
1

Reconstruction of Hidden Representation for Robust
Feature Extraction∗

ZENG YU, Southwest Jiaotong University, China

TIANRUI LI†, Southwest Jiaotong University, China

NING YU, The College at Brockport State University of New York, USA

YI PAN, Georgia State University, USA
HONGMEI CHEN, Southwest Jiaotong University, China

BING LIU, University of Illinois at Chicago, USA

This paper aims to develop a new and robust approach to feature representation. Motivated by the success

of Auto-Encoders, we first theoretically analyze and summarize the general properties of all algorithms that

are based on traditional Auto-Encoders: 1) The reconstruction error of the input can not be lower than a

lower bound, which can be viewed as a guiding principle for reconstructing the input. Additionally, when the

input is corrupted with noises, the reconstruction error of the corrupted input also can not be lower than a

lower bound. 2) The reconstruction of a hidden representation achieving its ideal situation is the necessary

condition for the reconstruction of the input to reach the ideal state. 3) Minimizing the Frobenius norm of the

Jacobian matrix of the hidden representation has a deficiency and may result in a much worse local optimum

value. We believe that minimizing the reconstruction error of the hidden representation is more robust than

minimizing the Frobenius norm of the Jacobian matrix of the hidden representation. Based on the above

analysis, we propose a new model termed Double Denoising Auto-Encoders (DDAEs), which uses corruption

and reconstruction on both the input and the hidden representation. We demonstrate that the proposed model

is highly flexible and extensible and has a potentially better capability to learn invariant and robust feature

representations. We also show that our model is more robust than Denoising Auto-Encoders (DAEs) for

dealing with noises or inessential features. Furthermore, we detail how to train DDAEs with two different

pre-training methods by optimizing the objective function in a combined and separate manner, respectively.

Comparative experiments illustrate that the proposed model is significantly better for representation learning

than the state-of-the-art models.

CCS Concepts: • Computing methodologies→Machine learning; •Machine learning approaches→

Neural networks;

∗
This work is supported by the National Science Foundation of China (Nos. 61773324, 61573292, 61572406).

†
This is the corresponding author.

Authors’ addresses: Zeng Yu, Southwest Jiaotong University, School of Information Science and Technology, National

Engineering Laboratory of Integrated Transportation Big Data Application Technology, Chengdu, 611756, China, zyu7@

gsu.edu; Tianrui Li, Southwest Jiaotong University, School of Information Science and Technology, National Engineering

Laboratory of Integrated Transportation Big Data Application Technology, Chengdu, 611756, China, trli@swjtu.edu.cn;

Ning Yu, The College at Brockport State University of New York, Department of Computing Sciences, Brockport, NY,

14420, USA, nyu@brockport.edu; Yi Pan, Georgia State University, Department of Computer Science, Atlanta, 30302,

GA, USA, yipan@gsu.edu; Hongmei Chen, Southwest Jiaotong University, School of Information Science and Technology,

National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Chengdu, 611756, China,

hmchen@swjtu.edu.cn; Bing Liu, University of Illinois at Chicago, Department of Computer Science, Chicago, IL, 60607,

USA, liub@cs.uic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2157-6904/2018/10-ART1 $15.00

https://doi.org/10.1145/3284174

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

ar
X

iv
:1

71
0.

02
84

4v
2

 [
cs

.L
G

]
 2

3
O

ct
 2

01
8

https://doi.org/10.1145/3284174

1:2 Z. Yu et al.

Additional Key Words and Phrases: Deep architectures, auto-encoders, unsupervised learning, feature repre-

sentation, reconstruction of hidden representation.

ACM Reference Format:

Zeng Yu, Tianrui Li, Ning Yu, Yi Pan, Hongmei Chen, and Bing Liu. 2018. Reconstruction of Hidden Represen-

tation for Robust Feature Extraction. ACM Trans. Intell. Syst. Technol. 1, 1, Article 1 (October 2018), 25 pages.
https://doi.org/10.1145/3284174

1 INTRODUCTION
Representation learning via deep neural networks has developed into an important area of machine

learning research in recent years. This development has also witnessed a wide range of successful

applications in the fields of computer vision [21], speech recognition [13], and natural language

processing [38]. Reviews of recent progresses can be found in [2, 4, 5, 23, 25, 28, 48].

A deep neural network usually has a deep architecture that uses at least one layer to learn the

feature representation of the given data. A representation learning procedure is applied to discover

multiple levels of representation: the higher the level, the more abstract the representation. It has

been shown that the performance of deep neural networks is heavily dependent on the multilevel

representation of the data [23]. In the past few years, researchers have endeavored to design a variety

of efficient deep learning algorithms that may capture some characteristics of the data-generating

distribution [24, 46, 47, 49]. Among these algorithms, the traditional Auto-Encoders (AEs) [6]

perhaps received the most research attention due to their conceptual simplicity, ease of training,

and inference and training efficiency. They are used to learn the data-generating distribution of the

input data by minimizing the reconstruction error of the input

∑
x ∈X L(x ,д(f (x))), where f (.) is the

encoder function,д(.) is the decoder function and L(.) is the reconstruction error. Recently, they have
become one of the most promising approaches to representation learning for estimating the data-

generating distribution. Since the appearance of Auto-Encoders, many variants of representation

learning algorithms based on Auto-Encoders have been proposed, e.g., Sparse Auto-Encoders

[19, 45], Denoising Auto-Encoders (DAEs) [42], Higher Order Contractive Auto-Encoders [32],

Variational Auto-Encoders [20], Marginalized DenoisingAuto-Encoders [11], Generalized Denoising

Auto-Encoders [8], Generative Stochastic Networks [7], Masked Autoencoder for Distribution

Estimation (MADE) [16], Laplacian Auto-Encoders [17], Adversarial Auto-Encoders [27], Ladder

Variational Auto-Encoders [39] and so on.

In an Auto-Encoder-based algorithm, minimizing the reconstruction error of the input with the

encoder and decoder functions is a common practice for feature learning. The learned features

are usually applied in subsequent tasks such as supervised classification [18]. In the past few

years, many research works have shown that the reconstruction of the input with the encoder and

decoder functions is not only an efficient way for learning feature representation, but its resulting

representations also substantially help the performance of the subsequent tasks. In general, a

lower value of the reconstruction error of the input has a better feature representation of the

input. In an ideal situation, the value of this reconstruction error is equal to 0, i.e., the input can be

completely reconstructed. In this paper, we show that the reconstruction error of the input from

every traditional Auto-Encoders based algorithm has a lower bound, which is greater than or equal

to 0.

As an important method of representation learning, minimizing the Frobenius norm of the

Jacobian matrix of the hidden representation has been widely used in deep learning models. The

first application is the CAEs [33], which try to learn locally invariant features by minimizing the

Frobenius norm of the Jacobian matrix of hidden representation. After that, many frameworks

based on minimizing the Frobenius norm of the Jacobian matrix of hidden representation have

been developed in computer vision tasks. Specifically, Liu et al. [26] developed a multimodal feature

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

https://doi.org/10.1145/3284174

1:3

learning model with stacked CAEs for video classification. To find stable features, Schulz et al.

[35] designed a two-layer encoder which is regularized by an extension of a previous work on

CAEs. Geng et al. [15] proposed a novel deep supervised and contractive neural network for SAR

image classification by using the idea of minimizing the Frobenius norm of the Jacobian matrix of

hidden representation. Shao et al. [36] introduced an enhancement deep feature fusion method for

rotating machinery fault diagnosis through a combination of DAEs and CAEs. However, we will

demonstrate that minimizing the Frobenius norm of the Jacobian matrix of hidden representation

has a deficiency in learning feature representation.

To learn robust feature representation, minimizing the reconstruction error of hidden represen-

tation is also important and efficient. This idea has been emphasized by popular deep learning

algorithms such as Ladder Networks [29, 31] and Target Propagation Networks [3]. In order to

reconstruct the hidden representation, Ladder Networks need two streams of information to re-

construct the hidden representation: one is used to generate a clean hidden representation with

an encoder function; the other is utilized to reconstruct the clean hidden representation with a

combinator function [29, 31]. The final objective function is the sum of all the reconstruction

errors of hidden representation. It should be noted that reconstructing the hidden representation

in each layer needs to use information of two layers, which makes Ladder Networks difficult to

be trained with a layer-wise pre-training strategy. Training a deep learning model in a layer-wise

manner, as it is known, is an unsupervised learning approach, which may have many potential

advantages. To reconstruct the hidden representation, Target Propagation Networks [3] can be

trained in a layer-wise manner. Nevertheless, in the Target Propagation Networks, reconstructing

hidden representation is decomposed into two separate targets, which may be trapped into a local

optimum. To the best of our knowledge, reconstructing hidden representation as a whole and

training it in a layer-wise manner has not yet been investigated so far.

In this paper, we first study the general properties of all algorithms based on the traditional Auto-

Encoders. We aim to design a robust approach for feature representation based on these properties.

We follow the framework of layer-wise pre-training and consider the idea of reconstruction of

hidden representation. We propose a new deep learning model that takes advantage of corruption

and reconstruction. Our model consists of two separate parts: constraints on the input (Constraints

Part) and reconstruction on the hidden representation (Reconstruction Part). Constraints Part can

be viewed as a traditional deep learning model such as auto-encoder and its variants. Reconstruction

Part can be viewed as explicitly regularizing the hidden representation or adding additional feedback

to the pre-training stage. For simplicity and convenience, we use a DAE as the Constraints Part to

build our model. Because the best results are obtained by utilizing the corruption in both input and

hidden representation, we refer it as Double Denoising Auto-Encoders (DDAEs).

