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ABSTRACT

Black-box risk scoring models permeate our lives, yet are typically
proprietary or opaque. We propose Distill-and-Compare, a model
distillation and comparison approach to audit such models. To gain
insight into black-box models, we treat them as teachers, training
transparent student models to mimic the risk scores assigned by
black-box models. We compare the student model trained with
distillation to a second un-distilled transparent model trained on
ground-truth outcomes, and use differences between the two mod-
els to gain insight into the black-box model. Our approach can be
applied in a realistic setting, without probing the black-box model
API. We demonstrate the approach on four public data sets: COM-
PAS, Stop-and-Frisk, Chicago Police, and Lending Club. We also
propose a statistical test to determine if a data set is missing key
features used to train the black-box model. Our test finds that the
ProPublica data is likely missing key feature(s) used in COMPAS.
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1 INTRODUCTION

Risk scoring models have a long history of usage in criminal jus-
tice, finance, hiring, and other critical domains [12, 26]. They are
designed to predict a future outcome, for example defaulting on
a loan. Worryingly, risk scoring models are increasingly used for
high-stakes decisions, yet are typically proprietary or opaque.
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Several approaches have been proposed [1, 2, 13, 17, 20, 33]
to audit black-box risk scoring models: remove, permute, or ob-
scure a protected feature, then see how the the model’s predictions
change after retraining the model or probing the model API with
the transformed data. However, with many risk scoring models
being proprietary, commercial model creators often do not provide
unrestricted access to model APIs, much less release the model
form or training data.

In this paper, we study a more realistic setting where we only
have a data set labeled with the risk score as produced by the risk
scoring model, the information on the ground-truth outcome, and
some or all features; we are not able to probe the model API with
new data. We call this data set the audit data. We add two potential
complications: the audit data may not be the original training data,
and the audit data may not have all features used to train the risk
scoring model. For example, ProPublica obtained data for their
COMPAS study [4] not from the company that created COMPAS,
but through a public records request to Broward County, a US
jurisdiction that used COMPAS in their criminal justice system [3],
and ProPublica may not have had access to all the features Broward
County used to get COMPAS scores.

We propose a two-step approach to audit black-box risk scor-
ing models, using audit data with both black-box risk scores and
ground-truth outcomes. First, we use a Distill-and-Compare ap-
proach (Section 2.1) to understand how features (in the audit data)
affect the risk scores. Then, we use a statistical test (Section 2.2) to
determine if the black-box model used additional features we do
not have access to (i.e. features not in the audit data).

The contributions of this paper are: 1) We propose an approach
using model distillation and comparison to audit black-box risk
scoring models under realistic conditions. 2) We show the impor-
tance of calibrating risk scores to remove scale distortions that may
have been introduced during the training of the black-box model.
3) We apply the approach to audit four risk scoring models. 4) We
propose a statistical test to determine if the audit data is missing
key features used to train the black-box model. 5) An ancillary
contribution of this paper is a new confidence interval estimate
for iGAM [9, 24, 25], a type of transparent model, to compare two
models of this class.

2 AUDIT APPROACH

Our goal is to gain insight into the input-output relationships of a
black-box risk scoring model. We draw from model distillation and
model comparison techniques to develop our approach.

2.1 Distill and Compare

Model distillation was first introduced to transfer knowledge from
a large, complex model (teacher) to a faster, simpler model (student)
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[6, 8, 21]. This was done by running unlabeled samples (either new
unlabeled data or training data with labels discarded) through the
teacher model to obtain the teacher’s outputs, then training the
student model to mimic the teacher’s outputs. We draw parallels
to our setting, taking the risk scoring model to be the teacher and
the audit data to be unlabeled samples ran through the teacher
(risk scoring model) to obtain the teacher’s output (risk scores). We
train the mimic model to minimize mean squared error between
the teacher and student, i.e. ,
. . 2
1s,8) = = 3" (sx!) - $ch) )

where x! is the t-th sample in the audit data, S(x?) is the output of
the teacher model (risk scores) for sample x?, $(x?) is the output
of the mimic model for sample xt, and T is the number of samples.
Throughout this paper, we will call the teacher model the black-box
model and the student model the mimic model.

Next, we leverage the ground-truth outcome information. We
train our own risk scoring model on the audit data to predict the
ground-truth outcome, i.e.

