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ABSTRACT

Automated social agents, or bots are increasingly becoming a prob-
lem on social media platforms. There is a growing body of literature
and multiple tools to aid in the detection of such agents on online
social networking platforms. We propose that the social network
topology of a user would be sufficient to determine whether the
user is a automated agent or a human. To test this, we use a pub-
licly available dataset containing users on Twitter labelled as either
automated social agent or human. Using an unsupervised machine
learning approach, we obtain a detection accuracy rate of 70%.

CCS CONCEPTS

• Security and privacy → Social network security and pri-
vacy; •Human-centered computing→ Collaborative and social
computing;
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1 INTRODUCTION

The use of automated agents, or bots, are increasingly prevalent on
social media platforms [15]. There are many examples of harmless,
and even helpful bots, such as a massive Star Wars obsessed bot-net
[11], or countless client relations management bots, deployed by
corporations to help deal with clients on online social networks
(OSNs).

To create bots on OSNs is a relatively basic task and has been used
for many years. Bots were employed mostly with harmless use-
cases, but the applications have since spread to potentially more
damaging activities. For a fee, organisations can artificially boost
their profile, products, or ideas on OSNs by utilising such bots to
tweet, post, favourite, retweet, follow, comment, befriend or reply.
Similarly, a person can make themselves seem more trustworthy,
credible or noteworthy, and ideas can also be boosted or quashed
artificially. These objectives play well into the political arena, where
the popularity and credibility of personalities and ideas are of cen-
tral concern. Cresci et al. [7] argue that there is evidence of a new
paradigm in bot development, which they term ‘social bots’. This
new wave of bots are smarter and have more advanced objectives.
They attempt to evade detection by increasingly emulating expected
social behaviour, by mimicking human behaviour. These social bots
are much harder to detect, or at least, to distinguish from humans.

Echeverría and Zhou [11] offer a brief overview of such ‘threatening’
bot activities on Twitter: spamming, fake trending topics, opinion
manipulation, astroturfing1, fake followers and API contamination.
The most notorious example in recent memory of such activities
was with the British referendum on European Union membership,2
where both sides of the debate included bot activities [3]. Another
is the 2016 US Presidential election [30]. This is an interesting
turn from social media’s earlier hopeful and optimistic coming of
age with the Arab Spring [19, 23]. Indeed, recent warnings from
historians are highlighting the argument that connectedness does
not necessarily lead to togetherness [14].

1Astroturfing is the act of sponsoring a campaign to look like a legitimate grass-roots
movement. Astroturf is an artificial type of grass, thus the name.
2Popularly referred to as Brexit, which is an amalgamate of British Exit.
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The above are examples of political interference in relatively ho-
mogeneous and politically stable developed nations. One can argue
that these elections are extremely consequential worldwide, and
therefore attract attention from various players, who are willing
and able to interfere. Thus, elections in a developing nation may
not attract such attention and levels of artificial interference. This
is however not a good assumption, since there is evidence of inter-
ference by both local and international players in the South African
political landscape on social media [16].

Since 2016, South Africa has been experiencing its first large scale
political interference on OSN platforms. There are multiple ac-
counts of astroturfing involving pressure groups, and social bots
driving political messages for a controversial politically connected
business family, and ‘fake news’ spreading about various topics.
Many hundreds of ‘bot’ accounts and misinformation networks
have been uncovered by journalists who join a growing community
of researchers attempting to solve the difficult, and increasingly
important, issue of bot detection on OSNs [17].

The scale of the worldwide issue has even attracted the attention of
DARPA who hosted a competition for teams to detect automated
social agents [32]. The outcomes of the competition revealed that
bot detection should be a semi-supervised process, a combination
of crowd-sourcing and feature-based detection, which are discussed
later in this paper.

The rest of the paper will firstly review the relevant literature on
detecting bots on OSNs. From the literature, we find two major
approaches to bot detection that can be classified as feature based
and network based. We then propose social network topology as
viable feature vector in distinguishing between bots and humans.
We then propose an unsupervised learning methodology using
social network topology. Finally, in the last section, we report the
results of the classification.

2 BOT DETECTION

An exhaustive overview of bot detection methods is beyond the
scope of this study, and it is sufficiently covered by Ferrara et al.
[15], who offer a helpful taxonomy of detection methods. Gilani
et al. [21] pointed out that many of these methods have claims of
highly successful classification attempts, but few offer their meth-
ods and/or datasets with which to benchmark. The next sections
offer a brief and general overview of previous approaches to bot
classification.

