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We provide a remarkably simple algorithm to compute all (at most four) common tangents of two disjoint

simple polygons. Given each polygon as a read-only array of its corners in cyclic order, the algorithm runs in

linear time and constant workspace and is the first to achieve the two complexity bounds simultaneously. The

set of common tangents provides basic information about the convex hulls of the polygons—whether they are

nested, overlapping, or disjoint—and our algorithm thus also decides this relationship.

1 INTRODUCTION
A tangent of a polygon is a line touching the polygon such that all of the polygon lies on the

same side of the line. We consider the problem of computing the common tangents of two disjoint

polygons that are simple, that is, they have no self-intersections. The set of common tangents

provides basic information about the convex hulls of the polygons—whether they are disjoint,

overlapping, or nested. We call a common tangent outer if the two polygons lie on the same side of

it and separating otherwise. Two disjoint polygons have two outer common tangents unless their

convex hulls are nested, and if they are properly nested, then there is no outer common tangent.

Two polygons have two separating common tangents unless their convex hulls overlap, and if they

properly overlap, then there is no separating common tangent. See Figures 1–3 for illustrations.

Common tangents arise in many different contexts, for instance in problems related to convex

hulls [Preparata and Hong 1977], shortest paths [Guibas and Hershberger 1989], ray shooting

[Hershberger and Suri 1995], and clustering [Abrahamsen et al. 2017].

We provide a very simple algorithm to compute the common tangents of two disjoint simple

polygons. In view of the above, the algorithm also determines whether the two polygons have

(properly) nested, (properly) overlapping, or disjoint convex hulls. Given each of the two polygons

as a read-only array of its corners in cyclic order, our algorithm runs in linear time and uses seven

variables each storing a boolean value or an index of a corner in one of the arrays. The algorithm

is therefore asymptotically optimal with respect to time and workspace, and it operates in the

constant workspace model of computation.

The constant workspace model is a restricted version of the RAM model in which the input is

read-only, the output is write-only, and only O(logb) additional bits of workspace (with both read

and write access) are available, where b denotes the bit length of the input. It is natural to consider

algorithms in this model as memory-optimal, because Ω(logb) bits are required to store a pointer

to an entry in the input. Since blocks ofΘ(logb) bits are considered to form words in the memory,

algorithms in the constant workspace model use O(1) words of workspace, which explains the

name of the model. (Likewise, time complexity is usually measured with respect to the number of

words in the input, with the assumption that arithmetic operations on words can be performed in
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Fig. 1. The convex hulls are disjoint—outer
and separating common tangents exist.

Fig. 2. The convex hulls over-
lap—only outer common tan-
gents exist.

Fig. 3. The convex hulls
are nested—no common
tangents exist.

constant time.) The practical relevance of studying problems in the constant workspace model is

increasing, as there are many current and emerging memory technologies where writing can be

much more expensive than reading in terms of time and energy [Carson et al. 2016].

The constant workspace model was first considered explicitly for geometric problems by Asano

et al. [2011]. Recently, there has been growing interest in algorithms for geometric problems using

constant or restricted workspace. We refer the reader to the recent survey by Banyassady et al.

[2018] for an overview of the results. In complexity theory, the class of decision problems solvable

using constant workspace is usually denoted by L. The constant workspace model was shown to be

surprisingly powerful—for instance, the problem of deciding whether two vertices of an undirected

graph lie in the same connected component belongs to L [Reingold 2008].

The problem of computing common tangents of two polygons has received much attention in

the special case that the polygons are convex. For instance, computing the outer common tangents

of disjoint convex polygons is used as a subroutine in the classical divide-and-conquer algorithm

for the convex hull of a set of n points in the plane due to Preparata and Hong [1977]. They gave

a naive linear-time algorithm for outer common tangents, which suffices for an O(n logn)-time

convex hull algorithm. The problem is also considered in various dynamic convex hull algorithms

[Brodal and Jacob 2002; Hershberger and Suri 1992; Overmars and van Leeuwen 1981]. Overmars

and van Leeuwen [1981] gave anO(logn)-time algorithm for computing an outer common tangent

of two disjoint convex polygons when a separating line is known, where each polygon has at most

n corners. Kirkpatrick and Snoeyink [1995] gave an O(logn)-time algorithm for the same problem

but without using a separating line. Guibas et al. [1991] gave a lower bound ofΩ(log2 n) on the time

required to compute an outer common tangent of two intersecting convex polygons even when

they are known to intersect in at most two points. They also described an algorithm achieving

that bound. Toussaint [1983] considered the problem of computing separating common tangents

of convex polygons. He gave a linear-time algorithm using the technique of “rotating calipers”.

Guibas et al. [1991] gave anO(logn)-time algorithm for the same problem. All the above-mentioned

algorithms with sublinear running times make essential use of convexity of the polygons. If the

polygons are not convex, a linear-time algorithm can be used to compute the convex hulls before

computing the tangents. Many such algorithms have been described, and the one due to Melkman

[1987] is usually considered the simplest. However, if the polygons are given in read-only memory,

then Ω(n) extra bits are required to store the convex hulls, so this approach does not work in the

constant workspace model.

In the following, we provide a brief description of our algorithm, which is presented in full detail

using the pseudocode in Algorithm 2 on page 6. Algorithm 1 on page 6 is a simplified version of
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Algorithm 2, which finds the separating common tangents whenever they exist, but is guaranteed

to find the outer common tangents only when the convex hulls of the two polygons are disjoint.

In order to find a particular common tangent of two polygons P0 and P1, we maintain a pair

of corners of support q0 ∈ P0 and q1 ∈ P1, where the line L(q0,q1) passing through q0 and q1 is
considered as a candidate for the requested common tangent. In each step of the algorithm, we

traverse each polygon in order to find a corner that does not lie on the “correct side” of the candidate

line L(q0,q1), that is, on the side where all of the polygon should lie if L(q0,q1) was the requested
common tangent. Each polygon is traversed starting from its current corner of support in a direction

determined by the type of the tangent that we aim to find—the separating common tangents are

computed by traversing both polygons in the same direction, whereas the outer common tangents

are computed by choosing opposite directions (see Figure 4 on page 6). If both polygons lie entirely

on the “correct side” of L(q0,q1), then we return L(q0,q1) as the solution. Otherwise, when we first

encounter an edge e of one of the polygons, say P0, that ends at a corner q
′
0
on the “wrong side”, we

distinguish two cases, determined by where e intersects the line L(q0,q1) with respect to q0 and q1.
If q1 does not lie between q0 and the intersection point of e and L(q0,q1), then q′0 becomes the new

corner of support of P0 for the next step of the algorithm (the corner of support of P1 remains at q1).
Otherwise, q1 lies in the convex hull of P0 and therefore cannot be a support of a common tangent.

In the latter case, we temporarily block q0 from further updates until the first update to q1. If no
update to q1 occurs before a full traversal of P1, we conclude that the convex hulls are nested and

no common tangents exist. The key observation is that if the requested common tangent exists,

then it must be found before either polygon has been fully traversed for the second time by its

corner of support. Therefore, if an update occurs during the third full traversal of a polygon, we

conclude that the common tangent does not exist.

In order to guarantee a linear bound on the total running time, in each step, the search for

a corner on the “wrong side” is performed by a tandem walk on the two polygons. That is, we

traverse both polygons starting from the current corners of support and advancing alternately

by one edge until finding the first corner on the “wrong side” in either of the two polygons—that

corner becomes the start of the next search on that polygon (as the new corner of support), while

the search on the other polygon is reverted to where it started. To our knowledge, the idea of a

tandem walk was first applied by Even and Shiloach [1981] to a problem not related to geometry.

Barba et al. [2015] describe a linear-time constant-workspace algorithm, attributed to A. Pilz, for

the following problem: given a simple polygonal chain P with endpoints on its convex hull, and

given a line L that separates the two endpoints of P , find the two edges of the convex hull of P
that are crossed by L. It applies an analogous principle of updating the candidate line by parallel

traversal of two independent parts of P . These updates, however, make the points of support of

the candidate line move only towards the endpoints of P , never coming back to points visited

before. On the other hand, our algorithm sometimes needs to make more than one full traversal of

a polygon (but never more than two) in order to find the requested common tangent, which makes

its analysis significantly more involved. An easy adaptation of Pilz’s algorithm can be used to find

the outer common tangents of two polygons that are separated by a given line. However, finding

such a line seems to be no easier than computing the separating common tangents.

The rest of the paper is organized as follows. In Section 2, we introduce the terminology and

conventions used throughout the paper and state some well-known properties of the common

tangents of two polygons. In Section 3, we describe two algorithms for computing the common

tangents if they exist or detecting that they do not exist, where one is a simplified version of

the other for special cases indicated before. Section 4 contains proofs that the algorithms work

correctly under the assumption of a crucial lemma, which is then proved in Section 5. We conclude
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in Section 6 by discussing how to avoid the general position assumption of Sections 2–5 and by

suggesting some related open problems for future research.

2 BASIC TERMINOLOGY AND NOTATION
For any two points a and b in the plane, the closed line segment with endpoints a and b is denoted by
ab. When a , b, the line passing through a and b is denoted by L(a,b). The segment ab and the line

L(a,b) are considered oriented in the direction from a towards b. A simple polygon or just a polygon
with corners a0, . . . ,an−1, denoted by P(a0, . . . ,an−1), is a closed curve in the plane composed of n
edges a0a1, . . . ,an−2an−1,an−1a0 that have no common points other than the common endpoints of

pairs of edges consecutive in that cyclic order. The polygon P(a0, . . . ,an−1) is considered oriented
so that its forward traversal visits corners a0, . . . ,an−1 in this cyclic order. A polygonal region
is a closed and bounded region of the plane whose boundary is a polygon. For any two points

a = (ax ,ay ) and b = (bx ,by ) in R2, we let

det(a,b) =
����ax bx
ay by

���� = axby − bxay .