1(0,0) = %ZT:{O(xt)log (P(O(xt) - 1)) +

t=1
(1- 0" log (POG") = ) | @)

where O(x?) € {0, 1} is the ground-truth outcome for sample x* and
O(x?) € {0, 1} is the output of the model for sample x?. Throughout
this paper, we call this model the outcome model. Note that the
outcome model is not a mimic model.
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Figure 1: Auditing a loan risk scoring model by training
transparent models on data labeled with the risk scores and
with ground-truth outcomes for loan defaults.

It is critical that both the mimic model and outcome model are
trained using the same model class that allows for interpretation
and comparison. Not all model classes have the property that two
models of that class can be compared. E.g. it is not obvious how
to compare two decision trees, random forests or neural nets. We
want a model class that is as rich and complex as possible so that
the mimic model can be faithful to the black-box model and the
outcome model can accurately predict ground-truth outcomes. But
this model class should still be transparent [16] so that we can
understand how the input features affect the models’ outputs—the
goal of our audit. We focus on a particular transparent model class,
iGAM (Section 2.3.1) in this paper; other choices are possible.

The risk score and the ground-truth outcome are closely related—
the ground-truth outcome is what the black-box model was meant
to predict. If the black-box model is accurate and generalizes to the
audit data, it would predict the ground-truth outcomes in the audit
data correctly; the converse is true if the black-box model is not
accurate or does not generalize to the audit data.

Because both the mimic and outcome models are trained with
the same model class on the same audit data using the same fea-
tures, the more faithful the mimic model, and the more accurate
the outcome model, the more likely it is that differences observed
between the mimic and outcome models result from differences
between the ground-truth outcomes and risk scores assigned by
the black-box risk scoring model. Moreover, similarities between
the mimic and outcome models (e.g. on COMPAS in Section 3.2,
the Number of Priors feature is modeled very similarly by the two
models) increases confidence that the mimic model is a faithful
representation of the black-box model, and that any differences
observed on other features are meaningful.

Related work. Adler et al. [2] trained a model to predict outcomes
and then a second model to predict the first’s predictions. This is
a different distillation setup from ours, as we use both risk scores
and outcomes. Adebayo and Kagal [1] also learned their own risk
scoring models when the black-box model cannot be queried. Some
papers also compare two models, but not risk scores and outcomes
at the same time. Wang et al. [34] trained a model to predict out-
comes and another to predict membership in a protected subgroup.
Chouldechova and GaAZSell [11] trained two different outcome
models then identified subgroups where the two models differed.
Other papers work on a single outcome or risk score model [32, 35].

2.2 Testing for Missing Features

If the audit data is missing features used by the black-box model, the
audit data alone may be insufficient to audit the black-box model.
We propose a statistical test to test if there are important missing
features based on the following observation:

If the black-box model used features that are missing

from the audit data but are useful for predicting the

ground-truth outcome, the error between the mimic

model (learned on the audit data) and the risk score,

IS = S||E, should be positively correlated with the error

between the outcome model (learned on the audit data)

and ground-truth outcome, 110 - O||g.

Since the test involves predictions from the mimic and outcome
models, both models need to be trained (Sections 2.1) prior to per-
forming this test; this test merely checks if the results of our audit
are significantly affected by missing features. We perform this test
on all the risk scoring models we audit in this paper in Section 3.4.
Independent of our audit approach, this test can standalone as a
test for whether a data set is missing key features that were used to
train a black-box model. Transparency of the mimic and outcome
models is not a requirement for this test.

2.3 Comparing Mimic and Outcome Models

In this section, we provide technical details on how to train the
mimic and outcome models so that they are comparable, and detect
statistically significant differences.
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Figure 2: Eight features the Chicago Police says are used in
their risk scoring model. Best seen on screen.

2.3.1 Choice of model class. As noted in Section 2.1, we train the
mimic model and outcome model using the same transparent model
class—in this paper, iGAM [9, 24, 25]. We point the reader to [9,
24, 25] to learn more about iGAMs and to [31] for a distillation
example where it was used as a student. Briefly, iGAM has the form

g(y) = ho + Y hi(xi) + > hij(xi, x;) ®)
i itj

where the contribution of any one feature x; or pair of features
x; and x; to the prediction can be visualized in graphs such as
Figure 2 that plot x; on the x-axis and h;(x;) on the y-axis. For
classification, g is the logistic function. For regression, g is the
identity function. For classical GAMS [19], feature contributions A(-)
are fitted using splines; for iGAM, they are fitted using ensembles
of short trees. Crucially, since iGAM is an additive model, two
iGAM models can be compared by simply taking a difference of
their feature contributions A(-), which we exploit in Section 2.3.3
to detect differences between the mimic and outcome models.