The contributions of this paper are summarized as follows:

• We prove that for all algorithms based on traditional Auto-Encoders, the reconstruction

error of the input can not be lower than a lower bound, which can sever as a guiding

principle for the reconstruction of the input. We also show that the necessary condition for

the reconstruction of the input to reach the ideal state is that the reconstruction of hidden

representation achieves its ideal condition. When the input is corrupted with noises, we

demonstrate that the reconstruction error of the corrupted input also can not be lower than

a lower bound.

• We validate that minimizing the Frobenius norm of the Jacobian matrix of the hidden repre-

sentation has a deficiency and may result in a much worse local optimum value. We also show

that minimizing reconstruction error of the hidden representation for feature representation

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:4 Z. Yu et al.

is more robust than minimizing the Frobenius norm of the Jacobian matrix, which may be

the main reason why the proposed DDAEs always outperform CAEs.

• We propose a new approach to learn robust feature representations of the input based on the

above evidences. Compared with the existing methods, DDAEs have the following advantages:

1) DDAEs are flexible and extensible and have a potentially better capability of learning

invariant and robust feature representations. 2) For dealing with noises or some inessential

features, DDAEs are more robust than DAEs. 3) DDAEs can be trained with two different pre-

training strategies by optimizing the objective function in a combining or separate manner,

respectively.

The rest of this paper is organized as follows. Section 2 introduces the basic DAEs and CAEs.

Section 3 presents the lower bound of the reconstruction error of the input and the necessary

condition for the reconstruction of the input to reach its ideal state. Section 4 illustrates the defect

of CAEs and gives a theoretical proof on why DDAEs can outstrip CAEs. Section 5 describes the

proposed DDAEs framework. Section 6 compares the performance of DDAEs with other relevant

state-of-the-art representation learning algorithms using various testing datasets. Conclusions

together with some further studies are summarized in the last section.

2 PRELIMINARIES
DDAEs are designed according to the traditional Auto-Encoders [6] that learn feature representation

by minimizing the reconstruction error. For ease of understanding, we reveal DDAEs by starting to

describe some conventional auto-encoder variants and notations.

2.1 Denoising Auto-encoders (DAEs): Extracting Robust Features of Reconstruction
Similar to traditional Auto-Encoders [6], the Denoising Auto-Encoders (DAEs) [42] firstly use the

encoder and decoder procedures to train one-layer neural network byminimizing the reconstruction

error, and then stack a deep neural network with the trained layers. The only difference between

traditional Auto-Encoders and DAEs is that DAEs train the neural network with corrupted input

while the traditional Auto-Encoders use the original input. The corrupted input x̃ ∈ ℜDx
is

usually obtained from a conditional distribution q(x̃ |x) by injecting some noises into the original

input x ∈ ℜDx
. Typically, the most widely-used noises in the simulations are Gaussian noise

x̃ = x + ϵ, ϵ ∼ N(0,σ 2I) and masking noise, where ν% (ν is given by researchers) of the input

components are set to 0.

To extract robust features, a DAE firstly maps the corrupted input x̃ to a hidden representation

h ∈ ℜDh
by the encoder function f :

h = f (x̃) = Sf (Wx̃ + bh), (1)

whereW ∈ ℜDh×Dx
is a connection weight matrix, bh ∈ ℜDh

is a bias vector of hidden represen-

tation and Sf is an activation function, typically a logistic siдmoid(τ) = 1

1+e−τ . After that, the DAE

reversely maps the hidden representation h back to a reconstruction input x∗ ∈ ℜDx
through the

decoder function д:

x∗ = д(h) = Sд(W′h + bx), (2)

where W
′ ∈ ℜDx×Dh

is a tied weight matrix, i.e., W
′ =W

T
, bx ∈ ℜDx

is a bias vector and Sд is

an activation function, typically either the identity (yielding linear reconstruction) or a sigmoid.

Finally, the DAE learns the robust features by minimizing the reconstruction error on a training set

X = {x1,x2, · · · ,xN }.
JDAE (θ) =

∑
x ∈X

E [L(x ,д(f (x̃)))] , (3)

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:5

where θ = {W,bx ,bh}, E(δ) is the mathematical expectation of δ , L is the reconstruction error.

Typically the squared error L(x ,y) = ∥x −y∥2 is used when Sд is the identity function and the cross-

entropy loss L(x ,y) = −
[∑Dx

i=1
xiloд(yi) + (1 − xi)loд(1 − yi)

]
is selected when Sд is the sigmoid

function.

It has been shown that DAEs can extract robust features by injecting some noises into the

original input and implicitly capture the data-generating distribution of input in the conditions that

the reconstruction error is the squared error and the data are continuous-valued with Gaussian

corruption noise [1], [8], [41].

2.2 Contractive Auto-encoders (CAEs): Extracting Locally Invariant Features of
Hidden Representation

To extract locally invariant features, the CAEs [33] penalize the sensitivity by adding an analytic

contractive penalty to the traditional Auto-Encoders. The contractive penalty is the Frobenius

norm of first derivatives ∥ Jf (x)∥2F of the encoder function f (x) with respect to the input x .
Formally, the objective optimized by a CAE is

JCAE (θ) =
∑
x ∈X

[
L(x ,д(f (x))) + α ∥ Jf (x)∥2F

]
, (4)

where α is a hyper parameter that controls the strength of the regularization. For a sigmoid encoder,

the contractive penalty is simply computed:

∥ Jf (x)∥2F =
Dh∑
j=1

(hj (1 − hj))2
Dx∑
i=1

W 2

i j . (5)

Compared with DAEs, the CAEs have at least two differences: 1) The penalty is analytic rather

than stochastic; 2) A hyper parameter α allows to control the tradeoff between reconstruction and

robustness. Actually, in an optimizing searching algorithm, it seems more likely that CAEs try to

find invariant features by restricting step lengths to small numbers (that is, numbers close to zero)

in each search.

3 LOWER BOUND OF THE RECONSTRUCTION ERROR OF THE INPUT
Generally, in an algorithm based on traditional Auto-Encoders, the smaller the reconstruction error

of the input, the better the algorithm. Ideally, the value of reconstruction error of the input is equal

to 0. It means that the algorithm can completely reconstruct the input. However, in this paper,

we prove that the reconstruction error of the input has a lower bound, which can be viewed as a

criterion for the reconstruction of the input. We also illustrate that the reconstruction of hidden

representation achieves its ideal condition is the necessary condition for the reconstruction of the

input to reach the ideal state. When the input is corrupted with noises, we demonstrate that the

reconstruction error of the corrupted input has a lower bound, too.

3.1 Lower Bound and Necessary Condition
We present the lower bound of reconstruction error of the input and a rigorous theoretical analysis

below. We also reveal the necessary condition for the reconstruction of the input to reach the ideal

state.

Theorem 1. Let L(x ,y) = ∥x − y∥2 be the squared error. If we use the clean input x and clean
hidden representation hc to reconstruct themselves, then as x∗c → x , we have

L(x ,д(f (x))) ≥ L(hc , f (д(hc)))/∥ Jf (x)∥2F , (6)

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:6 Z. Yu et al.

where hc is the corresponding hidden representation of the clean input x , i.e., hc = f (x), x∗c = д(hc) =
д(f (x)) is the reconstructed input and ∥ Jf (x)∥2F = 0 iff the encoder function f (x) is a constant.

Furthermore, we can get that

JCAE (θ) =
∑
x ∈X

[
L(x ,д(f (x))) + α ∥ Jf (x)∥2F

]
≥

∑
hc ∈Hc

λ
√
L(hc , f (д(hc))).

(7)

where JCAE (θ) is the objective function of the CAE, X = {x1,x2, · · · ,xN } is a training set.

Proof. For a clean input x ∈ X , the corresponding clean hidden representation and reconstructed

input are hc and x
∗
c , respectively. Let h

∗
c = f (x∗c) be the reconstructed hidden representation. Then

we can approximate the encoder function f (x∗c) by its Taylor expansion around x with Lagrange

remainder term

f (x∗c) = f (x) + (x∗c − x)T∇f [x + ρ(x∗c − x)],
where ∇f [x + ρ(x∗c − x)] is the first-order derivative of encoder function f (·) with respect to

x + ρ(x∗c − x) and ρ ∈ (0, 1) is a constant.
Using the triangle inequality, we have that

L(hc , f (д(hc))) = ∥h∗c − hc ∥2

= ∥ f (x∗c) − f (x)∥2

= ∥(x∗c − x)T∇f [x + ρ(x∗c − x)]∥2

≤ ∥x∗c − x ∥2 · ∥∇f [x + ρ(x∗c − x)]∥2F ,

where ∥ · ∥2 is the squared error and ∥A∥2F is the square of Frobenius norm on matrix A.
When x∗c → x , i.e., the reconstructed input x∗c infinitely approaches x , then as an ideal state, we

have

lim

x ∗c→x
∥∇f [x + ρ(x∗c − x)]∥2F = ∥ Jf (x)∥2F , (8)

and

L(hc , f (д(hc))) ≤ ∥x∗c − x ∥2 · ∥ Jf (x)∥2F
= L(x ,д(f (x))) · ∥ Jf (x)∥2F ,

(9)

Hence, we get

L(x ,д(f (x))) ≥ L(hc , f (д(hc)))/∥ Jf (x)∥2F ,
where ∥ Jf (x)∥2F = 0 if and only if the encoder function f (x) is a constant.

Moreover, from (9) and the basic inequality 2

√
ab ≤ a + b, a,b ≥ 0, we have

λ
√
L(hc , f (д(hc))) ≤ ∥x∗c − x ∥2 +

λ2

4

∥ Jf (x)∥2F

= L(x ,д(f (x))) + λ2

4

∥ Jf (x)∥2F ,

Hence, let α = λ2

4
, we can get that

JCAE (θ) =
∑
x ∈X

[
L(x ,д(f (x))) + α ∥ Jf (x)∥2F

]
≥

∑
hc ∈Hc

λ
√
L(hc , f (д(hc))). □

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:7

Remark 1. Theorem 1 summarizes the general rule of the reconstruction of the input for all the
algorithms based on traditional Auto-Encoders. As we can see, the reconstruction error of the input can
not be lower than a lower bound, which gives a guiding principle for reconstructing the input.

