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ABSTRACT

Good comments help developers understand software faster and

provide better maintenance. However, comments are often miss-

ing, generally inaccurate, or out of date. Many of these problems

can be avoided by automatic comment generation. This paper presents

amethod to generate informative comments directly from the source

code using general-purpose techniques from natural language pro-

cessing. We generate comments using an existing natural language

model that couples words with their individual logical meaning

and grammar rules, allowing comment generation to proceed by

search from declarative descriptions of program text. We evalu-

ate our algorithm on several classic algorithms implemented in

Python.
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1 INTRODUCTION

Comments play a major role in the software development process

and are an important tool for software maintenance [1]. However,

comments are often inaccurate, outdated, or do not exist [4], mak-

ing themaintenancemore difficult and time-consuming. Automated

comment generation systems can improve the situation by produc-

ing new, current comments. An essential aspect of this is often de-

scribing not only what the code does, but how. Prior work on com-

ment generation does not address these challenges in their full gen-

erality. Some work generates helpful and precise comments [17–

19, 24] by using function and variable names for describing the

actions performed [7]. Thus their approach would encounter prob-

lems with code that does not follow specific function and class

naming rules. On the other hand, Wong et al. [23] propose to mine
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web resources StackOverflow for collecting comments on them

and using those comments as a basis for code comments. This ap-

proach can produce accurate comments, but it depends on the qual-

ity of the original posts as well as having a specific code segment

available in the database. If the accepted answer on StackOverflow

is wrong, the produced comment will also be wrong. More recent

work [12] uses deep learning to associate comments with code, but

the approach is probabilistic, may produce grammatically incor-

rect sentences, and is limited to high-level comments. Generating

comments that explain algorithms requires working with a more

complete semantic model of the code, and this can be done in a

way that improves the linguistic quality of the comments as well.

We propose an approach to generate comments from the source

that relies only on the source itself and the information which can

be extracted from the source, such as invariants or semantics. Our

approach is not dependent on function names, requires no external

sources, and is guaranteed to produce comments representing the

behavior of the source code. Our approach adapts existing state of

the art NLP algorithms for connecting program text, meaning, and

grammatically-correct natural language. This both allows the ap-

proach to benefit from ongoing advances in traditional NLP, and

permits us to focus on deriving logical forms — logical descriptions

of the code, used as the basis for fully-general natural language

generation. We derive the logical forms directly from the source

code and use an AI planner for Combinatory Categorial Grammars

(CCGs) [5, 6] to generate complete sentences from these specifica-

tions. By using established NLP algorithms for text generation, we

obtain a modular comment generation framework that is extensi-

ble to other programming languages or natural languages, and can

easily incorporate new sources of information such as types or in-

variants inferred by other analyses.

This paper describes a systematic approach to automatic com-

ment generation that does not rely on external information sources,

and can be applied readily to natural languages beyond English.

We use NLP and AI planning techniques to generate comments

from a general and extensible logical description of the code, which

are not only accurate but guaranteed to be grammatically correct.

We also report early results on a functioning prototype using these

approaches to generate statement-level comments for both hand-

crafted examples of common Python idioms, and individual open

source Python implementations of common algorithms.

2 BACKGROUND

This section describes relevant background on natural language

generation and the particular formalism we use, Combinatory Cat-

egorial Grammar.

http://arxiv.org/abs/1810.06599v1
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2.1 Natural Language Generation

Natural Language Generation is defined as a process of producing

natural language output from non-linguistic input [9]. The most

important elements are a discourse planner and a surface realizer.

Discourse planners are AI planners that use a special planning

domain. Classical AI planners take a desired outcome, and gener-

ate a sequence of actions to achieve that outcome. The planning

problem is specified by a planning domain, which contains all of

the actions that can be taken, as well as transition rules between

actions and the changes to the world state (a set of true logical

predicates) after an action is taken. Discourse planners do this us-

ing a planning domain designed specifically for natural language

generation.

In the context of the comment generation the world state is a

set of predicates about the program source code, and the goal out-

come is a state where the relevant facts about the code have been

communicated. For example, given an assignment statement, the

logical predicate would identify it as an assignment and record

what variablewas assigned which value. If this predicate is given to

the discourse planner, it will create a discourse plan for expressing

an assignment statement in English. This includes making choices

about the tense, voice (active vs. passive), and case for the language

to be generated.