2.3.2  Calibrating model inputs. Calibration is the process of match-
ing predicted and empirical probabilities [14, 28]. If a risk score is
well-calibrated, the relationship between the risk score and empir-
ical probabilities will be linear (e.g. COMPAS and Stop-and-Frisk
in the top row of Figure 6 in the Appendix). While developing our
approach, we discovered that not all risk scores exhibit the desired
linear relationship with outcomes in the audit data. For example,
the Chicago Police risk score (third column of Figure 6 in the Ap-
pendix) is rather flat for risk scores less than 350, then exhibits a
sharp kink upwards.

One possible explanation for any nonlinear relationship is that
the risk score was well-calibrated on its original training data, but
the audit data has a different distribution (data shift) [29]. Another
explanation is post-processing by risk scoring model creators to
reduce sensitivity in less important parts of the risk score scale and
enhance separation in more important parts of the scale [23].

We make the reasonable assumption that risk scores should be
monotonic and well-calibrated [23] and use this assumption to undo
distortions or audit data shift. Specifically, we learn a nonlinear
transformation of the risk score (the blue line in Figure 6 in the
Appendix), similar to isotonic regression [28], to make the risk
scores and outcomes linearly related on a scale of choice. The
mimic model is then trained on these transformed risk scores. This
calibration step is necessary to compare the mimic and outcome
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Figure 3: Eight features the Chicago Police says are not used
in their risk scoring model. Best seen on screen.

models, as it makes the targets for the two models (risk scores and
outcomes) linearly related on a scale that their outputs will later be
compared on. We select this scale to be logit probabilities (since the
outcome model’s outputs are already on this scale), and perform
this calibration step for Chicago Police and Lending Club but not
COMPAS and Stop-and-Frisk, since the latter two already exhibit
the desired linear relationships.

2.3.3 Detecting differences. To not mistake random noise for real
differences between the mimic and outcome models, we control
potential sources of noise during the training process. To avoid data
sample-specific effects, we train the mimic and outcome models on
the same data sample. We then calculate the difference in feature
x;’s contribution to the models, sh;(x;) — oh;(x;). If this number
is positive, the mimic model assigns more risk than the outcome
model for feature x;; the converse is true if this number is negative.

We construct a confidence interval for this difference to tell
if it is statistically significant. One ancillary contribution of this
paper is a new method to estimate confidence intervals for the
iGAM model class, by employing a bootstrap-of-little-bags approach
[30] to estimate the variance of h;(x;) and sh;(x;) — oh;(x;). See
Appendix A for details. The resulting confidence intervals are the
dotted lines in Figures 2, 3, and 4.

3 RESULTS
3.1 Validating the Audit Approach

In this section, we demonstrate the approach on risk scoring models
where we have some information on how they were trained, and
check that our approach can recover this information.

3.1.1 Stop-and-Frisk. Using the New York Police Department’s
Stop-and-Frisk data!, Goel et al. [18] proposed a simple risk scoring
model for weapon possession: S = 3X Lpg + 1X 145 +1X Lpyjge,
where S is the risk score, PS denotes primary stop circumstance is
presence of suspicious object, AS denotes secondary stop circum-
stance is sight or sound of criminal activity, and Bulge denotes bulge
in clothing [18]. Since we know the model’s functional form, we
can verify that the mimic model correctly recovers its coefficients.
We apply the risk scoring model to label 2012 data (T=126,457, p=40)
after following Goel et al’s data pre-processing steps [18].

Uhttp://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page
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Figure 4: Feature contributions of four features to the COMPAS mimic model (in red) and outcome model (in green).

Result. The mimic model recovers the coefficients of (3, 1, 1) for
the three features used in the risk scoring model (PS, AS, Bulge)
and 0 for the remaining features.