The traditional view for reconstructing the input is that the smaller the reconstruction error of

the input, the better the algorithm. The ideal situation is that the value of the reconstruction error

of the input is 0, i.e., the algorithm can completely reconstruct the input. However, Theorem 1

demonstrates that the ideal value of the reconstruction error of the input is a lower bound, which is

greater than or equal to 0. Hence, compared with traditional view, Theorem 1 gives a more accurate

quantitative description of the reconstruction error of the input.

Remark 2. Theorem 1 also provides a necessary condition for the reconstruction of the input to
reach the ideal state, namely, the reconstruction of hidden representation achieves its ideal condition.

Because if the reconstruction of hidden representation does not achieve its ideal condition, the

reconstruction of the input also can not reach the ideal state. Nevertheless, when the reconstruction

of hidden representation achieves the ideal state, this theorem does not guarantee the reconstruction

of the input also obtains the ideal state. Therefore, we develop our algorithm to learn robust feature

representation by minimizing the reconstruction error of both the input and hidden representation.

Remark 3. It presents the relationship between the reconstruction error of the input and the
reconstruction error of hidden representation as well as the reconstruction error of hidden representation
and the objective function of CAE.

Remark 4. This theorem is also the main evidence that minimizing reconstruction error of hidden
representation is more robust for feature learning than minimizing the Frobenius norm of Jacobia
matrix of hidden representation.

Since the proposed DDAEs use the reconstruction of hidden representation as the objective

function and CAEs learn features by minimizing the Frobenius norm of Jacobia matrix of hidden

representation, we can conclude that DDAEs are more robust for feature representation than CAEs.

This may also be the main reason why DDAEs always outperform CAEs.

3.2 Lower Bound with Corrupted Input
We now show that when the input is corrupted with noises, the reconstruction error of the corrupted

input also has a lower bound.

Theorem 2. Let L(x ,y) = ∥x − y∥2 be the squared error. If some noises are added to the original
input x , then as x̄ → x̃ , we have

EL(x̃ ,д(˜h)) ≥ EL(h, f (д(˜h)))/E∥ Jf (x̃)∥2F , (10)

where x̃ is the corrupted input, h = f (x̃) is the hidden representation, ˜h is the corrupted hidden
representation and x̄ = д(˜h) is the intermediate reconstructed input.

Proof. Let h∗ = f (x̄) be the reconstructed hidden representation. Then we can approximate the

encoder function f (x̄) by its Taylor expansion around x̃ with Lagrange remainder term

f (x̄) = f (x̃) + (x̄ − x̃)T∇f [x̃ + ρ(x̄ − x̃)],

where ∇f [x̃ + ρ(x̄ − x̃)] is the first-order derivative of function f (·) with respect to x̃ + ρ(x̄ − x̃)
and ρ ∈ (0, 1) is a constant. Here ∇f [x̃ + ρ(x̄ − x̃)] is a real-valued random matrix and x̃ + ρ(x̄ − x̃)
is a real-valued random vector.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:8 Z. Yu et al.

With triangle inequality, we get that

EL(h, f (д(˜h))) = E∥h∗ − h∥2

= E∥ f (x̄) − f (x̃)∥2

= E∥(x̄ − x̃)T∇f [x̃ + ρ(x̄ − x̃)]∥2

≤ E∥x̄ − x̃ ∥2 · E∥∇f [x̃ + ρ(x̄ − x̃)]∥2F ,
where ∥ · ∥2 is the squared error and ∥H ∥2F is the square of Frobenius norm on random matrixH .

When the intermediate reconstructed input x̄ infinitely approaches x̃ , we get

lim

x̄→x̃
∥∇f [x̃ + ρ(x̄ − x̃)]∥2F = ∥ Jf (x̃)∥2F ,

and

EL(h, f (д(˜h))) ≤ EL(x̃ ,д(˜h)) · E∥ Jf (x̃)∥2F ,
Hence, we have

EL(x̃ ,д(˜h)) ≥ EL(h, f (д(˜h)))/E∥ Jf (x̃)∥2F . □

Remark 5. Theorem 2 summarizes that even though the input is corrupted with noises, the
reconstruction error of the corrupted input also can not be lower than a lower bound, which is the
guiding principle for reconstructing the corrupted input. However, the lower bound of this situation is
an expectation.

Remark 6. This theorem is also the main evidence why minimizing reconstruction error of hidden
representation is more robust for feature representation than minimizing the Frobenius norm of Jacobia
matrix of hidden representation when confronted with corrupted input.

4 ROBUSTNESS OF HIDDEN REPRESENTATION RECONSTRUCTION
In this section, we theoretically prove that minimizing the Frobenius norm of the Jacobian matrix of

the hidden representation has a deficiency and may result in a much worse local optimum value. We

also show that minimizing reconstruction error of hidden representation for feature representation

is more robust than minimizing the Frobenius norm of Jacobia matrix of hidden representation.

4.1 Theoretical Explanation and Examples
The main theoretical contribution of this paper is that we show when x∗c → x ,

L(hc , f (д(hc))) = ∥(x∗c − x)T Jf (x)∥2

≤ ∥x∗c − x ∥2 · ∥ Jf (x)∥2F ,
(11)

where hc is the corresponding hidden representation of the clean input x , i.e., hc = f (x), x∗c =
д(hc) = д(f (x)) is the reconstructed input, f (·) is the encoder function, д(·) is the decoder function,
L(hc , f (д(hc))) is the reconstruction error of hidden representation and ∥ Jf (x)∥2F =

∑
i j

(
∂hj (x)
∂xi

)
2

is the Frobenius norm of Jacobia matrix of hidden representation hc with respect to input x . We

give the proof of the Inequation (11) in Section 3. Now we theoretically show that minimizing the

Frobenius norm of Jacobia matrix of hidden representation is invalid in some situations. Meanwhile,

we also demonstrate that in these situations, reconstruction of hidden representation is more robust

than minimizing the Frobenius norm of Jacobia matrix.

Let us consider three special optimization problems: 1) When the algorithm reaches such areas, all

of the first derivatives are equal to constants; 2) Some of the first derivatives are equal to constants;

3) Any one of the first derivatives is not equal to a constant, but the Frobenius norm of Jacobia

matrix is a constant.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:9

0
5

10
15

20

0

5

10

15

20
0

200

400

600

800

1000

0
5

10
15

20

0

5

10

15

20
0

20

40

60

80

2
2 ()

|| () || =
∂ 

 ∂ 
∑ j

f F ij
i

h x
J x

x

1x

hh

1x

* 2 2(, (())) || - || || () ||≤ ⋅c c c f FL h f g h x x J x
2

2 ()
|| () || =

∂ 
 ∂ 

∑ j
f F ij

i

h x
J x

x

* 2 2(, (())) || - || || () ||≤ ⋅c c c f FL h f g h x x J x

The minimum valueThe minimum value x

The minimum valueThe minimum value

xc*

xc*

 A much worse direc�on A much worse direc�on

2x 2x

x

(a) (b)

1 22 2h x x= +

140 e xh x −= +

(c)

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2
0

0.2

0.4

0.6

0.8

1

The minimum valueThe minimum value

2
2 ()

|| () || =
∂ 

 ∂ 
∑ j

f F ij
i

h x
J x

x
* 2 2(, (())) || - || || () ||≤ ⋅c c c f FL h f g h x x J x

2x1x
x

xc*
h

2 2
1 2h x x= +

Fig. 1. Three examples are provided to show the robustness of reconstruction of hidden representation in
a three-dimensional space. (a) A plane that the formula is h = 2x1 + 2x2, x1 ≥ 0 and x2 ≥ 0. When the
algorithm hits the plane, the Frobenius norm of Jacobia matrix of hidden representation is a constant. Hence,
minimizing the Frobenius norm of Jacobia matrix is invalid. It stops to search the optimum value or finds in a
random direction. (b) A figure that the formula is h = 40x1 + e

−x2 . For minimizing the Frobenius norm of
Jacobia matrix of hidden representation, searching in a much worse direction is encouraged. (c) A cone that
the minimum value is located at its base and any one of the first derivatives is not equal to a constant while
the Frobenius norm of Jacobia matrix is a constant. For minimizing the Frobenius norm of Jacobia matrix of
hidden representation, once it hits the edge of the cone, it stops finding the minimum value or searches in
a random direction. However, for minimizing the reconstruction error of hidden representation, it may be
propelled towards its base, the location of the minimum value.

Case 1. We firstly consider the simple situation that all of the first derivatives are equal to

constants, i.e.,
∂hj (x)
∂xi

= ci j is a constant for all i = 1, 2, ...,Dx and j = 1, 2, ..,Dh . In this situation,

the Frobenius norm of Jacobia matrix of hidden representation is a constant. It means that once the

algorithm reaches these areas, minimizing the Frobenius norm of Jacobia matrix losts its ability

to find the optimum value. The algorithm stops early or searches in a random direction that even

includes a much worse direction, far away from the optimum value. Therefore, minimizing this

Frobenius norm is invalid for such a situation. However, when x∗c → x , because of Inequation
(11), the value of reconstruction error of hidden representation continues to decrease. Hence,

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:10 Z. Yu et al.

when all of the first derivatives are equal to constants, minimizing reconstruction error of hidden

representation works and continues to find the optimum value. It also means that reconstruction

of hidden representation is more robust than minimizing the Frobenius norm of Jacobia matrix.

