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ABSTRACT

Intermittent computing is a new paradigm enabling battery-less
computing devices to be powered directly from energy harvesting,
enabling IoT devices that are free from the cost, size and lifetime
constraints of batteries. To cope with frequent power interrup-
tions, intermittent computing systems save computational progress
before power is lost, and restore it when power returns. Recent
research in power-neutral operation of multiprocessor system-on-
chips (MPSoCs), where performance scaling is used to instanta-
neously match power consumption with supply, motivates the
need for intermittent computing on high-performance systems. Ex-
isting works provide solutions for microcontrollers, but with the
increased complexity of high-performance SoCs, new challenges
such as hierarchical memory and dependence on large existing
libraries emerge. In this paper, we provide a taxonomy of published
intermittent computing methods and identify the most suitable
method for high-performance SoCs. The chosen method is then im-
plemented and experimentally validated on an Arm A9 out-of-order
application processor. Results show that state can be saved/restored
correctly in 8.6 ms for a minimal bare-metal application, which is
an order of magnitude faster than the platform’s hardware boot
time.
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1 INTRODUCTION

Powering IoT devices directly from energy harvesting (EH) sources
removes the size, cost, maintenance and lifetime constraints im-
posed by energy storage devices such as rechargeable batteries
or supercapacitors. Energy from ambient sources such as light,
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mechanical vibration, wind and temperature difference can be har-
vested indefinitely [5]. However, the power output from harvesters
is generally unpredictable, uncontrollable and unstable [13]. To
cope with the instability of EH, intermittent computing (IC) saves
snapshots of system state to nonvolatile memory (NVM) [20]. When
power returns after a power-failure, system state is restored from
the snapshot and the computation continues. Thus, long-running
computations can be sustained over several power cycles.

To extend the range of operation and better utilise harvested
power, Balsamo et al. proposed the concept of power-neutral opera-
tion, whereby performance scaling is used to instantaneously match
power consumption with harvested power [2]. Fletcher et al. ex-
tended this concept by implementing power-neutral operation on a
heterogeneous multiprocessor system-on-chip (MPSoC) by using a
combination of dynamic voltage and frequency scaling (DVFS) and
dynamic power management (runtime enabling/disabling of CPU
cores) [10]. Power-neutral systems have negligible energy storage,
so must react quickly to variations in supply, and can only operate
for a very short time if supply drops below minimum. Even for
power-neutral systems, IC is needed to preserve progress through
periods of insufficient power. IC was included in the microcontroller
approach to power-neutral computing [2], but was not included
in the method for MPSoCs [10] - likely because of the complexity
and viability of implementing IC on the desktop Linux operating
system used in their work and the lack of existing IC methods for
high-performance systems.

Although IC is a relatively young field of research (the pioneering
work, Mementos [20], was published in 2011), several fundamen-
tally diverging approaches have been published, each with their
own unique advantages and drawbacks. In this paper, we examine
the current state of the art of IC and provide a taxonomy of ex-
isting methods to determine the most viable solution for complex
high-performance computing systems, where dependence on large
existing code bases is likely (Section 2). The selected IC method is
implemented on an Arm A9 processing system [21] (Section 3). This
is the first time software-based IC is implemented on a system more
complex than a microcontroller, addressing new challenges such
as handling several processor modes and control and acceleration
co-processors. Techniques to tailor the system towards efficient IC
are presented (Section 4). The system is experimentally validated
and results analysed (Section 5). The contributions of this paper
are:

e A taxonomy of existing works determining the optimal IC
method for high-performance systems (Section 2);

e An evaluation on the viability of integrating IC into a power-
neutral MPSoC approach (Section 2);
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o The first implementation of intermittent computing on a
high-performance Out-of-Order processor (Section 3).