3.1.2  Chicago Police “Strategic Subject”. The Chicago Police De-
partment released arrest data® from 2012 to 2016 that was used
to create a risk score for the probability of an individual being in-
volved in a shooting incident as a victim or offender. This data set
contains 16 features, but only 8 are used by the black-box model,
which gives us an opportunity to test if our approach can accurately
detect which features are and are not used by a black-box model.

We trained a mimic model, intentionally including all 16 features.
Figure 2 shows the feature contributions of the mimic model (in
red) and outcome model (in green) for the 8 features the Chicago
Police says were used by the black-box model; Figure 3 shows the
8 features the Chicago Police says were not used in their model.

Result. There is a striking difference between Figure 2 and Figure 3:
the mimic model (in red) assigns importance to the features in
Figure 2, but does not assign any importance to the features in
Figure 3. This agrees with Chicago Police’s statement about which
features were and were not used in the black-box model. We also
note that the outcome model (in green) does assign importance
to the unused features (Figure 3), suggesting that there is signal
available in the 8 unused features that the Chicago Police risk
scoring model could have used, but chose not to use. Race and
sex are 2 of these 8 features, which the Chicago Police especially
emphasize are not used.

These experiments confirm that the mimic models can provide
insights into the black-box models, and demonstrate the advantages
of using the outcome information available in the audit data.

3.2 Auditing COMPAS

COMPAS, a proprietary score developed to predict recidivism risk,
has been the subject of scrutiny for racial bias [4, 7, 10, 12, 15, 22].
We do not know what model class, input features or data were used
to train COMPAS. As described in Section 1, the COMPAS audit
data® was collected by ProPublica; it is likely different from the
original COMPAS training data. Figure 4 compares the COMPAS
mimic model (in red) and outcome model (in green) for four features:
Age, Race, Number of Priors, and Gender. The dotted lines are 95%
pointwise confidence intervals. We observe the following:

Zhttps://data.cityofchicago.org/Public-Safety/Strategic-Subject-List/4aki-r3np
3https://github.com/propublica/ COMPAS- analysis

COMPAS agrees with ground-truth outcomes regarding the
number of priors. In the 3rd plot in Figure 4, the mimic model
and outcome model agree on the impact of Number of Priors on
risk; their confidence intervals overlap through most of its range.

COMPAS disagrees with ground-truth outcomes for some
age and race groups. The 1st and 2nd plots in Figure 4 show
the effect of Age and Race on the mimic and outcome models. The
mimic model (red) and the outcome model (green) are very similar
between ages 20 to 70, and their confidence intervals overlap. For
ages greater than 70, there is evidence that the models disagree as
the confidence intervals do not overlap.

The mimic and outcome models are also different for ages 18
and 19: the mimic model predicts low risk for young individuals,
but we see no evidence to support this in the outcome model, with
risk appearing to be highest for young individuals.

The mimic model predicts that African Americans are even
higher risk, and Caucasians lower risk, than the ground-truth out-
comes suggest is warranted. Note that the ground-truth outcomes
might themselves be biased due to historical discrimination against
African Americans.

Gender has opposite effects on COMPAS compared to ground-
truth outcome. In the 4th plot in Figure 4, we see a discrepancy
between the mimic model and outcome model on Gender. The
mimic model predicts higher risk than warranted by ground-truth
outcomes for females, and conversely for males.

Explaining differences between mimic and outcome models.
Each observed difference between the two models could have sev-
eral different explanations. We propose to leverage the observed
differences to gain insight into the black-box model, by asking the
question, “what could be happening in the black-box model, that
could explain the differences we are seeing”? We provide several
examples below.

(1) Some feature regions may be underrepresented in the black-
box model’s training data and/or the audit data. For example,
in the COMPAS audit data (collected by ProPublica), only
3% of samples are between 18 and 20 years old, only 0.5%
are older than 70 years old, and only 19% are female, which
makes learning accurate models in these regions harder.

The black-box model may have a more simple or complex
form than the outcome model. For example, we saw that the
mimic model predicts low risk for young individuals, but
there is no evidence to support this in the outcome model.

—~
N
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Figure 5: Interaction between loan issue year and home own-
ership in Lending Club mimic model (in red) and outcome
model (in green).

We trained an iGAM model with interactions between pairs
of features, and observed strong interactions between very
young age and other variables such as Gender, Charge De-
gree, and Length of Stay. If COMPAS does not model interac-
tions well, this may explain why COMPAS needs to predict
low risk for very young individuals (because it cannot other-
wise predict a reduced risk via interactions of age with other
variables).