Surface realizers receive fully specified discourse plans as input,

and produce appropriate English sentences based on a formal lan-

guage grammar [9].

A common way to generate text is the following. First, a com-

municative goal is determined — the factual content of the sen-

tence to generate. Then, a planner generates a sentence specifica-

tion using the provided knowledge base and the goal. The planning

domain contains the knowledge which allows making decisions

about the generated sentence. The planner selects appropriate con-

tent and lexical items from the knowledge base for expressing the

goal, which results in a set of facts and narrative choices (voice,

etc.) to constrain what and how to communicate. These selections

are then passed as specifications to the surface realizer which pro-

duces a natural language sentence using the provided grammar.

2.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) [21] is a multi-modal lex-

icalized tree grammar used in the parsing of natural language. Its

expressivity is between context-sensitive and context-free gram-

mars (in fact, equivalent to linear indexed grammars [10, 22]), and

can express most structure of most natural languages [2, 8, 20]. The

grammar consists of multiple categories or types, which can be ba-

sic or complex. The basic categories are various parts of speech,

such as a noun, verb, adjective, etc. The complex categories are

compound categories for entities like noun phrases or verb phrases.

CCGs include two kinds of directed function types for indicating

how to combine adjacent word sequences, closely related to those

in variants of ordered linear logic [11]. The key connectives are

A/B — something which, when combined with a B to its right, con-

stitutes anA— and A\B, which is the same, but expecting an argu-

ment to the left. The direction of the slash indicates which side the

sort ⇒ λx .sort ′(x) : VP/NP

array ⇒ λy.array′(y) : NP

Figure 1: Example of a CCG grammar semantics

Natural Language Planning

Domain (English CCG)

Logical Forms from

Source Analysis

Discourse Planner &

Surface Realizer (ELEXIR)

Post-Processing &

Optional Summarization

Figure 2: Comment generation pipeline

argument should come from.1 In addition to those applications of

the directed function types, there are other combinators and forms

of subtyping, closely related to the combinatory logic [3].

A key aspect of using a grammar formalism in natural language

understanding, machine translation, or natural language genera-

tion, is a connection between the words included in the grammar

and the logical form used to represent the logical meaning of natu-

ral language. Lexicalized grammars like CCGs — thosewhere types

are given to individual words, rather than phrases— offer relatively

simple connection between the syntactic words and logical mean-

ing, since each word essentially corresponds to either a predicate

on entities (in the case of nouns) or a function from predicates

to predicates (in the case of verb phrases, etc.), taking the same

number of arguments in the logical form as in the grammar. Fig-

ure 1 gives an example of a simple CCG lexicon that can parse

and give semantics for the phrase sort the array. The lambda ex-

pression is the semantics of the rule on the right hand side. In

this case the grammar states that the word sort produces a verb

phrase (VP ) and it expects a noun phrase (NP ) as an argument to

its right. The word array produces a noun phrase that does not ex-

pect arguments. The lambda expressions inside the rules describe

the meaning of each word — its semantics, called logical forms.

When words and phrases are combined, so are their logical forms.

The determiner the is a combinator that does not change the se-

mantics of the phrase and therefore does not appear in the logical

form. The logical form of the phrase “sort the array” combines Fig-

ure 1’s word semantics by passing the semantics of “array” to the

semantics of “sort”: λx .sort ′(x) λy.array′(y) ⇒ sort ′(array′).

3 THE ARCHITECTURE

Figure 2 depicts our process for comment generation system from

source. In the first step, the (official) Python parser reads the source

code producing an AST, which is then translated into a logical form

describing the details and structure of the source code, including

program order. Each statement of the programming language rep-

resents an action or a meaning. During this step we capture this ac-

tion as a set of logical forms. For example, consider an assignment

statement x = 5. This statement will produce a logical form as-

sign(x,5), which will allow us to express the fact of the assignment

in English. In case of simple statements, such as an assignment, a

1Note that compared to residuation-based logics like Lambek calculus [11], CCGs
reverse the domain and codomain inA\B; in CCGs codomains are always on the left.
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single logical form might be enough to produce the description of

it. However, we will produce several logical forms for more com-

plex expressions such as loops or if-statements, as described in Ta-

ble 1.We generate logical forms for basic expressions, and combine

these to produce the logical forms ofmore complex code structures.

