
Total Recall, Language Processing, and Software Engineering
Zhe Yu, Tim Menzies

North Carolina State University, USA
zyu9@ncsu.edu,timm@ieee.org

ABSTRACT
A broad class of software engineering problems can be generalized
as the “total recall problem”. This short paper claims that identifying
and exploring total recall language processing problems in software
engineering is an important task with wide applicability.

To make that case, we show that by applying and adapting the
state of the art active learning and text mining, solutions of the total
recall problem, can help solve two important software engineering
tasks: (a) supporting large literature reviews and (b) identifying
software security vulnerabilities. Furthermore, we conjecture that
(c) test case prioritization and (d) static warning identification can
also be categorized as the total recall problem.

The widespread applicability of “total recall” to software engi-
neering suggests that there exists some underlying framework that
encompasses not just natural language processing, but a wide range
of important software engineering tasks.

KEYWORDS
Software engineering, active learning, natural language processing,
information retrieval

ACM Reference Format:
Zhe Yu, Tim Menzies. 2018. Total Recall, Language Processing, and Soft-
ware Engineering. In Proceedings of Workshop on NLP for Software Engi-
neering (NL4SE@ ESEC/FSE 2018). ACM, New York, NY, USA, 4 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Software engineering is a discipline closely involved with human
activities. How to help software developers produce better software
more efficiently is the core topic of software engineering. Prioritizing
tasks can efficiently reduce the human efforts and time required
to achieve certain goals of software development. Many of such
prioritization problems in software engineering can be generalized
as the total recall problem (defined in the next section).

The total recall problem has been explored in information retrieval
for years, and the state of the art solution with active learning and
natural language processing aims to resolve the following challenges:
• Among a finite number of tasks, which task to be executed first so

that certain goals can be achieved earlier?
• At what point, there is no need to execute the remaining tasks?
• Are all the tasks executed correctly? How to identify wrongly

executed tasks and correct them?

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for government purposes only.
NL4SE@ ESEC/FSE 2018, 4th November, 2018, Lake Buena Vista, Florida
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/0000001.0000001

• How to scale up the process with multiple humans working in
parallel (e.g. crowdsourcing)?

The first challenge has been extensively explored [1, 10, 14] while
the rest three have much room to improve [2–4].

This short paper claims that identifying and exploring the total
recall problems in software engineering is an important task which
benefits both software engineering research and the general solution
to total recall problems. To support this claim, in §2 we first introduce
the general total recall problem, and its state of the art solutions; then
in §3, we provide two software engineering tasks which are solved by
applying total recall techniques and better solutions to the challenges
of total recall problems were created during the process [16–18].
We also conjecture that two other software engineering tasks can be
categorized as the total recall problem. The goal of this short paper
is to inspire software engineering researchers to explore total recall
problems in software engineering with our preliminary results.

2 THE TOTAL RECALL PROBLEM
The total recall problem in information retrieval aims to optimize
the cost for achieving very high recall–as close as practicable to
100%–with a human assessor in the loop [6]. More specifically, the
total recall problem can be described as following:

Given a set of candidate examples E, in which only a small
fraction R ⊂ E are positive, each example x can be inspected
to reveal its label as positive (x ∈ R) or negative (x < R)
at a cost. Starting with the labeled set L = ∅, the task is to
inspect and label as few examples as possible (min |L|) while
achieving very high recall |L ∩ R |/|R |.

The Total Recall Problem:

Different strategies have been applied to solve the total recall prob-
lem, including supervised learning and semi-supervised learning.
However, the state of the art solutions to the total recall problem
apply active learning [6] to learn from natural language processing
features (e.g. bag-of-words, tf-idf) extracted from the current labeled
set L and re-rank the rest of the candidate examples E \ L so that
examples that are more likely to be positive get inspected next. This
active learning solution has been proven effective in different use
cases. A demonstration of the benefit of this active learning strategy
can be found in Figure 1, where with active learning (solid red line),
high recall (close to 100%) can be achieved by inspecting only a
small portion of the candidate examples.

In evidence-based medicine, researchers screen titles and abstracts
to determine whether one paper should be included in a certain
systematic review. Wallace et al. [14] designed patient active learning
to help researchers prioritize their effort on papers to be included.
With patient active learning, half of the screening effort can be saved
while still including most relevant papers [14].

ar
X

iv
:1

80
9.