2 TAXONOMY OF EXISTING IC STRATEGIES

Reliable and efficient state retention through power cycles is the
main priority in IC. Conflicting design goals such as having mini-
mal hardware dependency [7, 16, 20], minimizing the number of
snapshots written during a power cycle [3, 4, 7], reducing the size of
snapshots [6, 7, 11, 14] and maintaining compatibility with existing
codebases [3, 4] has driven research into fundamentally diverging
approaches. In order to determine the most suitable approach for
high-performance systems, we introduce a taxonomy based on the
following three classes of IC strategies.

o Static IC: where snapshots are saved at predetermined (design-
time or compile-time) checkpoints in the program.

e Task-based IC: where the application is divided into small
tasks that are executed atomically by a runtime.

o Reactive IC: where snapshots are saved as a reaction to the
environment.

The fundamental divergence between existing methods is be-
tween static and reactive IC. Task-based IC can be regarded as a
recent development of static IC, where checkpoints are replaced by
task boundaries. The classes are useful because each of the three
classes present their own advantages and drawbacks. The following
subsections describe the three classes in detail. Fig. 1 illustrates
the behaviour of each class in relation to the power supply voltage.
Static IC restores (R) as soon as the supply voltage v, exceeds
the on-threshold of the processor, Von, and starts useful computa-
tion (C) while periodically saving snapshots at checkpoints (CP).
Task-based IC also restores as soon as vce > Von and features
faster restore because it only needs to boot the runtime and a single
task. Periodically, task-based IC saves the result of a finished task
and transitions (TR) to the next task. Reactive IC sleeps until an
interrupt triggers restore when v¢. exceeds the restore threshold
VR. Reactive IC does not take checkpoints along the way, but rather
continues useful computation until v.. drops below Vy, the hiber-
nation threshold, which triggers hibernation (H), saving a snapshot
just before power is lost. The circles show the latest snapshot before
power is lost; any computation after the latest snapshot is a waste
of resources. Note that some task-based or static approaches may
avoid wasted computation after a checkpoint by measuring stored
energy and comparing it to predictions [7] or observations [12] of
the energy required to reach the next task-boundary or checkpoint.

2.1 Static IC

Static IC approaches are based on instrumenting application code
with checkpoints by the user during application development, or
automatically at compile time [7, 20]. Because the checkpoints are
inserted a priori, offline analysis of program execution and control
flow graphs can be applied. The main two advantages of static
IC are: 1) information about program execution flow can be ex-
ploited to yield smaller snapshots [7, 14, 18, 22], and 2) snapshots
are saved regardless of the environment. The former also leads to
eliminating the need for energy buffering, as explained in subsec-
tion 2.3 (although static IC methods generally require some energy
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Figure 1: Behaviour of the three classes of existing IC strate-
gies with regards to vc,.

buffering for performance reasons). The latter is an advantage be-
cause no hardware to monitor the environment (e.g. supply voltage
monitor) is needed. The main challenges to static IC relate to the
placement of checkpoints: placing them too far apart minimises
or even eliminates superfluous checkpoints, but makes it unlikely
or even impossible to reach the next checkpoint; placing them too
close together imposes runtime overhead because of superfluous
checkpoints.

Static IC also suffers from frequent code re-execution, because
the state rolls back to the latest snapshot when power returns af-
ter a power failure (the computation after the circle in Fig. 1 is
re-executed in the next power cycle). Code re-execution is a waste
of energy and, as observed in [19], it can lead to inconsistencies
between volatile and nonvolatile memory, called idempotency vio-
lations.

2.2 Task-Based Static IC

Task-based IC [8, 12, 16] is a recent development of static IC where
the application is divided into a set of tasks that are executed atom-
ically by a runtime. The task division is motivated by protecting
static IC against idempotency violations by carefully controlling
each task’s accesses to nonvolatile memory, thus making code
re-execution safe [8]. However, re-execution is still a waste of re-
sources. Task-based systems, like Alpaca [16] offer fast reboot and
state-saving because only the runtime and the current task is booted,
and only persistent data from the task needs to be saved.

The main drawback of task-based systems is the imposed pro-
gramming model, requiring the programmer to redesign the ap-
plication and all associated libraries. Furthermore, finding optimal
task boundaries (analogous to checkpoint placement in static IC) is
difficult and depends on both the specific underlying hardware and
the harvesting conditions. Colin et al. recently proposed a method
that checks for non-terminating path bugs! and performs automatic
task decomposition [9]. The method appears to be well suited for
simple embedded system workloads where energy consumption
is deterministic. However, limitations of the method, such as the
requirement that the programmer must specify an iteration bound
for each unbounded loop in the program, restrict its utility for
applications that depend on existing libraries.

