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ABSTRACT
Understanding complex physiological processes demands the in-
tegration of diverse insights derived from visual and quantitative
analysis of bio-image data, such as microscopy images. This pro-
cess is currently constrained by disconnects between methods for
interpreting data, as well as by language barriers that hamper the
necessary cross-disciplinary collaborations. Using immersive ana-
lytics, we leveraged bespoke immersive visualizations to integrate
bio-images and derived quantitative data, enabling deeper compre-
hension and seamless interaction with multi-dimensional cellular
information. We designed and developed a visualization platform
that combines time-lapse confocal microscopy recordings of can-
cer cell motility with image-derived quantitative data spanning 52
parameters. The integrated data representations enable rapid, in-
tuitive interpretation, bridging the divide between bio-images and
quantitative information. Moreover, the immersive visualization
environment promotes collaborative data interrogation, supporting
vital cross-disciplinary collaborations capable of deriving transfor-
mative insights from rapidly emerging bio-image big data.

CCS CONCEPTS
• Human-centered computing → Visual analytics; Virtual re-
ality; • Applied computing→ Systems biology;

KEYWORDS
High-Performance Visualization, Visual and Immersive Analytics,
Confocal Microscopy, Systems Microscopy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VRCAI ’18, December 2–3, 2018, Hachioji, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6087-6/18/12. . . $15.00
https://doi.org/10.1145/3284398.3284412

ACM Reference Format:
John G. Lock, Daniel Filonik, Robert Lawther, Nalini Pather, Katharina Gaus,
Sarah Kenderdine, and Tomasz Bednarz. 2018. Visual Analytics of Single
Cell Microscopy Data Using a Collaborative Immersive Environment. In
International Conference on Virtual Reality Continuum and its Applications
in Industry (VRCAI ’18), December 2–3, 2018, Hachioji, Japan. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3284398.3284412

1 BACKGROUND INTRODUCTION
A revolution is occurring in the life sciences; systems microscopy
integrates automated cellular imaging with computational image
quantification and statistical analyses to reveal how complex pro-
cesses underlying human physiology and disease emerge in time
and space1. Yet converting this bio-image ‘big data’ into actionable
insights is challenging. This reflects a disconnect between the direct
visual perception of information in images and the interpretation of
multiple numerical features extracted from those images. This dis-
connect coincides with deeper fissures at the boundaries between
biological and analytical sciences, where differences in language
and expertise hamper inter-disciplinary collaboration.

We have utilized an immersive, interactive visualization envi-
ronment to bridge the gap between bio-images and image-derived
quantitative data. This facilitates the formation of new insights
and a more comprehensive understanding of the multiple forms
of data from the synthesis of information in images and image-
derived quantitative data, while also improving communication
and collaboration between biological and analytical disciplines.

2 IMMERSIVE VISUALIZATION SYSTEM
Design of all components and experimental investigations on vi-
sualization techniques used in this case were carried out at the
Expanded Perception and Interaction Centre (EPICentre1), at the
UNSW Art & Design Faculty, see Figure 1.

EPICentre is a pioneering visualization facility that builds on
decades of UNSW expertise in the design of interactive virtual en-
vironments and applications. It forges new ground in integrated
1http://epicentre.matters.today
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Figure 1: EPICentre visualization laboratories.

thinking (artistic and scientific) to facilitate understanding of com-
plex datasets and ultra-scale imagery. EPICentre promotes cross-
connection of visualization with applied computational simulations,
artificial intelligence, and creativity in arts and science.

Figure 2: EPICylinder collaborative visualization system.

For this use case we employed the EPICylinder (see Figure 2),
which constitutes a total of nearly 120 million pixels in stereoscopic
3D (26880×4320@120Hz). This is achieved by 56 × 60′′ display
cubes, assembled in a 4 × 14 matrix with 1-2mm edge-to-edge
bezels. Visualizations are driven by a 28 nodes cluster with Xeon
E5-2650 and 28 NVIDIA Quadro M6000. All visualizations were
developed using Unity3D engine, running in cluster-based mode.

3 USE CASE: SYSTEM MICROSCOPY OF
CANCER CELL MOTILITY

While the underlying visualization platform is easily generalisable,
we developed it for the purpose of analysing confocal microscopy-
based time-lapse recordings of individual cancer cell motility (im-
aged at the Live Cell Imaging Unit, Department of Biosciences and
Nutrition, Karolinska Institute, Sweden [Shafqat-Abbasi et al. 2016]).
Novel image-derived quantitative data measuring 52 cell features
were subsequently extracted using Cell Profiler software [Carpenter
et al. 2006] – as listed in Table 1.

Cancer cell motility drives metastasis, thereby causing more
than 90% of cancer mortality [Chaffer and Weinberg 2011]. Ef-
forts to understand and ultimately block cancer cell motility are
currently hindered by several key challenges that recur broadly
across the life sciences [Lock and Strömblad 2010]. Cell motility
behaviour emerges from complex and dynamic patterns of molec-
ular organization. Large numbers (10s - 100s) of quantitative fea-
tures are therefore required to characterize behaviour and organi-
zation for each cell, meaning that quantitative data are complex
and high-dimensional [Hernández-Varas et al. 2015; Kiss et al. 2015;
Kowalewski et al. 2015; Shafqat-Abbasi et al. 2016]. Cancer cells are
heterogeneous, both between cells and within cells as they change
over time [Friedl and Wolf 2009; Shafqat-Abbasi et al. 2016]. This
demands capacity to visualize and define both the sub-populations
of cells and their evolution over time [Carpenter et al. 2006]. Given
high-dimensional data defining various cellular sub-populations,
understanding which features distinguish cell sub-populations and
how these features correlate across cell populations demands the
ability to interactively sort and explore both images and derived
numerical data.