Example 1. When all of the first derivatives are equal to constants. In this situation, the solution

space is in fact a plane in a three-dimensional space. Fig. 1 (a) presents a plane that the formula is

h = 2x1 + 2x2, x1 ≥ 0 and x2 ≥ 0. When the algorithm hits the plane, the Frobenius norm of Jacobia

matrix of hidden representation is a constant. Hence, minimizing the Frobenius norm of Jacobia

matrix is invalid. It stops to search the optimum value or finds in a random direction. However,

when x∗c → x , namely, the term of ∥x∗c −x ∥2 infinitely approaches 0, minimizing the reconstruction

error of hidden representation may find towards its minimum value.

Case 2. For the second situation, when some of the first derivatives are equal to constants,

minimizing the Frobenius norm of Jacobia matrix of hidden representation seems to be working.

However, we theoretically show that minimizing the Frobenius norm of its Jacobia matrix may

encourage to obtain a much worse local optimum value. For this case, we only show the results

that one of the first derivatives is equal to a constant. The similar results can be obtained with the

multiple constants of the first derivatives.

Theorem 3. Let (xu)T = (xu
1
,xu

2
, ...,xuDx

) be the current value and the clean input,xT = (x1,x2, ...,xDx),
be the optimum value. If one of the first derivatives is equal to constant, then there exists a next value
(xw)T = (xw

1
,xw

2
, ...,xwDx

), obtained by minimizing the Frobenius norm of Jacobia matrix of hidden
representation with respect to x , such that

∥xw − x ∥2
2
≫ ∥xu − x ∥2

2
, (12)

and

∥ Jf (xw)∥2F < ∥ Jf (xu)∥2F . (13)

Proof. We assume without losing generality that

∂hp (x)
∂xq

= cpq is a constant and all other first

derivatives
∂hj (x)
∂xi

are varying, where i = 1, 2, ...,q−1,q+1, ...,Dx and j = 1, 2, ...,p−1,p+1, ...,Dh .

For convenience, we also assume that there are only two different places between the current value

xu and the next value xw : one is the first position and the other is the q-th position, i.e., xui = xwi ,
i = 2, ...,q − 1,q + 1, ...,Dx .

Because

∂hp (x)
∂xq

= cpq is a constant, the integral

∫ ∂hp (x)
∂xq

dxq = cpqxq + c0 is a line in a multi-

dimensional space, where c0 is the bias. If we keep the same directions for all other first derivatives,

∂hj (x)
∂xi

, i = 1, 2, ...,q − 1,q + 1, ...,Dx , j = 1, 2, ...,p − 1,p + 1, ...,Dh , then for the direction

∂hp (x)
∂xq

,

taking any value on this line cpqxq + c0 has no effect on the objective function of minimizing the

Frobenius norm of Jacobia matrix of hidden representation. Hence, along this line, we can take

the value of the q-th dimension of the next value such that the next value is far away from the

optimum value x and its projection on the xq-axis is very large, i.e., |xwq − xq | is a very large value.

In addition, if we keep the same directions for all other first derivatives except the direction

∂h1(x)
∂x1

, then along this direction, we can decrease the objective function of minimizing the Frobenius

norm of Jacobia matrix of hidden representation and we can also get that | ∂h1(xw)
∂x1

| < | ∂h1(xu)
∂x1

|
and |xw

1
− x1 | are bounded. Note that |xu

1
− x1 | and |xuq − xq | are also bounded and only the first

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:11

dimension and the q-th dimension are different. Therefore, we can get

∥xw − x ∥2
2
= (xw

1
− x1)2 + (xwq − xq)2 +

Dx∑
i=2

i,q

(xwi − xi)2

≫ (xu
1
− x1)2 + (xuq − xq)2 +

Dx∑
i=2

i,q

(xui − xi)2

= ∥xu − x ∥2
2
.

and

∥ Jf (xw)∥2F =
(
∂h1(xw)
∂x1

)
2

+

Dx∑
i=2

Dh∑
j=2

(
∂hj (xw)
∂xi

)
2

<

(
∂h1(xu)
∂x1

)
2

+

Dx∑
i=2

Dh∑
j=2

(
∂hj (xu)
∂xi

)
2

= ∥ Jf (xu)∥2F . □

Remark 7. Theorem 3 demonstrates that if one of the first derivatives is equal to a constant,
minimizing the Frobenius norm of Jacobia matrix encourages to obtain a much worse local optimum
value. However, because of Inequation (11), minimizing the reconstruction error of hidden representation
does work and may find the optimum value.

Example 2. When some of the first derivatives are equal to constants. Fig. 1 (b) demonstrates the

figure that the formula is h = 40x1 + e
−x2

. The minimum value is located at the bottom and one of

the first derivatives is equal to a constant. Note that
∂h(x)
∂x1

is a constant, it has no contribution to

minimizing the Frobenius norm. Hence, keeping the same direction for the other first derivative

∂h(x)
∂x2

and moving along this direction
∂h(x)
∂x1

is permissible, even if it is far away from the minimum

value. The only limitation is that it should move in the direction of decreasing the value of
∂h(x)
∂x2

.

As a result, searching in a much worse direction is encouraged for minimizing the Frobenius norm

of Jacobia matrix of hidden representation. Fig. 1 (b) illustrates a much worse direction: the value

of
∂h(x)
∂x2

decreases and the value of
∂h(x)
∂x1

is a constant, while the next value is far away from the

minimum value, located at the bottom line. However, for minimizing the reconstruction error of

hidden representation, as the term of ∥x∗c −x ∥2 infinitely approaches 0, it guarantees that the search
direction is not away from the minimum value and it may move towards its bottom.

Case 3. For the third situation, when all of the first derivatives are varying but the Frobenius

norm of Jacobia matrix is a constant, it is similar to the first situation. More specifically, let hj (x) =
f (x1,x2, ...,Dx) =

√
x2

1
+ x2

2
+ ... + x2

Dx
be the encoder function for all j = 1, 2, ..,Dh . Then we have

that the Frobenius norm of Jacobia matrix is a constant, i.e., ∥ Jf (x)∥2F =
∑

i j

(
∂hj (x)
∂xi

)
2

= Dx · Dh .

For such case, we also can prove that minimizing this Frobenius norm is invalid and reconstruction

of hidden representation is more robust than minimizing the Frobenius norm of Jacobia matrix.

Example 3. When any one of the first derivatives is not equal to a constant, but the Frobenius

norm of Jacobia matrix is a constant. In such an optimization problem, the solution space of this

problem is in fact a cone in a three-dimensional space. Fig. 1 (c) presents a cone, i.e., h =
√
x2

1
+ x2

2
,

where the minimum value is located at its base and any one of the first derivatives is not equal to a

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:12 Z. Yu et al.

constant while the Frobenius norm of Jacobia matrix is a constant. For minimizing the Frobenius

norm of Jacobia matrix of hidden representation, once it reaches the edge of the cone, it stops

finding the minimum value or searches in a random direction. Nevertheless, for minimizing the

reconstruction error of hidden representation, since the term of ∥x∗c − x ∥2 infinitely approaches 0

when x∗c → x , it is working and may be propelled towards its base, the location of the minimum

value.

From the discussion above, we can conclude that when some or all of the first derivatives are

equal to constants or all of the first derivatives are varying while the Frobenius norm of Jacobia

matrix is a constant, minimizing the reconstruction error of hidden representation for feature

representation is more robust than minimizing the Frobenius norm of Jacobia matrix. This may be

the main reason why DDAEs always outperform CAEs in our experiments.

5 DOUBLE DENOISING AUTO-ENCODERS
We have shown that the necessary condition for the reconstruction of the input to reach the ideal

state is that the reconstruction of hidden representation achieves its ideal condition in Section

3. We also show that minimizing (maximizing) the Frobenius norm of Jacobia matrix may get a

much worse local optimum value and minimizing reconstruction error of hidden representation for

feature representation is more robust than minimizing the Frobenius norm of Jacobia matrixas as

illustrated in Section 4. Therefore, in this paper, we consider how to decrease the reconstruction

error of hidden representation, which may get a better feature representation. We add the idea of

reconstruction of hidden representation to the DAEs and propose a new deep learning model that

takes the advantages of corruption and reconstruction. We anticipate that our proposed model has

the capability to learn invariant and robust feature representation.

5.1 DDAEs Architecture
As previously stated, a DDAE usually has two separate parts: constraints on the input (Constraints

Part) and reconstruction on the hidden representation (Reconstruction Part). We use the DAE as

the Constraints Part in a DDAE. In fact, one can replace Constraints Part by any other auto-encoder

variant. For example, we can replace the DAE with a Sparse Auto-Encoder or a CAE. It means that

DDAE is flexible. The Reconstruction Part is done by first corrupting the hidden representation h ∈
ℜDh

into
˜h ∈ ℜDh

according to a conditional distribution q(˜h |h), and then mapping the corrupted

hidden representation
˜h into an intermediate reconstructed input x̄ = д(˜h) = Sд(W′ ˜h + bx) ∈ ℜDx

from which we reconstruct the hidden representation h∗ = f (x̄) = Sf (Wx̄ +bh). Fig. 2 (a) illustrates
a schematic representation of the procedure. Note that we use the reconstruction error of hidden

representation L(h,h∗) = L(h, f (д(˜h))) instead of the error between intermediate reconstructed

input and original input, L(x , x̄), or more complicated expressions, such as the combination of

L(x , x̄) and L(h,h∗). It is because the intermediate reconstructed input x̄ = д(˜h) = Sд(W′ ˜h + bx)
is almost equal to the reconstruction input x∗ = д(h) = Sд(W′h + bx). As a result, L(x , x̄) has the
similar effect on the Constraints Part L(x ,x∗) = L(x ,д(f (x̃))).