!Execution paths between task boundaries which consume more energy than the
device can muster [9].
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2.3 Reactive IC

Contrary to static and task-based approaches, reactive IC is gen-
erally implemented in an application agnostic manner [3, 4, 11].
Reactive IC consists of the following two operations:

e Hibernate: Save a snapshot of volatile state to nonvolatile
memory, and enter low power mode or shut down.
o Restore: Restore volatile state from a snapshot.

The volatile state, is any state that is lost/corrupted in the event
of a power outage and which is needed for computation to proceed
correctly when power returns. The set of volatile state is architec-
ture and platform dependent.

Power supply monitoring is set up to generate interrupts that
trigger hibernate and restore operations when the supply voltage
Ve crosses a threshold. When the restore threshold is exceeded,
an interrupt triggers restore, which restores state from a previ-
ous snapshot. Similarly, when v.. drops below the hibernation
threshold, a snapshot is saved and the system enters low-power
mode or shuts down. If power returns while the system is still in
low-power mode, restore is unnecessary [3]. When powered by a
low-current source, hibernation can often be avoided altogether by
pre-emptively entering sleep mode before the supply voltage drops
below the hibernation threshold [15]

Because reactive IC only consists of two interrupt-triggered op-
erations, runtime overhead is minimised. The hibernation threshold
ensures that snapshots are only saved when power-failure is im-
minent; thus nearly eliminating superfluous save operations. The
restore threshold is used to guarantee the success of the next check-
point; eliminating code re-execution, and thus also eliminating
idempotency violations. Note that to guarantee the success of the
next checkpoint, a minimum amount of energy buffering is required.
Determining such a restore threshold is intractable for static IC
because all possible execution paths must be exhaustively analysed.
The main drawback of reactive IC is that saving and restoring the
entire state is expensive compared to task-based systems where
only one task is loaded/saved at a time. This is especially wasteful
if the power cycle is short, because only a small part of the program
is expected to execute.

2.4 Considerations for High-Performance IC

In high-performance systems, such as an MPSoC, application soft-
ware is typically much more complex than on microcontrollers.
Complications that are introduced when moving from a typical
microcontroller to a high-performance MPSoC include:

(1) Processor affinity: Tasks/threads/processes should gener-
ally be free to migrate between (heterogeneous) cores.

(2) Multiprocessing: Several tasks/threads/processes may ex-
ecute simultaneously.

(3) Hierarchical memory: Multilevel memory hierarchy (and
possibly virtual memory) introduces nondeterministic delay
in execution.

(4) Dependency: Complex software is likely to have dependen-
cies on pre-compiled libraries.

(5) Instruction-level parallelism: High-performance proces-
sors typically feature superscalar pipelines that can execute
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Figure 2: Processing system with external FRAM via SPL

more than one instruction per clock cycle. Most current im-
plementations feature out-of-order (OoO) execution with
in-order commit [17].

Processor affinity, multiprocessing and hierarchical memory all
complicate path-energy estimations required for automatic inser-
tion of task boundaries (or checkpoints); forcing suboptimal bound-
aries (checkpoints), assuming a set of safe boundaries (checkpoints)
can be found at all. Dependency on pre-compiled libraries makes
determination of the bound for the number of iterations of loops
impractical, without which the automatic task decomposition such
as proposed in [9] becomes inefficient (task boundaries are inserted
inside every unbounded loop).

Out of order execution reduces the number of wait-cycles in
the CPU when waiting for memory operations. Instructions are
stalled in the pipeline until their operands are available while more
instructions are fetched. Of key importance is the fact that OoO ex-
ecution still commits results in program order, so from a program’s
perspective, the execution acts as if it was in order [17].

With reactive IC, assuming that the interrupt latency is negligi-
ble, the energy consumption of a program is irrelevant; only the
energy consumption of hibernate and restore matter. The energy
consumption of hibernate and restore is largely determined by the
amount of state to save, and by memory performance. For the same
reason, dependency on external libraries is irrelevant in reactive
IC. Reactive IC can be implemented program agnostically, but at
the cost of larger hibernation/restore overhead when compared to
task-based IC.