00
03

9v
1

 [
cs

.S
E

]
 3

1
A

ug
 2

01
8

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

NL4SE@ ESEC/FSE 2018, 4th November, 2018, Lake Buena Vista, Florida Z.Yu, T.Menzies

0% 20% 40% 60% 80%

Cost

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

Active Learning

Random Order

Figure 1: A demonstration for the power of active learning on
the total recall problem. X axis shows the cost spent while Y
axis shows the recall reached. The dashed line represents the
retrieval curve with random inspection order and the solid line
shows the retrieval curve with active learning selecting which
example to inspect next.

In electronic discovery, attorneys are hired to review massive
amount of documents looking for relevant ones for a certain legal
case and provide those as evidences. Cormack and Grossman [1]
proposed continuous active learning to save attorneys’ effort from
reviewing non-relevant documents, which further can save a large
amount of the cost of legal cases.

The active learning strategy for total recall problem can be de-
scribed as following:
Step 0 Given a candidate set E and initialize the labeled set L = ∅.
Step 1 Using strategies like ad hoc search or random sampling to

select next example x to label (L← L ∪ x).
Step 2 Repeat Step 1 until “enough” positive examples have been

labeled (|L ∩ R | ≥ K).
Step 3 Train/update a supervised learning model with current la-

beled set L.
Step 4 Use the trained model to predict on the unlabeled set E \ L

and select next example x to label (L← L ∪ x).
Step 5 Repeat Step 3 and Step 4 until a stopping rule has been met.
Where detail settings vary from case studies to case studies:
• In Step 2, Cormack and Grossman [1] believe that learning should

start as soon as possible (K = 1) while Wallace et al. [14] suggest
to start learning until more training examples are available.
• In Step 3, most studies exact text features from examples and train

a support vector machine with linear kernel. However, there are
different opinions on how to balance the training data, e.g. Wallace
et al. [14] proposed a technique called aggressive undersampling
to drop off the negative examples closes to the positive ones while
Miwa et al. [10] adjusted the weight of each training example to
punish more for misclassifying positive examples.
• In Step 4, Cormack and Grossman [1] select examples that are

most likely to be positive while Wallace et al. [14] select most
uncertain examples.
• In Step 5, Cormack and Grossman [1] stop the process when a

sufficient number of positive examples have been found while
Wallace et al. [14] stop the learning when the model becomes
stable and then apply the model to classify the unlabeled examples.

While this active learning and natural language processing strat-
egy has been extensively explored to resolve the main challenge of
total recall problems, there still exists large room for improvement
in the three other challenges.

2.1 When to Stop
In practice, there is no way to know the number of positive examples
before inspecting and labeling every candidate example. It is thus
impossible to know exactly what recall has been reached during the
process. Then, how do we know when to stop if the target is reaching,
say 95% recall? This is a practical problem that directly affects the
usability of the active learning strategy. Stopping too early will
result in missing many valuable positive examples; while stopping
too late will cause unnecessary cost when there are no more positive
examples to retrieve. So far, researchers have developed various
stopping rules to solve the “when to stop” problem.
• Ros et al. [12] developed the the most straightforward rule, which

decides that the process should be stopped after 50 negative exam-
ples are found in succession.
• Cormack and Grossman proposed the knee method [2], which

detects the inflection point i of current recall curve, and compare
the slopes before and after i. If slope<i/slope>i is greater than a
specific threshold ρ, the review should be stopped.
• Wallace et al. [13] applied an estimator to estimate the number

of positive examples |R | and let the users decide when to stop by
showing them how close they are to the estimated number.

2.2 Human Error Correction
When solving the total recall problems, the next example to be
inspected relies on model trained on previously labeled examples.
What if those labels can be wrong? The trained model could be
misled by wrongly labeled examples and thus make worse decision
on which example to inspect next. By now, researchers have applied
various strategies to correct such human errors:
• One simple way to correct human errors is by majority vote [9],

where every example will be inspected by two different humans,
and when the two humans disagree with each other, a third human
is asked to make the final decision.
• Cormack and Grossman [4] built an error correction method upon

the knee stopping rule [2]. After the review stops, examples la-
beled as positive but are inspected after the inflection point (x > i)
and examples labeled as negative but inspected before the inflec-
tion point (x < i) are sent to humans for a recheck.

