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Abstract

We present prior robust algorithms for a large class of resource allocation problems where
requests arrive one-by-one (online), drawn independently from an unknown distribution at every
step. We design a single algorithm that, for every possible underlying distribution, obtains a
1−ǫ fraction of the profit obtained by an algorithm that knows the entire request sequence ahead
of time. The factor ǫ approaches 0 when no single request consumes/contributes a significant
fraction of the global consumption/contribution by all requests together. We show that the
tradeoff we obtain here that determines how fast ǫ approaches 0, is near optimal: we give a
nearly matching lower bound showing that the tradeoff cannot be improved much beyond what
we obtain.

Going beyond the model of a static underlying distribution, we introduce the adversarial
stochastic input model, where an adversary, possibly in an adaptive manner, controls the distri-
butions from which the requests are drawn at each step. Placing no restriction on the adversary,
we design an algorithm that obtains a 1− ǫ fraction of the optimal profit obtainable w.r.t. the
worst distribution in the adversarial sequence. Further, if the algorithm is given one number
per distribution, namely, the optimal profit possible for each of the adversary’s distribution, we
design an algorithm that achieves a 1− ǫ fraction of the weighted average of the optimal profit
of each distribution the adversary picks.

In the offline setting we give a fast algorithm to solve very large LPs with both packing and
covering constraints. We give algorithms to approximately solve (within a factor of 1 + ǫ) the

mixed packing-covering problem with O(γm log(n/δ)
ǫ2 ) oracle calls where the constraint matrix of

this LP has dimension n×m, the success probability of the algorithm is 1− δ, and γ quantifies
how significant a single request is when compared to the sum total of all requests.

We discuss implications of our results to several special cases including online combinatorial
auctions, network routing and the adwords problem.

1 Introduction & Summary of Results

There has been an increasing interest in online algorithms for resource allocation problems moti-
vated by their wide variety of applications in Internet advertising, allocating multi-leg flight seats for
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customers online, allocating goods to customers arriving online in a combinatorial auction etc. De-
signing efficient resource allocation algorithms has significant scientific and commercial value. The
traditional computer science approach to deal with uncertain future inputs has been the worst-case
competitive analysis. Here nothing is assumed about the sequence of requests that arrive online,
and the benchmark is the optimal algorithm that knows the entire sequence of requests ahead of
time. Several problems in this space have been analyzed in the traditional framework, exemplified,
for instance, in the well-studied Adwords problem introduced by Mehta et al. [2005]. While worst-
case analysis is a robust framework, for many problems it leads to pessimistic bounds that rule
out obtaining more than a constant fraction of the optimal profit. Consequently, there has been
a drive in the last few years to go beyond worst-case analysis. A frequently used alternative is to
perform stochastic analysis: assume that the input is drawn from a known distribution and opti-
mize the objective w.r.t. this distribution. While stochastic analysis circumvents the impossibility
results in worst-case analysis, any error in the knowledge of distribution could render the algorithm
suboptimal, and sometimes even infeasible.

In this paper, we study a middle ground between worst-case and stochastic settings. We assume
that the input is drawn from an underlying distribution that is unknown to the algorithm designer.
We present a single algorithm, that for every distribution performs nearly as well as the optimal
algorithm that knows the entire sequence of requests ahead of time. In this sense, the algorithm is
prior robust.

We now give an informal description of the resource allocation framework and our main con-
tributions. See Section 2 for a formal description and theorem statements. We consider a resource
allocation setting where requests arrive online; every request can be served by some subset of sev-
eral available options; each (request, option) pair consumes some amount of every resource, and
generates some profit. There is a given budget for each resource. Requests are drawn i.i.d. from an
unknown distribution. The goal is to maximize the total profit generated while making sure that
the total consumption of each resource is no more than the corresponding budget. We compare
the profit of the algorithms against the offline optimum and prove competitive ratio bounds. Even
for very restricted special cases of this problem, the worst-case setting cannot yield anything be-
yond a 1− 1

e competitive ratio Kalyanasundaram and Pruhs [1996], Mehta et al. [2005]. While the
stochastic setting with a fully known distribution can give near optimal performance guarantees,
it often leads to very distribution dependent algorithms (e.g. see Alaei et al. [2012] for the special
case of the adwords problem, which requires knowledge of the entire distribution to perform the
optimization). Hence both these approaches are not satisfactory, and this problem lends itself well
to the middle ground of prior robust analysis.

Going beyond i.i.d., our work introduces the adversarial stochastic input (ASI) model as a more
realistic model for analyzing online algorithmic problems. Here the distribution from which the
requests arrive is allowed to change over time (unlike i.i.d., where it stays identical for every request).
The adversary decides how to pick the distributions, and is even allowed to pick them adaptively.
For many practical applications such as in display advertising, the distribution of requests shows
trends that change over the course of time: mornings are different from evenings and weekdays are
different from weekends. Thus a time varying distributional model is more realistic than the i.i.d.
model. A keen reader might notice that the above description includes the worst-case setting as well,
therefore we have to make some extra assumptions, either by restricting how these distributions
can be picked, or by allowing the algorithm some extra information about the distributions. We
will describe these in greater detail later on.
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Apart from the theoretical contribution, the algorithms we design for the ASI models were
used to completely overhaul the display advertising management system at Microsoft, leading to
a significant improvement in revenue (≈ 10%), better system manageability and enabling new
capabilities.1 We believe that our results make a significant contribution to the search for “allows-
positive-results-yet-realistic” models for online algorithms.

First Result: Near-Optimal Prior Robust Online Algorithms for Resource Allocation

Problems A key parameter on which algorithms for several resource allocation problems depend
on is the relative significance of any single request when compared to the entire sequence of requests.
For instance, for the special case of the Adwords problem, this is the ratio of a single bid to an
advertiser’s budget. For the Adwords problem, Mehta et al. [2005] and Buchbinder et al. [2007]
design an algorithm that achieves a worst case competitive ratio that tends to 1 − 1/e as the bid
to budget ratio (which we denote by γ) tends to 0.2 Devanur and Hayes [2009] studied the same
problem in the random permutation model, and showed that the competitive ratio tends to 1 as
γ tends to 0. This result showed that competitive ratio of algorithms in stochastic models could
be much better than that of algorithms in the worst case. The important question since then has
been to determine the optimal trade-off between γ and the competitive ratio. Devanur and Hayes
[2009] showed how to get a 1- O(ǫ) competitive ratio when γ is at most O( ǫ3

n log(mn/ǫ)) where n is

the number of advertisers and m is the number of keywords. Subsequently Agrawal et al. [2014]

improved the bound on γ to O( ǫ2

n log(m/ǫ)). The papers of Feldman et al. [2010] and Agrawal et al.

[2014] have also shown that the technique of Devanur and Hayes [2009] can be extended to other
online problems.

The first main result in this paper is the following 3-fold improvement of previous results (The-
orems 2.2 and 2.3), for the i.i.d. with unknown distributions model. All our results apply to the
general class of problems that we call the resource allocation framework. A formal definition of the
framework is presented in Section 2.2 and a discussion of many interesting special cases including
online network routing and online combinatorial auctions is presented in Section 7.

1. We give an algorithm which guarantees a 1− ǫ approximation factor when γ = O( ǫ2

log(n/ǫ)).

2. We show that our bound on γ is almost optimal; we show that no algorithm, even if it knew the
distribution, can guarantee a 1− ǫ approximation when γ = ω( ǫ2

log(n)).

3. Our algorithms lend themselves to natural generalizations that provide identical guarantees in
the more general adversarial stochastic input (ASI) model that was described earlier. We provide
three different versions of the ASI model in Section 3.5.

Significance

1. Regarding the bound on γ, we remove a factor of n from γ, making the algorithm more practical.
Consider for instance the Adwords problem and suppose that the bids are all in [0,1]. The earlier
bound implies that the advertiser budgets need to be of the order of n log n/ǫ2 in order to get a

1This system had been globally operational from 2011 to 2015, when Microsoft made a deal with AOL to allow
AOL to sell the display advertisement on behalf of Microsoft.

2Note that γ approaching zero is the easiest case. Even with γ approaching zero, 1− 1/e is the best competitive
ratio that any randomized algorithm can achieve in the worst case, illustrating how worst-case analysis leads to
pessimistic bounds.
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1− ǫ competitive algorithm, where n is the number of advertisers. With realistic values for these
parameters, it seems unlikely that this condition would be met. While with the improved bounds
presented in this paper, we only need the advertiser budget to be of the order of log n/ǫ2 and
this condition is met for reasonable values of the parameters. Furthermore, in the more general
resource allocation framework, the previous best upper bound on γ is from Agrawal, Wang and
Ye Agrawal et al. [2014] and equals O( ǫ2

n log(mK/ǫ)). Here K is the number of available “options”

(see Section 2.2) and in typical applications like network routing, K could be exponential in n,
and thus, the factor saved by our algorithm becomes quadratic in n.

2. Our ASI models are realistic models of time varying distributions for which we present algorithms
with asymptotically optimal performance guarantees. We consider three different benchmarks,
each progressively stronger than the previous, and require different levels of information about
the distributions to achieve near optimal performance guarantees. For the weakest benchmark,
we need just one parameter from the distribution, while for the strongest benchmark, we still
need only 2mn parameters. Note that the distributions themselves can have an arbitrarily large
support size3 and hence the amount of information we need is much smaller than the description
of all the distributions. Our results for the ASI model can be thought of as generalizations of the
“Prophet Inequality”.4 Finally, as mentioned earlier, our algorithms for this model have made
a significant impact on the practice of display advertising management at Microsoft.

Second Result: Prior Robust 1 − 1/e approximation Greedy Algorithm for Adwords

A natural algorithm for the Adwords problem that is widely used for its simplicity is the greedy
algorithm: always match an incoming query to the advertiser that has the maximum effective bid
(the minimum of bid and remaining budget) for that query. Because of its wide use, previously the
performance of the greedy algorithm has been analyzed by Goel and Mehta Goel and Mehta [2008]
who showed that in the random permutation and the i.i.d. models, it has a competitive ratio of
1− 1/e with an assumption which is essentially that γ tends to 0.

It has been an important open problem to analyze the performance of greedy algorithm in a
stochastic setting for unbounded γ, i.e., for all 0 ≤ γ ≤ 1. The best factor known so far is 1/2, and
this works for the worst case also. Nothing better was known, even in the stochastic models. The
second result in this paper is that for the Adwords problem in the i.i.d. unknown distributions model,
with no assumption on γ (i.e., γ could be as big as 1), the greedy algorithm gets an approximation
factor of 1− 1/e against the optimal fractional solution to the expected instance (Theorem 2.4).

Our proof technique for this result has been subsequently used to prove a similar result for
the greedy algorithm in online submodular welfare maximization Kapralov et al. [2013]. We note
here that there are other algorithms that achieve a 1−1/e approximation for the Adwords problem
with unbounded γ, but the greedy algorithm is the only prior robust (i.e., distribution independent)
algorithm known, and it is quite simple too. For example Alaei, Hajiaghayi and Liaghat Alaei et al.
[2012] design a randomized algorithm that obtains a 1 − 1/e approximation, but requires the
knowledge of the entire distribution. Devanur, Sivan and Azar Devanur et al. [2012] design a

3 We even allow continuous distributions which have an infinite support.
4The Prophet Inequality is essentially a 1/2-competitive algorithm for the following problem: a sequence of values

is drawn independently from different distributions and presented one at a time. The algorithm may pick at most
one of these values in an online manner, given some knowledge of the distributions, such as the expectation of the
maximum of these values. The goal is to maximize the value picked. See Samuel-Cahn [1984]

4



deterministic algorithm that obtains a 1− 1/e approximation, but requires a few parameters from
the distribution.

Third Result: Fast Approximation Algorithms for Mixed Packing and Covering Inte-

ger Programs Charles et al. [2010] considered the following (offline) problem: given a lopsided
bipartite graph G = (L,R,E), that is a bipartite graph where m = |L| ≫ |R| = n, does there exist
an assignment M : L→ R with (j,M(j)) ∈ E for all j ∈ L, and such that for every vertex i ∈ R,
|M−1(i)| ≥ Bi for some given values Bi. Even though this is a classic problem in combinatorial
optimization with well known polynomial time algorithms, the instances of interest are too large
to use traditional approaches to solve this problem. (The value of m in particular is very large.)
The approach used by Charles et al. [2010] was to essentially design an online algorithm in the
i.i.d. model: choose vertices from L uniformly at random and assign them to vertices in R in an
online fashion. The online algorithm is guaranteed to be close to optimal, as long as sufficiently
many samples are drawn. Therefore it can be used to solve the original problem (approximately):
the online algorithm gets an almost satisfying assignment if and only if the original graph has a
satisfying assignment (with high probability).

The third result in this paper is a generalization of this result to get fast approximation algorithms
for a wide class of mixed packing and covering integer programs (IPs) inspired by problems in
the resource allocation framework (Theorem 2.5). Problems in the resource allocation framework
where the instances are too large to use traditional algorithms occur fairly often, in particular in
the management of display advertising systems, where these algorithms are being used. Formal
statements and a more detailed discussion are presented in Section 2.4.

High Level Description of Techniques The underlying idea used for all these results can be
summarized at a high level as thus: consider a hypothetical algorithm called Hypothetical-Oblivious
that knows the distribution from which the input is drawn and uses an optimal solution w.r.t.
this distribution. Now suppose that we can analyze the performance of Hypothetical-Oblivious by
considering a potential function and showing that it decreases by a certain amount in each step.
Now we can design an algorithm that does not know the distribution as follows: consider the same
potential function, and in every step choose the option that minimizes the potential function. Since
the algorithm minimizes the potential in each step, the decrease in the potential for this algorithm
is better than that for Hypothetical-Oblivious and hence we obtain the same guarantee as that for
Hypothetical-Oblivious. The choice of potential function varies across the results; also, whether we
minimize or maximize the the potential function varies across the results.

For instance, our first result (Theorem 2.2), the performance of Hypothetical-Oblivious is ana-
lyzed using Chernoff bounds. The Chernoff bounds are proven by showing bounds on the expec-
tation of the moment generating function of a random variable. Thus the potential function is the
sum of the moment generating functions for all the random variables that we apply the Chernoff
bounds to. The proof shows that in each step this potential function decreases by some multiplica-
tive factor. The algorithm is then designed to achieve the same decrease in the potential function.
A particularly pleasing aspect about this technique is that we obtain very simple proofs. E.g., the
proof of the second result mentioned above (that greedy is 1 − 1/e competitive, Theorem 2.4 ) is
extremely simple: the potential function in this case is simply the total amount of unused budgets
and we show that this amount (in expectation) decreases by a factor of 1− 1/m in each step where
there are m steps in all.

5



Multiplicative-Weight Updates Our techniques and the resulting algorithms for our first and
third results (Theorem 2.2 and Theorem 2.5) are similar to the algorithms of Young [1995, 2001]
for derandomizing randomized rounding and the fast approximation algorithms for solving cov-
ering/packing LPs of Plotkin, Shmoys, and Tardos [1991], Garg and Koenemann [1998], Fleischer
[2000]. In fact Arora et al. [2005] showed that all these algorithms are related to the multiplicative
weights update method for solving the experts problem and especially highlighted the similarity
between the potential function used in the analysis of the multiplicative update method and the
moment generating function used in the proof of Chernoff bounds and Young’s algorithms. Hence
it is no surprise that our algorithm which uses Chernoff bounds is also a multiplicative update
algorithm. Our algorithm is closer in spirit to Young’s algorithms than others. The main difference
is that our algorithm solves an online problem, rather than an offline one, and hence will run short
of essential distribution dependent parameters to run the multiplicative weights based algorithm di-
rectly: we show that these parameters can be estimated near optimally. And further, we introduce
more adversarial models of online input, namely, the varying ASI models, and come up with varying
levels of knowledge of the distribution that are sufficient to be able to design good algorithms for
these models. And for the offline case, a basic difference of our algorithm from this previous set
of results is that our algorithm uses the special structure of the polytope

∑
k xj,k ≤ 1 (as against

the more general polytopes in these works) in giving a more efficient solution. For instance, for our
offline problem the number of oracle calls required will have a quadratic dependence on γm if we
used the Plotkin et al. [1991] algorithm, where as using the special structure of the polytope, we
obtain a linear dependence on γm.