(3) The black-box model may be deliberately simple for some
feature regions. For example, for ages greater than 70, the
outcome model has much wider confidence intervals than
the mimic model. The ground-truth outcomes are poten-
tially high-variance in this region, yet the black-box model’s
scoring function may have been kept deliberately simple for
extreme feature values like this.

(4) The black-box model may be using additional features miss-
ing from the audit data, that interact with the non-missing
features. We provide a statistical test to determine the likeli-
hood of this (Section 3.4).

and so on. We cannot tell (without further testing) the definitive
reason that explains a particular difference between the mimic and
outcome models. However, we suggest that this form of reasoning
coupled with the use of transparent models surfaces differences
that we did not a priori know, but can then proceed to check and
reason about, to gain insight into the black-box model.

3.3 Auditing Lending Club

Lending Club, an online peer-to-peer lending company, rates loans
it finances and releases data* on these loans. We use a subset of
five years (2007-2011) of loans that have matured, so that we have
ground-truth on whether the loan defaulted. We do not know what
model class or input features Lending Club used to train their risk
scoring model. We believe the data sample we have is similar to
the data they would have used to train their models. According to
Lending Club, their models are refreshed periodically.

We use this Lending Club example to discuss an insight we
gained into the black-box model from examining interactions re-
vealed by our transparent models. Figure 5 shows the interaction
of loan issue year and home ownership in the Lending Club risk
scoring mimic model (in red) and ground-truth outcome model (in

“https://www.lendingclub.com/info/download-data.action
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Table 1: Statistical test for likelihood of audit data missing
key features used by black-box model.

Risk Score Pearson p Spearman p Kendall ¢
COMPAS [0.10,0.13] [0.10,0.14]  [0.08,0.10]
Lending Club  [0.00,0.03] [-0.01,0.01]  [-0.01, 0.01]
Stop-and-Frisk  [0.00,0.01] [-0.03,0.01]  [-0.02,0.01]
Chicago Police  [0.00,0.01] [0.01,0.03]  [0.01, 0.02]

green). Having a home mortgage in 2007-2008 increases the loan
default risk more than having a home mortgage in 2009 and beyond.
Recall that 2007-2008 is around the time of the subprime housing
crisis. Note the difference in ranges between the two plots—the
range goes up to 0.2 for the outcome model (in green) whereas
the range is much lower for the mimic model (in red). This could
indicate that the Lending Club risk scoring model is updated con-
servatively, with some lag time, instead of being rapidly updated
as economic conditions and behavior change.

3.4 Testing for Features Missing from
Audit Data

As black-box models may use additional features we do not have
access to, we developed a test (Section 2.2) to assess the impact
missing features could have on our analysis. Table 1 provides 95%
confidence intervals for three linear and nonlinear measures of
correlation used in the test. If zero is in the confidence interval, the
error of the mimic model (trained on the audit data) is not correlated
to the error of the outcome model (also trained on the audit data).
Then, it is unlikely that the audit data is missing key feature(s) that
are a) predictive of outcomes (and hence will negatively affect the
error of the outcome model if missing); and b) used in the black-
box model (and hence will negatively affect the error of the mimic
model if missing).

In Lending Club and Stop-and-Frisk we cannot distinguish these
correlations from zero, suggesting that no key features are missing
from the audit data. For Chicago Police, the confidence intervals
contain 0 or are very close to 0 (lower limit 0.01), hence there is little
evidence of the audit data missing key features. For COMPAS there
is evidence of positive correlation, indicating that the ProPublica
data may be missing key features used in the COMPAS model. This
is supported by our findings in Section 3.5 that no mimic models
trained on the ProPublica data, however powerful (e.g. random
forests), could mimic COMPAS well.

3.5 Fidelity and Accuracy

To quantitatively evaluate our audit approach, we report fidelity
(how well the mimic model predicts the black-box model’s risk
scores, measured in RMSE) and accuracy (how well the outcome
model predicts the ground-truth outcomes, measured in AUC) for
all the risk scoring models we audit in Table 2. For comparison,
we also train linear models (a simpler model class than iGAM) and
random forests (more complex, but less interpretable).