For a0, . . . ,an−1 ∈ R2, we let

det
⋆(a0, . . . ,an−1) = det(a0,a1) + · · · + det(an−2,an−1) + det(an−1,a0).

In particular, for any three points a = (ax ,ay ), b = (bx ,by ), and c = (cx , cy ) in R2, we have

det
⋆(a,b, c) =

����ax bx
ay by

���� + ����bx cx
by cy

���� + ����cx ax
cy ay

���� =
������ax bx cx
ay by cy
1 1 1

������ .
For two distinct points a and b in the plane, the left side and the right side of an oriented line L(a,b)
are the two closed half-planes LHP(a,b) and RHP(a,b), respectively, defined as follows:

LHP(a,b) = {c ∈ R2 : det⋆(a,b, c) ≥ 0},
RHP(a,b) = {c ∈ R2 : det⋆(a,b, c) ≤ 0},

where LHP/RHP stands for “left/right half-plane”. An oriented polygon P(a0, . . . ,an−1) is counter-
clockwise when det

⋆(a0, . . . ,an−1) > 0 and clockwise when det
⋆(a0, . . . ,an−1) < 0.

We assume for the rest of this paper that P0 and P1 are two disjoint simple polygons with n0 and
n1 corners, respectively, each defined by a read-only array of its corners:

P0 = P(p0[0], . . . ,p0[n0 − 1]), P1 = P(p1[0], . . . ,p1[n1 − 1]).

We make no assumption (yet) on whether P0 and P1 are oriented counterclockwise or clockwise.

We further assume that the corners of P0 and P1 are in general position, that is, P0 and P1 have no
corners in common and the combined set of corners {p0[0], . . . ,p0[n0 − 1],p1[0], . . . ,p1[n1 − 1]}
contains no triple of collinear points. This assumption simplifies the description and the analysis of

the algorithm but can be avoided, as we explain in the last section. We do not assume the polygonal

regions bounded by P0 and P1 to be disjoint—they may be nested. Indices of the corners of each Pk
are considered modulo nk , so that pk [i] and pk [j] denote the same corner when i ≡ j (mod nk ).
A tangent of Pk is a line L such that Pk has a common point with L and is contained in one of

the two closed half-planes determined by L. A line L is a common tangent of P0 and P1 if it is a
tangent of both P0 and P1; it is an outer common tangent if P0 and P1 lie on the same side of L and

a separating common tangent otherwise. The following lemma asserts well-known properties of

common tangents of polygons. See Figures 1–3.
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Lemma 2.1. A line is a tangent of a polygon P if and only if it is a tangent of the convex hull of P .
Moreover, under the general position assumption, the following holds:
• P0 and P1 have no common tangents if the convex hulls of P0 and P1 are nested;
• P0 and P1 have two outer common tangents and no separating common tangents if the convex
hulls of P0 and P1 properly overlap;
• P0 and P1 have two outer common tangents and two separating common tangents if the convex
hulls of P0 and P1 are disjoint.

3 ALGORITHMS
We distinguish four cases of the common tangent problem: find the pair of indices (s0, s1) such that

(1) P0 ⊂ RHP(p0[s0],p1[s1]) and P1 ⊂ RHP(p0[s0],p1[s1]),
(2) P0 ⊂ LHP(p0[s0],p1[s1]) and P1 ⊂ LHP(p0[s0],p1[s1]),
(3) P0 ⊂ RHP(p0[s0],p1[s1]) and P1 ⊂ LHP(p0[s0],p1[s1]),
(4) P0 ⊂ LHP(p0[s0],p1[s1]) and P1 ⊂ RHP(p0[s0],p1[s1]).

The lineL(p0[s0],p1[s1]) is an outer common tangent in cases 1–2 and a separating common tangent

in cases 3–4. We say that (s0, s1) is the solution to the particular case of the problem. An algorithm

solving each case is expected to find the solution (s0, s1) if it exists (i.e. the convex hulls of P0 and
P1 are not nested in cases 1–2 and are disjoint in cases 3–4) and to report “no solution” otherwise.

We will describe two general algorithms. Algorithm 1, very simple, fully solves the separating

common tangent problem (cases 3–4), finding the separating common tangent if the convex hulls of

P0 and P1 are disjoint and otherwise reporting that the requested tangent does not exist. Furthermore,

Algorithm 1 solves the outer common tangent problem (cases 1–2) provided that the convex hulls

of P0 and P1 are disjoint. Algorithm 1 also correctly reports that the outer common tangents do not

exist if the convex hulls of P0 and P1 are nested. However, Algorithm 1 can fail to find the outer

common tangents if the convex hulls of P0 and P1 properly overlap. Algorithm 2 is an improved

version of Algorithm 1 that solves the problem correctly in all cases.

The general idea behind either algorithm is as follows. The algorithm maintains a pair of indices

(s0, s1) called the candidate solution, which determines the line L(p0[s0],p1[s1]) called the candidate
line. If each of the two polygons lies on the “correct side” of the candidate line, which is either

RHP(p0[s0],p1[s1]) or LHP(p0[s0],p1[s1]) depending on the particular case of 1–4 to be solved, then

the algorithm returns (s0, s1) as the requested solution. Otherwise, for someu ∈ {0, 1}, the algorithm
finds an index vu such that pu [vu ] lies on the “wrong side” of the candidate line, updates su by

setting su ← vu , and repeats. This general scheme guarantees that if (s0, s1) is claimed to be the

solution, then it indeed is. However, the algorithm can fall in an infinite loop—when there is no

solution or when the existing solution keeps being missed. A detailed implementation of the scheme

must guarantee that the solution is found in linearly many steps if it exists. Then, if the solution is

not found in the guaranteed number of steps, the algorithm terminates and reports “no solution”.

The particular case of 1–4 to be solved is specified to the algorithms by providing two binary

parameters α0,α1 ∈ {+1,−1} specifying that the final solution (s0, s1) should satisfy

P0 ⊂ RHP(p0[s0],p1[s1]) if α0 = +1, P0 ⊂ LHP(p0[s0],p1[s1]) if α0 = −1,
P1 ⊂ RHP(p0[s0],p1[s1]) if α1 = +1, P1 ⊂ LHP(p0[s0],p1[s1]) if α1 = −1.

For clarity, instead of using the parameters α0 and α1 explicitly, the pseudocode uses half-planes
H0(a,b) andH1(a,b) defined as follows, for any k ∈ {0, 1} and any distinct a,b ∈ R2:

Hk (a,b) =
{
c ∈ R2 : αk det⋆(a,b, c) ≤ 0

}
=

{
RHP(a,b) if αk = +1,

LHP(a,b) if αk = −1.
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Algorithm 1:
1 s0 ← 0; v0 ← 0; s1 ← 0; v1 ← 0; u ← 0

2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 + n0 or v1 < s1 + n1)
3 vu ← vu + 1

4 if pu [vu ] < Hu (p0[s0],p1[s1]) See Figure 4 for the meaning ofHu (a,b) and
the assumed orientations of P0 and P1.5 su ← vu ; v1−u ← s1−u

6 u ← 1 − u
7 if s0 ≥ 2n0 or s1 ≥ 2n1
8 return “no solution”

9 return (s0, s1)

Algorithm 2:
1 s0 ← 0; v0 ← 0; b0 ← false; s1 ← 0; v1 ← 0; b1 ← false; u ← 0

2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 + n0 or v1 < s1 + n1)
3 vu ← vu + 1

4 if pu [vu ] < Hu (p0[s0],p1[s1]) and not bu See Figure 4 for the meaning of

Hu (a,b) and the assumed orien-

tations of P0 and P1; ∆(a,b, c) is
the triangle spanned by a, b, c .

5 if p1−u [s1−u ] ∈ ∆(pu [su ],pu [vu − 1],pu [vu ])
6 bu ← true

7 else
8 su ← vu ; v1−u ← s1−u ; b1−u ← false

9 u ← 1 − u
10 if s0 ≥ 2n0 or s1 ≥ 2n1 or b0 or b1
11 return “no solution”

12 return (s0, s1)

P0 P1

1

2

3
4

P0
P1

1

2

H0(a,b) H1(a,b) orientation of P0 orientation of P1
1 RHP(a,b) RHP(a,b) counterclockwise clockwise

2 LHP(a,b) LHP(a,b) clockwise counterclockwise

3 RHP(a,b) LHP(a,b) clockwise clockwise

4 LHP(a,b) RHP(a,b) counterclockwise counterclockwise

Fig. 4. The meaning ofH0(a,b) andH1(a,b) and the assumed orientations of P0 and P1 in the pseudocodes
of Algorithm 1 and Algorithm 2, depending on which common tangent of 1–4 is requested.
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P0
P1

a

b

c

d

Fig. 5. An example of how Algorithm 1 finds the separating common tangent L(b,d) of P0 and P1 starting
from (p0[0],p1[0]) = (a, c). The segments p0[s0]p1[s1] on intermediate candidate lines are also shown.

The final solution (s0, s1) should satisfy Pk ⊂ Hk (p0[s0],p1[s1]). A test of the form c < Hk (a,b) in
the pseudocode should be understood as testing whether αk det

⋆(a,b, c) > 0. Another assumption

that we make when presenting the pseudocode concerns the direction in which each polygon Pk is

traversed in order to find an index vk such that pk [vk ] < Hk (p0[s0],p1[s1]). For a reason that will

become clear later when we analyze correctness of the algorithms, we require that

• P0 is traversed counterclockwise when α1 = +1 and clockwise when α1 = −1,
• P1 is traversed clockwise when α0 = +1 and counterclockwise when α0 = −1.