Fig. 2 (b) demonstrates an example of two-layer DDAEs. Usually, a DDAE is used to stack multiple

layers to form a deep DDAEs architecture: output of a DDAE is used as input of the next DDAE. A

classifier layer is built on the top of the stacked deep DDAEs architecture to form a multi-layer

classifier. For training a multi-layer classifier, the stacked deep DDAEs architecture is firstly pre-

trained in a greedy, layer-wise manner. Subsequently, the multi-layer classifier is initialized by the

pre-trained parameters and fine-tuned by utilizing back-propagation.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:13

Corrupting

Encoding

h*x

x* h

Deco
din

g

xx~

h
~

Encoding

CorruptingDecoding

Corrupting

Encoding

Encoding

CorruptingDecoding

First-layer DDAE
pre-training

Corrupting

Encoding

Encoding

CorruptingDecoding

Deco
din

g

Deco
din

g

Second-layer DDAE
pre-training

Supervised
fine-tuning

Classifier layer

En
co
d
in
g

En
co
d
in
g

L(h,h*)λL(x,x*) 

Training

samples

Well-trained

affinity graph

Pre-training

Representation
of samples

(a)(a) (b)(b)

Fig. 2. (a) The DDAE architecture. A sample x is stochastically corrupted to x̃ . The auto-encoder thenmaps it to
hidden representation h (via Encoding) and attempts to reconstruct x via Decoding, producing reconstruction
x∗. Reconstruction error is measured by the loss L(x ,x∗). Meanwhile, the hidden representation h is also
stochastically corrupted to ˜h, and then, ˜h is mapped to an intermediate reconstructed input x̄ (via Decoding)
and attempts to reconstruct h via Encoding, producing reconstruction h∗. Reconstruction error is measured
by the loss

√
L(h,h∗). (b) An example of two-layer DDAEs. Hidden representation of the first-layer DDAE is

taken as the input of the second-layer DDAE. A classifier layer is added on the top of the stacked two-layer
DDAEs to form a multilayer perceptron (MLP) classifier. For training a MLP classifier, the stacked two-layer
DDAEs are firstly pre-trained in a greedy, layer-wise manner. After that, the MLP classifier, which is initialized
by the pre-trained parameters, is fine-tuned by utilizing back-propagation.

5.2 Training DDAEs
To train a DDAE, there are two ways: one is to optimize a combination of Constraints Part and

Reconstruction Part (DDAE-COM); the other is to optimize them separately (DDAE-SEP). For con-

venience, we use a linear combination of Constraints Part and Reconstruction Part as the objective

function of DDAE-COM. Parameters θ = {W,bx ,bh} are trained to minimize the reconstruction

error over a training set X = {x1,x2, · · · ,xN }. The objective function optimized by stochastic

gradient descent becomes:

JCOM (θ) =
∑
x ∈X

E

[
L(x ,д(f (x̃))) + λ

√
L(h, f (д(˜h)))

]
, (14)

where L(x ,д(f (x̃))) is the reconstruction error of the DAE (Constraints Part),

√
L(h, f (д(˜h))) is

the reconstruction error of hidden representation (Reconstruction Part), E(δ) is the mathematical

expectation of δ , x̃ ∈ ℜDx
is obtained from a conditional distribution q(x̃ |x), h = f (x̃) and λ is a

hyper parameter that controls the tradeoff between Constraints Part and Reconstruction Part.

From Equation (14), we can conclude that a DDAE can be regarded as a general expression

that extends the DAE. If the hyper parameter λ in (14) is set to be 0, a DDAE is the same as that

of the DAE. That also means the DAE is a special case of our proposed method, i.e., DDAE is a

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:14 Z. Yu et al.

ALGORITHM 1: The DDAE-COM Algorithm

Input: Training data X , learning rate η, mini-batch sizem, tradeoff coefficient λ.
Initialize the parameters θ = {W,bx ,bh };
repeat

Selectm samples X ′ from X ;

Let J(θ) = ∑
x ∈X ′

E

[
L(x ,д(f (x̃))) + λ

√
L(h, f (д(˜h)))

]
;

Update parameters θ by θ ←− θ − η ∂J(θ)
∂θ .

until Stopping criteria are met;

generalization of the basic DAE algorithm. It should be pointed out that we utilize

√
L(h, f (д(˜h)))

instead of L(h, f (д(˜h))) to calculate the reconstruction error of hidden representation. It is because

the value of L(h, f (д(˜h))) is large at the beginning of training and we need to normalize it.

For the way of optimizing separately, DDAE-SEP firstly minimizes the following objective

function over a mini-batch X ′ = {x1,x2, · · · ,xm}:

O1 : JSEP−1(θ) =
∑
x ∈X ′

E [L(x ,д(f (x̃)))] , (15)

where x is a training sample selected from a mini-batch X ′ and L(x ,д(f (x̃))) is the reconstruction
error of the DAE (Constraints Part) on the selected sample. Subsequently, DDAE-SEP updates

the parameters θ optimized by the first objective function O1 and minimizes the second objective

function:

O2 : JSEP−2(θ) =
∑
h∈H ′

E
[
L(h, f (д(˜h)))

]
. (16)

where h is the corresponding hidden representation of x with updated parameters θ , H ′ is the
corresponding hidden representation of X ′ and L(h, f (д(˜h))) is the reconstruction error of hidden

representation (Reconstruction Part). Once the parameters θ are updated by objective functions O1

and O2, DDAE-SEP will train on the next mini-batch and repeat the same procedure until stopping

criteria are met. For more details about how to implement DDAE-COM and DDAE-SEP, please

refer to Algorithms 1 and 2.

Let h = Sf (Wx̃ + bh) be the hidden representation. With linear+sigmoid mapping, the com-

putational complexity of reconstruction error of the input (e.g. squared error L(x ,д(f (x̃))) =
∥−x+bx +

∑Dh
j=1

hjWj ∥2) isO
(
D2

x × D2

h

)
. Based on (14), we can see that the computation complexity

of

√
L(h, f (д(˜h))) =

���−h + bh +∑Dx
i=1

xiWi

��� is O (Dx × Dh). From (16), the computation complexity

of objective functionO2 isO
(
D2

x × D2

h

)
. Therefore, both Algorithms (DDAE-COM and DDAE-SEP)

have the same overall computational complexity of O
(
D2

x × D2

h

)
.

5.3 Properties of DDAEs
Please note that we use corrupted hidden representation

˜h instead of a clean hidden representation

h to reconstruct a clean hidden representation in Equations (14) and (16). There are two main

reasons: 1) Although DDAEs use the manifold learning to extract robust features, we can not

guarantee all the noises have been eliminated. They may propagate to hidden representation. 2)

Even if all the noises have been eliminated, DDAEs may learn some inessential features such as

backgrounds. The two are also the reasons why corrupting and reconstructing hidden representation

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:15

ALGORITHM 2: The DDAE-SEP Algorithm

Input: Training data X , learning rate η1 and η2, mini-batch sizem.

Initialize the parameters θ = {W,bx ,bh };
repeat

Selectm samples X ′ from X ;

Let JSEP−1(θ) =
∑

x ∈X ′
E [L(x ,д(f (x̃)))];

Update parameters θ by θ ←− θ − η1

∂JSEP−1(θ)
∂θ ;

Recalculate the hidden representation H ′ of the selectedm samples with updated θ ;

Let JSEP−2(θ) =
∑

h∈H ′
E
[
L(h, f (д(˜h))

]
;

Update parameters θ by θ ←− θ − η2

∂JSEP−2(θ)
∂θ .

until Stopping criteria are met;

for dealing with noises or some inessential features such as backgrounds is more robust than DAEs.

In DAEs, corrupting the input and then reconstructing it makes DAEs can learn robust features.

Our proposed model not only corrupts and reconstructs the input, but also does the same thing

on hidden representation. For feature representation, corrupting hidden representation and then

reconstructing it can partially reduce the negative effects such as the noises propagated by the

input or some inessential features such as backgrounds, while DAEs do not deal with such noises

or inessential features. Therefore, compared with DAEs, our proposed model is more robust to deal

with the noises and some inessential features.

6 EXPERIMENTS
We evaluate DDAEs on twelve UCI datasets, thirteen image recognition datasets and two human

genome sequence datasets and compare the performance with competitive state-of-the-art models.

Several important parameters will also be experimentally evaluated. All the experiments are tested

on a laptop with Intel-i7 2.4G CPU, 16G DDR3 RAM, Windows 10 and Python 2.7.

6.1 A Description of Datasets
The twelve UCI datasets are selected from the UCI machine learning repository to evaluate the

performance of DDAEs with other algorithms. For all the UCI datasets, we utilize the 10-fold cross

validation to evaluate the competing algorithms and give the average error rates with 10 runs.

Note that most of the UCI datasets are tested in the recent work, Deep Support Vector Machine

(DeepSVM) [30]. Table 1 summarizes the basic information of twelve UCI datasets.

The thirteen image recognition datasets consist of the well-known MNIST digits classification

problem, eight benchmark datasets and four more complex image recognition datasets. The MNIST

digits come from the 28×28 gray-scale images of handwritten digits. The eight benchmark datasets

consist of five ten-class problems modified from MNIST digits and three two-class problems with

shape classification. The five ten-class problems are variants of MNIST digits: smaller subset of

MNIST (basic), digits with random angle rotation (rot), digits with random noise background

(bg-rand), digits with random image background (bg-img) and digits with rotation and image

background (bg-img-rot). The three two-class problems are shape classification tasks: white tall

and wide rectangles on black background (rect), tall and wide rectangular image overlayed on

different background images (rect-img), convex and concave shape (convex). All these data sets
are also used in the works of Larochelle et al. [22], Rifai et al. [33] and Vincent et al. [43] and

divided into three parts: a training set for pre-training and fine-tuning, a validation set for the

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:16 Z. Yu et al.