2.1 Crowd Sourcing

The first is a non-computational solution, which relies on humans
to detect bots on social platforms. The idea is that a large group of
people would act like a mass Turing test to classify users as human
or bot. There is a high success rate and near zero false positives,
since humans are able to pick up on social nuances that are difficult
to encode [36].

There are, however, multiple drawbacks to this approach, most
notably the cost to scale implications. Only large social networking

platforms are able to afford a group of expert analysts. Moreover,
there are clear issues with privacy concerns when user profiles and
data are exposed to people for annotation purposes. More mod-
ern bots are able to easily appear as more human, so annotation
becomes inceasingly difficult. Especially if no supplementary auto-
mated methods are used.

Instead of relying on humans to detect anomalous features of OSN
profiles, the problem would be well suited to a machine learning
approach. The next sections explores such approaches.

2.2 Feature-based Detection

Feature-based detection methods distil data from OSN users into
analysable features. Given sufficient examples of bots and humans,
multiple features can be recorded from each category to identify
significant differences between them. These features mostly rely
on behavioural data of the agents for classification, however, it is
reasonable to combine multiple features.

This problem lends itself to the implementation of machine learning
libraries in order to help classify using multiple features. Botometer,
the first publicly available classifier, uses a random forest ensem-
ble supervised learning method [9].3 The classifier uses multiple
features from the user’s network, user profile, friends, temporal
features, content and sentiment. The exact implementation is not
publicly available, but Gilani et al. [21] attempted a reproduction
and extension to the work of Davis et al. [9] and made the method-
ology and data open access.

This type of bot detection and classification work enjoys the most
success. There are some notable new developments since the review
of Ferrara et al. [15]. Inspired by digital DNA sequencing, Cresci
et al. [7] developed ‘Social Fingerprinting’ as a way to classify bots
and human agents. DNA sequencing creates a set of similarity
curves to which honest and dishonest nodes adhere. The approach
has a 92.9% accuracy [7].

Since the platforms are fundamentally social, many researchers
have developed methods that use these social characteristics in bot
detection. The next sections explore these characteristics in the
form of graph-based methods.

2.3 Graph-based Detection

The intuition with graph-based approaches is that because the
platform is social, the interaction between users of the platform
generate trace data of their interactions. This trace data can be used
to uncover the social aspect of the user behaviour, which can be
used to differentiate between bots and humans. Generally the trace
data is envisioned as a network graph.

There are two approaches to generating graph data. The first uses
the content interaction between users of a social media platform to
create a graph. The second approach uses the relational data, such
as following and friending, to create a network. Each approach is
discussed in more detail below.
3The name was originally BotOrNot, but was since changed to Botometer, see https:
//botometer.iuni.iu.edu.

https://botometer.iuni.iu.edu
https://botometer.iuni.iu.edu
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2.3.1 Content-based. Content-based graphs are used as feature
variables as described in Section 2.2. Examples include Varol et al.
[33] who use content networks produced by retweet, mention and
hash-tag co-occurrence of users to produce network structures
[also see 7, 9, 21]. For each network, various network features are
calculated, including indegree, outdegree, density and clustering
coefficient. These measures are then combined with other features
including user meta data, friends data, content, sentiment and tim-
ing. A recent unique content based method is by Shao et al. [30],
who used content interaction to investigate the dynamics of the
spread of false information. They observed, through k-core decom-
position, that social bots proliferate at the fringes of the interaction
network.

Most research where the graph is used as the key, or only, feature
is categorised as relation-based detection. The next section reviews
this research agenda.

2.3.2 Relation-based. Research using relation-based graphs for
bot detection is dominated by what is labelled Sybil research.4 In
Sybil research the key assumption is that trust is more difficult or
expensive to establish between a bot and a human. This means
that the number of connections between humans and bots would
be less than within each group. In other words, people will not
readily follow bots. This assumption lends itself to community
detection methods, which is well developed within graph theory.
The intuition is that if one can identify nodes belonging to the
same community as a confirmed account, either bot or human, they
should inherit the label.

These methods first identify a confirmed honest or Sybil seed node,
then a surrounding relational network structure is elicited. From
this network structure, they use various community detection al-
gorithms to classify all nodes in the network into a community
[34]. Those nodes classified into a community with the seed node
inherit the label; honest or Sybil. Examples of such methods include
SybilGuard [41], SybilLimit [40], SybilInfer [8], and more recently
SybilFuse [18].