3 REALISING IC ON A HIGH-PERFORMANCE
PROCESSOR

To implement IC, low level access and documentation is required
to safely save and restore state in an exact and verifiable man-
ner. Therefore a Xilinx Zynq 7010 FPGA MPSoC [21] featuring a
dual-core Arm A9 [1] processing system was selected as the devel-
opment platform?. The platform was chosen because of its extensive
ecosystem, allowing low-level access and debug of the A9 process-
ing system. The FPGA fabric present in the platform was not used
in this work. Fig. 2 shows a block diagram representing the system
used in this work. External flash on the platform holds the applica-
tion image as well as the first-stage bootloader. An external 32 kB
FRAM communicating via 25MHz SPI is used for snapshot storage
and the 256 kB on-chip memory (OCM) is used for the application.
The FRAM is smaller than OCM, but sufficient for the application

2Most high-performance SoCs, like the one used in [10], restrict access to full
documentation.
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Figure 3: Boot flow and Hibernate and Restore operations.

tested in this work; larger FRAM chips are commercially available.
The low-energy symmetric read/write property of FRAM makes it
superior to flash for snapshot storage [4]. The development board
also features DDR memory, but to use it on this specific platform
requires programming of the FPGA fabric during boot and thus
imposes a substantial overhead (measured at >200 ms for a minimal
bitstream).

3.1 Hibernate

The hibernate operation must capture system state in a snapshot
and store it in NVM. Because the system for which state is to be
captured is the same system used to capture said state, it is impera-
tive that care is taken to avoid a corrupt snapshot. We propose the
following sequence of steps to ensure correctness:

(1) Capture processor state
(2) Capture co-processor state’
(3) Capture the state of volatile memory (VM)

Steps 1) and 2) are best handled at assembler level, while 3) is
more efficiently done at a higher level of abstraction. The processor
register file is captured first, so that the registers are free to be
used when capturing the state of VM. Microarchitectural state
such as pipeline buffers and the branch-prediction table are not
saved, as they are inaccessible. Note, however, that this only affects
performance, not correctness. Branch-misprediction and a flushed

3The Arm A9 processing system includes several co-processors that control subsystems
(Cache, memory management unit, preload engine etc.) or accelerate computation
(data-level parallelism and floating point operations) [1].

pipeline may cause a small latency as instructions are re-fetched
immediately after continuing execution after a restore, but will not
result in incorrect computation.

Depending on application complexity and resource usage, the
processor and co-processor state may also include memory man-
agement unit (MMU) state, cache-controller state, etc. In this work,
the core register file and the NEON (vector and floating point co-
processor) register file are saved. The remaining volatile processor
and co-processor state is not changed during execution, so it is
more efficient to recompute them during boot than it is to save and
restore them.

3.2 Restore

Restoring state is similar but opposite to hibernate. The first step is
to restore the state of VM; however, before that, a context switch
must be performed to avoid corrupting the restore routine. The
context switch entails moving to a separate, temporary stack and
data space while reading the snapshot; thus avoiding overwriting
the current stack while restoring the saved one. Since an external
SPI-based FRAM memory is used in this work, the SPI and associ-
ated peripherals must also be initialised before restoring from the
snapshot. Data needed for the initialisation is kept in flash memory.
Before returning from restore, the system must be in the exact same
state as it was at the end of the hibernate routine, because restore
returns to the return address of hibernate. This requires exact con-
trol of register values, and so restoring registers and returning from
the restore routine must be done at the assembler level.
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3.3 Implementation

Fig. 3 illustrates the procedure proposed in this paper to safely hiber-
nate and restore processor state and VM. An interrupt is triggered
when v, drops below the hibernate threshold Vg . First, all general
purpose registers are pushed to the stacks (there are six stacks, each
belonging to a processor mode) and the stack pointers are saved
in an array SPSnapshot. All processor modes are looped through
in order to capture the banked registers belonging to each mode.
SPSnapshot is then written to NVM before proceeding to copy
allocated memory to NVM. The processor then enters a low-power
mode.