Table 1. UCI datasets used in the experiments

Dataset Samples Features Classes

sonar 208 60 2

ionosphere 351 34 2

ILPD 583 10 2

breast_cancer 683 10 2

australian 690 14 2

diabetes 768 8 2

vehicle 846 18 4

vowel 990 10 11

german_numer 1000 24 2

cardiotocography 2126 21 10

segment 2310 19 7

splice 3175 60 2

choice of hyper-parameters and a testing set for the report result. The four more complex image

recognition datasets are NORB [12], CIFAR-10 [12], COIL-100 [44] and Caltech-101 [14]. Details on

image recognition datasets are listed in Table 2.

Table 2. Digit image recognition used in the experiments

Dataset Train Valid. Test Classes

rect 1000 200 50000 2

rect-img 10000 2000 50000 2

convex 7000 1000 50000 2

MNIST 50000 10000 10000 10

basic 10000 2000 50000 10

rot 10000 2000 50000 10

bg-rand 10000 2000 50000 10

bg-img 10000 2000 50000 10

bg-img-rot 10000 2000 50000 10

NORB 19300 5000 24300 5

CIFAR-10 45000 5000 10000 10

COIL-100 1000 200 6000 100

Caltech-101 3030 300 5814 101

The two human genome sequence datasets are the standard benchmark from fruitfly.org for

predicting gene splicing sites on human genome sequences. The first dataset is the Acceptor

locations containing 6,877 sequences with 90 features. The second data set is the Donor locations

including 6,246 sequences with 15 features. The Acceptor dataset has 70bp in the intron (ending

with AG) and 20bp of the following exon. The Donor dataset has 7bp of the exon and 8bp of the

following intron (starting with GT). All these sequences consist of four letters (A, T, C and G). To

use these two datasets, we need firstly to transform the four letters with four real numbers and

then use these datasets to classify each sequence.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:17

6.2 Experimental Verification
In Section 3, we have proved that if the reconstruction of a hidden representation does not reach its

ideal situation, the reconstruction of the input can not obtain the ideal value. In Section 4, we have

shown that minimizing the reconstruction error of hidden representation for feature representation

is more robust than minimizing the Frobenius norm of Jacobia matrix of hidden representation.

However, one question still needs to be solved: how to experimentally validate these points?

6.2.1 Reconstruction of Hidden Representation vs. Reconstruction of the Input. To show the

robustness of the reconstruction of hidden representation against the reconstruction of the input,

we evaluate the classification performance by only minimizing the Reconstruction Error of Hidden

Representation (REHR) and compare the results with only minimizing the reconstruction error

of the input, i.e., stacked AEs (SAE) [33]. Fig. 3 shows the classification error rates of REHR on

thirteen image recognition datasets with different layers. For the sake of fairness, the results of SAE

are derived from the work of Vincent et al. [43]. As shown in Fig. 3, REHR with 3 layers almost

gets the better results on all the thirteen image recognition datasets.

Fig. 4 presents some example images with corresponding filters learned by the models of stacked

AEs (SAEs) [33], stacked DAEs [43], stacked CAEs [33], stacked REHR and stacked DDAEs. This

figure shows features learned by the first layer of all the models on the rect and bg-img-rot datasets.

rect rect-img convex MNIST basic rot bg-rand bg-img bg-img-rot NORB CIFAR-10 COIL-100 Caltech-101

Dataset

0

10

20

30

40

50

60

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

REHR-1
REHR-2
REHR-3
SAE-3

Fig. 3. Classification error rates on thirteen benchmark classification tasks. The results are based on only
minimizing the reconstruction error of hidden representation (REHR) with different layers. The results of
SAE-3 are based on only minimizing the reconstruction error of the input and most results come from Vincent
et al. [43].

6.2.2 Reconstruction of Hidden Representation vs. Minimizing Frobenius Norm of Jacobia Matrix.
We conduct two comparison experiments to show the robustness of hidden representation recon-

struction against minimizing the Frobenius norm of Jacobia matrix: 1) We compare the results of

only using the reconstruction of hidden representation for feature representation with only mini-

mizing the Frobenius norm of Jacobia matrix. 2) We also show the results of adding reconstruction

of the input on both reconstruction of hidden representation and minimizing the Frobenius norm

of Jacobia matrix. In the second situation, we only illustrate the comparison results of DDAEs and

CAEs in practice.

In the first comparison experiment, we use MNIST as the testing dataset. As shown in Table 4,

we get the classification error rate of about 1.53% with only minimizing the reconstruction error of

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:18 Z. Yu et al.

(a) (b) (c) (d) (e) (f)

Fig. 4. Example images with corresponding filters learned by different models on rect (top) and bg-img-rot
(bottom) datasets. (a) Example images; (b) Filters learned by SAE; (c) Filters learned by CAE; (d) Filters learned
by DAE; (e) Our results of REHR; (f) Our results of DDAE.

hidden representation for feature representation. However, we can not get the classification error

rate with only minimizing the Frobenius norm of Jacobia matrix of hidden representation. It is

because the non-convergence problem will appear when we only use minimizing Frobenius norm

of Jacobia matrix of hidden representation for feature representation. For the second comparison

experiment, we just show the comparison results of DDAEs and CAEs. As we can see from the Tables

3 and 5, DDAEs always outperform CAEs. Therefore, we can conclude that not only minimizing

the reconstruction error of hidden representation for feature representation is more robust than

minimizing the Frobenius norm of Jacobia matrix of hidden representation, but also DDAEs are

more robust for feature representation than CAEs.

6.3 Parameter Evaluation
In order to illustrate the effectiveness of hidden representation reconstruction, we evaluate the

influence with the varying range of hyper parameters (the number of hidden layers, the number

of units per hidden layer, the learning rate for unsupervised pre-training, the learning rate for

supervised fine-tuning, etc.). In fact, it is difficult to find the optimal combination of the hyper

parameters in a deep network. Fortunately, many researchers have proposed various rules for

choosing hyper-parameters in the deep networks [10], [9], [37]. In our experiments, we refer to

the strategies used in [22]. We initialize all the parameters with random values, and then fix other

hyper parameters and perform a grid search over the range of one hyper parameter by utilizing

mini-batch stochastic gradient descent. To show the influence of hyper parameter λ in DDAE-COM

that controls the tradeoff between Constraints Part and Reconstruction Part, we compare DDAEs

and DAEs with the adjustment of λ. For comparison, we use the bg-img-rot as the testing dataset.
We fix all other hyper parameters for both models and present the classification error rates on

the bg-img-rot dataset as shown in Fig. 5 (a). Clearly, DDAEs perform better than DAEs when the

hyper parameter λ is located in a proper scope.

We also contrast DDAEs to DAEs with increasing the number of hidden layers and the number of

hidden units per layer to show the influence of double corruption. Fig. 5 (b) shows the comparative

classification error rates on bg-img-rot dataset. The results of DDAEs marked blue in Fig. 5 (b)

illustrate that as we increase the number of hidden layers from 1 to 4, the classification error

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:19

0 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

6

42.3

42.5

42.7

42.9

43.1

43.3

43.5

43.7

43.9

44.1

44.3

44.5

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

DAE-b-3
DDAE-COM-3
DDAE-COM-4

(a)

300 500 1000 2000

Number of hidden units per layer

40

45

50

55

58

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

DAE-b-1
DDAE-COM-1
DAE-b-2
DDAE-COM-2
DAE-b-3
DDAE-COM-3
DAE-b-4
DDAE-COM-4

(b)

0 5 10 15 20 25 30 35 40 50 65 80

Fraction of corrupted hidden representation/input (%)

40

45

50

55

60

65

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

DAE-b-1
DDAE-COM-1
DAE-b-2
DDAE-COM-2
DAE-b-3
DDAE-COM-3
DAE-b-4
DDAE-COM-4

(c)

0 20 40 60 80 100 120 140 160

Epochs

40

45

50

55

60

65

70

75
T

es
t c

la
ss

ifi
ca

tio
n

er
ro

r
(%

)

DAE-b-3
CAE-2
DDAE-COM-1
DDAE-COM-2
DDAE-COM-3
DDAE-COM-4

(d)

Fig. 5. Experimental results on bg-img-rot dataset. (a) Classification error rates on the varying hyper-parameter
λ in DDAE-COM. DAE-b-3 is a 3 hidden layers stacked DAEs with masking noise and its result is obtained
from Vincent et al. [43]. (b) A comparison of DDAEs and DAEs with increasing the number of hidden layers
and the number of hidden units per layer. (c) Sensitivity to the fraction of corrupted hidden representation or
input. (d) Test error rates with different training epochs.

rates gradually descend. It could be that DDAEs have the capability to capture the underlying

data-generating distributions of both input and hidden representation while DAEs just capture

the distribution of input. Fig. 5 (b) also shows that DDAEs outperform DAEs, especially when

the number of hidden units per layer is low. It may be much easy for DDAEs to capture the

underlying data-generating distribution of the hidden representation when the number of hidden

representation per layer is low.

To assess the benefit of DDAEs on different corruption levels of the hidden representation or

input, we compare the performance of DDAEs and DAEs with different numbers of hidden layers.

Fig. 5 (c) demonstrates the sensitivity to corruption levels of hidden representation or input. We find

that some corrupted hidden representation or input is beneficial. Fig. 5 (d) presents the relationships

between the classification error rates and the training epochs. We can see that DDAEs obtain the

same performance of the DAEs or CAEs with much fewer training epochs.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:20 Z. Yu et al.

6.4 Comparisons with State-of-the-art Results
To further show the robustness of hidden representation reconstruction for feature representation,

we compare the performance with some state-of-the-art models on twelve UCI datasets, thirteen

image recognition datasets and two human genome sequence datasets.

6.4.1 UCI Dataset Classification. We first test the classification performance of DDAEs on

twelve UCI datasets. By utilizing DDAE-COM algorithm, we compare DDAEs with SVM model

(SVM), stacked Deep Neural Networks (DNNs) [30], stacked DeepSVMs [30], stacked CAEs [33]

and stacked DAEs [43]. We use tied weights, sigmoid activation function and squared error of

reconstruction loss for the networks of CAEs, DAEs and DDAEs. In DDAEs model, we employ a

2-layer (200-150) architecture as the most frequently used structure. Because the number of features

is small for a UCI dataset, we only use the corruption with first and second layers of DAEs and

DDAEs, not with the input data.

