
COMMUNICATIONS OF THE ACM February 2000/Vol. 43, No. 2 117

In most business system devel-
opments, the information
model is developed separately

from the functional model.
Information models or data
models can only capture limited
business semantics (see Figure 1),
which include four entities: Cus-
tomer, Account, Account
type, and Transaction
together with the cardi-
nality of the relation-
ship between them,
such as “A customer
may have many
accounts” and “An
account must belong to
a customer.” The model
implies existence depen-
dency for both the
Account and Transac-
tion entities. However,
there is very little scope
to specify any behavior
in the model. It would
be impossible to repre-
sent a business rule that
states a customer must
give three-months
notice before withdraw-
ing his or her funds. A
model is required that
accurately describes real-
world events and the
objects on which they
act.

Information Architecture
An Information Architecture [3]
is one that shows the interactions
between events and objects in the
real world. Events happen in the
real world; they are suffered or
performed by real-world objects
and are fairly instantaneous. They

are represented in software by
object methods corresponding to
the real-world event. A way of rep-
resenting such real-world objects
and the events acting on them is by
using Jackson-structured diagrams
[2]. The object structure is drawn
with the name of the object class in

the node of the structure
and the events/methods
in the leaves of the struc-
ture. This shows the time-
constrained way in which
the events can act on an
object. For example, in an
Account class with the
events open, close,
deposit, calculate interest,
and withdraw, a simple
and obvious business rule
as shown by the structure
is that the account must
be opened before money
can be withdrawn or
deposited. Other business
rules are implicit from
considering the time-
ordered constraints of the
events shown in Figure 2.
These rules reflect the
order in which events
must be carried out in the
real world. For an
instance of the Account
class the open event
occurs first, followed by

Essential Business Object
Design

David Gillibrand

Figure 1. Banking scenario, E-R model.

Customer
Account

typehave

have

belong

for
an

belong have

Transaction

Account

Figure 2. Time-ordered constraints of
methods within the Account class.

Account

Account
body

closeopen

*

00 0depositwithdraw calculate
interest

http://crossmark.crossref.org/dialog/?doi=10.1145%2F328236.328120&domain=pdf&date_stamp=2000-02-01

an iteration of either the withdraw,
deposit or calculate interest event
before the account is finally closed.

Other business rules will be
implemented as pre- and post-
conditions to the events taking
place. For example, the open event
might have the precondition that
there is a minimum
amount of money
required to open an
account. The withdraw
event might have the
precondition of a mini-
mum time of notice
before a withdrawal is
made and the deposit
event might have the
precondition that there
is a maximum amount
of money that can be deposited
per year. Post-conditions are the
obligations that have to be met
once the method is executed, such
as the operations which update
the state of the object. A deposit
event will result in the increase of
a data attribute “balance.”

Communication between
object classes is achieved by the
notion of the common event. This
is the simultaneous execution of
the same event in all of the classes
that contain the event. By way of
an example consider the following
simple banking scenario shown in
Figure 3.

Figure 3 shows the time-ordered

constraints for the events of the
classes Account, Customer, and
Transaction. The events for a class
constitute the behavior of that par-
ticular class. The Customer and
Account classes share the common
events open, deposit, withdraw,
and close. Account and Transac-

tion have the common events
withdraw and deposit. Conceptu-
ally the common events execute at
the same time in all of the struc-
tures containing them. The effect
is that the time-ordered constraints
for a particular class is the sum of
the time-ordered constraints
imposed by all the structures.

Consider the withdraw event.
The Transaction class shows that
the withdraw event can be fol-
lowed by either another withdraw
event or a deposit event. The
Account class shows that an
Account must be opened before a
withdraw event occurs and the
Customer class shows that a cus-

tomer must be registered before a
withdrawal is made. All these busi-
ness rules are captured in Figure 3.

Note: When modeling this sce-
nario using Jackson System Devel-
opment (JSD) [2], only the
Customer class and Account class
would be modeled. The Transac-

tion class would not be
represented because the
time-ordered constraints
of its events (such as an
iteration of the selection
of the events withdraw or
deposit) is already mod-
eled in the structure of
Account. It has no
unique time dependency
among its events.

Although this is a
good representation of what hap-
pens in the real world, the OO
paradigm is about sending mes-
sages between objects in a sequen-
tial way rather than about parallel
execution. A transformation needs
to take place between the logical
model shown in Figure 3 and an
implementation in an OO lan-
guage. This can be accomplished
by the common events (open,
close, deposit, withdraw) only
being allocated to the most appro-
priate class suited to their opera-
tion. This is the idea of localizing
tasks to the best-suited object to
handle the behavior [1]. The Cus-
tomer class would be responsible

118 February 2000/Vol. 43, No. 2 COMMUNICATIONS OF THE ACM

Figure 3. JSD view of the banking scenario.

Account Transaction

Account
body

closeopen

*

*

00 0

Customer

Customer
body

deregisterregister

depositwithdraw

0withdraw 0deposit

calculate
interest

00 0openamend
details

withdraw 0 0deposit close

*

Customer Account
can have

can have

Transaction

1
1

0..*

0..*

Figure 4. Banking scenario, high-level
design UML notation.

COMMUNICATIONS OF THE ACM February 2000/Vol. 43, No. 2 119

for the events register, deregister,
and amend details; the Account
class for the events open, close,
and calculate_interest; and the
Transaction class for the events
withdraw and deposit. The Cus-
tomer class would still incorpo-
rates the cut-down methods
open_account, withdraw_account,
deposit_account, and
close_account but they will only
check that the time-ordering con-
straints in the Customer class are
not violated (for example, a cus-
tomer has to be registered before
opening an account) before issuing
a call to the corresponding event
in the Account class.

The high-level design for the
banking scenario can be repre-
sented using UML notation [4].

Figure 4 shows that the relation-
ship between Customer and
Account is one to many and that
an account object is a component
object of a customer object indi-
cating an account object is a
dependent object of customer. A
similar relationship exists between
Account and Transaction.

Conclusion
The key to successful and main-
tainable business systems develop-
ment relies on taking an OO
approach in the analysis and
design and making sure the
designs produced are quality
designs, that the object classes
have been correctly identified and
the methods allocated to them are
the ones where the method behav-

ior is most appropriate to the class.
Concurrent event execution can be
resolved by delegating the event to
the most suitable class required to
handle the behavior and just hav-
ing other objects referencing the
event.

David Gillibrand (d.gillibrand@soc.

staffs.ac.uk) is a senior lecturer in IS/databases in

the School of Computing, Staffordshire

University, U.K.

References
1. Brown G. and Forte P. Building reusable

classes for frameworks. Report on object analy-
sis and design (Nov.-Dec. 1996).

2. Jackson, M.A. System Development. Prentice-
Hall International, Englewood Cliffs, NJ, 1983.

3. Kristen G. Object Orientation The Kiss Method.
Addison-Wesley, 1994

4. Martin J. and Odell J.J. Object Oriented Methods.
A Foundation with UML. Prentice Hall, 1998.

© 2000 ACM 0002-0782/00/0200 $5.00

c