When power returns, the processor immediately sleeps until v¢c
exceeds the restore threshold Vg. Determining the thresholds Vg
and Vp is not discussed in this paper; an efficient approach that is
applicable to the system presented in this work is found in [3].

If no valid snapshot is present in FRAM (such as when booting
up for the first time), the system boots from flash. If a valid snapshot
is present, a context switch is performed (enter_restore_mode())
to avoid corruption of the stack. Then peripherals, including the SPI
peripheral used to read the snapshot, are initialised using default
configuration held in flash. All allocated memory is then loaded
from the snapshot, followed by reading the saved stack pointers
into SPSnapshot. Each processor mode is looped through to pop
the core registers off each stack after restoring the stack pointer
from SPSnapshot. The processor is switched into IRQ mode (cps
IRQ_MODE) and the SPSR register is set up such that interrupts are
enabled upon returning through the interrupt routine. Finally, a
branch to the restored link register returns through the interrupt
routine as if execution continued after hibernate was called in the
previous power cycle.

The method presented in this paper can be adapted to any pro-
cessing system without regard for the application. Once the method
is implemented on a specific platform, that platform can run any
application, based on any code base, on an intermittent supply.

3.4 Multiprocessing

The method presented in this section can be extended for multipro-
cessor systems as shown in Fig. 4. When a hibernation/restore inter-
rupt occurs, each processor begins executing its hibernation/restore
routine. One core is selected (arbitrarily) as the primary core. When
hibernating, all cores save their own processor state. All but the
primary core then sleep; the primary core saves the state of VM and
any common processor state (such as co-processor state) before
entering sleep mode. When restoring from a snapshot, all but the
primary core stall. The primary core restores VM and any common
processor state before notifying the other cores. Then all cores re-
store their processor state and resume execution from the snapshot.

4 TAILORING HIGH-PERFORMANCE
SYSTEMS TOWARDS EFFICIENT IC

IfIC is to be viable on a high-performance system, it is crucial to
optimise for fast reboots. Typically memory allocation and the boot
process is geared towards optimising runtime performance because
traditional computers rarely reboot. This section presents general
concepts and optimisations to tailor high-performance system to-
wards more efficient IC.
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Figure 4: Hibernation and restore procedure for multipro-
cessor systems.

Boot process. Traditional computers load both modifiable and
constant sections to main memory (typically DDR) before exe-
cution. This results in better runtime performance because main
memory offers orders of magnitude faster access time than non-
volatile storage (flash/disk). However, in IC only a small portion of
an application is expected to execute in a single power cycle; it is
therefore a waste of resources to load the entire program. Execute-
in-place (XIP), where instructions are executed directly from flash,
is a better solution for IC, because only modifiable sections (.data,
.bss) are loaded during boot. The instruction cache aleviates ex-
cessively repeated reads of the same instruction from flash for most
applications.

Memory Allocation. In traditional computing, allocating unini-
tialized data to the .bss section reduces the size of the applica-
tion’s binary image and reduces the amount of data loaded during
boot. For IC, the .bss section has little utility beyond legacy; . bss
must persist through power cycles and so it must still be loaded
during boot and it still requires space in the snapshot. Some data
is more efficient to re-initialize/re-compute than to save/restore
to/from NVM; especially when the NVM is severely slower than
main memory. We propose a new, IC specific, section .npbss (non-
persistent bss) that is not included in the snapshot; and hence never
saved/restored. This section is useful for variables needed in the
booting process or to initialise peripherals. One particular example
in this work was the configuration structure for the Generic Inter-
rupt Controller (GIC) which requires a large table of pointers to,
and arguments for, interrupt handlers. Allocating the GIC structure
to .npbss in place of .bss reduced the snapshot size by 1572 bytes
(10% of total snapshot size), thus significantly reducing the data
written/read during hibernate/restore.
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5 EXPERIMENTAL VALIDATION AND
ANALYSIS

This work has found and extended the most suitable strategy for IC
on high-performance MPSoC systems. In this section, we validate
the implementation on an A9 processing system residing on a Xilinx
Zynq 7010 FPGA MPSoC [21]. Practical multiprocessing requires
an operating system with multiprocessing support, such as Linux.
However, these operating systems are unsuitable for IC due to their
resource usage, and must be adapted for efficient IC. The chosen
IC strategy was therefore implemented and validated on a single
processing core.