These logical forms are then used as the communicative goal, the

input given to the AI planner in the next step.

The core of our system is an AI planner called ELEXIR [5, 6],

which uses an extension to the basic CCG variant described in Sec-

tion 2.2 for the description of planning domains. Because ELEXIR

uses a grammar formalism for the definition of a planning domain2,

it allows us to combine sentence planning and surface realization

tasks into a single step, leading to a simpler design than with other

planners [6]. In this case, the communicative goal given to the

planner/realizer is exactly the logical form of the code, which is

interpreted as a goal of giving an English description of the code

represented by this logical form.

Because ELEXIR uses CCGs to represent planning domains, it is

a straightforward process to map logical forms from the source to

the syntactic structures of English (see Section 2.2). The ELEXIR

grammar contains constraints in each production rule, which can

be fulfilled by the given logical forms. With these constraints the

ELEXIR performs A∗ search within the domain and produces a

grammatically correct comment satisfying our communicative goal.

This sentence then requires modest post-processing to trans-

form the “plan” into a readable string (capitalization, removing

metadata about tenses, etc.). If the generated comments are too

verbose, an off-the-shelf language summarization system could be

applied (currently not implemented) to create a shorter version of

the comment containing the same information.

A key benefit of this architecture is modularity. Each step in the

pipeline can be improved independently of one another to improve

overall system performance and quality, or to target different pro-

gramming languages or natural languages. Replacing our Python

source analysis with one for Java would allow reuse of the remain-

ing components for Java comment generation. Replacing the Eng-

lish CCG with the CCG for another language (e.g., German [8]

or Hindi [2]), plus a bridge to map logical forms into the new

language (as common in machine translation [16]) would allow

reusing other components for a different natural language. And

because most of the components (planning and grammar domains,

planning and realization algorithms, and summarization) were orig-

inally developed for a variety of other useful contexts, wewill even-

tually benefit from ongoing improvements in the underlying sys-

tems.

4 EARLY RESULTS

To evaluate our algorithm we have implemented the pipeline from

Figure 2 for a subset of Python complete enough to implement clas-

sic algorithms, and have run it on both a set of manually-crafted

set of code snippets, and the source for some example Python pro-

grams. The current subset of Python we cover includes loops, if-

statements, IO operations, assignments, boolean expressions, func-

tion definitions, function calls built-in Python data structures. We

2Typically, these systems use some form of action logic or dynamic logic.

do not, however, include syntactic sugar, such as list comprehen-

sions. There are two reasons why we start with the basic code

structures. One is the use of the algorithm for educational pur-

poses. Two, logical forms for basic expressions can be combined

to describe more complicated code fragments.

The manually-created code fragments were hand-picked to ex-

emplify a range of common Python idioms, such as iteration over

lists vs. dictionaries, assignments of different types of expressions,

and other points of contrast. For the second test we selected a set of

the following well-known algorithms from an online repository3:

md5 hash calculation, finding the longest subsequence, bubble sort,

shell sort, radix sort, Simpson rule, and trapezoidal rule. These algo-

rithms were selected because together they provide good coverage

of the currently supported capabilities of our prototype.

We hand-crafted an English grammar for the ELEXIR that in-

cludes a minimal subset of English which can describe all code

structures for our chosen subset of Python. Currently, our system

can only produce a description for one statement at a time, and

not a group of related statements, but is complete enough to vali-

date the feasibility of our general and modular approach. We are

currently also limited by the size of our lexicon, which prevents us

from generating multiple variations of sentences, and limits us to

a fixed set of “known” variable names. We currently support only

the identifiers required for the subject code so far, but general so-

lutions to this are known for CCGs.