Bots are able to establish connections to humans either through
effective disguise or poor due-diligence by the human agents. Many
researchers found that the trust assumption is not as valid as orig-
inally anticipated.5 Yang et al. [39] investigated the effectiveness
of criminal supporter accounts which aim to infiltrate and hide
actual bot accounts, offering proxy attack edges.6 Edwards et al.
[12] experimentally tested whether a known bot would be per-
ceived differently from a human in terms of communication factors.
They found no difference between communication quality of bots
and human agents, except for a measure of attraction. Boshmaf
et al. [6] tested the level of social penetration by building their
own bot-net, which achieved as high as 80% penetration. Ghosh
et al. [20] highlighted the effect of the social capitalists—human
agents who always follow back—who make it easy for bot-nets to
penetrate social networks and increase attack edges between bot
4The original usage of the term ‘Sybil’ is by Douceur [10].
5Although the use of trust is a broad application of actual human trust. A better proxy
for this might be a type of threshold.
6Attack edges are connections made from a sybil account to an honest user, through
which attacks can be performed.

communities and humans. Bilge et al. [5] investigated how easy
it would be to automate cloning attacks. Both their simplistic and
more advanced methods offered positive results. The assumption of
strong trust networks is, therefore, difficult to rely on. Aiello et al.
[1] conducted a social experiment where they determined how a
bot can gain influence on social media.

Bots are, therefore, becoming more socially complex and thus more
difficult to distinguish from honest users of the platform. The as-
sumptions of previous methods are increasingly becoming inef-
fective in detecting such bots [7]. The most successful methods
are those that combine multiple methods into a comprehensive
detection and classification regime.

Consequently, the options for future research are two-fold. Firstly,
to determine effective combinations of the above explored method-
ologies, such as Cresci et al. [7], Gilani et al. [21], Varol et al. [33],
and secondly, to develop new specialised methodologies and data
gathering techniques, such as new measures of on-line agents. Here
we propose a new specialisedmethodology, which could be included
in future blended methodologies. The proposed method is an un-
supervised machine learning approach, using existing clustering
methods on features extracted from a K-2 network of a target node.7

2.3.3 Issues with prior approaches. Existing classification methods
have two key issues. Firstly, many are sensitive to the training
datasets used to validate the method—especially methods relying
on supervised machine learning. Secondly, since research about bot
detection is published—an obvious reason why Twitter does not do
so—the detection methods are available to those who wish to avoid
detection.

By using human annotators, Gilani et al. [21] determined that Bot-
ometer could only achieve accuracymeasure of 48%when presented
with a new dataset. This is compared to a claimed 95% accuracy
rate with previous training data by by Davis et al. [9], which was
later reduced to 88% by Varol et al. [33].

Supervised machine learning methods are sensitive to biases in
training datasets. For instance, the Botometer classifier is based
on an ensemble learning random forest algorithm. Although they
do check for over-fitting, it is difficult to completely alleviate the
sensitivity, and automated social agents are constantly evolving,
which necessitates new features to be developed to cover for such
evolution. A less covered and less substantiated method is the
botcheck.me classifier,8 which offers an example of specialisation
classification. They use machine learning to classify automated
agents, but are explicit about the narrow application, which is
politically orientated bots. The botcheck.me classifier is specifically
trained on ‘politically orientated’ bots, instead of attempting a
generalist approach such as BotOrNot. The prominence of more
complex approaches, for example SybilFuse by Gao et al. [18], is
a response on the oversimplification of existing methods in bot
detection.

7This is defined in section 3.2, but a K-2 network is a network that spans two steps
from an original seed node (ego).
8See https://botcheck.me/



SAICSIT ’18, September 26–28, 2018, Port Elizabeth, South Africa L.A. Cornelissen et al.

Cresci et al. [7] determined that bots evolve as new detection meth-
ods arrive. It is reasonable to expect that bot detection methodolo-
gies that are well publicised as being effective would enable those
avoiding detection to learn how to avoid it [33]. The most well
known publicly available method of bot detection is Botometer,
since generating coverage in news articles and research ‘fact tanks’
such as Pew Research Centre [25]. If this is the reason for the low
correlation between human annotators and the Botometer detec-
tion method’s accuracy, then it deteriorated at a surprisingly rapid
pace. The Botometer paper by Davis et al. [9] was published in April
of 2016, and a year and a half later, Gilani et al. [21] determined
that the accuracy of the method dropped by an estimated 47%.

2.4 Network Topology Approach

We propose here a new specialised approach, using ego-centred
network topology as feature vectors for unsupervised machine
learning.