2.3 Scalability
How to scale up the active learning framework with multiple humans
working simultaneously on the same project remains an open chal-
lenge to the total recall problem. In electronic discovery, Cormack
and Grossman [3] proposed S-CAL where model trained on a finite
number of examples is used to predict and estimate the precision,
recall, and prevalence of the target large set of examples. However,
this approach sacrifices the adaptability of the active learner. In
evidence-based medicine, Nguyen et al. [11] explored the task allo-
cation problem where two types of human operators are available:
(1) crowdsourcing workers who are cheaper but less accurate, and
(2) experts who are much more expensive but also more accurate.

Total Recall and SE NL4SE@ ESEC/FSE 2018, 4th November, 2018, Lake Buena Vista, Florida

This approach allows the system to operate more economically but
still cannot scale up with growing number of training examples.

3 TOTAL RECALL PROBLEMS IN
SOFTWARE ENGINEERING

As discussed in §1, there are tasks in software engineering that re-
semble the problem of total recall. In this section, we will discuss
four such problems. The first two tasks have been explored by the
authors previously and the promising results convince us that apply-
ing active learning and natural language processing strategy is the
key to solving these software engineering problems.

3.1 Primary Study Selection in Systematic
Literature Reviews

For the same reason of medicine researchers, software engineering
researchers also need to read literature to stay current on their re-
search topics. Researchers conduct systematic literature reviews [8]
to analyze the existing literature and to facilitate other researchers.
Among different steps of systematic literature reviews, primary study
selection is in exactly the same format as citation screening in med-
ical systematic reviews. The problem is also for reading titles and
abstracts to find relevant papers to include, except that those pa-
pers are about software engineering. As a result, the primary study
selection problem can be described as a total recall problem:
• E: set of software engineering papers returned from a search query.
• R: set of relevant papers to the systematic literature review.
• L: set of papers that have been reviewed and labeled as relevant or

non-relevant by human researchers.
While exploring this total recall problem [16, 17], the authors:

(1) Designed a new active learning framework by combining advan-
tages of the state of the art approaches [1, 10, 14] in §2. When
reaching the same recall, the new framework costs 20-50% less
than these prior state of the art approaches.

(2) Created an estimator for |R | based on semi-supervised learning
for the when to stop challenge. This estimator showed better
accuracy than the one from Wallace et al. [13] and provided
better stopping rules than the prior methods in §2.1. With the
help of this estimator, the users can now know what level of
estimated recall has been reached and make better decision on
whether to spend more effort to achieve a higher recall at any
point of the process.

(3) Proposed an error identification method, in which only examples
with labels that the current active learner disagrees most on are
rechecked by a different human expert. This method has been
proven to be more cost effective in addressing the human error
correction challenge than prior methods in §2.2.

Datasets and tools for reproduction and making further improve-
ments on the primary study selection problem can be found at
Seacraft, Zenodo1 and Github2.

3.2 Software Security Vulnerability Prediction
Society needs more secure software. It is crucial to identify software
security vulnerabilities and fix them as early as possible. However, it

1https://doi.org/10.5281/zenodo.1162952
2https://github.com/fastread/src

VPM

…
ReviewersCodebase

…
Queue

Train

Predict

Figure 2: Poactive Security Review and Test Framework

is time-consuming to have human experts inspecting the entire code-
base looking for the few source code files that contain vulnerabilities.
The solution to this problem, prioritizing the human inspection effort
towards codes that are more likely to have vulnerabilities is also a
total recall problem:
• E: the entire codebase of a software project.
• R: set of source code files that contain vulnerabilities.
• L: set of source code files already inspected by humans.

With simulations on the known vulnerabilities from Mozilla Fire-
fox project [18], the authors:
(1) Extracted bag-of-words from source codes and applied same

active learning algorithm as the primary study selection prob-
lem [16, 17] to select which source code file to inspect next
and to stop the inspection when target recall is reached. Results
showed that 95, 99, 100% recall can be achieved by having
human experts inspect 28, 41, 55% of the source code files, re-
spectively [18]. Results also showed that text features perform
better than traditional software metrics features.

(2) Adapted the error correction method from primary study selec-
tion [17] to identify missing vulnerabilities3. Results showed
that it can reach higher recall with lower cost comparing to other
error correction methods mentioned in §2.2.