Table 1 gives a few examples of code snippets, the logical forms

generated from the parse tree, and the comments synthesized from

those forms using ELEXIR. There are a couple of things to notice

about the examples, beyond that they are grammatically correct

and describe the relevant code. First, the language choices, while

constrained by our lexicon, involved no kind of template — the

only inputs to the generation were the logical forms and the Eng-

lish lexicon giving grammar and logical meanings for words. Sec-

ond, while the second and third rows include both a definition and

use of a, the information about a being a list or dictionary need

not come from the parse tree, but in general could come from an-

other program analysis such as type- or invariant-inference — an

eventual goal supported by the use of logical forms, which allow

for adding other sources of relevant information.

In totalwe have run our prototypeon 121 examples: 20manually-

created and 101 lines from TheAlgorithms (out of 245; the omitted

lines are function declarations or uses of currently-unsupported

features like list comprehensions). Manual inspection of the logi-

cal forms and generated English for all manual examples and 101 of

the lines of library code suggest this approach is capable of gener-

ating comments with high language quality, and factual accuracy.

5 RELATED WORK

Most related work on comment generation is by Sridhara et al. [15,

17–19, 24], with important extensions by McBurney and McMil-

lan [14]. They use techniques adapted from textual code search

work, specifically the Software Word Usage Model (SWUM) [7].

SWUM models the relationships between objects (in the object-

oriented sense) in the source code, in particular action relation-

ships (such as one object invoking another’s method). The model

3https://github.com/TheAlgorithms/Python
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Table 1: Example outputs from CCG-based comment generation.

Code Logical Forms Generated Comment

if x != y: condition(), inequality(x, y) Checking for inequality between x and y

a = [. . . ] for e in a: iterate(), element(), list(a) Iterate over elements of the list a

a = {. . . } for e in a: iterate(), keys(), dictionary(a) Iterate over the keys of the dictionary a

is built using statistical NLP techniques [13], and maps verbs and

phrases that appear in function names to the expression of their

functionality in natural language. Themodel performswell in terms

of comment accuracy, but reliance on the names of functions and

identifiers makes it unstable. If the naming convention of the source

is different from the assumptions made by SWUM, it will not work

well. In addition, themodel does not focus on the quality of the sen-

tences, so it is possible for it to generate grammatically incorrect

sentences that are difficult to read. Sridhara et al.’s SWUM-based

work generates comments for the abstractions and their relation-

ships in the code. McBurney and McMillan [14] extend their work

to generate summaries of the context where the methods are used.

Their work inherits the disadvantages of the SWUM model.

Wong et al. [23] mine web resources such as StackOverflow to

generate comments. This can work well in principle, but it has two

major drawbacks: it requires that a similar code fragment to be

posted on the site, and that the accepted response is correct. There

is no way to automatically verify correctness of the best answer,

so it is possible for this model to produce incorrect comments.

Louis et al. [12] use deep learning to recognize redundant com-

ments. A byproduct of their approach is a statistical model asso-

ciating code with likely comments, which can be sampled to gen-

erate likely comments. This can generate useful high level com-

ments. However, the comments may be grammatically or factually

incorrect because the approach lacks both a language model and a

ground truth relationship between the code and language.

6 FUTUREWORK

The results reported are for the early stages of our work, with

several clear avenues for improvement. A key long-term project

is crafting a comprehensive planning domain for generating com-

ments. ELEXIR uses a different flavor of CCG from OpenCCG4 ,

and therefore lacks features that would permit reusing or trivially

translating its existing grammars. We can also explore automatic

construction our planning domain, either via an automated con-

verter fromOpenCCG grammars to ELEXIR grammars (non-trivial

due to the different CCG variants), or using an automated grammar

learner that constructs an English grammar targeted for describing

programs, trained on a large body existing comments. Another key

step is to expand our algorithm to work on a set of related state-

ments. In many cases, a set of statements perform a single action,

for example initializing a complex object can take several state-

ments. At the moment our algorithm cannot generate comments

for such cases.

Our ultimate goal is to be able to describe known algorithms

based only on program semantics, such as recognizing an algo-

rithm as some kind of sort. This is one place having a logical rep-

resentation can simplify further work: recognizing algorithms is a

form of logical consequence.

4https://github.com/OpenCCG/openccg
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