The appeal of network topology as a feature is that it is able to cap-
ture complex social structure, which social bots would struggle to
effectively emulate. A large body of work exists, which investigates
the complexities of social networks, like small-world and scale-free
properties [2, 28]. At risk of oversimplifying the field, people do
not form social relations in a random manner. The establishment of
connections have local biases, yet the macro effect of these biasses
have complex outcomes. For instance, the preferential attachment
model is put forth as the reason why networks have scale-free prop-
erties [2]. Preferential attachment implies that nodes with more
relations are more probable to receive more relations. This is also
called the Matthew effect, or the rich get richer effect.

If we imagine a simplistic bot befriending people at random, the de-
gree distribution would most probably follow a normal distribution,
whereas real social networks almost exclusively follow a power law
distribution [2]. This is easily remedied by the designer of the social
bot by adding a parameter to prefer befriending people with more
followers and friends. The network topology, therefore, seems to be
easily circumvented by a well designed social bot. However, these
bots can not control the interactions by the bots alters. For instance,
if they are only ever followed back by people who automatically
follow back all requests, such as how Ghosh et al. [20] reports, then
this would show up clearly in the topology as an extraordinarily
dense and large network. Emulating such complexities of social
networks become increasingly more difficult when considering the
many idiosyncratic social behaviours of users.

The next section expands on the methodology, specifically the
network topology methods that were used in developing the feature
vector. We also highlight the classification methodology used.

3 METHODOLOGY

To test the accuracy of the proposed method, an annotated dataset
containing both bots and humans is required. Given a list of identi-
fiers, a two step crawler, which we label the K-2 crawler, is utilised.
Multiple network measures are then calculated for each graph as a

feature of the seed node. These measures are then used in a clus-
tering procedure. The inherited labels from the clusters are then
compared to the original annotations to determine the accuracy of
the method. The following sections describe this methodology in
more detail.

3.1 Dataset

Since we need an annotated dataset containing only a Twitter user
identifier, and its annotation as bot or not, there are a few publicly
available datasets that satisfy these criteria. The most accessible
dataset for our purposes was made available by Varol et al. [33].
The Varol et al. [33] dataset contains Twitter user identifiers and
their corresponding classification; 1 = Bot, 0 = Not. The labels were
assigned as 1 when the user has a classification score of 0.5 and
above [33]. With the identifiers it is possible to crawl the follower
networks. The original dataset contained 2573 identifiers containing
68% (1747) nots and 32% (826) bots. After checking which of the
accounts are still active, the revised dataset contains 2178 identifiers,
which is a 15% (395) reduction. The split between the annotations
are similar with 67% (1462) annotated as Nots and 33% (671) as Bots.

3.2 K-2 Crawler

The objective of the crawler is to be able to gather the surround-
ing relational network structure of the ego. Previous studies have
also generated such relational graphs around a focal node, but we
propose a wider crawl. Most prior research stop the crawl at K=1
from ego, and some include both friends and followers. To illustrate
the variants of the crawl we refer to Figure 1. A simplistic crawl
can vary in two parameters, direction (friends or followers) and k
(steps). As an example, Yang et al. [38] did both the top two quad-
rants by crawling K=1 on both the friends and followers of each
user. Many researchers take the count of followers and friends in
order to calculate the ratio. Actually retrieving the user identifiers
of the friends or followers make it possible to determine, as in the
case of Yang et al. [38], different measures such as reciprocity. Ex-
tending the crawl to K=2, makes even more measurements possible.
In practice a K=3 crawl is impractical on Twitter, since this could
theoretically crawl the whole network with a median distance of
4.12 reached in 2010 already [27, p. 594]. We, therefore, perform a
crawl as illustrated in the bottom-left quadrant in Figure 1, which
makes more nuanced graph measures possible. We are only inter-
ested in friends of egos and alters, and not followers, since we are
interested in the ‘choices’ of the users, and the reaction to those
choices. For instance, we are interested to know whether, if an ego
follows an alter, does the alter follow back, and among those that
follow back, do they follow each other.

3.3 K-1 Graph

We also reduced the original graph to an ego-centric, or K-1, graph.
This graph utilises the full graph’s K-2 crawl and then reduces
the number of nodes in the dataset by doing a k-core decomposi-
tion. The goal is to gain insight about the structure, function, and
composition of network ties around the ego specifically [37]. Since
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Figure 1: Descriptive Diagram of Crawl Variants

Boshmaf et al. [6] showed that it is possible for a bot to penetrate
true social structures, we are cognisant of the possibility that the
actual social topology might distort the structure of a possible bot.
Reducing the K-2 to a K-1 network will reduce the added noise
of the alters’ full networks and concentrate the measurements on
the seed node, thus called an ego-centric network, since it centres
around the ego node.

