the combination of Sensor 1 

(located at lower left forearm), Sensor 2 (located at lower right 

forearm), and Sensor 5 (located at right ankle). 

Layer (type) Output Shape Param # 

Conv2d_1 (Conv2D) (None, 1, 31, 

1000) 

1501000 

Max_pooling2d_1 

(MaxPooling2) 

(None, 1, 1, 1000) 0 

flatten_1 (Flatten) (None, 1000) 0 

dense_1(Dense) (None, 13) 13013 

Total parameters: 1,514,013 

Trainable params: 

1,514,013 

Non-trainable params: 0  

  

Fig. 2.  Position of on body sensors [4] 
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Table 3. F-measure of human activity recognition using the CNN based approach 

F-measure 

Act S1 S2 S3 S4 S5 S123 S124 S125 S134 S135 S145 S234 S235 S245 S345 All 5 

1 0.92 0.89 0.82 0.8 0.84 0.96 0.97 0.98 0.95 0.94 0.98 0.96 0.98 0.91 0.94 0.98 

2 0.81 0.78 0.79 0.65 0.75 0.97 0.98 0.99 0.97 0.98 0.98 0.99 0.98 0.97 0.96 0.99 

3 0.82 0.86 0.99 0.92 0.95 0.99 0.99 0.99 0.99 0.99 0.99 1 1 0.99 0.98 0.99 

4 0.84 0.85 0.9 0.83 0.89 0.9 0.96 0.94 0.95 0.96 0.97 0.95 0.96 0.94 0.94 0.96 

5 0.93 0.94 0.98 0.98 0.98 0.94 0.97 0.97 0.96 0.97 0.96 0.96 0.98 0.96 0.99 0.97 

6 0.9 0.95 0.99 0.97 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.99 

7 0.96 0.97 0.98 0.99 0.97 0.98 0.99 0.97 0.98 0.98 0.97 0.99 0.97 0.98 0.97 0.98 

8 0.94 0.95 0.99 0.98 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.97 0.96 0.99 0.99 

9 0.69 0.85 0.93 0.97 0.96 0.88 0.95 0.92 0.97 0.96 0.97 0.96 0.97 0.97 0.98 0.97 

10 0.84 0.93 0.97 0.96 0.95 0.9 0.96 0.95 0.96 0.92 0.96 0.98 0.96 0.94 0.97 0.97 

11 0.87 0.94 0.95 0.93 0.96 0.95 0.93 0.91 0.96 0.99 0.95 0.95 0.97 0.95 0.97 0.97 

12 0.94 0.96 0.98 0.95 0.96 0.98 0.97 0.98 0.98 0.99 0.97 0.97 0.99 0.98 0.98 0.99 

13 0.91 0.88 0.89 0.82 0.87 0.97 0.98 0.98 0.98 0.98 0.97 0.98 0.99 0.98 0.94 0.99 

 

 

Similarly, Walk right circle that is activity number 6 can be 

recognized with 100% precision using the data from sensor at 

location 3 (waist). However, going through all the tables, it can be 

observed that difference between highest and other values is too 

small. Therefore, we took the average of each combination over all 

of the activities to observe that which combination acquires the 

highest average. The averaged results of precision, recall, and F-

measure are presented in   Fig.  3, Fig. 4, and Fig. 5, respectively. 

The results show that the combination of all five sensors exhibits 

better results than any other combination. On an average, the 

combination of all five sensors obtained 98% scores in precision, 

recall, and F-measure. Another important observation that we  made 

is that the results from combination of Sensor 2, Sensor 3, and 

Sensor 5 are slightly behind the combination of all five sensors. The 

two combinations, one of Sensor 2, Sensor 4, and Sensor 5 and the 

other of Sensor 3, Sensor 4, and Sensor 5 performed worst in 

combinations of more than one sensor. Moreover, although the 

Fig. 3. Average precision for combination of 
sensors 

Fig. 4. Average recall for combination of sensors 

Fig. 5. Average F-measure for combination of sensors 
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individual sensors showed high scores but they did not perform 

significantly as better as the combination of sensors. Therefore, we 

can conclude that the CNN model when applied on the data from 

combination of sensors gives better results than data from any single 

sensor. We compared the results of methodology with the best 

results obtained in our previous study [4] that utilizes the LESH 

feature descriptor and different classifiers to recognize the human 

activities. In our previous study, among different classifiers, Simple 

Linear Regression (SLR), Naïve Bayes, and Sequential Minimal 

Optimization (SMO) classifiers had shown best performance in 

activity recognition with different combination of sensors. Table 5 

shows the comparison of our model using all five sensors with the 

best results of our previous study against F-measure scores. The 

results have shown that the CNN has outclassed the previous study 

in recognition of all the thirteen activities. Overall, the combination 

of all five sensors has shown 3.4 % higher F-measure score than the 

other combinations. The key observation we made in our 

comparison is the significant gain in F-measure for the activity 4 

(Walk forward), activity 5 (walk left circle), and activity 6 (walk 

right circle) using the CNN. These activities are problematic in 

recognition in all other recognition methods due to their very similar 

nature. For example, the F-measure score for walking forward is 

improved from 60% to 99% using the CNN model. On taking the 

average of the percentage increase using the CNN over the classifier 

used with LESH methodology, we can see a 26% higher F-measure 

score than all other classifiers used with LESH methodology. 

Therefore, we can conclude that the CNN methodology 

outperformed the LESH methodology with a significant margin. 

Therefore, it can be concluded that we can use single combination 

of sensors (all five sensors at a time) with CNN for recognition of 

thirteen different human activities with very high accuracy and 3.4 

% higher F-measure score than other combinations and 26% higher 

F-measure score than the other classifiers.  

Table 4. Comparison of F-measure of CNN and LESH 
methodology 

5 CONCLUSIONS AND FUTURE WORK 
In this paper, we evaluated the effectiveness of the CNN for 

recognition of human activities using the data from sensors placed 

at different locations. Data from different combination of sensors 

was also used to identify best combination of sensors that can be 

used to recognize thirteen different human activities. Results 

demonstrate that the presented CNN approach achieved high 

recognition accuracy as compared to the previous LESH based 

approach. Moreover, the CNN based approach also demonstrated 

that a single combination of sensors (all five sensors) is sufficient 

for recognition of all thirteen activities with significantly high 

accuracy. An important direction for future research can be to 

explore the relationship of the depth of the model (number of hidden 

layers) and the location of individual sensors. 
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Activity 

# 

  [4] 

CNN F-

score 

Classifier Combination 

of Sensors 

F-Score 

1 

Naïve 

Bayes 

1,2,3 

0.95 0.98 

2 

Naïve 

Bayes 

1,2,5 

0.78 0.99 

3 SMO 2,3,4 0.92 1 

4 

SMO All 5 

Sensors 0.67 0.97 

5 
SLR 1,3,5 

0.68 0.99 

6 SLR 1,4,5 0.6 0.99 

7 SLR 3,4,5 0.71 0.99 

8 SLR 3,4,5 0.74 0.99 

9 SLR 3,4,5 0.92 0.98 

10 

Naïve 

Bayes 

1,3,4 

0.77 0.98 

11 SMO 1,3,4 0.81 0.99 

12 
SMO 1,2,4 

0.83 0.99 

13 
SMO 1,2,3 

0.92 0.99 
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