For COMPAS, all model classes (linear model, iGAM, random
forest) have roughly equal fidelity and accuracy. Interestingly, none
obtained RMSE lower than 2 on a 1-10 scale. Comparing outcome
model AUCs across different model classes, iGAM’s results are
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Table 2: Fidelity of mimic model and accuracy of outcome model. Lower RMSE is better, higher AUC is better.

Risk Score Metric Linear model iGAM iGAM w/ interactions Random Forest
Fidelit COMPAS RMSE (1-10)  2.11 +0.057 2.01 + 0.045 2.00 + 0.047 2.02 £ 0.053
fmi ¥ Lending Club ~ RMSE (2-36)  3.27 + 0.037 2.60 + 0.049 2.52 +0.051 2.48 +0.033
% nodel  Chicago Police RMSE (0-500) 17.4 = 0.102 17.2 +0.125 16.5 + 0.130 14.0 + 0.280
Stop-and-Frisk RMSE (0-5) 0.00+2x1071% 0.00£1x107° 0.00+2x107° 0.01 +2x 1073
Accuracy  COMPAS AUC 0.73 + 0.029 0.74 +0.027 0.75 + 0.029 0.73 +0.026
of Outcon}l'e Lending Club ~ AUC 0.69 + 0.006 0.69 + 0.016 0.69 + 0.014 0.68 £ 0.020
model Chicago Police AUC 0.95 + 0.007 0.95 + 0.007 0.95 + 0.007 0.929 + 0.009
Stop-and-Frisk AUC 0.84 + 0.020 0.85 + 0.020 0.85 + 0.020 0.87 +0.024

generally comparable to (or slightly better than) more complex
random forests (Table 2). For the risk score mimic models, random
forests are competitive for Lending Club and Chicago Police. Linear
mimic models are not far behind iGAMs for several risk scoring
models (COMPAS, Chicago Police, Stop-and-Frisk), suggesting that
the black-box model’s functional form might be very simple. We
know this to be true for Stop-and-Frisk from Section 3.1.1 where
the model was a simple linear model.

COMPAS deep dive. One possible reason why COMPAS is chal-
lenging to mimic may be that the ProPublica data set is missing
key features. This agrees with the results of the statistical test in
Section 3.4. Another possible reason is the small sample size (less
than 7,000 samples).

One advantage of using a model distillation approach to inspect
black-box models is that the approach may be able to benefit from
additional unlabeled data if the black-box teacher model can be
queried to label the additional data [8]. We found an additional 3,000
individuals in the ProPublica data with COMPAS risk scores but no
ground-truth outcomes. Adding them to the training (not testing)
data for the mimic model and retraining the mimic model, we find
marginal improvement in the mimic model’s fidelity (from RMSE 2.0
to 1.98). Doing the opposite—removing individuals from the training
data in 1,000 increments—decreased the mimic model’s fidelity only
marginally (to RMSE 2.1, training on only 1,000 individuals). These
analyses suggest that for COMPAS, missing key features is a more
pressing issue than insufficient data.

4 DISCUSSION

Sometimes we are interested in detecting bias on features inten-
tionally excluded from the black-box model. For example, a credit
risk scoring model is probably not allowed to use race as an input.
Unfortunately, not using race does not prevent the model from
learning to be biased. Racial bias in a data set is likely to be in the
outcomes — the labels used for learning; not using race as an input
feature does not remove the bias from the labels.

If race were uncorrelated with all other features (and combi-
nations of features) provided to the model, then removing race
would prevent the model from learning to be racially biased be-
cause it would not have any input features on which to model this
bias. Unfortunately, in any large, real-world data set, there is mas-
sive correlation among the high-dimensional features, and a model
trained to predict credit risk will learn to be biased from correlation

of the excluded race feature with other features that likely remain
in the model (e.g., income or education).

Hence, removing a protected feature like race or gender does
not prevent a model from learning to be biased. Instead, removing
protected features make it harder to detect how the model is biased,
or correct the bias, because the bias is now spread in a complex way
among all the correlated features throughout the model instead
of being localized to the protected features. The main benefit of
excluding protected features like race or gender from the inputs of
a machine learning model is that it allows the group deploying the
model to claim (incorrectly) that their model is not biased because
it did not use these features.