Since social networks can not be compared directly, we have to re-
duce them to certain features to compare them with. The following
section outlines the measures of interest here.

3.4 Graph Measures

While there are many relevant graph measures,9 we are more in-
terested in a few general and easily interpretable measures as a
proof of concept in using graph structure as a means to classify
users on Twitter. Table 1 offers a brief overview of the measures
used. Since the K-2 networks can become excessively large, we can
not use computationally expensive measures. For convenience the
measures are summarised in Table 1.

3.4.1 Network Size. Network size is a measure of the number of
nodes (users) in the network. Network size is not a particularly
useful measure of network topology, but it is an important measure
for normalisation of the data.

3.4.2 Density. Density is the measure of how well connected a
network is. It is expressed as a proportion of relations out of the
theoretical maximum possible relations in the network. It is also
a control measure of other topology measures such as centrality,
since the measures are sensitive to the density and the size of the
network.
9 For a good start see Wasserman and Faust [37].

3.4.3 Clustering Coefficient. Clustering coefficient is the simple,
yet informative, measure of how transitive a relation is between
any three nodes. It, therefore, measures whether a friend of a friend
is also a friend. Social networks tend to have a higher clustering
coefficient than a random network of the same size [2, p. 50]. We
calculate both the global clustering coefficient and the local cluster-
ing coefficient, to capture the transitivity of the network as a whole
as well as the ego self.

3.4.4 Centrality. Centrality is a useful measure of importance of
nodes in a graph. There are many measures of centrality, but the
simplest measure is to count the number of connections to a node.
These connections could be either undirected, or directed in or
out of a node. A node has the highest degree centrality when it
has more relations to it than any other node. Some nodes might
have high indegree but low outdegree. For instance, celebrities
on Twitter tend to have more people following them than they
themselves follow. Therefore, celebrities might have high indegree
but low outdegree. Simply using degree, without direction, would
not offer this type of nuance. A simplistic bot on the other hand
might have very high outdegree but very low indegree, since most
people will not follow a bot back. A social capitalist on Twitter
could be identified by a balanced indegree and outdegree, since
they reciprocate every relation.

3.4.5 Graph centralisation. Graph centralisation is a measure of
how much the degree count is concentrated in a single node. Cen-
tralisation can be calculated by either taking the degree of nodes
(bot incoming and outgoing relations), or it can use the direction
of the relation. A graph is perfectly centralised if a single node
contains all the relations. A graph is completely decentralised if all
the nodes have an equal degree.

3.4.6 Reciprocity. Reciprocity is measure of how many relations
in the network are reciprocated. It is anticipated that bots would
have lower reciprocity than human users.

3.4.7 Assortativity. Assortativity is a measure of the tendency of
nodes to connect to similar nodes, i.e. homophily. Usually assor-
tativity is calculated using a node variable such as gender or age,
we use degree as a measure of similarity. We therefore test the ten-
dency of high degree nodes to only follow other high degree nodes,
and inversely low degree nodes to only follow fellow low degree
nodes. This can be likened to celebrities only following celebrities.

3.4.8 Articulation Points. Articulation points are the points which,
if removed, increase the number of connected components in a
network. Social networks tend to have higher redundancy, which
translates to fewer articulation points than random graphs.

Each seed node in the Varol dataset was crawled using the K-2
crawler. The resulting network of each crawl was copied and re-
duced to an K-1 network. We, therefore, have two networks rep-
resenting each identifier from the dataset. The metrics were then
calculated for each of these networks. There are, therefore, two sets
of network measures for each identifier. These measures were then
used as feature vectors in the clustering methodology.
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Table 1: Network Measures