In the pseudocode, the forward orientation of Pk is assumed to be the one in which the corners

of Pk should be traversed according to the conditions above. When this has not been guaranteed

in the problem setup, a reference to a corner of Pk of the form pk [i] in the pseudocode should be

understood as pk [βk i] for the constant βk ∈ {+1,−1} computed as follows at the very beginning:

β0 = α1 sgn det
⋆(p0[0], . . . ,p0[n0 − 1]), β1 = −α0 sgn det⋆(p1[0], . . . ,p1[n1 − 1]).

The assumptions made in the pseudocode of the two algorithms for each particular case of 1–4 are

summarized in Figure 4.

Algorithm 1 maintains a candidate solution (s0, s1) starting from (s0, s1) = (0, 0). At the beginning
and after each update to (s0, s1), the algorithm traverses P0 and P1 in parallel with indices (v0,v1),
starting from (v0,v1) = (s0, s1) and advancing v0 and v1 alternately. The variable u ∈ {0, 1}
determines the polygon Pu in which the traversal is advanced in the current iteration. If the test in

line 4 of Algorithm 1 succeeds, that is, the corner pu [vu ] lies on the “wrong side” of the candidate

line, then the algorithm updates the candidate solution by setting su ← vu and reverts v1−u back

to s1−u in line 5. The algorithm returns (s0, s1) when both polygons have been entirely traversed

with indices v0 and v1 without detecting any corner on the “wrong side” of the candidate line. This

can happen only when P0 ⊂ H0(p0[s0],p1[s1]) and P1 ⊂ H1(p0[s0],p1[s1]), as required.
See Figure 5 for an example run of Algorithm 1 for the separating common tangent problem

(case 4). The following theorem asserts that Algorithm 1 is correct for the separating common

tangent problem and “partially correct” for the outer common tangent problem.

Theorem 3.1. If Algorithm 1 is to solve the outer common tangent problem (case 1 or 2), then it
returns the solution (s0, s1) if the convex hulls of P0 and P1 are disjoint and reports “no solution” if the
convex hulls of P0 and P1 are nested. If Algorithm 1 is to solve the separating common tangent problem
(case 3 or 4), then it returns the solution (s0, s1) if the convex hulls of P0 and P1 are disjoint and reports
“no solution” otherwise. Moreover, Algorithm 1 runs in linear time and uses constant workspace.
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P0
P1

a

b

c

d

e

f

Fig. 6. An example of how Algorithm 2 finds and Algorithm 1 fails to find the outer common tangent L(c, f )
of P0 and P1 starting from (p0[0],p1[0]) = (a,d). The segments p0[s0]p1[s1] on intermediate candidate lines are
shown by dashed lines—gray for those considered by Algorithm 2 and red for those considered by Algorithm 1
but not Algorithm 2. Both algorithms proceed along the same lines until the 26th iteration. In particular, in
the 18th iteration of both algorithms, an update makes (p0[s0],p1[s1]) = (b, e) and the dotted line L(b, e)
becomes the candidate line. In the 27th iteration, after the assignmentvu ← vu + 1, the algorithms encounter
u = 0 and p0[v0] = a. Algorithm 1 then makes p0[s0] = a, and in the 33rd iteration, it reaches back the state
(p0[s0],p1[s1]) = (p0[v0],p1[v1]) = (a,d) and u = 0 where it started except that the indices s0, v0, s1, and v1
have increased by the sizes of the respective polygons. If the conditions s0 < 2n0 and s1 < 2n1 of the “while”
loop were ignored, Algorithm 1 would keep updating (s0, s1) indefinitely. By contrast, in the 27th iteration of
Algorithm 2, the test in line 5 succeeds and b0 is set. Algorithm 2 continues by making (p0[s0],p1[s1]) = (b, f )
in the 28th iteration (while clearing b0) and finally (p0[s0],p1[s1]) = (c, f ) in the 29th iteration.

If the convex hulls of P0 and P1 properly overlap, then Algorithm 1 can fail to find the solution

even though it exists. An example of such behavior is presented in Figure 6. Algorithm 2 is an

improved version of Algorithm 1 that solves the problem correctly in all cases including the case

of properly overlapping convex hulls. In line 5 of Algorithm 2, ∆(a,b, c) denotes the triangular
region spanned by a, b, and c , and a test of the form z ∈ ∆(a,b, c) is equivalent to testing whether

det
⋆(z,a,b), det⋆(z,b, c), and det

⋆(z, c,a) are all positive or all negative (they are all non-zero, by

the general position assumption). Suppose that u = 0 (for simplicity of the explanation that follows)

and the test in line 5 succeeds. Hence p1[s1] belongs to the convex hull of P0. Algorithm 1 would

now set s0 tov0. Intuitively, this would “reverse” the orientation of the candidate line (which is most

evident when the angle p0[s0]p1[s1]p0[v0] is close to π ), possibly leading to failure. Algorithm 2

proceeds differently: s0 remains unchanged, and a boolean variable b0 is set in order to prevent

updates to s0 in further iterations of the algorithm until one of the iterations makes an update to s1
and clears b0 in line 8. As we will show, such an update to s1 must occur unless the convex hull

of P1 is contained in the convex hull of P0, and preventing updates to s0 when b0 is set suffices to

guarantee correctness of the algorithm in all cases.

See Figure 6 for an example run of Algorithm 2 for the outer common tangent problem (case 1),

where the convex hulls of P0 and P1 properly overlap. If the convex hulls of P0 and P1 are disjoint,
then the test in line 5 of Algorithm 2 never succeeds, the variables b0 and b1 remain unset, and thus

Algorithm 2 essentially becomes Algorithm 1.
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Theorem 3.2. If Algorithm 2 is to solve the outer common tangent problem (case 1 or 2), then it
returns the solution (s0, s1) unless the convex hulls of P0 and P1 are nested, in which case it reports
“no solution”. If Algorithm 2 is to solve the separating common tangent problem (case 3 or 4), then
it returns the solution (s0, s1) if the convex hulls of P0 and P1 are disjoint and reports “no solution”
otherwise. Moreover, Algorithm 2 runs in linear time and uses constant workspace.

4 CORRECTNESS OF ALGORITHM 1 AND ALGORITHM 2
In this section, we prove Theorem 3.1 and Theorem 3.2 on correctness and efficiency of Algorithms

1 and 2 while leaving the proof of a key lemma to the next section. First, we prove the claims on

running time and workspace usage in Theorems 3.1 and 3.2.

Lemma 4.1. Algorithms 1 and 2 run in linear time and use constant workspace.

Proof. It is clear that the algorithms use constant workspace. For the bound on the running

time, we prove the following two claims:

(1) Before and after every iteration of the “while” loop in Algorithm 1 or 2, we have (vu − su ) −
(v1−u − s1−u ) ∈ {−1, 0}.

(2) In each iteration, the sum s0 + s1 +v0 +v1 is increased by at least 1.

Initially, we have su = vu = s1−u = v1−u = 0, so statement 1 holds before the first iteration. Now,

suppose that statement 1 holds before iteration i . After the assignment vu ← vu + 1, we have

(vu − su ) − (v1−u − s1−u ) ∈ {0, 1}, and the sum s0 + s1 +v0 +v1 has been increased by 1. The former

implies that if the assignments su ← vu and v1−u ← s1−u are performed in iteration i (in line 5

of Algorithm 1 or line 8 of Algorithm 2), then the sum s0 + s1 + v0 + v1 remains unchanged or

is increased by 1 again, and we have (vu − su ) − (v1−u − s1−u ) = 0 afterwards. In total, the sum

s0 + s1 + v0 + v1 is increased by 1 or 2 in iteration i . Finally, after the assignment u ← 1 − u, we
have (vu − su ) − (v1−u − s1−u ) ∈ {−1, 0}, so statement 1 holds at the end of iteration i .
Statement 1 implies that each iteration starts with s0 < 2n0, s1 < 2n1, v0 − s0 ≤ max(n0,n1),

and v1 − s1 ≤ max(n0,n1) (where at least one of the last two inequalities is strict), otherwise

the “while” loop would terminate before that iteration. Therefore, we have s0 + s1 + v0 + v1 ≤
2(s0 + s1) + 2max(n0,n1) < 6(n0 + n1) before each iteration fully performed by the algorithm,

in particular the last one. This, the fact that s0 + s1 + v0 + v1 = 0 before the first iteration, and

statement 2 imply that the algorithm makes at most 6(n0 + n1) iterations, each of which takes

constant time. □

Let k ∈ {0, 1}. We extend the notation pk [x] to all real numbers x to make the function R ∋ x 7→
pk [x] ∈ Pk a continuous and piecewise linear traversal of Pk wrapping around with period nk :

pk [x] = (⌈x⌉ − x)pk [⌊x⌋] + (x − ⌊x⌋)pk [⌈x⌉] ∈ pk [⌊x⌋]pk [⌈x⌉], for x ∈ R ∖ Z.
When x ,y ∈ R and x ≤ y, we let Pk [x ,y] denote the part of Pk from pk [x] to pk [y] in the forward

direction of Pk , that is, Pk [x ,y] = {pk [z] : z ∈ [x ,y]}. We say that Pk [x ,y] is a cap ofHk (a,b) (for
distinct points a,b ∈ R2) if Pk [x ,y] ⊂ Hk (a,b) and Pk [x ,y] ∩ L(a,b) = {x ,y}; this allows x = y.
Lemma 4.2. For each k ∈ {0, 1}, Algorithm 1 maintains the following invariant before and after

every iteration of the “while” loop: Pk [sk ,vk ] ⊂ Hk (p0[s0],p1[s1]).
Proof. Algorithm 1 starts with s0 = v0 = s1 = v1 = 0, so the invariant holds initially. To show

that it is preserved by every iteration, suppose it holds before iteration i . Let u and vu denote

the values in iteration i after the assignment vu ← vu + 1 and before the assignment u ← 1 − u.
Suppose the test in line 4 of Algorithm 1 succeeds, that is, pu [vu ] < Hu (p0[s0],p1[s1]); otherwise,
clearly, the invariant is preserved by iteration i . The updates in line 5 yield s0 = v0 and s1 = v1,
which makes the invariant satisfied after iteration i . □
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p0[v0]p0[v0]p0[v0] p0[v0]

p0[s0] p1[s1]
p0[w0] p0[w0] p0[w0]

Fig. 7. Illustration for the statement of Lemma 4.3 in four possible cases of how p0[v0 − 1]p0[v0] can in-
tersect the candidate line L(p0[s0],p1[s1]) when the test in line 4 of Algorithm 2 succeeds. The half-plane
H0(p0[s0],p1[s1]) is below the dotted line. Algorithm 2 makes the update s0 ← v0 in the first three cases. In
the last case (drawn red), b0 becomes set and the second part of the invariant in Lemma 4.3 becomes satisfied.