It is possible that our algorithm can also be interpreted as an algorithm for the experts prob-
lem. In fact Mehta et al. [2005] asked if there is a 1 − o(1) competitive algorithm for Adwords
in the i.i.d model with small bid to budget ratio, and in particular if the algorithms for experts
could be used. They also conjectured that such an algorithm would iteratively adjust a budget
discount factor based on the rate at which the budget is spent. Our algorithms for resource allo-
cation problem when specialized for Adwords look exactly like that, but we do not provide formal
connections to the experts framework. This was done in follow-up works Agrawal and Devanur
[2015], Gupta and Molinaro [2014] which showed that essentially the same algorithm as ours can
be thought of as using a subroutine of Multiplicative-weight updates on a suitably defined learning
with experts problem.

Follow-up work There has been a number of follow-up papers since the conference version of this
paper has been published. Alaei et al. [2012] show that for the Adwords problem with a known dis-
tribution, it is enough for γ to be O(ǫ2) to get a 1−ǫ approximation. Simultaneously, Devanur et al.
[2012] showed the same dependence of γ = O(ǫ2) for the Adwords problem, but requiring only a
few parameters from the distribution. Kapralov et al. [2013] study a generalized version of the ad-
words problem where, an advertiser’s profit, instead of being budget-additive, could be an arbitrary
submodular function of the queries assigned to him. For this problem in the worst case setting,
they show that no algorithm can obtain better than a 1

2 approximation, which the greedy algorithm
already achieves. For the same problem in the i.i.d. setting, they show, using techniques we develop
in this work, that the greedy algorithm obtains a 1 − 1

e approximation. Kesselheim et al. [2014]
gave similar guarantees as us, for the random permutation model (i.i.d. without replacement), and
also get the improved bound of γ = O(ǫ2) for the special case of the Adwords problem. On the
other hand, the algorithms of Kesselheim et al. [2014] are computationally expensive, requiring to
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solve a linear program for serving every single request, where as our algorithm performs a much
simpler optimization in every step: for the adwords problem for instance, it takes only a linear time
to perform each step’s optimization. Both Agrawal and Devanur [2015] and Gupta and Molinaro
[2014] showed that essentially the same algorithm as ours also works for the random permuta-
tion model, with the same guarantees, while also relating it formally to the learning from experts
framework. Agrawal and Devanur [2015] also greatly generalize the resource allocation framework,
to handle arbitrary concave objectives and convex constraints. Eghbali et al. [2014] interpret our
algorithm as an exponentiated sub-gradient algorithm, show that it works for the random per-
mutation model, and give a slight generalization to handle additively separable concave reward
functions.

2 Preliminaries & Main Results

2.1 Resource Allocation Framework

We consider the following framework of optimization problems. There are n resources, with resource
i ∈ A having a capacity of ci. There are m requests; each request j ∈ J can be satisfied by a vector
xj ∈ {0, 1}K , with coordinates xj,k, such that

∑
k xj,k ≤ 1. Think of vector xj as picking a single

option to satisfy a request from a total of K options. We use K to denote the set of options. The
vector xj consumes ai,j · xj amount of resource i, and gives wi,j · xj amount of type i profit5. The
ai,j’s and wi,j’s are non-negative vectors of length K (and so are the xj ’s). The co-ordinates of the
vectors ai,j and wi,j will be denoted by aijk and wijk respectively, i.e., the k

th option consumes aijk
amount of resource i and gives a type i profit of wijk. The objective is to maximize the minimum
among all types of profit subject to the capacity constraints on the resources. The following is the
linear program relaxation of the resource allocation problem:

Maximize min
i∈A

∑

j∈J

wi,j · xj s.t.

∀ i ∈ A,
∑

j∈J

ai,j · xj ≤ ci

∀ j ∈ J ,
∑

k∈K

xj,k ≤ 1

∀ j ∈ J , k ∈ K, xj,k ≥ 0

Note that dropping a request by not picking any option at all is feasible too. For expositional
convenience, we will denote not picking any option at all as having picked the ⊥ option (⊥ may
not be in the set K) for which aij⊥ = 0 and wij⊥ = 0 for all i, j.

We consider two versions of the above problem. The first is an online version with stochastic
input: requests are drawn from an unknown distribution. The second is an offline problem when
the number of requests is much larger than the number of resources, and our goal is to design a
fast PTAS for the problem.

5While this notation seems to imply that the number of resource-types is equal to the number/set of profit types,
namely n, this choice was made purely to reduce clutter in notation. In general the number/set of resource-types
could be different from that of the number of profit-types, and it’s straight-forward to verify that our proofs go
through for the general case.
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2.2 Near-Optimal Online Algorithm for Resource Allocation

We now consider an online version of the resource allocation framework. Here requests arrive
online. We consider the i.i.d. model, where each request is drawn independently from a given
distribution. The distribution is unknown to the algorithm. The algorithm knows m, the total
number of requests. To define our benchmark, we now define the expected instance.

Expected Instance Consider the following expected instance of the problem, where everything
happens as per expectation. It is a single offline instance which is a function of the given distribution
over requests and the total number of requests m. Every request in the support of the distribution
is also a request in this instance. The capacities of the resources in this instance are the same as in
the original instance. Suppose request j has a probability pj of arriving in the given distribution.
The resource consumption of j in the expected instance is given by mpjai,j for all i and the type i
profit is mpjwi,j. The intuition is that if the requests were drawn from this distribution then the
expected number of times request j is seen is mpj. To summarize, the LP relaxations of a random
instance with set of requests R, and the expected instance E are as follows (slightly rewritten for
convenience).

LP relaxations for random and expected instances (1)

Random Instance R Expected Instance E

Maximize λ s.t. Maximize λ s.t.

∀ i ∈ A,∑j∈R,k∈Kwijkxj,k ≥ λ ∀ i ∈ A,∑j∈J ,k∈Kmpjwijkxj,k ≥ λ

∀ i ∈ A,∑j∈R,k∈K aijkxj,k ≤ ci ∀ i ∈ A,∑j∈J ,k∈Kmpjaijkxj,k ≤ ci

∀ j ∈ R,
∑

k∈K xj,k ≤ 1 ∀ j ∈ J ,
∑

k∈K xj,k ≤ 1

∀ j ∈ R, k ∈ K, xj,k ≥ 0. ∀ j ∈ J , k ∈ K, xj,k ≥ 0.

We now prove that the fractional optimal solution to the expected instance WE is an upper
bound on the expectation ofWR, whereWR is the offline fractional optimum of the actual sequence
of requests in a random instance R.

Lemma 2.1 WE ≥ E[WR]

Proof: The average of optimal solutions for all possible sequences of requests is a feasible solution
to the expected instance with a profit equal to E[WR]. Thus the optimal profit for the expected
instance could only be larger.

The approximation factor of an algorithm in the i.i.d. model is defined as the ratio of the
expected profit of the algorithm to the fractional optimal profit WE for the expected instance. Let
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γ = max

({
aijk
ci

}
i,j,k
∪
{
wijk

WE

}
i,j,k

)
be the parameter capturing the significance of any one request

when compared to the total set of requests that arrive online. The main result is that as γ tends
to zero, the approximation factor ratio tends to 1. In fact, we give the almost optimal trade-off.

Theorem 2.2 For any ǫ ≥ 1/m, Algorithm 2 achieves an objective value of WE(1 − O(ǫ)) for

the online resource allocation problem with probability at least 1 − ǫ, assuming γ = O( ǫ2

log(n/ǫ)).
Algorithm 2 does not require any knowledge of the distribution at all.

Theorem 2.3 There exist instances with γ = ǫ2

log(n) such that no algorithm, even with complete

knowledge of the distribution, can get a 1− o(ǫ) approximation factor.

Oracle Assumption We assume that we have the following oracle available to us: given a request
j and a vector v, the oracle returns the vector xj that maximizes v.xj among all xjs in {0, 1}K
satisfying

∑
k∈K xj,k ≤ 1. This assumption boils down to being able to find the maximum among

K numbers, but K may be exponential in some cases. For the Adwords and display ads problem
(described below), K is actually equal to n, and this is trivial. For network routing (described in
Section 7), K could be exponential in the size of the network, and this assumption corresponds
to being able to find the shortest path in a graph in polynomial time. For combinatorial auctions
(described in Section 7), this corresponds to the demand query assumption: given prices on various
items, the buyer should be able to decide in polynomial time which bundle gives her the maximum
utility. (While this is not always achievable in polynomial time, there cannot be any hope of a
posted pricing solution for combinatorial auction without this minimum assumption. )

Extensions and Special Cases The extensions of Theorem 2.2 to the various generalizations
of the i.i.d. model, including the adversarial stochastic input model are presented in Section 3.5.
We refer the reader to Section 7 for a discussion on several problems that are special cases of the
resource allocation framework and have been previously considered. Here, we discuss two special
cases — the Adwords problem and display ads problem.

1. Adwords. In the adwords problem, there are n advertisers with a daily budget of Bi for
advertiser i. There are m keywords/queries that arrive online, and advertiser i has a bid
of bij for query j. This is a special case of the resource allocation framework where the set
of options K matches the set of resources/advertisers A, i.e., each query can be given to at
most one advertiser, and will consume budget just from that advertiser. Let xij denote the
indicator variable for whether or not query j was allocated to agent i. After all allocation is
over, agent i pays min(

∑
j∈J bijxij , Bi), i.e., the minimum of the sum of the bids for queries

allocated to i and his budget Bi. The objective is to maximize the sum of the payments
from all advertisers — this is again a special case of the resource allocation framework where
this only a single profit type, and we just want to maximize it. One could raise a technical
objection that this is not a special case of the resource allocation framework because the
budget constraint is not binding: the value of the allocated bids to an advertiser can exceed
his budget, although the total payment from the advertiser will be at most the budget. But it
is not difficult to see that the LP relaxation of the offline problem can be written as in LP (2),
which is clearly a special case of resource allocation framework LP. Note that the benchmark
is anyway an upper bound even on the expected optimal fractional solution. Therefore, any
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algorithm that gets an α approximation factor for resource allocation is also guaranteed to get
the same approximation factor for Adwords. The only notable thing being that an algorithm
for resource allocation when used for adwords will treat the budget constraints as binding,
and obtain the guarantee promised in Theorem 2.2 (In our 1− 1/e approximation algorithm
for adwords in Section 5 that holds for all values of γ (≤ 1 of course), we use this facility to
exceed budget).

2. Display Ads. In the display ads problem, there are n advertisers and m impressions arrive
online. Advertiser i has wants ci impressions in total and pays vij for impression j, and will
get paid a penalty of ρi for every undelivered impression. If over-delivered, he will pay his bid
for the first ci impressions delivered. Letting bij = vij + ρi, we can write the LP relaxation
of the offline display ads problem as in LP (2), which is clearly a special case of the resource
allocation LP, where just like the Adwords special case the set of options K is equal to the
set of resources/advertisers A, and there is only a single profit type.

LP relaxations for Adwords and Display Ads (2)

Adwords Display Ads

Maximize
∑

i∈A,j∈J bijxij s.t. Maximize
∑

i∈A,j∈J bijxij s.t.

∀ i ∈ A,
∑

j∈J bijxij ≤ Bi ∀ i ∈ A,
∑

j∈J xij ≤ ci

∀ j ∈ J ,∑i∈A xij ≤ 1 ∀ j ∈ J ,∑i∈A xij ≤ 1

∀ i ∈ A, j ∈ J , xij ≥ 0. ∀ i ∈ A, j ∈ J , xij ≥ 0.

2.3 Greedy Algorithm for Adwords

As noted in the introduction, the greedy algorithm is widely implemented due to its simplicity, but
its performance was known to be only a 1/2 approximation even in stochastic models. We show
that the greedy algorithm obtains a 1− 1/e approximation for all γ, i.e., 0 ≤ γ ≤ 1.

Theorem 2.4 The greedy algorithm achieves an approximation factor of 1− 1/e for the Adwords
problem in the i.i.d. unknown distributions model for all γ, i.e., 0 ≤ γ ≤ 1.

We note here that the competitive ratio of 1−1/e is tight for the greedy algorithm Goel and Mehta
[2008]. It is however not known to be tight for an arbitrary algorithm.

2.4 Fast Approximation Algorithms for Large Mixed Packing and Covering

Integer Programs

Charles et al. [2010] consider the following problem: given a bipartite graph G = (L,R,E) where
m = |L| ≫ |R| = n, does there exist an assignment M : L → R with (j,M(j)) ∈ E for all j ∈ L,
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and such that for every vertex i ∈ R, |M−1(i)| ≥ Bi for some given values Bi. Since m is very
large classic matching algorithms are not useful. Charles et al. [2010] gave an algorithm that runs
in time linear6 in the number of edges of an induced subgraph obtained by taking a random sample

from L of size O
(

m logn
mini{Bi}ǫ2

)
, for a gap-version of the problem with gap ǫ. Such an algorithm is

very useful in a variety of applications involving ad assignment for online advertising, particularly
when mini{Bi} is large.

We consider a generalization of the above problem inspired by the resource allocation framework.
In fact, we consider the following mixed covering-packing integer program. Suppose that there are
n packing constraints, one for each i ∈ [n] of the form

∑m
j=1 ai,j ·xj ≤ ci and n covering constraints,

one for each i ∈ [n] of the form
∑m

j=1wi,j · xj ≥ di. Each xj (with coordinates xj,k) is constrained

to be in {0, 1}K and satisfy
∑

k xj,k ≤ 1. The ai,j’s and wi,j’s (and hence xj ’s) are non-negative
vectors of length K with coordinates aijk and wijk. Does there exist a feasible solution to this
system of constraints? The gap-version of this problem is as follows. Distinguish between the two
cases, with a high probability, say 1− δ:
• YES: There is a feasible solution.

• NO: There is no feasible solution even if all the ci’s are multiplied by 1 + ǫ and all the di’s
are multiplied by 1− ǫ.

We note that solving (offline) an optimization problem in the resource allocation framework can be
reduced to the above problem through a binary search on the objective function value.

Let γ = max

({
aijk
ci

}
i,j,k
∪
{
wijk

di

}
i,j,k

)
.

Theorem 2.5 For any ǫ > 0, assuming γ = O( ǫ2

log(n/ǫ)), Algorithm 5 solves the gap version of the

mixed covering-packing integer program with Θ(γm log(n/δ)
ǫ2

) oracle calls.

2.5 Chernoff Bounds

We present here the form of Chernoff bounds that we use throughout the rest of this paper. Let
X =

∑
iXi, where Xi ∈ [0, B] are i.i.d random variables. Let E[X] = µ. Then, for all ǫ > 0,

Pr[X < µ(1− ǫ)] < exp

(−ǫ2µ
2B

)
.

Consequently, for all δ > 0, with probability at least 1− δ,
X − µ ≥ −

√
2µB ln(1/δ).

Similarly, for all ǫ ∈ [0, 2e − 1],

Pr[X > µ(1 + ǫ)] < exp

(−ǫ2µ
4B

)
.