5.1 Boot Process

Boot time is critical for the viability of IC. For the purpose of this
work the boot time can be divided in three parts:

e tgwSsETUP — hardware setup time, i.e. the time taken from
vee > Von until the first instruction of the bootloader is
executed

e tB0OTo — execution time of the 0th stage bootloader

e trspr — execution time of the first-stage bootloader (FSBL)

BOOTO is a ROM bootloader programmed during fabrication
that loads FSBL from the external flash (Fig. 2) to on-chip memory.
FSBL loads the application from external flash to main memory
and also programs the FPGA fabric if a bitstream is present in
the flash image. In this work, OCM was used as main memory to
avoid programming of the FPGA fabric, making the boot process
representative of a conventional application processor.

To minimise tgooT0, FSBL was modified and compiled to be
executed directly from flash rather than loaded into OCM, saving
9ms of boot time. Because BOOT0 cannot be instrumented for
timing measurements, twsgTyUp and tgooTo Were combined into
tRST—FSBL = tHWSETUP + tBoOT0 Which is readily measured by
instrumentation of FSBL. An output pin at was set the start of FSBL
and the time between v¢. > Vpn and the pin transitioning to logic
"1" was measured with an oscilloscope to be 260 ms. In a similar
manner, tgsgr was measured as 19.5 ms.

While there is room for improvement in {Fspr, tRST—FSBL
cannot be improved further beyond using XIP and minimising the
amount of modifiable data loaded for FSBL. This presents a strong
limitation in the viability of this platform being used for IC.
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5.2 Validation of Hibernate and Restore

The system shown in Fig. 3 was implemented on the Zynq SoC.
Validation was performed using an FFT of 300 complex floating
point numbers as a sample application. For simplicity of valida-
tion, hibernate and restore was triggered at random points in the
program by use of IO interrupts rather than voltage monitoring.

To verify correctness of the snapshot, core dumps were used
to capture volatile state immediately before hibernate and after
restore, as shown in Fig. 5. The power supply was cycled between
hibernate and restore to ensure that all volatile state was lost before
restoring. The core dumps were taken by use of breakpoints and
the memory dump function of the debugger. The allocated portion
of the core dumps were then verified as being equal, showing that
state is consistent through power cycles.

Finally, the performance of hibernate and restore was measured.
The time consumed was measured by an on-chip timer and was
measured from the start of the interrupt routine until a snapshot
had been successfully saved/restored. The restore and hibernate
times were both measured to be 8.6 ms with a snapshot size of
15 kB.

6 CONCLUSIONS AND FUTURE WORK

Motivated by recent developments in power-neutral computing,
this paper surveyed published research in intermittent comput-
ing to determine the most suitable approach for implementing a
zero-power state for power-neutral high-performance MPSoCs. Re-
active IC was found to be the most viable option based on general
properties of MPSoCs and their implications to existing work. Tech-
niques to tailor memory allocation and the boot process towards
more efficient IC were then presented. Reactive IC was then imple-
mented on an Arm A9 processor and experimentally validated. A
method to validate consistency of state through power cycles was
presented. State was correctly saved and restored by implementing
two program-agnostic functions, hibernate and restore.

The time taken to hibernate and the time taken to restore were
both measured to be 8.6 ms for the tested application, which had
15 kB of volatile state (snapshot size). Experiments measuring boot
time showed that the time from power reset to the start of execution
of the first-stage bootloader was 260 ms; this presents the minimum
bound on start-up time for the specific hardware platform used in
this work. Future research on this topic should use an SoC with
faster start-up. The current method for power-neutral performance
scaling of MPSoCs is based on the Linux operating system. Future
work may explore whether Linux can be tailored towards IC or
whether other operating systems can fill the gap. When a suitable
operating system has been found, the multiprocessing extensions
proposed in this work should be validated on a multicore system.
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