Lemma 4.3. (See Figure 7 for an illustration.) For each k ∈ {0, 1}, Algorithm 2 maintains the
following invariant before and after every iteration of the “while” loop:
• if bk = false, then Pk [sk ,vk ] ⊂ Hk (p0[s0],p1[s1]);
• if bk = true, then there is wk ∈ (sk ,vk ) such that Pk [sk ,wk ] is a cap of Hk (p0[s0],p1[s1]) and
p1−k [s1−k ] ∈ pk [sk ]pk [wk ].

Moreover, on every update su ← vu in line 8 of Algorithm 2, if su denotes the value before the update,
then pu [vu ] < Hu (p0[s0],p1[s1]) and there is wu ∈ [vu − 1,vu ) such that Pu [su ,wu ] is a cap of
Hu (p0[s0],p1[s1]) and p1−u [s1−u ] < pu [su ]pu [wu ].

Proof. Algorithm 2 starts with s0 = v0 = s1 = v1 = 0 and b0 = b1 = false, so the invariant holds
initially. To show that it is preserved by every iteration, suppose it holds before iteration i . Let u
and vu denote the values in iteration i after the assignment vu ← vu + 1 and before the assignment

u ← 1−u. Suppose the test in line 4 of Algorithm 2 succeeds, that is, pu [vu ] < Hu (p0[s0],p1[s1]) and
bu = false; otherwise, clearly, the invariant is preserved by iteration i . This and the assumption

that the invariant holds before iteration i imply Pu [su ,vu − 1] ⊂ Hu (p0[s0],p1[s1]) and Pu [su ,vu ] 1
Hu (p0[s0],p1[s1]). Letwu ∈ [vu − 1,vu ) be maximal such that Pu [su ,wu ] ⊂ Hu (p0[s0],p1[s1]). That
is, pu [wu ] is the intersection point of pu [vu − 1]pu [vu ] and L(p0[s0],p1[s1]). The general position
assumption implies that Pu [su ,wu ] is a cap ofHu (p0[s0],p1[s1]). We have p1−u [s1−u ] ∈ pu [su ]pu [wu ]
if and only if p1−u [s1−u ] ∈ ∆(pu [su ],pu [vu −1],pu [vu ]). Therefore, if the test in line 5 succeeds, then

the assignment bu ← true in line 6 makes the invariant satisfied after iteration i . Now, suppose the
test in line 5 fails. It follows that p1−u [s1−u ] < pu [su ]pu [wu ], so the update su ← vu in line 8 satisfies

the second statement of the lemma. Furthermore, the updates in line 8 yield s0 = v0, s1 = v1, and
b1−u = false, which makes the invariant satisfied after iteration i . □

Most effort in proving correctness of the two algorithms lies in the following two lemmas:

Lemma 4.4. If the convex hulls of P0 and P1 are disjoint, then the “while” loop in Algorithm 1 ends
with s0 < 2n0 and s1 < 2n1.

Lemma 4.5. If Algorithm 2 is to solve the outer common tangent problem (case 1 or 2) and the convex
hulls of P0 and P1 are not nested or Algorithm 2 is to solve the separating common tangent problem
(case 3 or 4) and the convex hulls of P0 and P1 are disjoint, then the “while” loop in Algorithm 2 ends
with s0 < 2n0 and s1 < 2n1.

If the convex hulls of P0 and P1 are disjoint, then the test in line 5 of Algorithm 2 never succeeds,

b1 and b2 remain unset all the time, and thus Algorithm 2 becomes equivalent to Algorithm 1.

Therefore, Lemma 4.4 is a direct consequence of Lemma 4.5. We prove Lemma 4.5 in the next

section. Here, we proceed with the proofs of Theorems 3.1 and 3.2 assuming Lemma 4.5.
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Proof of Theorem 3.1. Algorithm 1 returns (s0, s1) only when the “while” loop has terminated

withv0 ≥ s0 +n0 andv1 ≥ s1 +n1, which implies P0 ⊂ H0(p0[s0],p1[s1]) and P1 ⊂ H1(p0[s0],p1[s1]),
in view of Lemma 4.2. Therefore, whenever Algorithm 1 returns (s0, s1), it is the correct solution.
This implies that Algorithm 1 correctly reports “no solution” in all cases where there is indeed no

solution, that is, if the algorithm is to solve the outer common tangent problem (case 1 or 2) and

the convex hulls of P0 and P1 are nested or it is to solve the separating common tangent problem

(case 3 or 4) and the convex hulls of P0 and P1 are not disjoint. By Lemma 4.4, if the convex hulls

of P0 and P1 are disjoint, then the “while” loop ends with s0 < 2n0 and s1 < 2n1, so the algorithm

returns (s0, s1), which is then the correct solution, as we have already argued. By Lemma 4.1, the

running time and the workspace usage are as stated. □

For the proof of correctness of Algorithm 2, we need one more lemma.

Lemma 4.6. If Algorithm 2 is to solve the outer common tangent problem (case 1 or 2) and the convex
hulls of P0 and P1 are not nested or Algorithm 2 is to solve the separating common tangent problem
(case 3 or 4) and the convex hulls of P0 and P1 are disjoint, then the “while” loop in Algorithm 2 ends
with b0 = b1 = false.

Proof. Consider the final values of s0, v0, b0, s1, v1, and b1 when the “while” loop in Algorithm 2

is terminated. Lemma 4.5 yields s0 < 2n0 and s1 < 2n1. This and the termination condition

implies v0 ≥ s0 + n0 and v1 ≥ s1 + n1. If the algorithm is to solve the separating common tangent

problem (case 3 or 4) and we have b0 = true or b1 = true, then Lemma 4.3 implies that the

convex hulls of P0 and P1 are not disjoint, contrary to the assumption of the present lemma.

Now, suppose the algorithm is to solve the outer common tangent problem (case 1 or 2). Thus

H0(p0[s0],p1[s1]) = H1(p0[s0],p1[s1]). If bk = true and b1−k = false for some k ∈ {0, 1}, then
Lemma 4.3 and the fact that P1−k [s1−k ,v1−k ] = P1−k yield a cap Pk [sk ,wk ] ofHk (p0[s0],p1[s1]) such
that P1−k is contained in the polygonal region bounded by Pk [sk ,wk ] ∪pk [sk ]pk [wk ], and therefore
the convex hull of P1−k is contained in the convex hull of Pk , contrary to the assumption of the

lemma. If b0 = b1 = true, then Lemma 4.3 yields a cap P0[s0,w0] of H0(p0[s0],p1[s1]) and a cap

P1[s1,w1] of H1(p0[s0],p1[s1]) such that the points p1[w1], p0[s0], p1[s1], and p0[w0] occur in this

order on L(p0[s0],p1[s1]), which is impossible whenH0(p0[s0],p1[s1]) = H1(p0[s0],p1[s1]). □

Proof of Theorem 3.2. Algorithm 2 returns (s0, s1) only when the “while” loop has terminated

with v0 ≥ s0 + n0, v1 ≥ s1 + n1, and b0 = b1 = false, which implies P0 ⊂ H0(p0[s0],p1[s1]) and
P1 ⊂ H1(p0[s0],p1[s1]), in view of Lemma 4.3. Therefore, whenever Algorithm 2 returns (s0, s1), it is
the correct solution. This implies that Algorithm 2 correctly reports “no solution” in all cases where

there is indeed no solution, that is, if the algorithm is to solve the outer common tangent problem

(case 1 or 2) and the convex hulls of P0 and P1 are nested or it is to solve the separating common

tangent problem (case 3 or 4) and the convex hulls of P0 and P1 are not disjoint. In the other cases,

the “while” loop ends with s0 < 2n0 and s1 < 2n1, by Lemma 4.5, and with b0 = b1 = false, by
Lemma 4.6, and therefore the algorithm returns (s0, s1), which is then the correct solution, as we

have already argued. By Lemma 4.1, the running time and the workspace usage are as stated. □

5 PROOF OF LEMMA 4.5
To complete the proof of correctness of the two algorithms, it remains to prove Lemma 4.5. For the

rest of this section, we adopt the assumptions of Lemma 4.5, in particular the assumption that the

solution exists, and we show that it is found and returned by Algorithm 2.
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5.1 Reduction to one case of the outer common tangent problem
We will reduce Lemma 4.5 for all cases 1–4 of the common tangent problem just to case 1. First, we

explain what we mean by such a reduction. An input to Algorithm 2 is a quadruple (P0, P1,α0,α1),
where P0 = P(p0[0], . . . ,p0[n0−1]), P1 = P(p1[0], . . . ,p1[n1−1]), and α0,α1 ∈ {+1,−1} are implicit

parameters that determine the particular case 1–4 of the common tangent problem to be solved

by the algorithm (see Section 3). Consider two inputs (P0, P1,α0,α1) and (P ′0, P ′1,α ′0,α ′1), where
Pk = P(pk [0], . . . ,pk [nk − 1]) and P ′k = P(p