Consequently, for all δ > exp(−(2e−1)2µ
4B ), with probability at least 1− δ,

X − µ ≤
√

4µB ln(1/δ).

For ǫ > 2e− 1,
Pr[X > µ(1 + ǫ)] < 2−(1+ǫ)µ/B .

6In fact, the algorithm makes a single pass through this graph.
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3 Near-Optimal Prior Robust Online Algorithms for Resource Al-

location

For convenience, we begin by rewriting the LP relaxation of a random instance R of the online
resource allocation problem and the expected instance (already defined in Section 2.2 as LP (1)).

LPs for random and expected instances (3)

Random Instance R Expected Instance E

Maximize λ s.t. Maximize λ s.t.

∀ i ∈ A,
∑

j∈R,k∈Kwijkxj,k ≥ λ ∀ i ∈ A,
∑

j∈J ,k∈Kmpjwijkxj,k ≥ λ

∀ i ∈ A,∑j∈R,k∈K aijkxj,k ≤ ci ∀ i ∈ A,∑j∈J ,k∈Kmpjaijkxj,k ≤ ci

∀ j ∈ R,∑k∈K xj,k ≤ 1 ∀ j ∈ J ,∑k∈K xj,k ≤ 1

∀ j ∈ R, k ∈ K, xj,k ≥ 0. ∀ j ∈ J , k ∈ K, xj,k ≥ 0.

We showed in Lemma 2.1 that WE ≥ E[WR]. All our approximation guarantees are w.r.t. the
stronger benchmark of WE which is the optimal fractional solution of the expected instance. We
would like to remind the reader that while the benchmark is allowed to be fractional, the online
algorithm of course is allowed to find only integral solutions.

We divide the rest of this section into four subsections. The subsections progressively weaken
the assumptions on knowledge of the distribution of the input.

1. In section 3.1 we develop a hypothetical algorithm called Hypothetical-Oblivious-Conservative,
denoted by P̃ , that achieves an objective value of WE(1 − 2ǫ) w.p. at least 1 − ǫ assuming

γ = O
(

ǫ2

log(n/ǫ)

)
. Theorem 3.1 is the main result of this section. The algorithm is hypothet-

ical because it assumes knowledge of the entire distribution, where as the goal of this paper
is to develop algorithms that work without distributional knowledge.

2. In section 3.2 we design an algorithm for the online resource allocation problem that achieves
the same guarantee as the Hypothetical-Oblivious-Conservative algorithm P̃ , without any
knowledge of the distribution except for a single parameter of the distribution — the value
of WE. Theorem 3.2 is the main result of this section.

3. In section 3.3 we design an algorithm for the online resource allocation problem that achieves
an objective value of at least WE(1 − O(ǫ)) w.p. at least 1 − ǫ assuming γ = O( ǫ2

log(n/ǫ))
without any knowledge at all about the distribution. The algorithm in Section 3.2 serves as
a good warm-up for the algorithm in this section. Theorem 2.2 is the main result of this
section.
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4. In section 3.5 we relax the assumption that the distribution from which the requests are
drawn is i.i.d.; we give three different generalizations of the i.i.d. model with strong revenue
guarantees as in the i.i.d. model.

3.1 Completely Known Distributions

When the distributions are completely known, we first compute the expected instance and solve
its LP relaxation (LP (3)) optimally. Let x∗jk denote the optimal solution to the expected LP (3).
The Hypothetical-Oblivious algorithm P works as follows: when request j arrives, it serves it using
option k with probability x∗jk. Let X

∗
i,t denote the amount of resource i consumed in step t for the

algorithm P . Thus the total amount of resource i consumed over the entire m steps of algorithm
P is

∑m
t=1X

∗
i,t. Note that E[X∗

i,t] =
∑

j,k pjaijkx
∗
jk ≤ ci

m . Thus, we can bound the probability that
Pr[
∑m

t=1X
∗
i,t ≥ ci(1+ ǫ)] using Chernoff bounds. We explicitly derive this bound here since we use

this derivation in designing the algorithm in Section 3.2.
Since we cannot exceed ci amount of resource consumption by any non-zero amount, we need

to be more conservative than P . So we analyze the following algorithm P̃ , called Hypothetical-
Oblivious-Conservative, instead of P : when request j arrives, it serves it using option k with

probability
x∗jk
1+ǫ , where ǫ is an error parameter of algorithm designer’s choice. Let X̃i,t denote the

amount of resource i consumed in step t for the algorithm P̃ . Note that E[X̃i,t] ≤ ci
(1+ǫ)m . Thus,

even with a (1 + ǫ) deviation using Chernoff bounds, the resource consumption is at most ci.
We begin by noting that X̃i,t ≤ γci by the definition of γ. For all ǫ ∈ [0, 1] we have,

Pr

[ m∑

t=1

X̃i,t ≥
ci

1 + ǫ
(1 + ǫ)

]
= Pr

[∑m
t=1 X̃i,t

γci
≥ 1

γ

]

= Pr

[
(1 + ǫ)

∑m
t=1 X̃i,t
γci ≥ (1 + ǫ)

1
γ

]

≤ E

[
(1 + ǫ)

∑m
t=1 X̃i,t
γci

]
/(1 + ǫ)

1
γ

= E

[ m∏

t=1

(1 + ǫ)
X̃i,t
γci

]
/(1 + ǫ)

1
γ

≤ E

[ m∏

t=1

(
1 + ǫ

X̃i,t

γci

)]
/(1 + ǫ)

1
γ

≤
[ m∏

t=1

(
1 +

ǫ

(1 + ǫ)γm

)]
/(1 + ǫ)

1
γ

≤
(

eǫ

(1 + ǫ)1+ǫ

) 1
γ(1+ǫ)

≤ e
−ǫ2

4γ
1

1+ǫ

≤ ǫ

2n

where the first inequality follows from Markov’s inequality, the second from convexity of exponential
function together with with the fact that X̃i,t ≤ γci, the third from E[X̃i,t] ≤ ci

(1+ǫ)m , and the fourth
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from 1+x ≤ ex, the fifth is standard for all ǫ ∈ [0, 1], and the sixth follows from γ = O(ǫ2/ log(n/ǫ))
for an appropriate choice of constant inside the big-oh coupled with n ≥ 2.

Remark 3.1 At first sight this bound might seem anomalous — the bound ǫ
2n is increasing in ǫ,

i.e., the probability of a smaller deviation is smaller than the probability of a larger deviation! The
reason for this anomaly is that γ is related to ǫ as γ = O( ǫ2

log(n/ǫ)), and smaller the γ, the better

revenue we can get (i.e., more granular requests leads to lesser wastage from errors, and hence more
revenue). Thus a small deviation for small γ has a smaller probability than a larger deviation for
a larger γ.

Similarly let Ỹi,t denote the revenue obtained from type i profit in step t for the algorithm P̃ .

Note that E[Ỹi,t] =
∑

j,k pjwijk
x∗jk
1+ǫ ≥

WE

(1+ǫ)m . By the definition of γ, we have Ỹi,t ≤ γWE. For all

ǫ ∈ [0, 1] we have,

Pr

[ m∑

t=1

Ỹi,t ≤
WE

1 + ǫ
(1− ǫ)

]
= Pr

[∑m
t=1 Ỹi,t
γWE

≤ 1− ǫ
γ(1 + ǫ)

]

= Pr

[
(1− ǫ)

∑m
t=1 Ỹi,t
γWE ≥ (1− ǫ)

1−ǫ
γ(1+ǫ)

]

≤ E

[
(1− ǫ)

∑m
t=1 Ỹi,t
γWE

]
/(1− ǫ)

1−ǫ
γ(1+ǫ)

= E

[ m∏

t=1

(1− ǫ)
Ỹi,t
γWE

]
/(1 − ǫ)

1−ǫ
γ(1+ǫ)

≤ E

[ m∏

t=1

(
1− ǫ Ỹi,t

γWE

)]
/(1− ǫ)

1−ǫ
γ(1+ǫ)

≤
[ m∏

t=1

(
1− ǫ

(1 + ǫ)γm

)]
/(1 − ǫ)

1−ǫ
γ(1+ǫ)

≤
(

e−ǫ

(1− ǫ)1−ǫ
) 1

γ(1+ǫ)

≤ e
−ǫ2

2γ
1

1+ǫ

≤ ǫ

2n

Thus, we have all the capacity constraints satisfied, (i.e.,
∑

i X̃i,t ≤ ci), and all resource profits

are at least WE

1+ǫ(1−ǫ) (i.e.,
∑

i Ỹi,t ≥ WE

1+ǫ(1−ǫ) ≥WE(1−2ǫ)), with probability at least 1−2n·ǫ/2n =
1− ǫ. This proves the following theorem:

Theorem 3.1 For any ǫ > 0, the Hypothetical-Oblivious-Conservative algorithm P̃ achieves an
objective value of WE(1 − 2ǫ) for the online resource allocation problem with probability at least

1− ǫ, assuming γ = O( ǫ2

log(n/ǫ)).

14



3.2 Unknown Distribution, Known WE

We now design an algorithm7 A without knowledge of the distribution, but just knowing a single
parameter WE. Let A

sP̃m−s be a hybrid algorithm that runs A for the first s steps and P̃ for the
remaining m − s steps. Let ǫ ∈ [0, 1] be the error parameter, which is the algorithm designer’s
choice. Call the algorithm a failure if at least one of the following fails:

1. For all i,
∑m

t=1X
A
i,t ≤ ci.

2. For all i,
∑m

t=1 Y
A
i,t ≥WE(1− 2ǫ).

For any algorithm A, let the amount of resource i consumed in the t-th step be denoted by XA
i,t

and the amount of resource i profit be denoted by Y A
i,t . Let Ss

(
XA
i

)
=
∑s

t=1X
A
i,t denote the amount

of resource i consumed in the first s steps, and let Ss
(
Y A
i

)
=
∑s

t=1 Y
A
i,t denote the resource i profit

in the first s steps. Similar to the derivation in Section 3.1 which bounded the failure probability
of P̃ , we can bound the failure probability of any algorithm A, i.e.,

Pr

[ m∑

t=1

XA
i,t ≥

ci
1 + ǫ

(1 + ǫ)

]
= Pr

[∑m
t=1X

A
i,t

γci
≥ 1

γ

]

= Pr

[
(1 + ǫ)

∑m
t=1 XA

i,t
γci ≥ (1 + ǫ)

1
γ

]

≤ E

[
(1 + ǫ)

∑m
t=1 XA

i,t
γci

]
/(1 + ǫ)

1
γ

= E

[ m∏

t=1

(1 + ǫ)
XA

i,t
γci

]
/(1 + ǫ)

1
γ (4)

Pr

[ m∑

t=1

Y A
i,t ≤

WE

1 + ǫ
(1− ǫ)

]
= Pr

[∑m
t=1 Y

A
i,t

γWE
≤ 1− ǫ
γ(1 + ǫ)

]

= Pr

[
(1− ǫ)

∑m
t=1 Y A

i,t
γWE ≥ (1− ǫ)

1−ǫ
γ(1+ǫ)

]

≤ E

[
(1− ǫ)

∑m
t=1 Y A

i,t
γWE

]
/(1− ǫ)

1−ǫ
γ(1+ǫ)

= E

[ m∏

t=1

(1− ǫ)
Y A
i,t

γWE

]
/(1 − ǫ)

1−ǫ
γ(1+ǫ) (5)

In Section 3.1 our algorithm A was P̃

(
and therefore we can use E[X̃i,t] ≤ ci

(1+ǫ)m and E[Ỹi,t] ≥

WE

(1+ǫ)m

)
, the total failure probability which is the sum of (4) and (5) for all the i’s would have been

7Note that the notation A that we use for the set of advertisers/resources is different from the non-calligraphic A
that we use for an algorithm. Also, it is immediate from the context which one we are referring to.
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n ·
[
ǫ
2n + ǫ

2n

]
= ǫ. The goal is to design an algorithm A for stage r that, unlike P , does not know

the distribution and knows just WE , but obtains the same ǫ failure probability. That is we want
to show that the sum of (4) and (5) over all i’s is at most ǫ:

∑

i

E

[∏m
t=1 (1 + ǫ)

XA
i,t

γci

]

(1 + ǫ)
1
γ

+
∑

i

E

[∏m
t=1 (1− ǫ)

Y A
i,t

γWE

]

(1− ǫ)
1−ǫ

γ(1+ǫ)

≤ ǫ

For the algorithm AsP̃m−s, the above quantity can be rewritten as

∑

i

E

[
(1 + ǫ)

Ss(XA
i )

γci

∏m
t=s+1 (1 + ǫ)

X̃i,t
γci

]

(1 + ǫ)
1
γ

+
∑

i

E

[
(1− ǫ)

Ss(Y A
i )

γWE

∏m
t=s+1 (1− ǫ)

Ỹi,t
γWE

]

(1− ǫ)
1−ǫ

γ(1+ǫ)

,

which, by using (1 + ǫ)x ≤ 1 + ǫx for 0 ≤ x ≤ 1, is in turn upper bounded by

∑

i

E

[
(1 + ǫ)

Ss(XA
i )

γci

∏m
t=s+1

(
1 + ǫ

X̃i,t

γci

)]

(1 + ǫ)
1
γ

+
∑

i

E

[
(1− ǫ)

Ss(Y A
i )

γWE

∏m
t=s+1

(
1− ǫ Ỹi,tγWE

)]

(1− ǫ)
1−ǫ

γ(1+ǫ)

.

Since for all t, the random variables X̃i,t, X
A
i,t, Ỹi,t and Y

A
i,t are all independent, and E[X̃i,t] ≤ ci

(1+ǫ)m

and E[Ỹi,t] ≥ WE

(1+ǫ)m , the above is in turn upper bounded by

∑

i

E

[
(1 + ǫ)

Ss(XA
i )

γci

(
1 + ǫ

(1+ǫ)γm

)m−s
]

(1 + ǫ)
1
γ

+
∑

i

E

[
(1− ǫ)

Ss(Y A
i )

γWE

(
1− ǫ

(1+ǫ)γm

)m−s
]

(1− ǫ)
1−ǫ

γ(1+ǫ)

. (6)

Let F [AsP̃m−s] denote the quantity in (6), which is an upper bound on failure probability of
the hybrid algorithm AsP̃m−s. By Theorem 3.1, we know that F [P̃m] ≤ ǫ. We now prove that for
all s ∈ {0, 1, . . . ,m−1}, F [As+1P̃m−s−1] ≤ F [AsP̃m−s], thus proving that F [Am] ≤ ǫ, i.e., running
the algorithm A for all the m steps results in a failure with probability at most ǫ. To design such
an A we closely follow the derivation of Chernoff bounds, which is what established that F [P̃m] ≤ ǫ
in Theorem 3.1. However the design process will reveal that unlike algorithm P̃ which needs the
entire distribution, just the knowledge of WE will do for bounding the failure probability by ǫ.

