David Gillibrand

Essential Business Object

Design

n most business system devel-

opments, the information

model is developed separately
from the functional model.
Information models or data
models can only capture limited
business semantics (see Figure 1),
which include four entities: Cus-
tomer, Account, Account

Information Architecture
An Information Architecture [3]
is one that shows the interactions
between events and objects in the
real world. Events happen in the
real world; they are suffered or
performed by real-world objects
and are fairly instantaneous. They

are represented in software by
object methods corresponding to
the real-world event. A way of rep-
resenting such real-world objects
and the events acting on them is by
using Jackson-structured diagrams
[2]. The object structure is drawn
with the name of the object class in
the node of the structure

type, and Transaction and the events/methods
together with the cardi- in the leaves of the struc-
nality of the relation- ture. This shows the time-
ship between them, Customer Account constrained way in which
such as “A customer type the events can act on an
may have many object. For example, in an
accounts” and “An bel Account class with the
account must belong to cons events open, close,

a customer.” The model Transaction deposit, calculate interest,
implies existence depen- and withdraw, a simple
dency for both the and obvious business rule
Account and Transac- as shown by the structure
tion entities. However, is that the account must
there is very little scope be opened before money
to specify any behavior can be withdrawn or

in the model. It would Account deposited. Other business
be impossible to repre- | | rules are implicit from
sent a business rule that Account considering the time-
states a customer must OBEE body close ordered constraints of the
give three-months events shown in Figure 2.
notice before withdraw- * These rules reflect the

ing his or her funds. A order in which events
model is required that must be carried out in the
accurately describes real- | | real world. For an

world events and the withdraw 0 deposit L icnatI::Z:eo instance of the Account
objects on which they class the open event

act.

COMMUNICATIONS OF THE ACM February 2000/Vol. 43, No. 2

occurs first, followed by

17


http://crossmark.crossref.org/dialog/?doi=10.1145%2F328236.328120&domain=pdf&date_stamp=2000-02-01

Transaction

E3

!—‘—\

withdraw 0 deposit 0

Customer Account
T T
[ | ] [ R |
register bc:j;omer deregister open b:;‘;u“t close
* *
T T
[ [ I ] [ [ ]
amend 0 open withdraw0 et 0 dose 0 lwithdraw 0 —_ 0] [calculate0
details interest

an iteration of either the withdraw,
deposit or calculate interest event
before the account is finally closed.
Other business rules will be
implemented as pre- and post-
conditions to the events taking
place. For example, the open event
might have the precondition that

constraints for the events of the
classes Account, Customer, and
Transaction. The events for a class
constitute the behavior of that par-
ticular class. The Customer and
Account classes share the common
events open, deposit, withdraw,
and close. Account and Transac-

tomer must be registered before a
withdrawal is made. All these busi-
ness rules are captured in Figure 3.
Note: When modeling this sce-
nario using Jackson System Devel-
opment (JSD) [2], only the
Customer class and Account class

would be modeled. The Transac-

there is a minimum
amount of money

tion class would not be
represented because the
time-ordered constraints

required to open an
account. The withdraw

event might have the

Customer

precondition of a mini-
mum time of notice
before a withdrawal is
made and the deposit
event might have the
precondition that there

Transaction

of its events (such as an

| . . .
Account iteration of the selection
1  can have 0.* 1 of the events withdraw or
deposit) is already mod-
can have .
N eled in the structure of
y » Account. It has no

unique time dependency
among its events.

is 2 maximum amount
of money that can be deposited
per year. Post-conditions are the
obligations that have to be met
once the method is executed, such
as the operations which update
the state of the object. A deposit
event will result in the increase of
a data attribute “balance.”

Communication between
object classes is achieved by the
notion of the common event. This
is the simultaneous execution of
the same event in all of the classes
that contain the event. By way of
an example consider the following
simple banking scenario shown in
Figure 3.