′
k [0], . . . ,p

′
k [nk − 1]) for each k ∈ {0, 1}. Whenever a

(or b, c , etc.) denotes the point pk [i] (where k ∈ {0, 1} and i ∈ Z), we let a′ (or b ′, c ′, etc.) denote
the point p ′k [i]. The inputs (P0, P1,α0,α1) and (P

′
0
, P ′

1
,α ′

0
,α ′

1
) are equivalent if the following holds

for all a,b, c ∈ {p0[0], . . . ,p0[n0 − 1],p1[0], . . . ,p1[n1 − 1]}:
α0 sgn det

⋆(a,b, c) = α ′
0
sgn det

⋆(a′,b ′, c ′) if |{a,b, c} ∩ {p0[0], . . . ,p0[n0 − 1]}| ∈ {0, 2},
α1 sgn det

⋆(a,b, c) = α ′
1
sgn det

⋆(a′,b ′, c ′) if |{a,b, c} ∩ {p0[0], . . . ,p0[n0 − 1]}| ∈ {1, 3}.
With this definition, equivalent inputs have the same solutions and lead to the same outcomes

of Algorithm 2, as we show in the next two lemmas. Therefore, equivalence of inputs provides a

formal way of reducing one case of Lemma 4.5 to another one.

Lemma 5.1. If inputs (P0, P1,α0,α1) and (P ′0, P ′1,α ′0,α ′1) are equivalent and s0, s1 ∈ Z, then (s0, s1)
either is the correct solution or is not the correct solution to both inputs.

Proof. The conditions in the definition of equivalence imply thatαk det
⋆(p0[s0],p1[s1],pk [i]) > 0

if and only if α ′k det
⋆(p ′

0
[s0],p ′1[s1],p ′k [i]) > 0, for any k ∈ {0, 1} and i ∈ Z. This implies that Pk ⊂

Hk (p0[s0],p1[s1]) if and only if P ′k ⊂ Hk (p ′0[s0],p ′1[s1]), for any k ∈ {0, 1}, that is, L(p0[s0],p1[s1]) is
the requested common tangent of P0 and P1 if and only if L(p ′

0
[s0],p ′1[s1]) is the requested common

tangent of P ′
0
and P ′

1
. □

Lemma 5.2. If inputs (P0, P1,α0,α1) and (P ′0, P ′1,α ′0,α ′1) are equivalent, then Algorithm 2 applied to
(P0, P1,α0,α1) and (P ′0, P ′1,α ′0,α ′1) ends with the same final value of the pair of variables (s0, s1).

Proof. Let k ∈ {0, 1}. Recall from Section 3 the implicit constant βk ∈ {+1,−1}, which deter-

mines whether Algorithm 2 traverses Pk (P ′k ) forwards or backwards. We show that βk has the

same value for both inputs. It is well known that Pk can be triangulated; in particular, there are

nk − 2 triangles of the form P(at ,bt , ct ) with at ,bt , ct ∈ {pk [0], . . . ,pk [nk − 1]} (1 ≤ t ≤ nk − 2),
all with the same orientation (counterclockwise or clockwise), such that

det
⋆(pk [0], . . . ,pk [nk − 1]) =

n−2∑
t=1

(
det(at ,bt ) + det(bt , ct ) + det(ct ,at )

)
=

n−2∑
t=1

det
⋆(at ,bt , ct ).

Equivalence of (P0, P1,α0,α1) and (P ′0, P ′1,α ′0,α ′1) implies

α1−k sgn det
⋆(at ,bt , ct ) = α ′

1−k sgn det
⋆(a′t ,b ′t , c ′t ) for all t ∈ {1, . . . ,nk − 2}.

We conclude that all triangles P(a′t ,b ′t , c ′t ) (1 ≤ t ≤ nk − 2) have the same orientation and

α1−k sgn det
⋆(pk [0], . . . ,pk [nk − 1]) = α ′1−k sgn det

⋆(p ′k [0], . . . ,p
′
k [nk − 1]).

This and the definition of βk implies that βk has the same value for both inputs.

We show that Algorithm 2 proceeds in exactly the same way for both inputs. Specifically, we

show the same number of iterations of the “while” loop is performed for both inputs, and for each

iteration i , the variables s0, v0, b0, s1, v1, and b1 have the same values for both inputs before and

after iteration i (it is clear that u has the same value, because it depends only on i). This implies, in

particular, that the algorithm ends with the same final value of the pair of variables (s0, s1).
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The initial setup is common for both inputs. Now, suppose s0, v0, b0, s1, v1, and b1 have the same

values for both inputs before iteration i . The test in line 4 produces the same outcome for both inputs,

because equivalence of (P0, P1,α0,α1) and (P ′0, P ′1,α ′0,α ′1) implies thatαu det
⋆(p0[s0],p1[s1],pu [vu ]) >

0 if and only if α ′u det
⋆(p ′

0
[s0],p ′1[s1],p ′u [vu ]) > 0. If that outcome is positive, then the test in line 5

produces the same outcome for both inputs, by an analogous argument. It follows that the same

assignments are performed in iteration i for both inputs, and therefore s0, v0, b0, s1, v1, and b1 have
the same values for both inputs after iteration i . □

First, we reduce Lemma 4.5 for cases 2 and 4 of the common tangent problem to cases 1 and 3

thereof. Consider the transformation ϕ : R2 ∋ (x ,y) 7→ (−x ,y) ∈ R2 (horizontal flip). Let P ′
0
=

P(ϕ(p0[0]), . . . ,ϕ(p0[n0 − 1])) and P ′1 = P(ϕ(p1[0]), . . . ,ϕ(p1[n1 − 1])). Clearly, for any three points

a,b, c ∈ R2, we have det⋆(ϕ(a),ϕ(b),ϕ(c)) = − det⋆(a,b, c). It follows that the input (P0, P1,α0,α1)
is equivalent to (P ′

0
, P ′

1
,−α0,−α1). If the former is case 2 or 4 of the common tangent problem, then

the latter is case 1 or 3 thereof, respectively. By Lemmas 5.1 and 5.2, it remains to prove Lemma 4.5

for cases 1 and 3 of the common tangent problem.

Now, we reduce Lemma 4.5 for case 3 of the common tangent problem to case 1 thereof. Suppose

an input (P0, P1,α0,α1) is case 3 of the common tangent problem, that is, α0 = +1 and α1 = −1.
Assume that the convex hulls of P0 and P1 are disjoint (as in Lemma 4.5). It follows that there is a

straight line separating the two convex hulls in the plane. Assume without loss of generality that it

is the vertical line x = 0 and every corner of P0 has negative x-coordinate while every corner of

P1 has positive x-coordinate, applying an appropriate rotation or translation of the plane to turn

(P0, P1,α0,α1) into an equivalent input that has these properties. Consider the transformation

ϕ : (R ∖ {0}) × R ∋ (x ,y) 7→
(
y

x
,
1

x

)
∈ (R ∖ {0}) × R.

For any three points a = (ax ,ay ), b = (bx ,by ), and c = (cx , cy ) in (R ∖ {0}) × R, we have

det
⋆(ϕ(a),ϕ(b),ϕ(c)) =

�������
ay
ax

by
bx

cy
cx

1

ax
1

bx
1

cx
1 1 1

������� =
�������
1 1 1

ay
ax

by
bx

cy
cx

1

ax
1

bx
1

cx

������� = det
⋆(a,b, c)
axbxcx

. (†)

Since a, b, and c are collinear if and only if det
⋆(a,b, c) = 0, it follows from (†) that ϕ preserves

collinearity (actually, it is a projective transformation). This and the fact that ϕ is a bijection

on (R ∖ {0}) × R imply that ϕ transforms the polygons P0 and P1 into (simple) polygons P ′
0
=

P(ϕ(p0[0]), . . . ,ϕ(p0[n0−1])) and P ′1 = P(ϕ(p1[0]), . . . ,ϕ(p1[n1−1])), respectively. Since the corners
of P0 have negative x-coordinates and the corners of P1 have positive x-coordinates, the equality
(†) implies the following, for all a,b, c ∈ {p0[0], . . . ,p0[n0 − 1],p1[0], . . . ,p1[n1 − 1]}:

sgn det
⋆(ϕ(a),ϕ(b),ϕ(c)) = sgn det

⋆(a,b, c) if |{a,b, c} ∩ {p0[0], . . . ,p0[n0 − 1]}| ∈ {0, 2},
sgn det

⋆(ϕ(a),ϕ(b),ϕ(c)) = − sgn det⋆(a,b, c) if |{a,b, c} ∩ {p0[0], . . . ,p0[n0 − 1]}| ∈ {1, 3}.

Therefore, the inputs (P0, P1,α0,α1) and (P ′0, P ′1,α0,−α1) are equivalent. Since the former is case 3

of the common tangent problem, the latter is case 1 thereof. By Lemmas 5.1 and 5.2, it remains to

prove Lemma 4.5 for case 1 of the problem. This is what the remainder of Section 5 is devoted to.

5.2 Auxiliary concepts
For the sequel, we assume that the convex hulls of P0 and P1 are not nested, P0 is oriented counter-

clockwise, P1 is oriented clockwise, and Algorithm 2 is to solve case 1 of the outer common tangent

problem—compute a pair of indices (s0, s1) such that P0, P1 ⊂ RHP(p0[s0],p1[s1]).
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ℓ0 ℓ1

r0 r1

x y

y ′

x ′

E

Z

P0 P1

Fig. 8. Illustration for the concepts of a door and a zone and for Observations 5.3–5.5. Some pairwise non-
crossing doors including ℓ0ℓ1 and r0r1 are indicated by dashed lines. The polygonal regions P0[ℓ0, r0] and
P1[ℓ1, r1] and the doors ℓ0ℓ1 and r0r1 determine the shaded zone E, which contains all doors and zones. The
boundary of the red zone Z contains two doors xy ≺ x ′y′; Z lies to the left of xy and to the right of x ′y′.