Assuming that for all s < p, the algorithm A has been defined for the first s+1 steps in such a
way that F [As+1P̃m−s−1] ≤ F [AsP̃m−s], we now define A for the p + 1-th step in a way that will
ensure that F [Ap+1P̃m−p−1] ≤ F [ApP̃m−p]. We have

F [Ap+1P̃m−p−1] =
∑

i

E

[
(1 + ǫ)

Sp+1(XA
i )

γci

(
1 + ǫ

(1+ǫ)γm

)m−p−1
]

(1 + ǫ)
1
γ

+

∑

i

E

[
(1− ǫ)

Sp+1(Y A
i )

γWE

(
1− ǫ

(1+ǫ)γm

)m−p−1
]

(1− ǫ)
1−ǫ

γ(1+ǫ)
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≤
∑

i

E

[
(1 + ǫ)

Sp(XA
i )

γci

(
1 + ǫ

XA
i,p+1

γci

)(
1 + ǫ

(1+ǫ)γm

)m−p−1
]

(1 + ǫ)
1
γ

+

∑

i

E

[
(1− ǫ)

Sp(Y A
i )

γWE

(
1− ǫY

A
i,p+1

γWE

)(
1− ǫ

(1+ǫ)γm

)m−p−1
]

(1− ǫ)
1−ǫ

γ(1+ǫ)

(7)

Define

φi,s =
1

ci

[(1 + ǫ)
Ss(XA

i )
γci

(
1 + ǫ

(1+ǫ)γm

)m−s−1

(1 + ǫ)
1
γ

]

ψi,s =
1

WE

[(1− ǫ)
Ss(Y A

i )
γWE

(
1− ǫ

(1+ǫ)γm

)m−s−1

(1− ǫ)
1−ǫ

γ(1+ǫ)

]

Define the step p+ 1 of algorithm A as picking the following option k∗ for request j, where:

k∗ = argmin
k

{
∑

i

aijk · φi,p −
∑

i

wijk · ψi,p
}
. (8)

For the sake of clarity, the entire algorithm is presented in Algorithm 1.

Algorithm 1 : Algorithm for stochastic online resource allocation with unknown distribution,
known WE

Input: Capacities ci for i ∈ [n], the total number of requests m, the values of γ and WE , an error
parameter ǫ > 0.
Output: An online allocation of resources to requests

1: Initialize φi,0 =
1
ci

[(
1+ ǫ

(1+ǫ)γm

)m−1

(1+ǫ)
1
γ

]
, and, ψi,0 =

1
WE

[(
1− ǫ

(1+ǫ)γm

)m−1

(1−ǫ)
1−ǫ

γ(1+ǫ)

]

2: for s = 1 to m do

3: If the incoming request is j, use the following option k∗:

k∗ = arg min
k∈K∪{⊥}

{
∑

i

aijk · φi,s−1 −
∑

i

wijk · ψi,s−1

}
.

4: XA
i,s = aijk∗, Y

A
i,s = wijk∗

5: Update φi,s = φi,s−1 ·


 (1+ǫ)

XA
i,s

γci

1+ ǫ
(1+ǫ)γm


, and, ψi,s = ψi,s−1 ·


 (1−ǫ)

Y A
i,s

γWE

1− ǫ
(1+ǫ)γm




6: end for

By the definition of step p + 1 of algorithm A given in equation (8), it follows that for any
two algorithms with the first p steps being identical, and the last m − p − 1 steps following the
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Hypothetical-Oblivious-Conservative algorithm P̃ , algorithm A’s p + 1-th step is the one that
minimizes expression (7). In particular it follows that expression (7) is upper bounded by the same
expression where the p + 1-the step is according to X̃i,p+1 and Ỹi,p+1, i.e., we replace XA

i,p+1 by

X̃i,p+1 and Y A
i,p+1 by Ỹi,p+1. Therefore we have

F [Ap+1P̃m−p−1] ≤
∑

i

E

[
(1 + ǫ)

Sp(XA
i )

γci

(
1 + ǫ

X̃i,p+1

γci

)(
1 + ǫ

(1+ǫ)γm

)m−p−1
]

(1 + ǫ)
1
γ

+

∑

i

E

[
(1− ǫ)

Sp(Y A
i )

γWE

(
1− ǫ Ỹi,p+1

γWE

)(
1− ǫ

(1+ǫ)γm

)m−p−1
]

(1− ǫ)
1−ǫ

γ(1+ǫ)

≤
∑

i

E

[
(1 + ǫ)

Sp(XA
i )

γci

(
1 + ǫ

(1+ǫ)γm

)(
1 + ǫ

(1+ǫ)γm

)m−p−1
]

(1 + ǫ)
1
γ

+

∑

i

E

[
(1− ǫ)

Sp(Y A
i )

γWE

(
1− ǫ

(1+ǫ)γWE

)(
1− ǫ

(1+ǫ)γm

)m−p−1
]

(1− ǫ)
1−ǫ

γ(1+ǫ)

= F [ApP̃m−p]

This completes the proof of the following theorem.

Theorem 3.2 For any ǫ > 0, Algorithm 1 achieves an objective value of WE(1−2ǫ) for the online

resource allocation problem with probability at least 1− ǫ, assuming γ = O( ǫ2

log(n/ǫ)). The algorithm
A does not require any knowledge of the distribution except for the single parameter WE.

3.3 Completely Unknown Distribution

We first give a high-level overview of this section before going into the details. In this section, we
design an algorithm A without any knowledge of the distribution at all. The algorithm is similar
in spirit to the one in Section 3.2 except that since we do not have knowledge of WE , we divide the
algorithm into many stages. In each stage, we run an algorithm similar to the one in Section 3.2
except that instead of WE, we use an estimate of WE that gets increasingly accurate with each
successive stage.

More formally, the algorithm runs in l stages {0, 1, . . . , l− 1}, where l is such that ǫ2l = 1, and
ǫ ∈ [1/m, 1/2] (we need ǫ ≤ 1/2 so that l is at least 1) is the error parameter of algorithm designer’s
choice. Further we need m ≥ 1

ǫ so that ǫm ≥ 1. We assume that ǫm is an integer for clarity of
exposition. Stage r handles tr = ǫm2r requests for r ∈ {0, . . . l− 1}. The first ǫm requests are used
just for future estimation, and none of them are served. For convenience we sometimes call this
pre-zero stage as stage −1, and let t−1 = ǫm. Stage r ≥ 0 serves t ∈ [tr + 1, tr+1]. Note that in
the optimal solution to the expected instance of stage r, no resource i gets consumed by more than
trci
m , and every resource i gets a profit of trWE

m , i.e., consumption and profit have been scaled down
by a factor of tr

m . As in the previous sections, with a high probability, we can only reach close to
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trWE

m . Further, since stage r consists of only tr requests, which is much smaller than m for small r,

it follows that for small r, our error in how close to we get to trWE

m will be higher. Indeed, instead
of having the same error parameter of ǫ in every stage, we set stage-specific error parameters which
get progressively smaller and become close to ǫ in the final stages. These parameters are chosen
such that the overall error is still O(ǫ) because the later stages having more requests matter more
than the former. There are two sources of error/failure which we detail below.

1. The first source of failure stems from not knowing WE. Instead we estimate a quantity Zr
which is an approximation we use for WE in stage r, and the approximation gets better as r
increases. We use Zr to set a profit target of trZr

m for stage r. Since Zr could be much smaller
than WE our algorithm could become very suboptimal. We prove that with a probability of
at least 1− 2δ we have WE(1− 3ǫx,r−1) ≤ Zr ≤WE (see next for what ǫx,r is), where δ =

ǫ
3l .

Thus for all the l stages, these bounds are violated with probability at most 2lδ = 2ǫ/3.

2. The second source of failure stems from achieving this profit target in every stage. We set
error parameters ǫx,r and ǫy,r such that for every i stage r consumes at most trci

m (1 + ǫx,r)

amount of resource i, and for every i we get a profit of at least trZr

m (1− ǫy,r), with probability

at least 1− δ. Thus the overall failure probability, as regards falling short of the target trZr

m
by more than ǫy,r and exceeding trci

m by more than ǫx,r, for all the l stages together is at most
δ · l = ǫ/3.

Thus summing over the failure probabilities we get ǫ/3+2ǫ/3 = ǫ. We have that with probability
at least 1 − ǫ, for every i, the total consumption of resource i is at most

∑l−1
r=0

trci
m (1 + ǫx,r), and

total profit from resource i is at least
∑l−1

r=0
trWE

m (1− 3ǫx,r−1)(1− ǫy,r). We set ǫx,r =
√

4γm ln(2n/δ)
tr

for r ∈ {−1, 0, 1, . . . , l − 1}, and ǫy,r =
√

2wmaxm ln(2n/δ)
trZr

for r ∈ {0, 1, . . . , l − 1} (we define ǫx,r
starting from r = −1, with t−1 = ǫm, just for technical convenience). From this it follows that∑l−1

r=0
trci
m (1 + ǫx,r) ≤ ci and

∑l−1
r=0

trWE

m (1 − 3ǫx,r−1)(1 − ǫy,r) ≥ WE(1 − O(ǫ)), assuming γ =

O( ǫ2

log(n/ǫ)). The algorithm is described in Algorithm 2. This completes the high-level overview
of the proof. All that is left to prove is the points 1 and 2 above, upon which we would have
proved our main theorem, namely, Theorem 2.2, which we recall below. Theorem 2.2. For any
ǫ ≥ 1/m, Algorithm 2 achieves an objective value of WE(1−O(ǫ)) for the online resource allocation

problem with probability at least 1 − ǫ, assuming γ = O( ǫ2

log(n/ǫ)). Algorithm 2 does not require
any knowledge of the distribution at all.

Detailed Description and Proof We begin with the first point in our high-level overview
above, namely by describing how Zr is estimated and proving its concentration around WE. After
stage r (including stage −1), the algorithm computes the optimal fractional objective value er
to the following instance Ir: the instance has the tr requests of stage r, and the capacity of
resource i is capped at trci

m . Using the optimal fractional objective value er of this instance, we
set Zr+1 = er

1+ǫx,r
· mtr . The first task now is to prove that Zr+1 as estimated above is concentrated

enough around WE . This basically requires proving concentration of er.

Lemma 3.3 With a probability at least 1− 2δ, we have

trWE

m
(1− 2ǫx,r) ≤ er ≤

trWE

m
(1 + ǫx,r).
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Algorithm 2 : Algorithm for stochastic online resource allocation with unknown distribution

Input: Capacities ci for i ∈ [n], the total number of requests m, the value of γ, an error parameter
ǫ > 1/m.
Output: An online allocation of resources to requests

1: Set l = log(1/ǫ)
2: Initialize t−1 : t−1 ← ǫm
3: for r = 0 to l − 1 do

4: Compute er−1: the optimal solution to the tr−1 requests of stage r−1 with capacities capped
at tr−1ci

m .
5: Set Zr =

er−1

1+ǫx,r−1
· m
tr−1

6: Set ǫx,r =
√

4γm ln(2n/δ)
tr

, ǫy,r =
√

2wmaxm ln(2n/δ)
trZr

7: Set φri,0 =
ǫx,r
γci

[ (
1+

ǫx,r
mγ

)tr−1

(1+ǫx,r)
(1+ǫx,r)

tr
mγ

]
, and, ψri,0 =

ǫy,r
wmax

[ (
1−

ǫy,r
mγ

)tr−1

(1−ǫy,r)
(1−ǫy,r)

trZr
mwmax

]

8: for s = 1 to tr do
9: If the incoming request is j, use the following option k∗:

k∗ = arg min
k∈K∪{⊥}

{
∑

i

aijk · φri,s−1 −
∑

i

wijk · ψri,s−1

}
.

10: XA
i,tr+s

= aijk∗, Y
A
i,tr+s

= wijk∗

11: Update φri,s = φri,s−1 ·


 (1+ǫx,r)

XA
i,tr+s
γci

1+
ǫx,r
mγ


, and, ψri,s = ψri,s−1 ·


 (1−ǫy,r)

Y A
i,tr+s
wmax

1−
ǫy,r
mγ




12: end for

13: end for

Proof: We prove that the lower and upper bound hold with probability 1 − δ each, thus proving
the lemma.

We begin with the lower bound on er. Note that the expected instance of the instance Ir has
the same optimal solution x∗jk as the optimal solution to the full expected instance (i.e., the one

without scaling down by tr
m ). Now consider the algorithm P̃ (r), which is the same as the P̃ defined

in Section 3.1 except that ǫ is replaced by ǫx,r, i.e., it serves request j with option k with probability
x∗jk

1+ǫx,r
. When P̃ (r) is run on instance Ir, with a probability at least 1− δ

2n , at most trci
m amount of

resource i is consumed, and with probability at least 1− δ
2n , at least

trWE

m
1−ǫx,r
1+ǫx,r

resource i profit is

obtained. Thus with a probability at least 1−2n · δ2n = 1− δ, P̃ (r) achieves an objective value of at

least trWE

m (1− 2ǫx,r). Therefore the optimal objective value er will also be at least trWE

m (1− 2ǫx,r).
To prove the upper bound, we consider the primal and dual LPs that define er in LP 9 and the

primal and dual LPs defining the expected instance in LP (10). In the latter, for convenience, we
use mpjβj as the dual multiplier instead of just βj .

Note that the set of constraints in the dual of LP (10) is a superset of the set of constraints in
the dual of LP (9), making any feasible solution to dual of LP (10) also feasible to dual of LP (9).
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Primal and dual LPs defining er (9)

Primal defining er Dual defining er

Maximize λ s.t. Minimize
∑

j∈Ir
βj +

tr
m

∑
i αici s.t.

∀ i, ∑j∈Ir,k
wijkxj,k ≥ λ ∀ j ∈ Ir, k, βj +

∑
i(αiaijk − ρiwijk) ≥ 0

∀ i, ∑j∈Ir,k
aijkxj,k ≤ trci

m

∑
i ρi ≥ 1

∀ j ∈ Ir,
∑

k xj,k ≤ 1 ∀ i, ρi ≥ 0, αi ≥ 0

∀ j ∈ Ir, k, xj,k ≥ 0. ∀ j ∈ Ir, βj ≥ 0

Primal and dual LPs defining the expected instance (10)

Primal for the expected instance Dual for the expected instance

Maximize λ s.t. Minimize
∑

jmpjβj +
∑

i αici s.t.

∀ i, ∑j,kmpjwijkxj,k ≥ λ ∀ j, k, mpj
(
βj +

∑
i(αiaijk − ρiwijk)

)
≥ 0

∀ i, ∑j,kmpjaijkxj,k ≤ ci
∑

i ρi ≥ 1

∀ j, ∑k xj,k ≤ 1 ∀ i, ρi ≥ 0, αi ≥ 0

∀ j, k, xj,k ≥ 0. ∀ j, βj ≥ 0

In particular, the optimal solution to dual of LP (10) given by β∗j ’s, α
∗
i ’s and ρ∗i ’s is feasible for

dual of LP (9). Hence the value of er is upper bounded the objective of dual of LP (9) at β∗j ’s, α
∗
i ’s

and ρ∗i ’s. That is we have

er ≤
∑

j∈Ir

β∗j +
tr
m

∑

i

α∗
i ci.

We now upper bound the RHS by applying Chernoff bounds on
∑

j∈Ir
β∗j . Since the dual LP in

LP (10) is a minimization LP, the constraints there imply that β∗j ≤ wmax. Applying Chernoff
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bounds we have,

er ≤ tr
∑

j

pjβ
∗
j +

√
4tr(

∑

j

pjβ∗j )wmax ln(1/δ) +
tr
m

∑

i

α∗
i ci

≤ trWE

m
+
trWE

m
ǫx,r

where the first inequality holds with probability at least 1 − δ and the second inequality uses the
fact the optimal value of the expected instance (dual of LP (10)) is WE. This proves the required
upper bound on er that er ≤ trWE

m (1 + ǫx,r) with probability at least 1− δ.
Going back to our application of Chernoff bounds above, in order to apply it in the form above,

we require that the multiplicative deviation from mean

√
4wmax ln(1/δ)
tr
∑

j pjβ
∗
j
∈ [0, 2e − 1]. If

∑
j pjβ

∗
j ≥

ǫWE

m , then this requirement would follow. Suppose on the other hand that
∑

j pjβ
∗
j <

ǫWE

m . Since

we are happy if the excess over mean is at most trWE

m ǫx,r, let us look for a multiplicative error of
trWEǫx,r

m

tr
∑

j pjβ
∗
j
. Based on the fact that

∑
j pjβ

∗
j <

ǫWE

m and that ǫx,r > ǫ for all r, the multiplicative

error can be seen to be at least a constant, and can be made larger than 2e − 1 depending on the
constant inside the big O of γ. We now use the version of Chernoff bounds for multiplicative error
larger than 2e − 1, which gives us that a deviation of trWE

m ǫx,r occurs with a probability at most

2
−

(
1+

trWEǫx,r
m

tr
∑

j pjβ
∗
j

)
tr

∑
j pjβ

∗
j

wmax
, where the division by wmax is because of the fact that β∗j ≤ wmax. Noting

that wmax ≤ γWE, we get that this probability is at most δ/n which is at most δ.