Figure 3 shows the time-ordered

tion have the common events
withdraw and deposit. Conceptu-
ally the common events execute at
the same time in all of the struc-
tures containing them. The effect
is that the time-ordered constraints
for a particular class is the sum of
the time-ordered constraints
imposed by all the structures.
Consider the withdraw event.
The Transaction class shows that
the withdraw event can be fol-
lowed by either another withdraw
event or a deposit event. The
Account class shows that an
Account must be opened before a
withdraw event occurs and the
Customer class shows that a cus-

February 2000/Vol. 43, No. 2 COMMUNICATIONS OF THE ACM

Although this is a
good representation of what hap-
pens in the real world, the OO
paradigm is about sending mes-
sages between objects in a sequen-
tial way rather than about parallel
execution. A transformation needs
to take place between the logical
model shown in Figure 3 and an
implementation in an OO lan-
guage. This can be accomplished
by the common events (open,
close, deposit, withdraw) only
being allocated to the most appro-
priate class suited to their opera-
tion. This is the idea of localizing
tasks to the best-suited object to
handle the behavior [1]. The Cus-

tomer class would be responsible



for the events register, deregister,
and amend details; the Account
class for the events open, close,
and calculate_interest; and the
Transaction class for the events
withdraw and deposit. The Cus-
tomer class would still incorpo-
rates the cut-down methods
open_account, withdraw_account,
deposit_account, and
close_account but they will only
check that the time-ordering con-
straints in the Customer class are
not violated (for example, a cus-
tomer has to be registered before
opening an account) before issuing
a call to the corresponding event
in the Account class.

The high-level design for the
banking scenario can be repre-

sented using UML notation [4].

Figure 4 shows that the relation-
ship between Customer and
Account is one to many and that
an account object is a component
object of a customer object indi-
cating an account object is a
dependent object of customer. A
similar relationship exists between
Account and Transaction.

Conclusion

The key to successful and main-
tainable business systems develop-
ment relies on taking an OO
approach in the analysis and
design and making sure the
designs produced are quality
designs, that the object classes
have been correctly identified and
the methods allocated to them are
the ones where the method behav-

jor is most appropriate to the class.
Concurrent event execution can be
resolved by delegating the event to
the most suitable class required to
handle the behavior and just hav-
ing other objects referencing the
event. @

DAVID GILLIBRAND (d.gillibrand@soc.
staffs.ac.uk) is a senior lecturer in IS/databases in
the School of Computing, Staffordshire
University, U.K.

REFERENCES

1. Brown G. and Forte P. Building reusable
classes for frameworks. Report on object analy-
sis and design (Nov.-Dec. 1996).

2. Jackson, M.A. System Development. Prentice-
Hall International, Englewood Cliffs, NJ, 1983.

3. Kristen G. Object Orientation The Kiss Method.
Addison-Wesley, 1994

4. Martin J. and Odell J.J. Object Oriented Methods.
A Foundation with UML. Prentice Hall, 1998.

© 2000 ACM 0002-0782/00/0200 $5.00

LANGUAGE TECHNOLOGY

The Association for
Computational
Linguistics

JOINT CONFERENCE SEATTLE, WASHINGTON

www.aclweb.org

ANLP-NAACL2000

APRIL 29 — MAY 3, 2000

Applied Natural Language Processing and the North American Chapter of the Association for Computational Linguistics

Refereed papers by leading scientists and engineers from
around the world will be presented in two conferences:

ANLP - Applied Natural Language Processing
Monolingual text processing systems

Multilingual text processing systems

Spoken language systems

Integrated NLP systems

Tools and resources for developing NLP systems
Evaluation of performance of NLP systems

NAACL - North American Chapter of the ACL
Discourse and Dialog

Semantics and the Lexicon

Grammars, Parsing, and Syntax

Corpus-Based and Statistical NLP

Computational Psychology and HCI

Natural Language Generation and Summarization

Multilingual Natural Language Processing
Spoken Language

Visit our web site www.gte.com/ANLP-NAACL2000 for details on the program, plenary speakers,
Demonstrations, Exhibits, Tutorials, Workshops, and Special Millennium Events.
Contact Deborah Dahl at Unisys deborah.dahl@unisys.com for exhibits.

COMMUNICATIONS OF THE ACM February 2000/Vol. 43, No. 2

119