Recall that a segment ab in the plane is considered oriented from a to b, so that forward traversal
of ab starts at a and ends at b. A polygonal path is a curve in the plane composed of n segments

a0a1,a1a2, . . . ,an−1an with no common points other than the common endpoints of pairs of con-

secutive segments in that order. Such a polygonal path is considered oriented from a0 to an , so
that forward traversal of it starts at a0 and ends at an . A segment or a polygonal path is degenerate
if it consists of a single point. When a non-degenerate polygonal path a0a1,a1a2, . . . ,an−1an (a

non-degenerate segment if n = 1) is contained in the boundary of a polygonal regionQ , we say that

Q lies to the left or to the right of a0a1,a1a2, . . . ,an−1an if forward traversal of a0a1,a1a2, . . . ,an−1an
agrees with counterclockwise traversal or clockwise traversal, respectively, of the boundary of Q .
For k ∈ {0, 1} and a,b ∈ Pk , let Pk [a,b] be the polygonal path from a to b along Pk in the forward

direction (counterclockwise for P0 and clockwise for P1); in particular, Pk [a,a] = {a}.
Let ℓ0, r0 ∈ P0 and ℓ1, r1 ∈ P1 be such that P0, P1 ⊂ LHP(ℓ0, ℓ1) ∩ RHP(r0, r1). Thus r0 and r1

determine the requested outer common tangent, while ℓ0 and ℓ1 determine the other one. It is

possible that ℓ0 = r0 or ℓ1 = r1 (but not both). For clarity of presentation, we will ignore this special

case and proceed as if ℓ0 , r0 and ℓ1 , r1. Our arguments remain correct when ℓk = rk (k ∈ {0, 1})
after adding the following exceptions to the definitions of a polygon, a polygonal path, and Pk [a,b]:
• the point ℓk = rk is allowed to occur twice on a polygon (as two corners) or a polygonal path

(as both endpoints of the path), where one occurrence is denoted by ℓk and the other by rk ;
• Pk [ℓk , rk ] = Pk ; forward traversal of Pk [ℓk , rk ] makes one full traversal of Pk from ℓk to rk in

the forward direction of Pk (counterclockwise for P0 and clockwise for P1).

A door is a segment xy such that xy ∩ P0 = {x} and xy ∩ P1 = {y}. We always orient the door

from the endpoint on P0 to the endpoint on P1. A zone is a polygonal region Z such that the interior

of Z is disjoint from P0 ∪ P1 and the boundary of Z is the union of some non-empty part of P0
(not necessarily connected), some non-empty part of P1 (likewise), and some segments with both

endpoints on P0 ∪ P1 (not necessarily doors). These concepts are illustrated in Figure 8. Let E be the

polygonal region bounded by ℓ0ℓ1 ∪P0[ℓ0, r0] ∪P1[ℓ1, r1] ∪ r0r1. Since E ⊂ LHP(ℓ0, ℓ1) ∩RHP(r0, r1),
it follows that E lies to the left of ℓ0ℓ1, to the right of P0[ℓ0, r0], to the left of P1[ℓ1, r1], and to the

right of r0r1. Figure 8 also illustrates the next three observations.
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Observation 5.3. The polygonal region E is a zone and satisfies E ∩ P0 = P0[ℓ0, r0] and E ∩ P1 =
P1[ℓ1, r1]. Moreover, every door or zone is contained in E. In particular, every door has one endpoint on
P0[ℓ0, r0] and the other on P1[ℓ1, r1].

Proof. Let k ∈ {0, 1} and Sk = (LHP(ℓ0, ℓ1)∩RHP(r0, r1))∖Pk [ℓk , rk ]. Since E and the polygonal

region bounded by Pk lie on opposite sides of Pk [ℓk , rk ], the sets Pk ∖ Pk [ℓk , rk ] and E ∖ Pk [ℓk , rk ]
are contained in different connected components of Sk . A consequence of this property is that

E∩Pk = Pk [ℓk , rk ]. This, for both k ∈ {0, 1}, proves the first statement. Another consequence is that

Pk ∖Pk [ℓk , rk ] and P1−k belong to different connected components of Sk , because E ∖Pk [ℓk , rk ] and
P1−k intersect. Therefore, Pk [ℓk , rk ] intersects the interior of every segment or polygonal region

that is contained in LHP(ℓ0, ℓ1) ∩RHP(r0, r1) and intersects both Pk ∖ Pk [ℓk , rk ] and P1−k . However,
every door or zone is contained in LHP(ℓ0, ℓ1)∩RHP(r0, r1) (because P0 and P1 are) and is internally
disjoint from Pk [ℓk , rk ]. This, for both k ∈ {0, 1}, proves the last two statements. □

For two doors xy and x ′y ′, let xy ⪯ x ′y ′ denote that P0[x ,x ′] ⊆ P0[ℓ0, r0] and P1[y,y ′] ⊆ P1[ℓ1, r1]
(that is, forward traversal of P0[ℓ0, r0] encounters x no later than x ′ and forward traversal of P1[ℓ1, r1]
encounters y no later than y ′), and let xy ≺ x ′y ′ denote that xy ⪯ x ′y ′ and xy , x ′y ′. Two doors

are non-crossing if they are disjoint or they intersect only at a common endpoint. The following

observation implies that ≺ is a total order on any set of pairwise non-crossing doors:

Observation 5.4. Any two non-crossing doors xy and x ′y ′ satisfy xy ≺ x ′y ′ or x ′y ′ ≺ xy.

Proof. Observation 5.3 yields xy,x ′y ′ ⊂ E. If neither xy ≺ x ′y ′ nor x ′y ′ ≺ xy, then the points

x , x ′, y, and y ′ are distinct and occur on the boundary of E in this cyclic order (clockwise or

counterclockwise), which contradicts the assumption that xy and x ′y ′ do not cross. □

Observation 5.5. The boundary of every zone Z contains exactly two doors. Moreover, if these
doors are denoted by xy and x ′y ′ so that xy ≺ x ′y ′, then
(1) Z lies to the left of xy and to the right of x ′y ′,
(2) a door x ′′y ′′ is disjoint from the interior of Z if and only if x ′′y ′′ ⪯ xy or x ′y ′ ⪯ x ′′y ′′.

Proof. The boundary of Z intersects both P0 and P1, so it contains at least two doors. By

Observation 5.4, since the doors on the boundary of Z are pairwise non-crossing, they are totally

ordered by ≺. Let xy be the minimum door and x ′y ′ be the maximum door on the boundary of

Z with respect to the order ≺. We will show statements 1 and 2 for xy and x ′y ′. Statement 2,

minimality of xy, and maximality of x ′y ′ imply that the boundary of Z contains no other doors.

For every door x ′′y ′′, since Z ⊆ E and x ′′y ′′ ⊂ E (by Observation 5.3), the following holds:

if the set E ∖ x ′′y ′′ has two connected components intersecting Z , then x ′′y ′′ intersects the

interior of Z . If neither x ′′y ′′ ⪯ xy nor x ′y ′ ⪯ x ′′y ′′, then the set E ∖ x ′′y ′′ has two connected

components intersecting Z (by the definition of ⪯), so x ′′y ′′ intersects the interior of Z , which is

one implication in statement 2. It also follows that either of the sets E ∖ xy and E ∖ x ′y ′ has only
one connected component intersecting Z , so Z is contained in the polygonal region Z⋆

bounded

by xy ∪ P0[x ,x ′] ∪ P1[y,y ′] ∪ x ′y ′, which is contained in E. If x , x ′, then Z⋆
lies to the right

of P0[x ,x ′] (because E does), and if y , y ′, then Z⋆
lies to the left of P1[y,y ′] (because E does).

Therefore, Z⋆
and thus Z lie to the left of xy and to the right of x ′y ′, which is statement 1. Moreover,

if x ′′y ′′ ⪯ xy or x ′y ′ ⪯ x ′′y ′′, then x ′′y ′′ is disjoint from the interior of Z⋆
and therefore is disjoint

from the interior of Z , which is the converse implication in statement 2. □

For the rest of this subsection, fix points q0 ∈ P0 and q1 ∈ P1, and consider doors contained in

q0q1 (doors on q0q1 in short). Recall that a door xy is always oriented from its endpoint x on P0 to
its endpoint y on P1. The sign of such a door xy on q0q1 is
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q0 = z ′
0

q′
0

q′′
0

q1 = q
′
1
= q′′

1

z ′
1

z ′′
0

z ′′
1

ℓ0

ℓ1

r0
r1

F

T

Z1

Z2

Z1

Z2

Z3

Z4

Z5

P0

P1

Fig. 9. Thick blue segments are positive doors and thick red segments are negative doors onq′
0
q′
1
andq′′

0
q′′
1
. The

primary doors are z′
0
z′
1
on q′

0
q′
1
and z′′

0
z′′
1
on q′′

0
q′′
1
. The red region F (considered in Lemma 5.8) determines red

zones Z1 ≺ Z2. The blue region T (considered in Lemma 5.9) determines blue zones Z1 ≺ Z2 ≺ Z3 ≺ Z4 ≺ Z5,
of which Z1, Z2, and Z5 are two-sided while Z3 and Z4 are one-sided.

• +1 if forward traversal of q0q1 encounters x first and y second (then xy is positive on q0q1),
• −1 if forward traversal of q0q1 encounters y first and x second (then xy is negative on q0q1).