Lemma 3.3 implies that WE(1 − 3ǫx,r−1) ≤ Zr ≤ WE, ∀r ∈ {0, 1, . . . , l − 1}. The rest of the
proof is similar to that of Section 3.2, and is focused on the second point in the high-level overview
we gave in the beginning of this section 3.3. In Section 3.2 we knew WE and obtained aWE(1−2ǫ)
approximation with no resource i consumed beyond ci with probability 1− ǫ. Here, instead of WE

we have an approximation for WE in the form of Zr which gets increasingly accurate as r increases.
We set a target of trZr

m for stage r, and show that with a probability of at least 1− δ we get a profit

of trZr

m (1− ǫy,r) from every resource i and no resource i consumed beyond trci
m (1 + ǫx,r) capacity.

8

As in Section 3.2, call stage r of algorithm A a failure if at least one of the following fails:

1. For all i,
∑tr+1

t=tr+1X
A
i,t ≤ trci

m (1 + ǫx,r).

2. For all i,
∑tr+1

t=tr+1 Y
A
i,t ≥ trZr

m (1− ǫy,r).

Let Srs (Xi) =
∑tr+s

t=tr+1Xi,t denote the amount of resource i consumed in the first s steps of

stage r, and let Srs (Yi) =
∑tr+s

t=tr+1 Yi,t denote the resource i profit in the first s steps of stage r.

Pr

[ tr+1∑

t=tr+1

XA
i,t ≥

trci
m

(1 + ǫx,r)

]
= Pr

[∑tr+1

t=tr+1X
A
i,t

γci
≥ tr
mγ

(1 + ǫx,r)

]

8Note that we are allowed to consume a bit beyond trci
m

because our goal is just that over all we don’t consume
beyond ci, and not that for every stage we respect the trci

m
constraint. In spite of this (1 + ǫx,r) excess consumption

in all stages, since stage −1 consumes nothing at all, we will see that no excess consumption occurs at the end.
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= Pr

[
(1 + ǫx,r)

∑tr+1
t=tr+1 XA

i,t

γci ≥ (1 + ǫx,r)
(1+ǫx,r)

tr
mγ

]

≤ E

[
(1 + ǫx,r)

∑tr+1
t=tr+1 XA

i,t

γci

]
/(1 + ǫx,r)

(1+ǫx,r)
tr
mγ

=

E

[∏tr+1

t=tr+1(1 + ǫx,r)
XA

i,t
γci

]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

(11)

Pr

[ tr+1∑

t=tr+1

Y A
i,t ≤

trZr
m

(1− ǫy,r)
]
= Pr

[∑tr+1

t=tr+1 Y
A
i,t

wmax
≤ trZr
mwmax

(1− ǫy,r)
]

= Pr

[
(1− ǫy,r)

∑tr+1
t=tr+1

Y A
i,t

wmax ≥ (1− ǫy,r)(1−ǫy,r)
trZr

mwmax

]

≤ E

[
(1− ǫy,r)

∑tr+1
t=tr+1

Y A
i,t

wmax

]
/(1− ǫy,r)(1−ǫy,r)

trZr
mwmax

=

E

[∏tr+1

t=tr+1(1− ǫy,r)
Y A
i,t

wmax

]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

(12)

If our algorithm A was P

(
and therefore we can use E[X∗

i,t] ≤ ci
m and E[Y ∗

i,t] ≥ WE

m ≥ Zr

m

)
,

the total failure probability for each stage r which is the sum of (11) and (12) for all the i’s would

have been n ·
[
e

−ǫ2x,r
4γ

tr
m + e

−ǫ2y,r
2

trZr
mwmax

]
= n ·

[
δ
2n + δ

2n

]
= δ. The goal is to design an algorithm

A for stage r that, unlike P , does not know the distribution but also obtains the same δ failure
probability, just as we did in Section 3.2. That is we want to show that the sum of (11) and (12)
over all i’s is at most δ:

∑

i

E

[∏tr+1

t=tr+1(1 + ǫx,r)
XA

i,t
γci

]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+
∑

i

E

[∏tr+1

t=tr+1(1− ǫy,r)
Y A
i,t

wmax

]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

≤ δ.

For the algorithm AsP tr−s, the above quantity can be rewritten as

∑

i

E

[
(1 + ǫx,r)

Sr
s(XA

i )
γci

∏tr+1

t=tr+s+1 (1 + ǫx,r)
X∗

i,t
γci

]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+

∑

i

E

[
(1− ǫy,r)

Sr
s(Y A

i )
wmax

∏tr+1

t=tr+s+1 (1− ǫy,r)
Y ∗
i,t

wmax

]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax
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which, by using (1 + ǫ)x ≤ 1 + ǫx for 0 ≤ x ≤ 1, is in turn upper bounded by

∑

i

E

[
(1 + ǫx,r)

Sr
s(XA

i )
γci

∏tr+1

t=tr+s+1

(
1 + ǫx,r

X∗
i,t

γci

)]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+

∑

i

E

[
(1− ǫy,r)

Sr
s(Y A

i )
wmax

∏tr+1

t=tr+s+1

(
1− ǫy,r

Y ∗
i,t

wmax

)]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

.

Since for all t, the random variables X∗
i,t, X

A
i,t, Y

∗
i,t and Y

A
i,t are all independent, and E[X∗

i,t] ≤ ci
m ,

E[Y ∗
i,t] ≥ WE

m , and WE

wmax
≥ 1

γ , the above is in turn upper bounded by

∑

i

E

[
(1 + ǫx,r)

Sr
s(XA

i )
γci

(
1 +

ǫx,r
mγ

)tr−s ]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+
∑

i

E

[
(1− ǫy,r)

Sr
s(Y A

i )
wmax

(
1− ǫy,r

mγ

)tr−s ]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

. (13)

Let Fr[AsP tr−s] denote the quantity in (13), which is an upper bound on failure probability of
the hybrid algorithm AsP tr−s for stage r. We just showed that Fr[P tr ] ≤ δ. We now prove that
for all s ∈ {0, 1, . . . , tr − 1}, Fr[As+1P tr−s−1] ≤ Fr[AsP tr−s], thus proving that Fr[Atr ] ≤ δ, i.e.,
running the algorithm A for all the tr steps of stage r results in a failure with probability at most
δ.

Assuming that for all s < p, the algorithm A has been defined for the first s + 1 steps in such
a way that Fr[As+1P tr−s−1] ≤ Fr[AsP tr−s], we now define A for the p + 1-th step of stage r in a
way that will ensure that Fr[Ap+1P tr−p−1] ≤ Fr[ApP tr−p]. We have

Fr[Ap+1Pm−p−1] =
∑

i

E

[
(1 + ǫx,r)

Sr
p+1(XA

i )
γci

(
1 +

ǫx,r
mγ

)tr−p−1
]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+

∑

i

E

[
(1− ǫy,r)

Sr
p+1(Y A

i )
wmax

(
1− ǫy,r

mγ

)tr−p−1
]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

≤
∑

i

E

[
(1 + ǫx,r)

Sr
p(XA

i )
γci

(
1 + ǫx,r

XA
i,tr+p+1

γci

)(
1 +

ǫx,r
mγ

)tr−p−1
]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+

∑

i

E

[
(1− ǫy,r)

Sr
p(Y A

i )
wmax

(
1− ǫy,r

Y A
i,tr+p+1

wmax

)(
1− ǫy,r

mγ

)tr−p−1
]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

(14)
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Define

φri,s =
ǫx,r
γci

[
(1+ǫx,r)

Sr
s(XA

i )
γci

(
1+

ǫx,r
mγ

)tr−s−1

(1+ǫx,r)
(1+ǫx,r)

tr
mγ

]

ψri,s =
ǫy,r
wmax

[
(1−ǫy,r)

Sr
s(Y A

i )
wmax

(
1−

ǫy,r

mγ

)tr−s−1

(1−ǫy,r)
(1−ǫy,r)

trZr
mwmax

]

Define the step p+ 1 of algorithm A as picking the following option k∗ for request j:

k∗ = argmin
k

{
∑

i

aijk · φri,p −
∑

i

wijk · ψri,p

}
.

By the above definition of step p+ 1 of algorithm A (for stage r), it follows that for any two algo-
rithms with the first p steps being identical, and the last tr−p−1 steps following the Hypothetical-
Oblivious algorithm P , algorithm A’s p + 1-th step is the one that minimizes expression (14). In
particular it follows that expression (14) is upper bounded by the same expression where the p+1-
the step is according to X∗

i,tr+p+1 and Y
∗
i,tr+p+1, i.e., we replace X

A
i,tr+p+1 by X

∗
i,tr+p+1 and Y

A
i,tr+p+1

by Y ∗
i,tr+p+1. Therefore we have

Fr[Ap+1Pm−p−1] ≤
∑

i

E

[
(1 + ǫx,r)

Sr
p(XA

i )
γci

(
1 + ǫx,r

X∗
i,tr+p+1

γci

)(
1 +

ǫx,r
mγ

)tr−p−1
]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+

∑

i

E

[
(1− ǫy,r)

Sr
p(Y A

i )
wmax

(
1− ǫy,r

Y ∗
i,tr+p+1

wmax

)(
1− ǫy,r

mγ

)tr−p−1
]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

≤
∑

i

E

[
(1 + ǫx,r)

Sr
p(XA

i )
γci

(
1 +

ǫx,r
mγ

)(
1 +

ǫx,r
mγ

)tr−p−1
]

(1 + ǫx,r)
(1+ǫx,r)

tr
mγ

+

∑

i

E

[
(1− ǫy,r)

Sr
p(Y A

i )
wmax

(
1− ǫy,r

mγ

)(
1− ǫy,r

mγ

)tr−p−1
]

(1− ǫy,r)(1−ǫy,r)
trZr

mwmax

= Fr[ApP tr−p]

This completes the proof of Theorem 2.2.

3.4 Approximate Estimations

Our Algorithm 2 in Section 3.3 required periodically computing the optimal solution to an offline
instance. Similarly, our Algorithm 1 in Section 3.2 requires the value of WE to be given. Suppose
we could only approximately estimate these quantities, do our results carry through approximately?
That is, suppose the solution to the offline instance is guaranteed to be at least 1

α of the optimal, and
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the stand-in that we are given for WE is guaranteed to be at least 1
α of WE . Both our Theorem 2.2

and Theorem 3.2 go through with just the WE replaced by WE/α. Every step of the proof of the
exact version goes through in this approximate version, and so we skip the formal proof for this
statement.

3.5 Adversarial Stochastic Input

In this section, we relax the assumption that requests are drawn i.i.d. every time step. Namely,
the distribution for each time step need not be identical, but an adversary gets to decide which
distribution to sample a request from. The adversary could even use how the algorithm has per-
formed in the first t− 1 steps in picking the distribution for a given time step t. The relevance of
this model for the real world is that for settings like display ads, the distribution fluctuates over the
day. In general a day is divided into many chunks and within a chunk, the distribution is assumed
to remain i.i.d. This is exactly captured by this model.

We give algorithms that give guarantees against three different benchmarks in the three mod-
els below. The benchmarks get successively stronger, and hence the information sought by the
algorithm also increases successively.

3.5.1 ASI Model 1

In this model, the guarantee we give is against the worst distribution over all time steps picked
by the adversary. More formally, let WE(t) denote the optimal profit for the expected instance of
distribution of time step t. Our benchmark will beWE = mintWE(t). Given just the single number
WE, our Algorithm 1 in Section 3.2 will guarantee a revenue of WE(1 − 2ǫ) with a probability of

at least 1− ǫ assuming γ = O( ǫ2

log(n/ǫ)), just like the guarantee in Theorem 3.2.
Algorithm 1 works for this ASI model because, the proof did not use the similarity of the dis-

tributions beyond the fact that E[X∗
i,t|X∗

i,t′∀t′ < t] ≤ ci
m for all values of X∗

i,t′ , and E[Y ∗
i,t|Y ∗

i,t′∀t′ <
t] ≥ WE

m for all values of Y ∗
i,t′ (Here X

∗
i,t and Y

∗
i,t denote the random variables for resource consump-

tion and profit at time t following from allocation according the optimal solution to the expected
instance of the distribution used in stage t). In other words, distributions being identical and
independent is not crucial, but the fact that the expected instances of these distributions have a
minimum profit guarantee in spite of all the dependencies between the distributions is sufficient.
Both of these inequalities remain true in this model of ASI also, and thus it easy to verify that
Algorithm 1 works for this model.

3.5.2 ASI Model 2

In this model, which is otherwise identical to model 1, our benchmark is stronger, namely, WE =∑m
t=1WE(t)
m : this is clearly a much stronger benchmark than mintWE(t). Correspondingly, our

algorithm requires more information than in model 1: we ask forWE(t) for every t, at the beginning
of the algorithm.

A slight modification of our Algorithm 1 in Section 3.2 will give a revenue of
∑m

t=1WE(t)
m (1− 2ǫ)

with probability at least 1−ǫ, i.e.,WE(1−2ǫ) w.p. at least (1−ǫ). Among the two potential functions
φi,s and ψi,s, we modify ψi,s in the most natural way to account for the fact that distributions change
every step.
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Define

φi,s =
1

ci

[(1 + ǫ)
Ss(XA

i )
γci

(
1 + ǫ

(1+ǫ)γm

)m−s−1

(1 + ǫ)
1
γ

]

ψi,s =
1

WE

[(1− ǫ)
Ss(Y A

i )
γWE

∏m
t=s+2

(
1− ǫWE(t)

(1+ǫ)WEγm

)

(1− ǫ)
1−ǫ

γ(1+ǫ)

]

Note that when WE(t) = WE for all t, then we get precisely the ψi,s defined in Section 3.2 for
Algorithm 1. We present our algorithm below in Algorithm 3.

Algorithm 3 works for this ASI model much for the same reason why Algorithm 1 worked
for ASI model 2: all the proof needs is that E[X∗

i,t|X∗
i,t′∀t′ < t] ≤ ci

m for all values of X∗
i,t′ , and

E[Y ∗
i,t|Y ∗

i,t′∀t′ < t] = WE(t)
m for all values of Y ∗

i,t′ (Here X
∗
i,t and Y

∗
i,t denote the random variables for

resource consumption and profit at time t following from allocation according the optimal solution
to the expected instance of the distribution used in stage t).

Algorithm 3 : Algorithm for stochastic online resource allocation in ASI model 2

Input: Capacities ci for i ∈ [n], the total number of requests m, the values of γ and WE(t) for
t ∈ [m], an error parameter ǫ > 0.
Output: An online allocation of resources to requests

1: Initialize φi,0 =
1
ci

[(
1+ ǫ

(1+ǫ)γm

)m−1

(1+ǫ)
1
γ

]
, and, ψi,0 =

1
WE

[∏m
t=2

(
1−

ǫWE (t)

(1+ǫ)WEγm

)

(1−ǫ)
1−ǫ

γ(1+ǫ)

]

2: for s = 1 to m do

3: If the incoming request is j, use the following option k∗:

k∗ = arg min
k∈K∪{⊥}

{
∑

i

aijk · φi,s−1 −
∑

i

wijk · ψi,s−1

}
.