Measure Description Source

Size The number of nodes in the graph. [22, p.5-8]
Global Clustering Coefficient “The fraction of paths of length two in the network that are closed”. i.e. Whether a friend of a friend is a friend. [29, p. 199]
Local Clustering Coefficient The same as the global measure, but measured for a focal node. [29, p. 201]
Indegree Graph Centralization A graph-level measure of the number of edges directed towards the nodes in a graph. [37, p. 175-177]
Outdegree Graph Centralization A graph-level measure of the number of edges directed from the nodes in a graph. [37, p. 175-177]
Degree Graph Centralization A graph-level measure of the number of edges directed to and from the nodes in a graph. [37, p. 175-177]
Indegree Graph Centrality The number of edges that are directed towards a single node. [37, p. 178,199-202]
Outdegree Graph Centrality The number of edges that are directed from a single node to other nodes in the graph. [37, p. 178,199-202]
Degree Graph Centrality The number of edges directed from and at a single node in a graph. [37, p. 178,199-202]
Density Ratio of the amount of edges and the amount of possible edges in the graph. [37, p. 165]
Reciprocation The proportion of mutual connections in a directed graph. [37, p. 515]
Assortativity Also known as assortative mixing. Assortativity is the preference for a graph’s nodes to attach itself to other nodes

that are similar to it. The similarity, in this case is measured by degree.
[28]

Articulation Points Nodes that if removed, increases the number of connected components in a graph. Also known as cut vertices. [24]

3.5 Clustering Methodology

The clustering methodology involves various steps. Firstly, a visual
assessment of clustering tendency (VAT) is performed as prescribed
by Bezdek and Hathaway [4]. This offers a means to determine the
most applicable distance measures. Secondly, four distinct cluster-
ing methods are considered in order to determine which method
offers the best performance in classifying users.

3.5.1 Distance Measures. There are multiple distance measures to
consider. In addition to standard euclidean distance, three gener-
ally applicable measures are, Pearson, Spearman, and Kendall. To
determine which distance measures perform best, we inspect the
performance of the measures in producing clear clusters. To do
this, we follow the VAT procedure from Bezdek and Hathaway [4].
Firstly, we compute the dissimilarity matrix between the objects
based on the network topology measures. This dissimilarity ma-
trix is then reordered to place similar objects closer to each other,
producing an ordered dissimilarity index which is shown in Table 2.

A visual inspection indicates that the two correlation measures
offer the best definition of clusters—Pearson and Spearman.

Pearson measures the difference between the variables of each
observation, while Spearman ranks the observations based on the
differences between the variables. In other words, both correlations
evaluate to the relationships between two nodes but differ in that
Spearman correlation measures variables that change together but
not necessarily at the same time.

Therefore, both Spearman and Pearson are used as options for
distance measures in the clustering procedure.

3.5.2 Clustering Methods. To determine the most appropriate clus-
tering method and number of clusters, we use cluster validation
procedures as suggested by Kassambara [26, p 138-141]. Both in-
ternal and stability validation methods were performed. Internal
cluster validation procedures evaluate the results of clustering pro-
cedures on three measures: connectivity, Dunn and silhouette. Sta-
bility measures include: average proportion of non-overlap (APN),
average distance (AD), average distance between means (ADM)
and the figure of merit (FOM) Kassambara [26, p 152]. All the mea-
sures were performed on a representative sample of the dataset,

roughly 10% of the full Varol dataset, since the measures require an
exponential amount of processing power as the number of nodes
increase. The results of these validation methods suggest that the
most applicable clustering methods would be partitioning around
medoids (PAM), fuzzy analysis clustering (FANNY) and agglom-
erative nesting (AGNES), with two clusters as the most optimal
number. Each method is briefly explained below.

K-means (Partitioning Around Medoids). The first clustering method,
PAM, is used to partition the data into K groups, where K is the
amount requested by the analyst. This groups the nodes around
the two or more largest mean distances between nodes. For the
purpose of analysing this dataset, two points were chosen to cluster
Bots and Nots into groups that could be easily distinguished [35].

Fuzzy Analysis Clustering. FANNY groups nodes based on the prob-
ability of belonging to a specific cluster. The algorithm calculates
the distance between nodes and the centre of a cluster and assigns
a coefficient to each node. The clusters were computed using the R
statistical language according to the guide provided by [26].10

Agglomerative Nesting Method. AGNES groups nodes based on their
similarity coefficient. The algorithm merges nodes in series of steps,
creating a larger cluster with each step until only one remains,
leaving behind a dendrogram representation of the nodes [26].

The two distance measures (Pearson and Spearman), three cluster-
ing methods (FANNY, AGNES and PAM) and two graph structures
(full and K-1), result in twelve distinct methods to use in classifying
the observations. Before proceeding to the performance results,
the methodology for measuring the performance of the 12 meth-
ods needs to be defined. The next section covers the measures of
clustering performance.

3.6 Clustering Performance Methodology

A confusion table is a helpful framework to measure the perfor-
mance of classification methods.