Table 3 presents the classification error rates of 2 hidden layers stackedDDAEswithmasking noise

(DDAE-b-2), compared with SVM model (SVM), stacked Deep Neural Networks (DNNs), a 4 layers

stacked DeepSVMs (DeepSVM-4), a 2 hidden layers stacked CAEs (CAE-2) and a 2 hidden layers

stacked DAEs with masking noise (DAE-b-2). In general, networks with minimizing reconstruction

error of hidden representation (DDAEs) perform better than other networks without this constraint.

It is possible that DDAEs use the reconstruction of input and hidden representation, which may

learn the underlying data-generating distributions of both input and hidden representation.

Table 3. Classification error rates on UCI datasets with 10-fold cross validations. The best results obtained by
all considered models are marked in bold.

Dataset SVM DNNs DeepSVM-4 CAE-2 DAE-b-2 DDAE-b-2

sonar 14.67±1.86 13.31±1.42 - 12.91±1.46 11.68±1.41 11.23±1.35
ionosphere 12.70±1.24 12.14±2.87 9.35±1.44 8.87±1.74 8.25±1.72 7.86±1.68
ILPD 35.26±1.79 34.26±1.67 - 32.76±1.68 31.94±1.58 31.28±1.54
breast_cancer 2.93±1.08 0.79±1.07 0.15±3.11 0.12±1.05 0.08±1.02 0.05±1.02
australian 13.06±1.56 12.22±1.75 11.02±2.09 10.35±1.48 10.43±1.54 10.16±1.43
diabetes 18.68±1.22 13.04±1.78 12.48±2.30 11.96±1.75 11.25±1.63 10.84±1.58
vehicle 13.36±1.25 12.85±1.64 - 12.12±1.65 11.83±1.53 11.81±1.47
vowel 1.83±1.14 1.52±1.46 - 1.07±1.57 0.84±1.52 0.47±1.42
german_numer 22.40±1.21 15.88±0.99 16.30±1.33 16.35±1.15 15.71±1.12 15.28±1.06
cardiotocography 21.84±1.58 20.25±1.51 - 19.82±1.47 18.62±1.35 18.26±1.31
segment 3.54±1.26 3.16±1.34 - 3.07±1.13 2.59±1.05 2.17±1.03
splice 16.66±0.76 7.57±1.92 6.91±2.33 6.48±1.52 5.97±1.42 5.32±1.40

6.4.2 Digit Image Recognition. After testing on the small UCI dataset classification problem, we

compare DDAEs against the several state-of-the-art models for unsupervised feature extraction:

SVM models with RBF kernel (SVMrbf), stacked Deep Belief Networks (DBNs), stacked Deep

Boltzmann Machines (DBMs) [34], stacked AEs (SAEs) [33], stacked DAEs [43], stacked CAEs [33],

stacked Rectified Factor Networks (RFNs) [12] and Ladder Networks [29, 31]. All these models also

adopt tied weights, sigmoid activation function for both encoder and decoder, and cross-entropy

reconstruction loss except DBNs, DBMs and RFNs. DBNs and DBMs optimize the parameters by

using contrastive divergence, while RFNs use the expectation-maximization algorithm. Stochastic

gradient descent is applied as the optimization method for all these models.

The classification results and training time of DDAEs with other models on MNIST dataset

are listed in Table 4. By using zero-masking corruption noises (MN) and DDAE-COM algorithm,

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:21

DDAEs with 3 layers can achieve an error rate of about 1.35%, while the traditional DAEs is about

1.57%. When using Gaussian corruption noises (GS), the test error of 3-layer DDAEs reduces to

1.12% with DDAE-COM algorithm and 1.08% with DDAE-SEP algorithm. With the well-known trick

technique, dropout [40], the test error of 3-layer DDAEs can further reduce to about 0.69% when

training with DDAE-COM algorithm and about 0.66% when training with DDAE-SEP algorithm. In

the experiments, a 3-layer (1000-1000-2000) and a 4-layer (1000-1000-2000-1000) architecture are

tested. All the hyperparameters are selected according to the performance on the validation set.

As for dropout, we use a fixed dropout rate 20% for all the input layers and the hidden layers. A

momentum, which increases from 0.5 to 0.9, is adopted to speed up learning. A fixed learning rate

of 4.0 is used and no weight decay is utilized.

Table 4. Test error (in %) and training time (seconds) of different models on MNIST.

Methods Error (%) Training times (s)

SAE [33] 1.78 39458.42

DAE + MN [33] 1.57 40865.81

REHR + 3 layers 1.53 47579.63

SVMrbf [43] 1.40 -

DDAE-COM + MN + 3 layers 1.35 49754.38

RFNs [12] 1.27 -

DAE + GS [33] 1.18 41459.54

DBN [40] 1.18 57863.67

CAE [33] 1.14 128786.97

DDAE-COM + GS + 3 layers 1.12 50362.85

DDAE-SEP + GS + 4 layers 1.09 69493.87

DDAE-SEP + GS + 3 layers 1.08 51976.26

DBM [40] 0.96 129763.45

DBN + dropout finetuning [40] 0.92 57863.67

DBM + dropout finetuning [40] 0.79 129763.45

DDAE-COM + GS + 3 layers + dropout finetuning 0.69 50362.85

DDAE-SEP + GS + 3 layers + dropout finetuning 0.66 51976.26

By using DDAE-COM algorithm, we also test our new model on the ten deep learning benchmark

datasets with 3 and 4 layers (DDAE-3 and DDAE-4). Table 5 reports the resulting classification

performance for our model (DDAE-3 and DDAE-4), together with the performance of SVMs with

RBF kernel, a 3 hidden layers stacked Deep Belief Networks (DBN-3), a 3 hidden layers stacked DAEs

with masking noise (DAE-b-3), a 2 hidden layers stacked CAEs (CAE-2) and a stacked Rectified

Factor Networks (RFNs). As we can see from the table, our new model works remarkably well on

all datasets. It is better than or equivalent to the state-of-the-art models in 10 out of 12 datasets

with three layers and 11 out of 12 datasets with four layers. It should be pointed out that we give

the same corrupting noise level to both input and hidden representation in each experiment.

6.4.3 Human Genome Sequence Classification. In order to further demonstrate the effectiveness

of DDAEs, we evaluate the performance on two human genome sequence datasets. For these two

sequence datasets, we also use the 10-fold cross validation and present the average error rates

with 10 runs. Fig. 6 illustrates the performance of stacked SAEs (SAE-2), stacked REHR (REHR-2),

stacked CAEs (CAE-2), stacked DAEs with masking noise (DAE-b-2) and stacked DDAEs with

masking noise (DDAE-b-2). Note that all the models use 2 hidden layers. With DDAE-b-2 model,

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:22 Z. Yu et al.

Table 5. Comparison of stacked DDAEs with other models. Test error rate on all considered datasets is
reported together with a 95% confidence interval. The best results obtained by all these models are marked in
bold. With DDAE-COM algorithm, DDAEs appear to achieve superior or equivalent to the best other model in
ten out of twelve data sets with 3 layers (DDAE-3) and eleven out of twelve data sets with 4 layers (DDAE-4).

Dataset SVMrbf DBN-3 DAE-b-3 CAE-2 RFNs DDAE-3 DDAE-4

rect 2.15±0.13 2.60±0.14 1.99±0.12 1.21±0.10 0.63±0.06 0.65±0.06 0.56±0.06
rect-img 24.04±0.37 22.50±0.37 21.59±0.36 21.54±0.36 20.77±0.36 20.68±0.36 20.56±0.36
convex 19.13±0.34 18.63±0.34 19.06±0.34 - 16.41±0.32 16.24±0.32 15.78±0.31
basic 3.03±0.15 3.11±0.15 2.84±0.15 2.48±0.14 2.66±0.14 2.43±0.14 2.45±0.14
rot 11.11±0.28 10.30±0.27 9.53±0.26 9.66±0.26 - 9.15±0.25 9.08±0.25
bg-rand 14.58±0.31 6.73±0.22 10.30±0.27 10.90±0.27 7.94±0.24 10.18±0.27 10.19±0.27
bg-img 22.61±0.37 16.31±0.32 16.68±0.33 15.50±0.32 15.66±0.32 14.49±0.31 14.51±0.31
bg-img-rot 55.18±0.44 47.39±0.44 43.76±0.43 45.23±0.44 - 43.41±0.43 42.82±0.43
NORB 11.60±0.40 - 9.50±0.37 9.85±0.42 7.00±0.32 6.98±0.37 6.85±0.36
CIFAR-10 62.70±0.95 43.38±0.97 43.76±0.94 42.85±0.94 41.29±0.95 40.71±0.92 40.25±0.92
COIL-100 18.68±0.82 16.15±0.78 15.42±0.71 15.37±0.74 - 14.92±0.68 14.36±0.68
Caltech-10128.93±0.87 26.45±0.85 25.27±0.79 25.22±0.81 - 24.68±0.76 24.62±0.76

we obtain the classification error rates of 8.36% for Acceptor dataset and 9.85% for Donor dataset,

the best results of five compared models in these experiments.

Acceptor Donor
8

9

10

11

12

13

14

Dataset

Te
st

 c
la

ss
ifi

ca
tio

n
er

ro
r (

%
)

SAE-2
REHR-2
CAE-2
DAE-b-2
DDAE-b-2

Fig. 6. Experimental results on genome sequence dataset.