See Figure 9 for an illustration.

Observation 5.6. The signs of all doors on q0q1 sum up to 1.

Proof. Let x1y1, . . . ,xdyd be all the doors on q0q1 enumerated in the order they are encountered

by forward traversal of q0q1. The first endpoint of such a door is the one closer to q0, and the last
endpoint is the one closer to q1. Every subsegment of q0q1 connecting a point on P0 with a point

on P1 contains at least one of the doors. Since q0 ∈ P0, the subsegment of q0q1 from q0 to the first

endpoint of x1y1 contains no points of P1, so x1y1 is positive on q0q1. For i ∈ {1, . . . ,d − 1}, the
subsegment of q0q1 from the last endpoint of xiyi to the first endpoint of xi+1yi+1 contains no
points of P0 or no points of P1, so the sign of xi+1yi+1 is opposite to the sign of xiyi on q0q1. Finally,
since q1 ∈ P1, the subsegment of q0q1 from the last endpoint of xdyd to q1 contains no points of P0,
so xdyd is positive on q0q1. This implies that xiyi is positive on q0q1 for i odd, xiyi is negative on
q0q1 for i is even, and d is odd. Therefore, the signs of x1y1, . . . ,xdyd on q0q1 sum up to 1. □

The doors on q0q1 are pairwise non-crossing, so they are totally ordered by the relation ≺, by
Observation 5.4. Let x1y1, . . . ,xdyd be all the doors on q0q1 ordered so that x1y1 ≺ · · · ≺ xdyd .
The primary door on q0q1 is the door x jyj with minimum j ∈ {1, . . . ,d} such that the signs of

x1y1, . . . ,x jyj onq0q1 sum up to 1. Such an index j exists, becaused is a candidate, byObservation 5.6.
Minimality of j in the definition of the primary door directly implies the following:

Observation 5.7. The primary door xiyi is positive on q0q1. Moreover, if i ≥ 2, then the door
xi−1yi−1 is also positive on q0q1.
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Tracking the primary door on the segment q0q1 = p0[s0]p1[s1] as it changes in the course of the

algorithm is the key idea in the proof of the remaining case of Lemma 4.5 that follows.

5.3 Proof of Lemma 4.5 for the remaining case
We go back to the proof of Lemma 4.5. Having reduced Lemma 4.5 to case 1 of the outer common

tangent problem, we have assumed the setup of that case: the convex hulls of P0 and P1 are not
nested, P0 is oriented counterclockwise, P1 is oriented clockwise, and Algorithm 2 is to compute a

pair of indices (s0, s1) such that P0, P1 ⊂ RHP(p0[s0],p1[s1]), that is, p0[s0] = r0 and p1[s1] = r1.
Algorithm 2 starts with (s0, s1) = (0, 0) and then makes some updates to the candidate solution

(s0, s1) in line 8 until the end of the “while” loop. The second part of Lemma 4.3 explains what these

updates look like: on every update su ← vu in line 8 of Algorithm 2, if su denotes the value before

the update, then pu [vu ] < RHP(p0[s0],p1[s1]) and there iswu ∈ [vu − 1,vu ) such that Pu [su ,wu ] is a
cap of RHP(p0[s0],p1[s1]), Pu [wu ,vu ] is the segment pu [wu ]pu [vu ], and p1−u [s1−u ] < pu [su ]pu [wu ].
First, we present informally the general proof idea. Imagine that an update like above happens

in continuous time, as follows. Let q0 = p0[s0] and q1 = p1[s1]. If su = wu , then the point qu moves

continuously along the segment pu [wu ]pu [vu ] from pu [wu ] to pu [vu ]. If su < wu , then the point

qu jumps over all points pu [x] with x ∈ (su ,wu ] and then moves continuously along the segment

pu [wu ]pu [vu ] ∖ {pu [wu ]} as in the case su = wu . Thus qu = pu [su ] again after the assignment

su ← vu . As qu is moving during the update, we track the primary door z0z1 on q0q1 and show that

(1) the door z0z1 is only moving (piecewise continuously) forward in the order ≺,
(2) the point qu never passes or jumps over zu .

To see how this implies Lemma 4.5, consider the overall move of q0, q1, and z0z1 during all updates

to the candidate solution (s0, s1), starting from q0 = p0[0] and q1 = p1[0]. For each k ∈ {0, 1},
statement 1 implies that zk is only moving forward on Pk [ℓk , rk ], never passing or jumping over rk ,
and statement 2 asserts that qk never passes or jumps over zk , whence it follows that qk passes or

jumps over rk at most once.

Now, we proceed with the proof of Lemma 4.5. The next two lemmas formalize statement 1

above—Lemma 5.8 for the initial jump over Pu [su ,wu ], and Lemma 5.9 for the continuous move

along p[wu ]p[vu ]. See Figure 9 for an illustration of Lemmas 5.8 and 5.9. Statement 2 above is

formalized by the invariant in Lemma 5.10.

Lemma 5.8. Let u ∈ {0, 1}, qu ,q′u ∈ Pu , and q1−u = q′
1−u ∈ P1−u . If Pu [qu ,q′u ] is a cap of

RHP(q0,q1) and q1−u < quq′u , then the same door is primary on q0q1 and on q′0q
′
1
.

Proof. The lemma is trivial when qu = q
′
u , so assume qu , q

′
u . Thus q0q1 ⊂ q′

0
q′
1
or q′

0
q′
1
⊂ q0q1

(because q1−u < quq′u ). Let q
′′
0
q′′
1
be the longer of q0q1 and q

′
0
q′
1
(q′

0
q′
1
in the former and q0q1 in the

latter case). Let F be the polygonal region bounded by Pu [qu ,q′u ] ∪ quq′u . Thus F ⊂ RHP(q′′
0
,q′′

1
).

LetZ be the set of zones contained in F with boundaries contained in (P0 ∩ F ) ∪ (P1 ∩ F ) ∪ quq′u .
For every door xy ⊂ quq

′
u , there is a zone inZ to the right of xy (if F is to the right of xy) or to the

left of xy (if F is to the left of xy). By Observation 5.5, the zones inZ can be ordered as Z1, . . . ,Zd
and the doors contained in quq

′
u can be ordered as x1y1,x

1y1, . . . ,xdyd ,x
dyd so that

• every zone Zi ∈ Z has exactly two doors on the boundary, namely, xiyi and x
iyi ,

• x1y1 ≺ x1y1 ≺ · · · ≺ xdyd ≺ xdyd .

For each i ∈ {1, . . . ,d}, since Zi ⊂ RHP(q′′
0
,q′′

1
), Observation 5.5 (1 and 2) implies that

• xiyi is negative and x iyi is positive on q′′0 q′′1 ,
• xiyi and x iyi are consecutive in the order ≺ of the doors on q′′

0
q′′
1
.

By Observation 5.7, none of x1y1,x
1y1, . . . ,xdyd ,x

dyd is primary on q′′
0
q′′
1
. Moreover, for each door

xy on the shorter of q0q1 and q
′
0
q′
1
, the following two sums are equal:



18 Mikkel Abrahamsen and Bartosz Walczak

• the sum of the signs of all doors on q′′
0
q′′
1
up to xy in the order ≺,

• the sum of the signs of all doors on the shorter of q0q1 and q
′
0
q′
1
up to xy in the order ≺.

We conclude that the same door is primary on q′′
0
q′′
1
and on the shorter of q0q1 and q

′
0
q′
1
. □

Lemma 5.9. Let u ∈ {0, 1}, q′uq′′u ⊂ Pu , and q′
1−u = q

′′
1−u ∈ P1−u . Let z ′0z ′1 be the primary door on

q′
0
q′
1
and z ′′

0
z ′′
1
be the primary door on q′′

0
q′′
1
. If q′′u < RHP(q′0,q′1), then z ′0z ′1 ≺ z ′′

0
z ′′
1
.

Proof. LetT be the triangular region bounded by q′
0
q′
1
∪q′

0
q′′
0
∪q′

1
q′′
1
∪q′′

0
q′′
1
, where either q′

0
q′′
0

or q′
1
q′′
1
is a degenerate segment. Thus T ⊂ LHP(q′

0
,q′

1
) ∩ RHP(q′′

0
,q′′

1
). LetZ be the set of zones

contained in T with boundaries contained in q′
0
q′
1
∪ (P0 ∩ T ) ∪ (P1 ∩ T ) ∪ q′′0 q′′1 . For every door

xy ⊂ q′
0
q′
1
∪ q′′

0
q′′
1
, there is a zone inZ to the right of xy (if T lies to the right of xy) or to the left

of xy (if T lies to the left of xy). By Observation 5.5, the zones inZ can be ordered as Z1, . . . ,Zd
and the doors contained in q′

0
q′
1
∪ q′′

0
q′′
1
can be ordered as x1y1,x

1y1, . . . ,xdyd ,x
dyd so that

• every zone Zi ∈ Z has exactly two doors on the boundary, namely, xiyi and x
iyi ,

• x1y1 ≺ x1y1 ≺ · · · ≺ xdyd ≺ xdyd .

For every i ∈ {1, . . . ,d}, since Zi ⊂ LHP(q′
0
,q′

1
) ∩ RHP(q′′

0
,q′′

1
), Observation 5.5 (1) implies that

• xiyi is a positive door on q′0q′1 or a negative door on q′′0 q′′1 ,
• x iyi is a negative door on q′

0
q′
1
or a positive door on q′′

0
q′′
1
.

We will use these two properties extensively without explicit reference.