4: XA
i,s = aijk∗, Y

A
i,s = wijk∗

5: Update φi,s = φi,s−1 ·


 (1+ǫ)

XA
i,s

γci

1+ ǫ
(1+ǫ)γm


, and, ψi,s = ψi,s−1 ·


 (1−ǫ)

Y A
i,s

γWE

1− ǫ
(1+ǫ)γm




6: end for

We skip the proof for the profit guarantee of WE(1−2ǫ) since it is almost identical to the proof
in Section 3.2 for Algorithm 1.

3.5.3 ASI Model 3

In this model, which is otherwise identical to models 1 and 2, our benchmark is even stronger:
namely, the optimal profit of the expected instance with all the time varying distributions (explicitly
spelled out in LP (15)). This benchmarkWE is the strongest benchmark possible. Correspondingly,
our algorithm requires more information than in model 2: we ask for WE,i(t) for every i and t, and
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ci(t) for every i and t at the beginning of the algorithm, where WE,i(t) and ci(t) are the amount
of type i profit obtained and type i resource consumed by the optimal solution to the expected
instance in LP (15) at step t. Namely, WE,i(t) =

∑
j,k pj,twijkx

∗
j,k,t, and ci(t) =

∑
j,k pj,taijkx

∗
j,k,t,

where x∗j,k,t’s are the optimal solution to LP (15).

Primal and dual LPs defining the expected instance (15)

Primal for ASI model 3 Dual for ASI model 3

Maximize λ s.t. Minimize
∑

j,t pj,tβj , t+
∑

i αici s.t.

∀ i, ∑t,j,k pj,twijkxj,k,t ≥ λ ∀ j, k, pj,t
(
βj,t +

∑
i(αiaijk − ρiwijk)

)
≥ 0

∀ i, ∑t,j,k pj,taijkxj,k,t ≤ ci
∑

i ρi ≥ 1

∀ j, t, ∑k xj,k,t ≤ 1 ∀ i, ρi ≥ 0, αi ≥ 0

∀ j, k, t xj,k,t ≥ 0. ∀ j, βj ≥ 0

A slight modification of our Algorithm 1 in Section 3.2 will give a revenue of WE(1− 2ǫ) with
probability at least 1− ǫ. We modify the two potential functions φi,s and ψi,s in the most natural
way to account for the fact that distributions change every step. Let WE,i =

∑m
t=1WE,i(t), and

thus, our benchmark WE is simply miniWE,i. Note also that
∑m

t=1 ci(t), call it c
∗
i , is at most ci by

the feasibility of the optimal solution to LP (15).
Define

φi,s =
1

ci

[(1 + ǫ)
Ss(XA

i )
γci

∏m
t=s+2

(
1 + ǫci(t)

(1+ǫ)ciγ

)

(1 + ǫ)
1
γ

]

ψi,s =
1

WE,i

[(1− ǫ)
Ss(Y A

i )
γWE,i

∏m
t=s+2

(
1− ǫWE,i(t)

(1+ǫ)WE,iγ

)

(1− ǫ)
1−ǫ

γ(1+ǫ)

]

We present our algorithm below in Algorithm 4.
Algorithm 4 works for this ASI model much for the same reason why Algorithm 3 worked for

ASI model 2: all the proof needs is that E[X∗
i,t|X∗

i,t′∀t′ < t] = ci(t)
m for all values of X∗

i,t′ , and

E[Y ∗
i,t|Y ∗

i,t′∀t′ < t] =
WE,i(t)
m for all values of Y ∗

i,t′ (Here X
∗
i,t and Y

∗
i,t denote the random variables for

resource consumption and profit at time t following from allocation according the optimal solution
to the expected instance captured by LP (15)).

We skip the proof for the profit guarantee of WE(1−2ǫ) since it is almost identical to the proof
in Section 3.2 for Algorithm 1.
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Algorithm 4 : Algorithm for stochastic online resource allocation in ASI model 3

Input: Capacities ci(t) and ci, and profits WE,i(t) for i ∈ [n], t ∈ [m], the total number of
requests m, the values of γ and an error parameter ǫ > 0.
Output: An online allocation of resources to requests

1: Initialize φi,0 =
1
ci

[∏m
t=2

(
1+

ǫci(t)

(1+ǫ)ciγ

)

(1+ǫ)
1
γ

]
, and, ψi,0 =

1
WE,i

[∏m
t=2

(
1−

ǫWE,i(t)

(1+ǫ)WE,iγ

)

(1−ǫ)
1−ǫ

γ(1+ǫ)

]

2: for s = 1 to m do

3: If the incoming request is j, use the following option k∗:

k∗ = arg min
k∈K∪{⊥}

{
∑

i

aijk · φi,s−1 −
∑

i

wijk · ψi,s−1

}
.

4: XA
i,s = aijk∗, Y

A
i,s = wijk∗

5: Update φi,s = φi,s−1 ·


 (1+ǫ)

XA
i,s

γci

1+ ǫ
(1+ǫ)γm


, and, ψi,s = ψi,s−1 ·


 (1−ǫ)

Y A
i,s

γWE,i

1− ǫ
(1+ǫ)γm




6: end for

4 Proof of Near-Optimality of Online Algorithm for Resource Al-

location

In this section, we construct a family of instances of the resource allocation problem in the i.i.d.
setting for which γ = ω(ǫ2/ log n) will rule out a competitive ratio of 1 − O(ǫ). The construction
closely follows the construction by Agrawal et al. [2014] for proving a similar result in the random-
permutation model.

The instance has n = 2z resources with B units of each resource, and Bz(2 + 1/α) +
√
Bz

requests where α < 1 is some scalar. Each request has only one “option”, i.e., each request can
either be dropped, or if served, consumes the same number of units of a specific subset of resources
(which we construct below). This means that a request is simply a scalar times a binary string of
length 2z, with the ones (or the scalars) representing the coordinates of resources that are consumed
by this request, if served.

The requests are classified into z categories. Each category in expectation consists of m/z =
B(2+1/α)+

√
B/z requests. A category, indexed by i, is composed of two different binary vectors

vi and wi (each of length 2z). The easiest way to visualize these vectors is to construct two 2z × z
0 − 1 matrices, with each matrix consisting of all possible binary strings of length z, written one
string in a row. The first matrix lists the strings in ascending order and the second matrix in
descending order. The i-th column of the first matrix multiplied by the scalar α is the vector vi
and the i-th column of the second matrix is the vector wi. There are two properties of these vectors
that are useful for us:

1. The vectors vi/α and wi are complements of one another

2. Any matrix of z columns, with column i being either vi/α or wi has exactly one row with all
ones in it.
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We are ready to construct the i.i.d. instance now. Each request is drawn from the following
distribution. A given request could be, for each i, of type:

1. vi and profit 4α with probability B
αzm

2. wi and profit 3 with probability B
zm

3. wi and profit 2 with probability
√

B
zm

4. wi and profit 1 with probability B
zm

5. Zero vector with zero profit with probability 1− 2B
zm −

√
B
zm − B

αzm

We use the following notation for request types: a (2, wi) request stands for a wi type request of
profit 2. Observe that the expected instance has an optimal profit of OPT = 7B. This is obtained
by picking for each i, the B

αz vectors of type vi and profit 4α, along with B
z vectors of type wi with

profit 3. Note that this exhausts every unit of every item, and thus, combined with the fact that
the most profitable requests have been served, the value of 7B is indeed the optimal value. This
means, any algorithm that obtains a 1 − ǫ competitive ratio must have an expected profit of at
least 7B − 7ǫB.

Let ri(w) and ri(v) be the random variables denoting the number of vectors of type wi and vi
picked by some 1− ǫ competitive algorithm ALG. Let ai(v) denote the total number of vectors of
type vi that arrived in this instance.

Lemma 4.1 For some constant k, the ri(w)’s satisfy

∑

i

E

[
|ri(w)−B/z|

]
≤ 7ǫB + 4

√
αkBz.

Proof: Let Y denote the set of indices i for which ri(w) > B/z. One way to upper bound the total
number of vectors of type v picked by ALG is the following. Split the set of indices into Y and
X = [z] \ Y . The number of v’s from Y is, by chosen notation,

∑
i∈Y ri(v). The number of v’s

from X, we show, is at most
B−
∑

i∈Y ri(w)

α . Note that since there are only B copies of every item,
it follows that α[

∑
i ri(v)] ≤ B, and

∑
i ri(w) ≤ B. Further, by property 2 of vi’s and wi’s, we

have that α[
∑

i∈X ri(v)] +
∑

i∈Y ri(w) ≤ B. This means that the number of v’s from X is at most
B−
∑

i∈Y ri(w)

α .

Let P =
∑

i∈Y (ri(w)−B/z), andM =
∑

i∈X(B/z−ri(w)). ShowingE[P+M ] ≤ 7ǫB+4
√
αkBz

proves the lemma. By an abuse of notation, let ALG also be the profit obtained by the algorithm
ALG and let bestwi(t) denote the most profitable t requests of type wi in a given instance. Note
that 4B +

∑z
i=1bestwi(B/z) ≤ 7B = OPT. We upper-bound E[ALG] as:

E[ALG] ≤ E

[ z∑

i=1

bestwi(ri(w))

]
+ 4α

[
B −∑i∈Y E[ri(w)]

α
+
∑

i∈Y

E[ri(v)]

]

≤ E

[ z∑

i=1

besti(B/z) + 3P −M
]
+ 4

(
B −E

[∑

i∈Y

(ri(w)−B/z) + |Y |B/z
])
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+ 4αE

[∑

i∈Y

ri(v)

]

≤ OPT−E[P +M ] + 4αE

[∑

i∈Y

(
ri(v)−

B

αz

)]

(
Since P =

∑

i∈Y

(ri(w) −B/z)
)

≤ OPT−E[P +M ] + 4αE

[∑

i∈Y

(
ai(v)−

B

αz

)]
(Since ri(v) ≤ ai(v))

≤ OPT−E[P +M ] + 4αE

[ ∑

i:ai(v)≥
B
αz

(
ai(v)−

B

αz

)]

≤ OPT−E[P +M ] + 4α · z · k′ ·
√
B

αz

(where k′ is some constant from Central Limit Theorem)

≤ OPT−E[P +M ] + 4
√
αkBz (where k is k′2)

The inequality that follows from CLT uses the fact that for a random variable X ∼ (m, c/m) (X
is binomially distributed with success probability of c/m), whenever c = ω(1), and c ≤ m, we have
that E[X|X ≥ c] = c + k′

√
c, for some constant k′. In this case, we have B

αz in place of c. For
example, if n = log(m) (and thus z = log n = log logm), as long as B = ω(log logm) and B ≤ m,
the CLT inequality will hold. Note that α could have been any constant and this argument still
holds.

We are now ready to prove Theorem 2.3, which we restate here for convenience. Theorem 2.3.
There exist instances with γ = ǫ2

log(n) such that no algorithm, even with complete knowledge of the

distribution, can get a 1 − o(ǫ) approximation factor. Proof: We first give the overview of the
proof before providing a detailed argument.

Overview. Lemma 4.1 says that ri(w) has to be almost always close to B/z for all i. In particular,

the probability that
∑

i |ri(w)−B/z| ≤ 4
(
7ǫB + 4

√
αkBz

)
is at least 3/4. In this proof we show,

in an argument similar to the one in Agrawal et al. [2014], that if this has to be true, one has to
lose a revenue of Ω(

√
Bz)− 4(7ǫB + 4

√
αkBz). Since α can be set to any arbitrary constant, this

means that we lose a revenue of Ω(
√
Bz)− 28ǫB. Since OPT is 7B, to get a 1− ǫ approximation,

we require that Ω(
√
Bz) − 28ǫB ≤ 7ǫB. Thus, we need B ≥ Ω( logm

ǫ2
). In other words, we require

γ = 1
B ≤ O( ǫ2

logm).

In Detail We now proceed to prove the claim that a revenue loss of Ω(
√
Bz)−4(7ǫB+

√
αkBz) is

inevitable. We just showed that with a probability of at least 3/4,
∑

i |ri(w)−B/z| ≤ 4
(
7ǫB + 4

√
αkBz

)
.

For now we assume that ri(w) should be exactly B/z and later account for the probability 1/4 lee-

way and also the 4
(
7ǫB + 4

√
αkBz

)
error that is allowed by Lemma 4.1. With this assumption,

we show that for each i there is a loss of Ω(
√
B/z).
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For each i let oi denote the number of (1, wi) requests that the algorithm served in total. With
a constant probability the number of 3’s and 2’s (of type wi) exceed B/z. If oi = Ω(

√
B/z) there

is a loss of at least Ω(
√
B/z) because of picking ones instead of 2’s or 3’s. This establishes the

Ω(
√
B/z) loss that we wanted to prove, for this case.

Suppose oi < Ω(
√
Bz). For each i, let Ri be the set of requests of type wi with profit either 1 or

3. For every i, with a constant probability 2B/z − 2
√
B/z ≤ |Ri| ≤ 2B/z + 2

√
B/z. Conditional

on the set Ri we make the following two observations:

• the types of requests in Ri are independent random variables that take value 1 or 3 with equal
probability.

• the order of requests in Ri is a uniformly random permutation of Ri

Now consider any (2, wi) request, say t-th request, of profit 2. With a constant probability this
request can be served without violating any capacity constraints, and thus, the algorithm has to
decide whether or not to serve this request. In at least 1/2 of the random permutations of Ri, the
number of bids from set Ri before the bid t is less than B/z. Conditional on this event, the profits
of requests in Ri before t, with a constant probability could:

1. take values such that there are enough (3, wi) requests after t to make the total number of
wi requests picked by the algorithm to be at least B/z;

2. take values such that even if all the (3, wi) requests after t were picked, the total number of
wi requests picked is at most B/z −

√
B/z with a constant probability.

In the first kind of instances (where number of (3, wi) requests are more than B/z) retaining (2, wi)
causes a loss of 1 as we could have picked a 3 instead. In the second kind, skipping (2, wi) causes
a loss of 1 since we could have picked that 2 instead of a 1. Thus there is an inevitable constant
probability loss of 1 per (2, wi) request. Thus in expectation, there is a Ω(

√
B/z) loss.

Thus whether oi =
√
B/z or oi <

√
B/z, we have established a loss of Ω(

√
B/z) per i and thus

a total expected loss of Ω(
√
Bz). This is under the assumption that ri(w) is exactly B/z. There

is a leeway of 4
(
7ǫB + 4

√
αkBz

)
granted by Lemma 4.1. Even after that leeway, since α can be

made an arbitrarily small constant and Lemma 4.1 still holds, we have the loss at Ω(
√
Bz)− 28ǫB.

Now after the leeway, the statement
∑

i |ri(w)−B/z| ≤ 4
(
7ǫB + 4

√
αkBz

)
has to hold only with

probability 3/4. But even this puts the loss at Ω(
√
Bz)− 21ǫB

Therefore, E[ALG] ≤ OPT−Ω(
√
Bz)− 21ǫB. Since OPT = 7B, we have E[ALG] ≤ OPT(1−

Ω(
√
z/B) − 21ǫ), and in order to get 1 − O(ǫ) approximation we need Ω(

√
z/B − 21ǫ) ≤ O(ǫ),

implying that B ≥ Ω(z/ǫ2) = Ω(logm/ǫ2).