(3) Designed a centralized system where human operators can work
in parallel but all the information is gathered in one place to
update the model, as shown in Figure 2. However, when the num-
ber of training example grows, the time required for updating
the model becomes longer and longer.

The real benefit of treating vulnerability prediction as a total recall
problem is that no labeled data (known vulnerabilities) are required
to start the process, thus these vulnerabilities can be identified and
fixed before the software is deployed. On contrast, conventional
methods such as supervised learning or unsupervised learning re-
quire post-deployment information such as known vulnerabilities
from bug reports or crash dump stack traces.

3.3 Static Warning Identification
Static Analysis tools (e.g., FindBugs) are widely used to find de-
fects in software. These tools scan source code or binary code of a

3When inspecting codes, human may miss some vulnerabilities (false negatives) but
may never have false positives, and the false negative rate can be as high as 47% [7].

NL4SE@ ESEC/FSE 2018, 4th November, 2018, Lake Buena Vista, Florida Z.Yu, T.Menzies

software project and infer bugs, security vulnerabilities, and bad pro-
gramming practices with heuristic pattern matching techniques [15].
Problem is, the high false positive rate of the reported warnings
causes most of the warnings not acted on by developers [15]. Reduc-
ing such false positives can be viewed as a total recall problem:
• E: all warnings reported by the static analysis tools.
• R: set of warnings that reveal true defects.
• L: set of warnings that have been inspected by human experts.

This static warning identification problem has been explored with
supervised learning methods and sets of different features [15]. Ana-
lyzing the warnings with natural language processing and applying
active learning to select which warning to inspect might help reduce
false positives and make static analysis tools more practical to use.

3.4 Test Case Prioritization
Regression testing is an expensive testing process to detect whether
new faults have been introduced into previously tested code. To
reduce the cost of regression testing, software testers may prioritize
their test cases so that those which are more likely to fail are run
earlier in the regression testing process [5]. The goal of test case
prioritization is to increase the rate of fault detection, and by doing
so, it can provide earlier feedback on the system under test, enable
earlier debugging, and increase the likelihood that, if testing is pre-
maturely halted, those test cases that offer the greatest fault detection
ability in the available testing time will have been executed [5]. This
test case prioritization problem can also be treated as a total recall
problem with the following notations:
• E: all candidate regression test suites.
• R: set of test suites that will detect faults.
• L: set of test suites that have been executed.

Existing techniques for prioritizing test cases are “unsupervised”,
i.e. these techniques decide an order of the test cases to be run and
stick with it. Applying active learning to adapt the ordering with
knowledge learned from test cases executed can potentially further
increase the rate of fault detection and reduce more cost. However,
this problem has not been explored as a total recall problem and the
following challenges need to be resolved:
• What types of feature can be extracted from the test cases so that

the learned model can accurately predict the likelihood of fault
detection from a test case before its execution.
• How to balance the priority of test cases increasing coverage of

statements/functions most and the more-likely-to-fail test cases.
• How to handle test dependence, i.e. if test cases are not indepen-

dent, changing their order may fail some tests but pass others [19].

4 CONCLUSIONS AND FUTURE WORK
Many of the software engineering problems can be generalized as
the total recall problem. This paper identified four such problems.
With two case studies of primary study selection and vulnerability
prediction, we showed that exploring these total recall problems
in software engineering would benefit both software engineering
research and the general solution to total recall problems. We hope
this paper will attract more researchers studying and improving the
total recall problems in software engineering. Future work in this
area includes but is not limited to the following:

• Improve core algorithm for the total recall problem—reaching
same recall with less cost.
• Build more accurate estimator for current recall achieved.
• Resolve human errors more efficiently.
• Scale up the total recall solutions (probably by ensemble learning)

and utilize low-cost workers through crowdsourcing.
• Apply total recall techniques to reduce false alarms in static code

analysis and to prioritize test cases.
• Identify more total recall problems in software engineering.

REFERENCES
[1] Gordon V Cormack and Maura R Grossman. 2014. Evaluation of machine-learning

protocols for technology-assisted review in electronic discovery. In Proceedings
of the 37th international ACM SIGIR conference on Research & development in
information retrieval. ACM, 153–162.

[2] Gordon V Cormack and Maura R Grossman. 2016. Engineering Quality and
Reliability in Technology-Assisted Review. (2016), 75–84.