Table 3.6 is an example of a Confusion Table. To use the confusion
table, there must be a predicted outcome and an actual outcome.
10All analysis was conducted using R.
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Table 2: IDMs of the Various Distance Measures

Method

Graph
Type Euclidean Kendal Spearman Pearson

Original (K-2)

K-1 (Ego-centric)

Each clustering method offered two clusters, each observation was
placed within a cluster. There is no a-priori way of knowing what
the clusters consist of, nor is it known if it is actually differentiating
between bots and humans. For each observation the original label
from Varol et al. [33] used as comparison. Recall that each observa-
tion was classified as either 1 or 0, indicating (respectively) bot or
not. We therefore know the actual class of the observation, and can
then compare the prediction of the clustering method against the
original Varol labels.

C
lu
st
er

Actual Label

Bot Not Total

Bot′ True
Positive

False
Positive BOTS′

Not′
False
Negative

True
Negative NOTS′

Total BOTS NOTS
Table 3: Confusion Table

Table 3.6, shows the four possible outcomes for a classifier. When
both the clustering method and the actual labels indicate Bot, the
classification is a true positive (TP). If the classification indicates

that an observation is classified as Not, where the actual label is Bot,
the result of the classifier is a false negative (FN). If the classification
method indicates that an observation is a Bot, but the original label
is Not, then the classification is a false positive. Lastly, when the
classification indicates that the observation is a Not, whereas the
original label indicates Bot, it is deemed as a true negative. It is a
oversimplification to only record the true positive rate of classifier
accuracy. More nuanced measures of classification performance is
therefore needed. There are many measures that can be derived
from the confusion table, but only fivemeasures will be calculated to
assist in defining the most successful classification method among
the 12 proposed. Table 4 briefly outlines the five accuracy measures.
11

4 RESULTS

Each clustering method produced two clusters in which all observa-
tions are classified. It is not known which cluster is bot and which
is not. The accuracy of each methodology is therefore first calcu-
lated to make an informed choice as to which cluster corresponds
to which classification. In all the methodologies the ‘second’ clus-
ter was mostly grouping bots (as per the original labels), except
four methods where the assumption is reversed: (1) Spearman-
FANNY(full); (2) Spearman-PAM (full); (3) Pearson-FANNY (full);
and (4) Pearson-PAM (full). The results reported below adjusted
the assumptions appropriately.

The performance measures are captured in Table 5. It is observed
that the Spearman resulted in overall higher scores. On average,
11The descriptions are from Sing et al. [31].
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Table 4: Clustering Performance Measures Definition

Measure Abbreviation Description

False Positive Rate FPR The predictive outcome of the classifiers we used to identify if the instance is either
bot or not. In this case the the prediction is positive, but the instance is negative.
This is also known as fallout.

True Positive Rate TPR Similar to the FPR, however the prediction is correct. The prediction by the classifier
and the instance were both positive. Calculation for this is done by dividing the
true positives by the positive samples. This is also known as recall.

Accuracy Acc. The degree to which the prediction made by the classifier matches the instance
of the dataset, in this case Varol. To calculate the accuracy, the true positive and
negative results are combined, and then divided by the positive and negative results.

Phi Coefficient Phi Supplies a range between minus one and one, where one is perfect prediction and
zero is random prediction. Below zero is worse than random prediction.

F-Score F Introduced by van Rijsbergen in 1979, is a combination of precision and recall, and
tests the accuracy of the test. The highest score for the F-Score is one and the worst
score is zero.

Precision Prec. Measures the probability that a classifier’s prediction which has a positive outcome
also has a positive instance. The reverse is true for a negative outcome.

Spearman exhibits a slightly lower difference in FPR (0.04), which is
the same score as Pearson for TPR.When considering phi, Spearman
offers a marginal improvement over Pearson. The performance
measurements for K-1 graphs performs between 0.10 and 0.23 points
lower than that of the K-2 graph for Pearson, and between 0 and
0.19 lower for Spearman.

To further investigate the performance of the clustering methods,
a receiver operating characteristics (ROC) graph is used to aid in
the discussion. The ROC is commonly used graph in determining
the general performance of clustering methods.

4.1 ROC

The ROC graph visualises the classifiers based on their performance.
The x and y scales display a range from zero to one. The false
positive rate of the classifier is represented by x, and y represents
the true positive rate. Coordinates (0, 1) or (1, 0) indicate the best
performance, although the latter indicates an incorrect assumption
of the classifier predictions compared to the original labels.12 The
diagonal, where y = x , indicated as a red dashed line on Figure 2,
displays a random guessing strategy. Any point on that line is
considered to be equal to a random guessing strategy [13].