We say that a zoneZi ∈ Z is one-sided if xiyi and x iyi lie both onq′0q
′
1
or both onq′′

0
q′′
1
, otherwise

we say that Zi is two-sided. For each one-sided zone Zi ∈ Z, the doors xiyi and x
iyi have opposite

signs on q′
0
q′
1
or q′′

0
q′′
1
(whichever they lie on). For each two-sided zone Zi ∈ Z, if x ′iy

′
i and x

′′
i y
′′
i

denote the two doors on the boundary of Zi so that x ′iy
′
i ⊆ q′

0
q′
1
and x ′′i y

′′
i ⊆ q′′

0
q′′
1
, then the sign

of x ′iy
′
i on q

′
0
q′
1
is equal to the sign of x ′′i y

′′
i on q′′

0
q′′
1
. Let I be the set of indices i ∈ {1, . . . ,d} such

that Zi is a two-sided zone inZ. The above and Observation 5.6 implies that

• the signs of the doors x ′iy
′
i on q

′
0
q′
1
over all i ∈ I sum up to 1,

• the signs of the doors x ′′i y
′′
i on q′′

0
q′′
1
over all i ∈ I sum up to 1,

and the following four sums are equal, for each j ∈ I :
• the sum of the signs of all doors on q′

0
q′
1
up to x ′jy

′
j in the order ≺,

• the sum of the signs of the doors x ′iy
′
i on q

′
0
q′
1
over all i ∈ I ∩ {1, . . . , j},

• the sum of the signs of the doors x ′′i y
′′
i on q′′

0
q′′
1
over all i ∈ I ∩ {1, . . . , j},

• the sum of the signs of all doors on q′′
0
q′′
1
up to x ′′j y

′′
j in the order ≺.

Let j ∈ I be minimum such that the four sums above are equal to 1. Since xiyi is positive and x
iyi is

negative on q′
0
q′
1
for every (one-sided) zone Zi ∈ Z such that xiyi ,x

iyi ⊆ q′
0
q′
1
, it follows that the

primary door on q′
0
q′
1
is either x ′jy

′
j or xiyi for some (one-sided) zone Zi ∈ Z with xiyi ,x

iyi ⊆ q′
0
q′
1

and i < j, and thus xiyi ≺ x ′jy
′
j . For every (one-sided) zone Zi ∈ Z such that xiyi ,x

iyi ⊆ q′′
0
q′′
1
,

since xiyi is negative and x iyi is positive on q′′
0
q′′
1
, neither xiyi nor x

iyi is primary on q′′
0
q′′
1
, by

Observation 5.7. It follows that x ′′j y
′′
j is the primary door on q′′

0
q′′
1
. Since the primary door is

always positive, we have x ′jy
′
j = x jyj and x

′′
j y
′′
j = x jy j , and thus x ′jy

′
j ≺ x ′′j y

′′
j . We conclude that

z ′
0
z ′
1
⪯ x ′jy

′
j ≺ x ′′j y

′′
j = z ′′

0
z ′′
1
. □

Lemma 5.10. Let a0 ∈ [0,n0) and a1 ∈ [0,n1) be such that p0[a0] = ℓ0 and p1[a1] = ℓ1. Algorithm 2
maintains the following invariant: if c0 ∈ [a0,a0+n0) and c1 ∈ [a1,a1+n1) are such that p0[c0]p1[c1]
is the primary door on p0[s0]p1[s1], then s0 ≤ c0 and s1 ≤ c1.

The invariant in Lemma 5.10 implies that s0 ≤ c0 < a0 + n0 < 2n0 and s1 ≤ c1 < a1 + n1 < 2n1 at
the end of the “while” loop in Algorithm 2, which is the assertion of Lemma 4.5.
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Proof. Algorithm 2 starts with s0 = 0 ≤ a0 ≤ c0 and s1 = 0 ≤ a1 ≤ c1, so the invariant

holds initially. Consider an update su ← vu in line 8 of Algorithm 2, where u ∈ {0, 1}, assuming

that the invariant holds before the update. Let su denote the value before the update and wu be

as claimed by the second part of Lemma 4.3. Let qu = pu [su ], q′u = pu [wu ], q′′u = pu [vu ], and
q1−u = q′

1−u = q′′
1−u = p1−u [s1−u ]. The conclusions of Lemma 4.3 imply that quq

′
u is a segment of

L(q0,q1) not containing q1−u , Pu [qu ,q′u ] is a cap of RHP(q0,q1), Pu [q′u ,q′′u ] is the single segment

q′uq
′′
u , and q′′u < RHP(q0,q1) = RHP(q′

0
,q′

1
), where the last equality follows from q′

1−u = q1−u ∈
L(q0,q1) ∖ quq′u . These conditions are what we need to apply Lemma 5.8 (to q0, q1, q

′
0
, and q′

1
) and

Lemma 5.9 (to q′
0
, q′

1
, q′′

0
, and q′′

1
). Let z0z1, z

′
0
z ′
1
, and z ′′

0
z ′′
1
be the primary doors on q0q1, q

′
0
q′
1
, and

q′′
0
q′′
1
, respectively. Lemma 5.8 and Lemma 5.9 yield z0z1 = z ′

0
z ′
1
≺ z ′′

0
z ′′
1
. Let c0, c

′′
0
∈ [a0,a0 + n0)

and c1, c
′′
1
∈ [a1,a1 + n1) be such that p0[c0] = z0, p0[c ′′0 ] = z ′′

0
, p1[c1] = z1, and p1[c ′′1 ] = z ′′

1
.

This and z0z1 ≺ z ′′
0
z ′′
1
imply c0 < c ′′

0
and c1 < c ′′

1
. This and the assumption that s0 ≤ c0 and

s1 ≤ c1 (which is the invariant before the update) imply s0 < c ′′
0
and s1 < c ′′

1
. This already

gives one inequality of the invariant after the update, namely, s1−u ≤ c ′′
1−u . It remains to prove

vu ≤ c ′′u , which is the other inequality of the invariant after the update. Since q′′u < RHP(q0,q1)
and q′′

1−u = q1−u , we have RHP(q0,q1) ∩ q′′0 q′′1 = {q′′1−u }. This and Pu [qu ,q′u ] ⊂ RHP(q0,q1) imply

Pu [qu ,q′u ] ∩q′′0 q′′1 = ∅. Since Pu [q′u ,q′′u ] = q′uq′′u and q′u < q
′′
0
q′′
1
, we have Pu [q′u ,q′′u ] ∩q′′0 q′′1 = {q′′u }.

Thus Pu [qu ,q′′u ]∩q′′0 q′′1 = {q′′u }. This and the fact that pu [c ′′u ] = z ′′u ∈ Pu ∩q′′0 q′′1 imply c ′′u < [su ,vu ).
This and su < c ′′u give the requested inequalityvu ≤ c ′′u . We conclude that the invariant is preserved

at the considered update to su . □

6 CONCLUDING REMARKS
So far, we were assuming that the combined set P̂ of corners of P0 and P1 contains no triple

of collinear points, which guarantees that expressions of the form det
⋆(a,b, c) with a,b, c ∈ P̂

evaluated in line 4 of Algorithm 1 and in lines 4 and 5 of Algorithm 2 are non-zero. Now, we

adapt the algorithms to handle the case that P̂ may contain triples of collinear points. Consider the

following family of transformations:

ϕϵ : R
2 ∋ (x ,y) 7→

(
x + ϵy,y + ϵ(x + ϵy)2

)
∈ R2.

For any distinct points a,b, c ∈ R2, the expression det
⋆(ϕϵ (a),ϕϵ (b),ϕϵ (c)) is a continuous function

of ϵ that attains value zero for finitely many arguments ϵ . Therefore, there is ϵ0 > 0 such that the

sign of det
⋆(ϕϵ (a),ϕϵ (b),ϕϵ (c)) is equal to the same constant σ (a,b, c) ∈ {+1,−1} for all ϵ ∈ (0, ϵ0).

The value of σ (a,b, c) can be easily computed from the coordinates of a, b, and c by treating ϵ as
a symbolic positive infinitesimal. We can modify Algorithms 1 and 2 to use σ (a,b, c) instead of

det
⋆(a,b, c) for the tests in the aforementioned lines, so that c < Hk (a,b)means σ (a,b, c) = αk , and

z ∈ ∆(a,b, c) means σ (z,a,b) = σ (z,b, c) = σ (z, c,a). Conceptually, this is the same as invoking

the algorithms on the polygons P0 and P1 transformed by ϕϵ , where ϵ is small enough so that

σ (a,b, c) = sgn det
⋆(ϕϵ (a),ϕϵ (b),ϕϵ (c)) for all triples of distinct points a,b, c ∈ P̂ . Therefore, if

either algorithm claims to find a solution, the fact that it is correct on the transformed input implies

that it is correct on the original input. The same reasoning (and the same modification of the two

algorithms) can be applied with the following family of transformationsψϵ instead of ϕϵ :

ψϵ : R
2 ∋ (x ,y) 7→

(
x + ϵy,y − ϵ(x + ϵy)2

)
∈ R2.

Any straight line is transformed by ϕϵ andψϵ (with ϵ small enough) into two curve lines bend in

the opposite directions. This property is important when we want to find “degenerate” common

tangents. Namely, if the convex hulls of P0 and P1 touch, then one of ϕϵ andψϵ makes them overlap

properly while the other makes them disjoint; therefore, one modification of Algorithm 1 or 2 finds

the “degenerate” separating common tangent while the other does not. Similarly, if the convex
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hulls of P0 and P1 are nested and their boundaries touch, then one of ϕϵ andψϵ makes them overlap

properly while the other moves the smaller convex hull to the interior of the larger; therefore, one

modification of Algorithm 2 finds the “degenerate” outer common tangent while the other does

not. We recognize that there is no solution when both modifications report no solution.

It remains open whether an outer common tangent of two polygons that are not disjoint can be

found in linear time and constant workspace. Another natural question is whether the diameter of

the convex hull of a simple polygon can be computed in linear time and constant workspace.
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