7 CONCLUSION AND FUTUREWORK
In this paper, we demonstrated that the reconstruction error of the input has a lower bound and

minimizing the Frobenius norm of Jacobia matrix of hidden representation has a deficiency and

may encourage to get a much worse local optimum value. Based on these evidences, a new deep

neural network, DDAEs, for unsupervised representation learning was proposed by using the

idea of learning invariant and robust features for the small change on both input and hidden

representation. The idea was implemented by minimizing the reconstruction error after injecting

noises into both input and hidden representation. It is shown that ourmodel is flexible and extendible.

It is also demonstrated that minimizing the reconstruction error of hidden representation for

feature representation is more robust than minimizing the Frobenius norm of Jacobia matrix of

hidden representation. The comprehensive experiments indicated that DDAEs can achieve the

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:23

performance superior to the existing state-of-the-art models on twelve UCI datasets and two human

genome sequence datasets. For the thirteen image recognition datasets, DDAEs were better than or

equivalent to most state-of-the-art models. Since the reconstruction of the hidden representation

always helps an auto-encoder to perform better, and competes or improves upon the representations

learning, how to design a useful constraint or any other operations on the hidden representation

for the development of a more efficient representation learning model would be an interesting

extension in further studies.

REFERENCES
[1] Guillaume Alain and Yoshua Bengio. 2014. What regularized auto-encoders learn from the data-generating distribution.

Journal of Machine Learning Research 15, 1 (2014), 3563–3593.

[2] Yoshua Bengio. 2013. Deep learning of representations: Looking forward. In International Conference on Statistical
Language and Speech Processing. 1–37.

[3] Yoshua Bengio. 2014. How auto-encoders could provide credit assignment in deep networks via target propagation.

arXiv preprint arXiv:1407.7906 (2014).
[4] Yoshua Bengio et al. 2009. Learning deep architectures for AI. Foundations and Trends® in Machine Learning 2, 1 (2009),

1–127.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives.

IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 8 (2013), 1798–1828.
[6] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. 2007. Greedy layer-wise training of deep

networks. In Advances in Neural Information Processing Systems. 153–160.
[7] Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski. 2014. Deep generative stochastic networks trainable

by backprop. In International Conference on Machine Learning. 226–234.
[8] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. 2013. Generalized denoising auto-encoders as generative

models. In Advances in Neural Information Processing Systems. 899–907.
[9] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine

Learning Research 13 (2012), 281–305.

[10] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for hyper-parameter optimization.

In Advances in Neural Information Processing Systems. 2546–2554.
[11] Minmin Chen, Kilian Q Weinberger, Fei Sha, and Yoshua Bengio. 2014. Marginalized Denoising Auto-encoders for

Nonlinear Representations. In International Conference on Machine Learning. 1476–1484.
[12] Djork-Arné Clevert, Andreas Mayr, Thomas Unterthiner, and Sepp Hochreiter. 2015. Rectified factor networks. In

Advances in Neural Information Processing Systems. 1855–1863.
[13] Li Deng, Michael L Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and Geoffrey E Hinton. 2010. Binary

coding of speech spectrograms using a deep auto-encoder. In Interspeech. 1692–1695.
[14] Bo Du, Wei Xiong, Jia Wu, Lefei Zhang, Liangpei Zhang, and Dacheng Tao. 2016. Stacked convolutional denoising

auto-encoders for feature representation. IEEE Transactions on Cybernetics 47, 4 (2016), 1017–1027.
[15] Jie Geng, Hongyu Wang, Jianchao Fan, and Xiaorui Ma. 2017. Deep Supervised and Contractive Neural Network for

SAR Image Classification. IEEE Transactions on Geoscience and Remote Sensing 55, 4 (2017), 2442–2459.

[16] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE: Masked Autoencoder for Distribution

Estimation. In International Conference on Machine Learning. 881–889.
[17] Kui Jia, Lin Sun, Shenghua Gao, Zhan Song, and Bertram E Shi. 2015. Laplacian Auto-Encoders: An explicit learning of

nonlinear data manifold. Neurocomputing 160 (2015), 250–260.

[18] Hanna Kamyshanska and Roland Memisevic. 2015. The potential energy of an autoencoder. IEEE Transactions on
Pattern Analysis and Machine Intelligence 37, 6 (2015), 1261–1273.

[19] Koray Kavukcuoglu, Rob Fergus, Yann LeCun, et al. 2009. Learning invariant features through topographic filter maps.

In IEEE Conference on Computer Vision and Pattern Recognition. 1605–1612.
[20] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing Systems. 1097–1105.
[22] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. 2007. An empirical evaluation

of deep architectures on problems with many factors of variation. In International Conference on Machine Learning.
473–480.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:24 Z. Yu et al.

[24] Yiyi Liao, YueWang, and Yong Liu. 2016. Graph Regularized Auto-Encoders for Image Representation. IEEE Transactions
on Image Processing 26, 6 (2016), 2839–2852.

[25] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen

Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, and Clara I. Sĺćnchez. 2017. A survey on deep learning

in medical image analysis. Medical Image Analysis 42, 9 (2017), 60.
[26] Yanan Liu, Xiaoqing Feng, and Zhiguang Zhou. 2016. Multimodal video classification with stacked contractive

autoencoders. Signal Processing 120 (2016), 761–766.

[27] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. 2015. Adversarial autoencoders.

arXiv preprint arXiv:1511.05644 (2015).
[28] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T. Dudley. 2017. Deep learning for healthcare:

review, opportunities and challenges. Briefings in Bioinformatics (2017), 1–11.
[29] Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron Courville, and Yoshua Bengio. 2016. Deconstructing the

ladder network architecture. In International Conference on Machine Learning. 2368–2376.
[30] Zhiquan Qi, Bo Wang, Yingjie Tian, and Peng Zhang. 2016. When Ensemble Learning Meets Deep Learning: a New

Deep Support Vector Machine for Classification. Knowledge-Based Systems 107 (2016), 54–60.
[31] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. 2015. Semi-supervised learning

with ladder networks. In Advances in Neural Information Processing Systems. 3546–3554.
[32] Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin, and Xavier Glorot. 2011.

Higher order contractive auto-encoder. In European Conference Machine Learning and Knowledge Discovery in Databases.
645–660.

[33] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. 2011. Contractive auto-encoders: Explicit

invariance during feature extraction. In International Conference on Machine Learning. 833–840.
[34] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Deep boltzmann machines. In Artificial Intelligence and Statistics.

448–455.

[35] Hannes Schulz, Kyunghyun Cho, Tapani Raiko, and Sven Behnke. 2015. Two-layer contractive encodings for learning

stable nonlinear features. Neural Networks 64 (2015), 4–11.
[36] Haidong Shao, Hongkai Jiang, Fuan Wang, and Huiwei Zhao. 2017. An enhancement deep feature fusion method for

rotating machinery fault diagnosis. Knowledge-Based Systems 119 (2017), 200–220.
[37] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian optimization of machine learning

algorithms. In Advances in Neural Information Processing Systems. 2951–2959.
[38] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D Manning. 2011. Semi-supervised

recursive autoencoders for predicting sentiment distributions. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing. 151–161.

[39] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. 2016. Ladder variational

autoencoders. In Advances in Neural Information Processing Systems. 3738–3746.
[40] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a

simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[41] Pascal Vincent. 2011. A connection between score matching and denoising autoencoders. Neural Computation 23, 7

(2011), 1661–1674.

[42] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. 2008. Extracting and composing

robust features with denoising autoencoders. In International Conference on Machine Learning. 1096–1103.
[43] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. 2010. Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine
Learning Research 11, Dec (2010), 3371–3408.

[44] Shuyang Wang, Zhengming Ding, and Yun Fu. 2017. Feature selection guided auto-encoder. In AAAI. 2725–2731.
[45] Jun Xu, Lei Xiang, Qingshan Liu, Hannah Gilmore, Jianzhong Wu, Jinghai Tang, and Anant Madabhushi. 2016. Stacked

sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical
Imaging 35, 1 (2016), 119–130.

[46] Wankou Yang, Zhenyu Wang, and Changyin Sun. 2015. A collaborative representation based projections method for

feature extraction. Pattern Recognition 48, 1 (2015), 20–27.

[47] Wei Yang, Huijuan Zhang, Jian Yang, Jiasong Wu, Xiangrui Yin, Yang Chen, Huazhong Shu, Limin Luo, Gouenou

Coatrieux, Zhiguo Gui, and Qianjin Feng. 2017. Improving low-dose CT image using residual convolutional network.

IEEE Access 42 (2017), 24698–24705.
[48] Ning Yu, Zhihua Li, and Zeng Yu. 2018. A Survey on Encoding Schemes for Genomic Data Representation and Feature

Learning-From Signal Processing to Machine Learnin. Big Data Mining and Analytics 1, 3 (2018), 1–17.
[49] Fuzhen Zhuang, Zhiqiang Zhang, Mingda Qian, Chuan Shi, Xie Xing, and Qing He. 2017. Representation learning via

Dual-Autoencoder for recommendation. Neural Netw 90 (2017), 83–89.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

1:25

Received xx 2017; revised xx 2018; accepted xx 2018

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Denoising Auto-encoders (DAEs): Extracting Robust Features of Reconstruction
	2.2 Contractive Auto-encoders (CAEs): Extracting Locally Invariant Features of Hidden Representation

	3 Lower Bound of the Reconstruction Error of the Input
	3.1 Lower Bound and Necessary Condition
	3.2 Lower Bound with Corrupted Input

	4 Robustness of Hidden Representation Reconstruction
	4.1 Theoretical Explanation and Examples

	5 Double Denoising Auto-Encoders
	5.1 DDAEs Architecture
	5.2 Training DDAEs
	5.3 Properties of DDAEs

	6 Experiments
	6.1 A Description of Datasets
	6.2 Experimental Verification
	6.3 Parameter Evaluation
	6.4 Comparisons with State-of-the-art Results

	7 Conclusion and Future Work
	References