5 Greedy Algorithm for Adwords

In this section, we give a simple proof of Theorem 2.4, which we restate below for convenience.
Theorem 2.4. The greedy algorithm achieves an approximation factor of 1−1/e for the Adwords
problem in the i.i.d. unknown distributions model for all γ, i.e., 0 ≤ γ ≤ 1.

As noted in Section 2.2 where the Adwords problem was introduced, the budget constraints are
not hard, i.e., when a query j arrives, with a bid amount bij > remaining budget of i, we are still
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allowed to allot that query to advertiser i, but we only earn a revenue of the remaining budget of
i, and not the total value bij.

Goel and Mehta [2008] prove that the greedy algorithm gives a (1 − 1/e) approximation to
the adwords problem when the queries arrive in a random permutation or in i.i.d., but under
an assumption which almost gets down to γ tending to zero, i.e., bids being much smaller than
budgets. We give a much simpler proof for a (1− 1/e) approximation by greedy algorithm for the
i.i.d. unknown distributions case, and our proof works for all γ.

Let pj be the probability of query j appearing in any given impression. Let yj = mpj. Let xij
denote the offline fractional optimal solution for the expected instance. Let wi(t) denote the amount
of money spent by advertiser i at time step t, i.e., for the t-th query in the greedy algorithm (to be
described below). Let fi(0) =

∑
j bijxijyj . Let fi(t) = fi(0) −

∑t
r=1 wi(r). Let f(t) =

∑n
i=1 fi(t).

Note that fi(0) is the amount spent by i in the offline fractional optimal solution to the expected
instance.

Consider the greedy algorithm which allocates the query j arriving at time t to the advertiser
who has the maximum effective bid for that query, i.e., argmax

i
min{bij , Bi −

∑t−1
r=1wi(r)}. We

prove that this algorithm obtains a revenue of (1 − 1/e)
∑

i,j bijxijyj and thus gives the desired
1−1/e competitive ratio against the fractional optimal solution to the expected instance. Consider
a hypothetical algorithm that allocates queries to advertisers according to the xij ’s. We prove that
this hypothetical algorithm obtains an expected revenue of (1 − 1/e)

∑
i,j bijxijyj, and argue that

the greedy algorithm only performs better. Let whi (t) and f
h
i (t) denote the quantities analogous to

wi(t) and fi(t) for the hypothetical algorithm, with the initial value fhi (0) = fi(0) =
∑

j bijxijyj.

Let fh(t) =
∑n

i=1 f
h
i (t). Let EXCEEDi(t) denote the set of all j such that bij is strictly greater

than the remaining budget at the beginning of time step t, namely bij > Bi −
∑t−1

r=1w
h
i (r).

Lemma 5.1 E[whi (t)|fhi (t− 1)] ≥ fhi (t−1)
m

Proof: The expected amount amount of money spent at time step t, is given by

E[whi (t)|fhi (t− 1)] =
∑

j∈EXCEEDi(t)

(
Bi −

t−1∑

r=1

whi (r)

)
xijyj
m

+
∑

j /∈EXCEEDi(t)

bij
xijyj
m

. (16)

If
∑

j∈EXCEEDi(t)

xijyj ≥ 1, then by (16),

E[whi (t)|fhi (t− 1)] ≥ Bi −
∑t−1

r=1w
h
i (r)

m
≥ fhi (0) −

∑t−1
r=1 w

h
i (r)

m
=
fhi (t− 1)

m
.

Suppose on the other hand
∑

j∈EXCEEDi(t)

xijyj < 1. We can write E[whi (t)|fhi (t− 1)] as

E[whi (t)|fhi (t− 1)] =
fhi (0)

m
−

∑

j∈EXCEEDi(t)

(
bij − (Bi −

t−1∑

r=1

whi (r))

)
xijyj
m

. (17)

Since bij ≤ Bi, and
∑

j∈EXCEEDi(t)

xijyj < 1, (17) can be simplified to

E[whi (t)|fhi (t− 1)] >
fhi (0)

m
−
∑t−1

r=1 w
h
i (r)

m

=
fhi (t− 1)

m
.
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Lemma 5.2 The hypothetical algorithm satisfies the following: E[fh(t)|fh(t− 1)] ≤ fh(t− 1)(1−
1/m)

Proof: From the definition of fhi (t), we have

fhi (t) = fhi (t− 1)− whi (t)

E[fhi (t)|fhi (t− 1)] = fhi (t− 1)−E[whi (t)|fhi (t− 1)] ≤ fhi (t− 1)(1 − 1

m
),

where the inequality is due to Lemma 5.1. Summing over all i gives the Lemma.

Lemma 5.3 E[GREEDY] ≥ (1− 1/e)
∑

i,j bijxijyj

Proof: Lemma 5.2 proves that for the hypothetical algorithm, the value of the difference fh(t−1)−
E[fh(t)|fh(t − 1)], which is the expected amount spent at time t by all the advertisers together,

conditioned on fh(t−1), is at least fh(t−1)
m . But by definition, conditioned on the amount of money

spent in first t− 1 steps, the greedy algorithm earns the maximum revenue at time step t . Thus,
for the greedy algorithm too, the statement of the lemma 5.2 must hold, namely, E[f(t)|f(t−1)] ≤
f(t − 1)(1 − 1/m). This means that E[f(m)] ≤ f(0)(1 − 1/m)m ≤ f(0)(1/e). Thus the expected
revenue earned is

E[

m∑

r=1

w(r)] = f(0)−E[f(m)]

≥ f(0) (1− 1/e)

= (1− 1/e)
∑

i,j

bijxijyj

and this proves the lemma.

Lemma 5.3 proves Theorem 2.4.

6 Fast Approximation Algorithm for Large Mixed Packing & Cov-

ering Integer Programs

In this section, we consider the mixed packing-covering problem stated in Section 2.4. and prove
Theorem 2.5. We restate the integer program for the mixed covering-packing problem here.

∀ i,
∑

j,k

aijkxj,k ≤ ci

∀ i,
∑

j,k

wijkxj,k ≥ di

∀ j,
∑

k

xj,k ≤ 1

∀ j, k, xj,k ∈ {0, 1}. (18)
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The goal is to check if there is a feasible solution to this IP. We solve a gap version of this problem.
Distinguish between the two cases with a high probability, say 1− δ:

• YES: There is a feasible solution.

• NO: There is no feasible solution even with a slack, namely, even if all of the ci’s are multiplied
by 1 + 3ǫ(1 + ǫ) and all of the di’s are multiplied by 1− 3ǫ(1 + ǫ).

We use 1 + 3ǫ(1 + ǫ) and 1 − 3ǫ(1 + ǫ) for slack instead of just 1 + ǫ and 1 − ǫ purely to reduce
notational clutter in what follows (mainly for the NO case).

Like in the online problem, we refer to the quantities indexed by j as requests, aijk as resource
i consumption, and wijk as resource i profit, and the quantities indexed by k as options. There are
a total of m requests, n resources, and K options, and the “zero” option denoted by ⊥. Recall that
the parameter γ for this problem is defined by γ = max

({
aijk
ci

}
i,j,k
∪
{
wijk

di

}
i,j,k

)
. Our algorithm

needs the value of m, n and γ (an upper bound on the value of γ also suffices).

High-level overview. We solve this offline problem in an online manner via random sampling.
We sample T = Θ(γm log(n/δ)

ǫ2
) requests j from the set of possible requests uniformly at random with

replacement, and then design an algorithm that allocates resources online for these requests. At the
end of serving T requests we check if the obtained solution proportionally satisfies the constraints of
IP (18). If yes, we declare YES as the answer and declare NO otherwise. At the core of the solution
is the online sampling algorithm we use, which is identical to the techniques used to develop the
online algorithm in Sections 3.2 and 3.3. We describe our algorithm in Algorithm 5

The main theorem of this section is Theorem 2.5, which we restate here: Theorem 2.5.
For any ǫ > 0, Algorithm 5 solves the gap version of the mixed covering-packing problem with
Θ(γm log(n/δ)

ǫ2 ) oracle calls.

Detailed Description and Proof The proof is in two parts. The first part proves that our
algorithm indeed answers YES when the actual answer is YES with a probability at least 1 − δ.
The second part is the identical statement for the NO case.

The YES case We begin with the case where the true answer is YES. Let x∗jk denote some
feasible solution to the LP relaxation of IP (18). In a similar spirit to Sections 3.1, 3.2 and 3.3,

we define the algorithm P as follows. It samples a total of T = Θ(γm log(n/δ)
ǫ2

) requests uniformly at
random, with replacement, from the total pool of m requests. When request j is sampled, P serves
j using option k with probability x∗jk. Thus, if we denote by X∗

i,t the consumption of resource i

in step t of P , then we have E[X∗
i,t] =

∑m
j=1

1
m

∑
k aijkx

∗
jk ≤ ci

m . This inequality follows from x∗jk
being a feasible solution to LP relaxation of (18). Similarly let Y ∗

i,t denote the resource i profit in

step t of P . We have E[Y ∗
i,t] ≥ di

m . We now write the probability that our condition for YES is
violated for some algorithm A.

Pr

[ T∑

t=1

XA
i,t ≥

Tci
m

(1 + ǫ)

]
= Pr

[∑T
t=1X

A
i,t

γci
≥ T

mγ
(1 + ǫ)

]
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Algorithm 5 : Online sampling algorithm for offline mixed covering-packing problems

Input: The mixed packing and covering IP (18), failure probability δ > 0, and an error parameter
ǫ > 0.
Output: Distinguish between the cases ‘YES’ where there is a feasible solution to IP (18), and
‘NO’ where there is no feasible solution to IP (18) even if all the ci’s are multiplied by 1+3ǫ(1+ ǫ)
and all of the di’s are multiplied by 1− 3ǫ(1 + ǫ).

1: Set T = Θ(γm log(n/δ)
ǫ2

)

2: Initialize φi,0 =
1
ci

[ (
1+ ǫ

mγ

)T−1

(1+ǫ)
(1+ǫ) T

mγ

]
, and, ψi,0 =

1
di

[ (
1− ǫ

mγ

)T−1

(1−ǫ)
(1−ǫ) T

mγ

]

3: for s = 1 to T do

4: Sample a request j uniformly at random from the total pool of m requests
5: If the incoming request is j, use the following option k∗:

k∗ = arg min
k∈K∪{⊥}

{
∑

i

aijk · φi,s−1 −
∑

i

wijk · ψi,s−1

}
.

6: XA
i,s = aijk∗, Y

A
i,s = wijk∗

7: Update φi,s = φi,s−1 ·


 (1+ǫ)

XA
i,s

γci

1+ ǫ
mγ


, and, ψi,s = ψi,s−1 ·


 (1−ǫ)

Y A
i,s

γdi

1− ǫ
mγ




8: end for

9: if ∀i
∑T

t=1X
A
i,t <

Tci
m (1 + ǫ), and,

∑T
t=1 Y

A
i,t >

Tdi
m (1 − ǫ) then

10: Declare YES
11: else

12: Declare NO
13: end if

= Pr

[
(1 + ǫ)

∑T
t=1 XA

i,t
γci ≥ (1 + ǫ)

(1+ǫ) T
mγ

]

≤ E

[
(1 + ǫ)

∑T
t=1 XA

i,t
γci

]
/(1 + ǫ)(1+ǫ)

T
mγ

=

E

[∏T
t=1(1 + ǫ)

XA
i,t

γci

]

(1 + ǫ)
(1+ǫ) T

mγ

(19)

Pr

[ T∑

t=1

Y A
i,t ≤

Tdi
m

(1− ǫ)
]
= Pr

[∑T
t=1 Y

A
i,t

γdi
≥ T

mγ
(1− ǫ)

]

= Pr

[
(1− ǫ)

∑T
t=1 Y A

i,t
γdi ≥ (1− ǫ)(1−ǫ)

T
mγ

]
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≤ E

[
(1 − ǫ)

∑T
t=1 Y A

i,t
γdi

]
/(1 − ǫ)(1−ǫ)

T
mγ

=

E

[∏T
t=1(1− ǫ)

Y A
i,t

γdi

]

(1− ǫ)(1−ǫ)
T
mγ

(20)

If our algorithm A was P

(
and therefore we can use E[X∗

i,t] ≤ ci
m and E[Y ∗

i,t] ≥ di
m

)
, the total

failure probability in the YES case, which is the sum of (19) and (20) for all the i’s would have

been at most δ, if T = Θ(γm log(n/δ)
ǫ2

) for an appropriate constant inside Θ. The goal is to design
an algorithm A that, unlike P , does not first solve LP relaxation of IP (18) and then use x∗jk’s to
allocate resources, but allocates online and also obtains the same δ failure probability, just as we
did in Sections 3.2 and 3.3. That is we want to show that the sum of (19) and (20) over all i’s is
at most δ:

E

[∏T
t=1(1 + ǫ)

XA
i,t

γci

]

(1 + ǫ)(1+ǫ)
T
mγ

+

E

[∏T
t=1(1− ǫ)

Y A
i,t

γdi

]

(1− ǫ)(1−ǫ)
T
mγ

≤ δ.

For the algorithm AsP T−s, the above quantity can be rewritten as

∑

i

E

[
(1 + ǫ)

Ss(XA
i )

γci

∏T
t=s+1 (1 + ǫ)

X∗
i,t

γci

]

(1 + ǫ)
(1+ǫ) T

mγ

+
∑

i

E

[
(1− ǫ)

Ss(Y A
i )

γdi

∏T
t=s+1 (1− ǫ)

Y ∗
i,t

γdi

]

(1− ǫ)(1−ǫ)
T
mγ

,

which, by using (1 + ǫ)x ≤ 1 + ǫx for 0 ≤ x ≤ 1, is in turn upper bounded by

∑

i

E

[
(1 + ǫ)

Ss(XA
i )

γci

∏T
t=s+1

(
1 + ǫ

X∗
i,t

γci

) ]

(1 + ǫ)
(1+ǫ) T

mγ

+
∑

i

E

[
(1− ǫ)

Ss(Y A
i )

γdi

∏T
t=s+1

(
1− ǫY

∗
i,t

γdi

) ]

(1− ǫ)(1−ǫ)
T
mγ

.

Since for all t, the random variables X∗
i,t, X

A
i,t, Y

∗
i,t and Y

A
i,t are all independent, and E[X∗

i,t] ≤ ci
m ,

E[Y ∗
i,t] ≥ di

m , the above is in turn upper bounded by

∑

i

E

[
(1 + ǫ)

Ss(XA
i )

γci

(
1 + ǫ

mγ

)T−s ]

(1 + ǫ)(1+ǫ)
T
mγ

+
∑

i

E

[
(1− ǫ)

Ss(Y A
i )

γdi

(
1− ǫ

mγ

)T−s ]

(1− ǫ)(1−ǫ)
T
mγ

. (21)

Let F [AsP T−s] denote the quantity in (21), which is an upper bound on failure probability
of the hybrid algorithm AsP T−s. We just said that F [P T ] ≤ δ. We now prove that for all
s ∈ {0, 1, . . . , T − 1}, F [As+1P T−s−1] ≤ F [AsP T−s], thus proving that F [AT ] ≤ δ, i.e., running the
algorithm A for all the T steps of stage r results in a failure with probability at most δ.