When training a transparent student model to mimic a black-
box model, we intentionally include all features—even protected
features like race and gender—specifically because we are interested
in seeing what the models couldlearn from them. If, when the mimic
model mimics the black-box model, it does not see any signal on
the race or gender features and learns to model them as flat (zero)
functions, this indicates whether the teacher model (the black-box
model) did or did not use these features, but also if the teacher
model exhibits race or gender bias even if the model did not use
race or gender as inputs.

5 CONCLUSION

Our Distill-and-Compare approach to auditing black-box models
was motivated by a realistic setting where access to the black-box
model API is not available; only a data set labeled with the risk
score as produced by the risk scoring model and the ground-truth
outcome is available. The efficacy of the Distill-and-Compare audit
approach increases when a model class that can be highly faithful to
the black-box model and highly accurate at predicting the ground-
truth outcomes is used, and when the audit data is not missing key
features used in the black-box model.

A key advantage of using transparent models to audit black-
box models is that we do not need to know in advance what to
look for. Many current auditing approaches focus on one or two
protected features selected in advance, and thus are less likely to
detect biases that are not a priori known. The Distill-and-Compare
audit approach, using transparent models, can hence be most useful
for complicated, real-world data with unknown sources of biases.
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A A NEW CONFIDENCE INTERVAL
ESTIMATE FOR IGAM

It is not trivial to estimate confidence intervals for nonparametric
learners such as trees [27]; iGAM’s base learners are short trees.
We employ a bootstrap-of-little-bags approach originally developed
for bagged models in [30] to estimate the variance of feature x;’s
contribution to the model, h;(x;), and difference in feature x;’s
contribution to the mimic and outcome models, sh;(x;) — oh;(x;).
Bootstrap-of-little-bags exploits two-level structured

cross-validation (e.g. 15% of data points are selected for the test
set, with the remaining 85% split into training (70%) and validation
(15%) sets). Repeating this inner splitting L times and outer splitting
K times gives a total of KL bags on which we train the mimic
model and outcome model. Let hﬁk(xi) be x;’s feature contribution
estimated by the model in the Ith inner and kth outer fold. Its
variance can then be estimated as

. P& 1 &K 2
Var(hi(xi) = E; Z;”f (x»—ﬁ;kz_]lh,. (xi)

and its mean h;(x;) is the average of the KL models.

We can now construct pointwise confidence intervals for feature
contributions to iGAM models. The confidence interval for feature
x;’s contribution to the model, h;(x;), is m + 1.96\[\7;r(h,-(x,~))
and the confidence interval for the difference in feature x;’s con-
tribution to the mimic and outcome models, sh;(x;) — ohj(x;), is

shi(xi) — Ohi(xi)i1-96\/\73\r(5hi(xi)) + Var(oh;(xi)) — 2Cov(sh;(x;), ohi(x))

with a/(shi(xi), oh;(x;)) also estimated using bootstrap-of-little-
bags.

This variance estimate is conservative (meaning it overestimates
true variability), however, given that we are trying to detect differ-
ences, overestimating means we are less likely to mistake random
noise for real differences. For large K and L, consistency of this
estimate was established in [5].

Note that are pointwise, not uniform, confidence intervals. That
is, they capture the variability of the effect of age at age=50, not the
entire effect of age. Uniform confidence intervals can be constructed
by adjusting the critical value of the confidence interval.
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B CALIBRATION PLOTS
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Figure 6: Empirical probability (y-axis) vs. risk score (x-axis) for four risk scores on probability scale (top row) and logit proba-
bility scale (middle row). The red lines are best-fit straight lines. A good fit (COMPAS and Stop-and-Frisk) suggests that the risk
score and outcomes logit probability (middle row) have a linear relationship; the mimic model can then be trained directly on
the raw risk score. When the relationship is not linear (Chicago Police and Lending Club), the risk score must be calibrated
(Section 2.3.2). The blue monotonic curves are the learned nonlinear transformations. See Figure 7 for the transformed risk
score. The bottom row describes the distribution of the risk scores.

Chicago Police Lending Club

logit(p)

Figure 7: Logit empirical probability (y-axis) vs. risk score after applying nonlinear transformation (x-axis). The red lines are
best-fit straight lines. A good fit suggests that the transformed risk score and outcomes logit probability now have a linear
relationship; the mimic model can now be traineed on the transformed risk score. See Section 2.3.2 for details.
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