Figure 2 visualizes the clustering performance of the 12 methods.
It is clear that the topology measures of the full graph were best
able to contribute to true positive classification. The reduced graph
negatively impacted the classification performance in all cases ex-
cept one, Spearman-AGNES, which had a marginal improvement
in false positive rates, but at high cost of true positives. Pearson-
AGNES on the reduced graph is almost equal to a random guessing
strategy, where the same method on the full graph contends for
best classification methodology. Our hypothesis of a reduced K-1
graph leading to more accurate classification is, therefore, mostly
rejected.
12Since the assumption is adjusted, all methods would be above the x and y line.

Table 5: Clustering Performance Measures

Distance
Method

Graph
Type

Clustering
Method FPRa TPRb Accc Phid Fe Precf

Spearman* 0.43 0.71 0.62 0.27 0.53 0.43

Original (K-2)* 0.43 0.82 0.65 0.37 0.60 0.47

AGNES 0.37 0.85 0.70 0.44 0.64 0.51
FANNY 0.42 0.77 0.64 0.32 0.57 0.46
PAM 0.49 0.85 0.62 0.35 0.58 0.44

K-1* 0.43 0.63 0.59 0.19 0.49 0.40

AGNES 0.30 0.46 0.62 0.16 0.44 0.41
FANNY 0.46 0.69 0.59 0.22 0.51 0.41
PAM 0.53 0.74 0.56 0.20 0.51 0.39

Pearson* 0.47 0.71 0.59 0.23 0.52 0.41

Original (K-2)* 0.41 0.79 0.65 0.36 0.59 0.47

AGNES 0.33 0.76 0.70 0.40 0.61 0.51
FANNY 0.42 0.77 0.64 0.32 0.57 0.46
PAM 0.49 0.85 0.62 0.35 0.58 0.44

K-1* 0.51 0.65 0.54 0.13 0.47 0.37

AGNES 0.54 0.51 0.48 -0.03 0.38 0.30
FANNY 0.46 0.69 0.59 0.22 0.51 0.41
PAM 0.53 0.74 0.56 0.20 0.51 0.39

* Average of performance measures for the methods within the category.
(a) False Positive Rate; (b) True Positive Rate; (c) Accuracy;
(d) Phi Coefficient; (e) F-Score; (f) Precision;

The remainder of the methods performed above the random guess-
ing strategy. Themethods with the best performance are: Spearman-
AGNES; Pearson-PAM; and Spearman-PAM, all using the full K-2
graph topology.

The hypothesis that a K-2 network topology is capable of distin-
guishing between bots and humans is, therefore, confirmed.
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Figure 2: Receiver Operating Characteristics Plot

5 CONCLUSION

Instead of using the network topology of an ego to classify the rest
of the network as bot or not, as with Sibyl research, we use the
network as the classifier of the ego itself. This relies on the intuition
that bots are not capable of mimicking complex social network
structures. While it is possible to classify bots using social network
analysis with an estimated maximum accuracy of 0.70, it would
best be used in conjunction with existing blended methodologies
as a specialised method.

Of the five distance measures that were considered, Pearson and
Spearman were chosen based on a visual inspection of their cluster
definition. They offered the best definition of clusters and would
offer the most accurate analysis of clusters. Four stability validation
measures provided the three most applicable clustering methods:
PAM, Fanny and AGNES. The combination of these distance and
cluster analysis produced twelve methods used to build the clas-
sification model. Each of the methods were tested by calculating
the difference between the predictions of each proposed method,
and the labels provided by the Varol dataset. The labels were as-
signed to 1 based on the user having a classification score of 0.5 and
above [33]. In terms of correctly identifying Bots, three methods
achieved an 85% True Positive Rate. When also accounting for the
False Positive Rate, two methods, achieved an accuracy score of 70%.
These two methods both employed the AGNES clustering method,
on the full graph topography, and the choice of distance measure
thus made no difference. Both these methods also performed ex-
actly the same in terms of precision, with 51%. The only measure
to differentiate between the two measures is the Phi Coefficient.

The Phi indicates that Spearman-AGNES, the highest performing
measurement, performs 0.44 higher than that of random chance,
which is impressive considering that the method is unsupervised.

Future methods should, therefore, consider including the social
network topology, specifically a full K-2 graph of each user, as a
means to successful classifying automated social agents on OSNs.
We also note that we included all observations in the classification
methodology. The methodology might be improved by removing
obvious outliers, such as graphs containing only a few nodes. The
inclusion of these spurious observationsmay affect the classification
capabilities of the method.
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