[3] Gordon V Cormack and Maura R Grossman. 2016. Scalability of Continuous
Active Learning for Reliable High-Recall Text Classification. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 1039–1048.

[4] Gordon V Cormack and Maura R Grossman. 2017. Navigating Imprecision
in Relevance Assessments on the Road to Total Recall: Roger and Me. In The
International ACM SIGIR Conference. 5–14.

[5] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. 2002. Test
case prioritization: A family of empirical studies. IEEE transactions on software
engineering 28, 2 (2002), 159–182.

[6] Maura R Grossman, Gordon V Cormack, and Adam Roegiest. 2016. TREC 2016
Total Recall Track Overview. In TREC.

[7] Les Hatton. 2008. Testing the value of checklists in code inspections. IEEE
software 25, 4 (2008).

[8] Barbara A Kitchenham, Tore Dyba, and Magne Jorgensen. 2004. Evidence-based
software engineering. In Proceedings of the 26th international conference on
software engineering. IEEE Computer Society, 273–281.

[9] Marco Kuhrmann, Daniel MÃl’ndez FernÃąndez, and Maya Daneva. 2017. On the
pragmatic design of literature studies in software engineering: an experience-based
guideline. Empirical Software Engineering 22, 6 (2017), 2852–2891.

[10] Makoto Miwa, James Thomas, Alison O’Mara-Eves, and Sophia Ananiadou. 2014.
Reducing systematic review workload through certainty-based screening. Journal
of biomedical informatics 51 (2014), 242–253.

[11] An Thanh Nguyen, Byron C Wallace, and Matthew Lease. 2015. Combining
crowd and expert labels using decision theoretic active learning. In Third AAAI
Conference on Human Computation and Crowdsourcing.

[12] Rasmus Ros, Elizabeth Bjarnason, and Per Runeson. 2017. A Machine Learning
Approach for Semi-Automated Search and Selection in Literature Studies. In
Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering. ACM, 118–127.

[13] Byron C Wallace, Issa J Dahabreh, Kelly H Moran, Carla E Brodley, and Thomas A
Trikalinos. 2013. Active literature discovery for scoping evidence reviews: How
many needles are there. In Proceedings of KDD workshop on data mining for
healthcare (KDD-DMH).

[14] Byron C Wallace, Thomas A Trikalinos, Joseph Lau, Carla Brodley, and Christo-
pher H Schmid. 2010. Semi-automated screening of biomedical citations for
systematic reviews. BMC bioinformatics 11, 1 (2010), 1.

[15] Junjie Wang, Song Wang, and Qing Wang. 2018. Is There A “Golden” Feature Set
for Static Warning Identification?. In Proceedings of the International Symposium
on Empirical Software Engineering and Measurement.

[16] Zhe Yu, Nicholas A. Kraft, and Tim Menzies. 2018. Finding better active learners
for faster literature reviews. Empirical Software Engineering (07 Mar 2018).
https://doi.org/10.1007/s10664-017-9587-0

[17] Zhe Yu and Tim Menzies. 2017. FAST2: Better Automated Support for Finding
Relevant SE Research Papers. CoRR abs/1705.05420 (2017). http://arxiv.org/abs/
1705.05420

[18] Zhe Yu, Christopher Theisen, Hyunwoo Sohn, Laurie Williams, and Tim Menzies.
2018. Cost-aware Vulnerability Prediction: the HARMLESS Approach. CoRR
abs/1803.06545 (2018). arXiv:1803.06545 http://arxiv.org/abs/1803.06545

[19] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis. ACM, 385–396.

Received August 2018

https://doi.org/10.1007/s10664-017-9587-0
http://arxiv.org/abs/1705.05420
http://arxiv.org/abs/1705.05420
http://arxiv.org/abs/1803.06545
http://arxiv.org/abs/1803.06545

	Abstract
	1 Introduction
	2 The Total Recall Problem
	2.1 When to Stop
	2.2 Human Error Correction
	2.3 Scalability

	3 Total Recall Problems in Software Engineering
	3.1 Primary Study Selection in Systematic Literature Reviews
	3.2 Software Security Vulnerability Prediction
	3.3 Static Warning Identification
	3.4 Test Case Prioritization

	4 Conclusions and Future work
	References