Assuming that for all s < p, the algorithm A has been defined for the first s+1 steps in such a
way that F [As+1P T−s−1] ≤ F [AsP T−s], we now define A for the p+ 1-th step of stage r in a way
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that will ensure that F [Ap+1P T−p−1] ≤ F [ApP T−p]. We have

F [Ap+1Pm−p−1] =
∑

i

E

[
(1 + ǫ)

Sp+1(XA
i )

γci

(
1 + ǫ

mγ

)T−p−1
]

(1 + ǫ)
(1+ǫ) T

mγ

+

∑

i

E

[
(1− ǫ)

Sp+1(Y A
i )

γdi

(
1− ǫ

mγ

)T−p−1
]

(1− ǫ)(1−ǫ)
T
mγ

≤
∑

i

E

[
(1 + ǫ)

Sp(XA
i )

γci

(
1 + ǫ

XA
i,p+1

γci

)(
1 + ǫ

mγ

)T−p−1
]

(1 + ǫ)(1+ǫ)
T
mγ

+

∑

i

E

[
(1− ǫ)

Sp(Y A
i )

γdi

(
1− ǫY

A
i,p+1

γdi

)(
1− ǫ

mγ

)T−p−1
]

(1− ǫ)(1−ǫ)
T
mγ

(22)

Define

φi,s =
1

ci

[(1 + ǫ)
Ss(XA

i )
γci

(
1 + ǫ

mγ

)T−s−1

(1 + ǫ)(1+ǫ)
T
mγ

]
; ψi,s =

1

di

[(1− ǫ)
Ss(Y A

i )
γdi

(
1− ǫ

mγ

)T−s−1

(1− ǫ)(1−ǫ)
T
mγ

]

Define the step p+ 1 of algorithm A as picking the following option k for request j:

k∗ = arg min
k∈K∪{⊥}

{
∑

i

aijk · φi,p −
∑

i

wijk · ψi,p
}
.

By the above definition of step p + 1 of algorithm A, it follows that for any two algorithms with
the first p steps being identical, and the last T − p − 1 steps following the Hypothetical-Oblivious
algorithm P , algorithm A’s p + 1-th step is the one that minimizes expression (22). In particular
it follows that expression (22) is upper bounded by the same expression where the p + 1-the step
is according to X∗

i,p+1 and Y ∗
i,p+1, i.e., we replace XA

i,p+1 by X∗
i,p+1 and Y A

i,p+1 by Y ∗
i,p+1. Therefore

we have

F [Ap+1P T−p−1] ≤
∑

i

E

[
(1 + ǫ)

Sp(XA
i )

γci

(
1 + ǫ

X∗
i,p+1

γci

)(
1 + ǫ

mγ

)T−p−1
]

(1 + ǫ)
(1+ǫ) T

mγ

+

∑

i

E

[
(1− ǫ)

Sp(Y A
i )

γdi

(
1− ǫY

∗
i,T+p+1

γdi

)(
1− ǫ

mγ

)T−p−1
]

(1− ǫ)(1−ǫ)
T
mγ

≤
∑

i

E

[
(1 + ǫ)

Sp(XA
i )

γci

(
1 + ǫ

mγ

)(
1 + ǫ

mγ

)T−p−1
]

(1 + ǫ)
(1+ǫ) T

mγ

+

38



∑

i

E

[
(1− ǫ)

Sp(Y A
i )

γdi

(
1− ǫ

mγ

)(
1− ǫ

mγ

)T−p−1
]

(1− ǫ)(1−ǫ)
T
mγ

= F [ApP T−p]

The NO case We now proceed to prove that when the real answer is NO, our algorithm says
NO with a probability at least 1− δ. To prove this result (formally stated in Lemma 6.3), we use
as a tool the fact that when the integer program in (18) is in the NO case where even a slack of
3ǫ(1 + ǫ) will not make it feasible, then even the LP relaxation of (18) will be infeasible with a
slack of 2ǫ. We prove this statement now by proving its contrapositive in Lemma 6.1.

Lemma 6.1 If the LP relaxation of (18) is feasible with a slack of s, then the integer program
in (18) is feasible with a slack of s(1 + ǫ) + ǫ.

Proof: To prove this, we write the LP relaxation of the integer program in (18) slightly differently
below.

Primal and dual LPs corresponding to integer program in (18) (23)

Primal LP corresponding to IP (18) Dual LP corresponding to IP (18)

Minimize λ s.t. Maximize
∑

i(ρi − αi)−
∑

j βj s.t.

∀ i, λ−
∑

j,k
aijkxj,k

ci
≥ −1 ∀ j, k, βj ≥

∑
i

(
ρi
wijk

di
− αi aijkci

)

∀ i, λ+
∑

j,k
wijkxj,k

di
≥ 1

∑
i(αi + ρi) ≤ 1

∀ j,∑k xj,k ≤ 1 ∀ i, αi, ρi ≥ 0

∀ j, k, xj,k ≥ 0 ∀ j, βj ≥ 0

λ ≥ 0

The optimal value λ∗ of the primal LP in (23) represents the slack in the YES/NO problem.
I.e., if λ∗ = 0, then we have zero slack and hence are in the YES case. Else, we are in the
NO case with a slack equal to λ∗. Given this, all we have to show is that when the LP in (23)
has an optimal value of λ∗, then the corresponding integer program’s optimal solution is at most
λ∗(1 + ǫ) + ǫ. To see this is true, let x∗j,k denote the optimal solution to primal LP (23). Consider
the integral solution that does a randomized rounding of the x∗j,k’s and allocates according to these
rounded integers, and let Xjk be the corresponding {0, 1} random variable. Let random variable

Xij =
∑

k
aijkXjk

ci
. By the definition of LP (23), we have E[

∑
jXij ] ≤ 1 + λ∗. Noting that each of
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the Xij ’s is at most γ, by Chernoff bounds it follows that Pr[
∑

j Xij ≥ (1 + λ∗)(1 + ǫ)] ≤ e
− ǫ2

4γ ,

which given that γ = O( ǫ2

log(n/ǫ)), is at most ǫ
2n (the probability derivation is just like the derivation

in Section 3.1). Likewise, if we define by Yij the random variable
∑

k
wijkXjk

di
, then by the definition

of LP (23), we have E[
∑

j Yij] ≥ 1 − λ∗. By Chernoff bounds, we get an identical argument, we
get Pr[

∑
j Yij ≤ (1 − λ∗)(1 − ǫ)] ≤ ǫ

2n . By doing a union bound over the 2n Chernoff bounds, we
have that the randomized rounding integer solution is feasible with an optimal value of at most
λ∗+ ǫ+λ∗ǫ with probability at least 1− ǫ. This means that there exists an integer solution of value
λ∗ + ǫ+ λ∗ǫ, and this proves the lemma.

Corollary 6.2 For a NO instance with a slack of 3ǫ(1 + ǫ), the LP relaxation of the instance is
still infeasible with a slack of 2ǫ. In particular, this implies that the optimal value of the primal λ∗

in (23) is at least 2ǫ, and likewise the optimal dual value in (23) is
∑

i(ρ
∗
i − α∗

i )−
∑

j β
∗
j ≥ 2ǫ.

Lemma 6.3 For a NO instance, if T ≥ Θ(γm log(n/δ)
ǫ2

), then

Pr

[
max
i

ST
(
XA
i

)

ci
<
T

m
(1 + ǫ) & min

i

ST
(
Y A
i

)

di
>
T

m
(1− ǫ)

]
≤ δ.

Proof: Let R denote the set of requests sampled. Consider the following LP.

Sampled primal and dual LPs (24)

Sampled primal LP Sampled dual LP

Minimize λ s.t. Maximize T
m

∑
i(ρi − αi)−

∑
j∈R βj s.t.

∀ i, λ−∑j∈R,k
aijkxj,k

ci
≥ − T

m ∀ j ∈ R, k, βj ≥
∑

i

(
ρi
wijk

di
− αi aijkci

)

∀ i, λ+
∑

j∈R,k
wijkxj,k

di
≥ T

m

∑
i(αi + ρi) ≤ 1

∀ j ∈ R,∑k xj,k ≤ 1 ∀ i, αi, ρi ≥ 0

∀ j, k, xj,k ≥ 0 ∀ j ∈ R, βj ≥ 0

λ ≥ 0

If the primal in LP (24) has an optimal objective value at least Tǫ
m , then by definition of our

algorithm 5, we would have declared NO, i.e., if the sampled LP itself had a slack of ǫ (scaled by
T
m), then no integral allocation based on those samples can obtain a smaller slack. We now show

that by picking T = Θ(γm ln(n/δ)
ǫ2

), the above LP (24) will have its optimal objective value at least
Tǫ
m , with a probability at least 1 − δ. This makes our algorithm answer NO with a probability at
least 1− δ.
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Now, the primal of LP (24) has an optimal value equal to that of the dual which in turn is
lower bounded by the value of dual at any feasible solution. One such feasible solution is α∗, β∗, ρ∗,
which is the optimal solution to the full version of the dual in LP (24), namely the one written in
LP (23) where R = [m], T = m. This is because the set of constraints in the full version of the
dual is clearly a superset of the constraints in the dual of LP (24). Thus, the optimal value of the
primal of LP (24) is lower bounded by value of dual at α∗, β∗, ρ∗, which is

=
T

m
(
∑

i

ρ∗i − α∗
i )−

∑

j∈R

β∗j (25)

For proceeding further in lower bounding (25), we apply Chernoff bounds to
∑

j∈R β
∗
j . The fact

that the dual of the full version of LP (24) is a maximization LP, coupled with the constraints there
in imply that β∗j ≤ γ. Further, let τ∗ denote the optimal value of the full version of LP (24), i.e.,∑

i(ρ
∗
i −α∗

i )−
∑

j β
∗
j = τ∗. Now, the constraint

∑
i(α

∗
i + ρ∗i ) ≤ 1 coupled with the fact that τ∗ ≥ 0

implies
∑

j β
∗
j ≤ 1. We are now ready to lower bound the quantity in (25). We have the optimal

solution to primal of LP (24)

≥ T

m
(
∑

i

ρ∗i − α∗
i )−

∑

j∈R

β∗j

≥ T

m

∑

i

(ρ∗i − α∗
i )−


T

∑
j β

∗
j

m
+

√
4T (

∑
j β

∗
j )γ ln(1/δ)

m



(
Since β∗j ∈ [0, γ]

)

≥ Tτ∗

m
−
√

4Tγ ln(1/δ)

m

=
Tτ∗

m

[
1−

√
γm ln(1/δ)

T
· 4

τ∗2

]
(26)

where the second inequality is a “with probability at least 1− δ” inequality, i.e., we apply Chernoff
bounds for

∑
j∈S β

∗
j , along with the observation that each β∗j ∈ [0, γ]. The third inequality follows

from
∑

j β
∗
j ≤ 1 and

∑
i(ρ

∗
i − α∗

i ) −
∑

j β
∗
j = τ∗. Setting T = Θ(γm ln(n/δ)

ǫ2
) with a appropriate

constant inside the Θ, coupled with the fact that τ∗ ≥ 2ǫ in the NO case (see Corollary 6.2), it is
easy to verify that the quantity in (26) is at least Tǫ

m .
Going back to our application of Chernoff bounds above, in order to apply it in the form above,

we require that the multiplicative deviation from mean

√
4γm ln(1/δ)
T
∑

j β
∗
j
∈ [0, 2e − 1]. If

∑
j β

∗
j ≥ ǫ2,

then this requirement would follow. Suppose on the other hand that
∑

j β
∗
j < ǫ2. Since we are

happy if the excess over mean is at most Tǫ
m , let us look for a multiplicative error of

Tǫ
m

T
∑

j β∗
j

m

.

Based on the fact that
∑

j β
∗
j < ǫ2 the multiplicative error can be seen to be at least 1/ǫ which is

larger than 2e − 1 when ǫ < 1
2e−1 . We now use the version of Chernoff bounds for multiplicative

error larger than 2e − 1, which gives us that a deviation of Tǫ
m occurs with a probability at most

2
−


1+

Tǫ
m

T
∑

j β∗
j

m


T

∑
j β∗

j
mγ

, where the division by γ is because of the fact that β∗j ≤ γ. This probability
is at most ( δn)

1/ǫ, which is at most δ.
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The proofs for the YES and NO cases together prove Theorem 2.5.

7 Special Cases of the Resource Allocation Framework

We now list the problems that are special cases of the resource allocation framework and have
been previously considered. The Adwords and Display ads special cases were already discussed in
Section 2.2.

7.1 Network Routing and Load Balancing

Consider a graph (either undirected or directed) with edge capacities. Requests arrive online; a
request j consists of a source-sink pair, (sj , tj) and a bandwidth ρj. In order to satisfy a request, a
capacity of ρj must be allocated to it on every edge along some path from sj to tj in the graph. In
the throughput maximization version, the objective is to maximize the number of satisfied requests
while not allocating more bandwidth than the available capacity for each edge (Different requests
could have different values on them, and one could also consider maximizing the total value of the
satisfied requests). Our Algorithm 2 for resource allocation framework directly applies here and
the approximation guarantee there directly carries over. Kamath et al. [1996] consider a different
version of this problem where requests according to a Poisson process with unknown arrival rates.
Each request has an associated holding time that is assumed to be exponentially distributed, and
once a request has been served, the bandwidth it uses up gets freed after its holding time (this is
unlike our setting where once a certain amount of resource capacity has been consumed, it remains
unavailable to all future requests). Some aspects of the distribution are assumed to be known,
namely, that the algorithm knows the average rate of profit generated by all the incoming circuits,
the average holding time, and also the target offline optimal offline solution that the online algorithm
is aiming to approximate (again this is unlike our setting where no aspect of the request distribution
is known to the algorithm, and there could even be some adversarial aspects like in the ASI model).
When each request consumes at most γ fraction of any edge’s bandwidth, Kamath et al. [1996] give
an online algorithm that achieves an expected profit of (1 − ǫ) times the optimal offline solution

when γ = O( ǫ2

logn).

7.2 Combinatorial Auctions

Suppose we have n items for sale, with ci copies of item i. Bidders arrive online, and bidder j has a
utility function Uj : 2

[n] → R. If we posted prices pi for each item i, then bidder j buys a bundle S
that maximizes Uj(S)−

∑
i∈S pi. We assume that bidders can compute such a bundle. The goal is

to maximize social welfare, the total utility of all the bidders, subject to the supply constraint that
there are only ci copies of item i. Firstly, incentive constraints aside, this problem can be written
as an LP in the resource allocation framework. The items are the resources and agents arriving
online are the requests. All the different subsets of items form the set of options. The utility Uj(S)
represents the profit wj,S of serving agent j through option S, i.e. subset S. If an item i ∈ S,
then ai,j,S = 1 for all j and zero otherwise. Incentive constraints aside, our algorithm for resource
allocation at step s, will choose the option k∗ (or equivalently the bundle S) as specified in point
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8 of Algorithm 2, i.e., minimize the potential function. That is, if step s falls in stage r,

k∗ = argmin
k

{
∑

i

aijk · φri,s−1 − wj,k · ψrs−1

}

(note that unlike Algorithm 2 there is no subscripting for wj,k). This can be equivalently written
as

k∗ = argmax
k

{
wj,k · ψrs−1 −

∑

i

aijk · φri,s−1

}

Now, maximizing the above expression at step s is the same as picking the k to maximize wj,k −∑
i pi(s)aijk, where pi(s) =

φri,s−1

ψr
s−1

. Thus, if we post a price of pi(s) on item i for bidder number s,

he will do exactly what the algorithm would have done otherwise. Suppose that the bidders are
i.i.d samples from some distribution (or they arrive as in the adversarial stochastic input model).
We can use Theorem 2.2 to get an incentive compatible posted price auction9 with a competitive

ratio of 1 − O(ǫ) whenever γ = mini{ci} ≥ Ω
(
log(n/ǫ)

ǫ2

)
. Further if an analog of Theorem 2.2 also

holds in the random permutation model then we get a similar result for combinatorial auctions in
the offline case: we simply consider the bidders one by one in a random order.
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