4 INTERACTION DESIGN
The interaction design takes advantage of the unique character-
istics of immersive environments. All the interactions were de-
signed around the use of a fully tracked pair of shutter glasses
and controller. As a result, it is possible to navigate the virtual 3D
environment in a natural fashion.

The visual representation itself is based on a conventional scat-
terplot, which was refined and tailored to the specific characteristics
of the data set. The visual encodings consist of position, color, and
shape. Special consideration was given to presentation in an immer-
sive environment, using modern graphics programming techniques
to enable real-time, smooth interactions, as well as enhancing the
aesthetic appearance. Furthermore, the basic representation was
augmented with special-purpose interactive features.

To address the scientific challenges outlined above, our visu-
alization environment provides multiple distinct yet integrated
representations of underlying biological data. Each representation
exposes new information in the data, while integration of these dif-
fering views connects information. Insights are therefore additive,
creating a comprehensive understanding of the data rather than a
series of isolated findings. Below, we highlight several such data
representations, noting the insights they provide and how they are
connected.

4.1 Dimension Reduction (Cell Attributes)
The higher dimensional data set comprises a total of 52 distinct
measurements of cell attributes obtained through microscopic im-
age segmentation, along with subsequent image processing and
computer vision. Therefore, to gain an overview of heterogeneity
across all recorded data, the user can view cell observations (i.e. ev-
ery cell at every time point) arranged in abstract three-dimensional
visualization space resulting from several dimension reduction tech-
niques, including: Principal Component Analysis (PCA), Multidi-
mensional Scaling (MDS) and t-Distributed Stochastic Neighbour
Embedding (t-SNE).
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To assist users in comparing the results of different algorithms,
we seamlessly interpolate between the results when transitioning
between them. The continuous transition aids the perception of the
position change of clusters of cells in the final visualization space.
During the transformation different clusters may emerge, depend-
ing on the characteristics of the respective dimension reduction
algorithms. The immersive nature of the visualization environment
entices users to view these transformations from various perspec-
tives within the data. Each cell observation may be represented ei-
ther as a sphere or by the original time-lapse microscopy recording,
as well as by colour coded to define unique cell identities (across all
time points) or relative levels of any one of the 52 recorded features.

The direct embedding of images into the dimension reduction
space, combined with colour-coding by individual feature values,
ensures seamless integration of a) images with b) 52-dimensional
image-derived data and c) univariate feature trends. This aids intu-
itive interpretation by manner of visual exploration. Correlation in
feature trends across cell populations can also be assessed, either
pairwise, by mirroring the dimension reduction representation with
two distinct feature value colour-codings, or by presenting 52 views
simultaneously, where each view is colour-coded based on one of
the recorded features.

Figure 3: Cell Attributes.

4.2 Temporal Dimension (Cell Lifelines)
The full data set not only contains 52 distinct measurements for
each individual cell, but also tracks how these attributes change
over time. In the main visualization, observations belonging to a
single cell can be identified by the color and shape encoding of the
marks. For the purpose of exploring the temporal dimension and
heterogeneity in cells over time, the application provides a dedicated
view that is triggered by selecting a group of cell observations. This
view prominently features the cell images as they were captured by
the microscope. It is possible to cycle through the individual images
to observe how the cell moves and changes shape on the dish.
Additionally, the observations are connected by a line geometry,
indicating the progression of their attributes through time in the
abstract visualization space.

Scrolling through time-points then links changes in position
within the dimension reduction space to visual differences in cell
organization. This intuitively integrates variability in cell morphol-
ogy/behavior, including in response to experimental perturbations
(e.g. drugs), translated into visual or quantitative changes.

Figure 4: Cell Lifelines.

4.3 Outlier Detection (Cell Variance)
One of the common issues that were discovered by viewing the
data set in the immersive environment were anomalous measure-
ments due to errors in the image processing algorithm. The visual
inspection of the spatial arrangement of marks in the abstract visu-
alization space was well-suited to detect outliers. This allows us to
improve the processing pipelines, but also could possibly be used
to detect unique cell behaviors reacting to applied drugs.

To further support this use case, an interactive feature was im-
plemented that allows collapsing all the observations of a cell into
a single mark. The mark geometry used in this instance is an axis-
aligned cuboid, and its extent along each axis represents the vari-
ance of the data along said dimension. As a result, it is possible to
quickly compare the variance of observations among different cells.
This is a powerful method to perform quality control, and to identify
cells experiencing unusually high or low temporal heterogeneity.

This feature significantly reduces the visual noise, and could
potentially support much larger data sets, as we are expecting to
receive in future iterations of the study.

Figure 5: Cell Variance a) collapsed and b) expanded.
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4.4 Linked Brushing (Cell Comparison)
Finally, the application also provides an option to dynamically select
and inspect subsets of the complete data set. The desired selection
is made using a brushing mechanism. The 3D tracking information
of the controller is used to determine location of the marks along
the pointer direction. The controller can be freely moved in space,
adding cell observations to the selection in a painterly fashion
whenever one of the main buttons is held down.

Up to two independent selections can be made simultaneously
with different brushes, triggering a direct comparison.When needed,
the comparison can be performed along each of the underlying 52
measurements with the aid of a secondary linked parallel coor-
dinates view. This rapidly reveals how cell subsets differ in each
feature, and what multivariate ‘phenotypic fingerprint’ defines sub-
populations differences more systemically.

Figure 6: Interactive comparison using parallel coordinates.

5 CONCLUSIONS
While the availability of large scale display and tracking technolo-
gies is growing, more research is needed to evaluate the effective-
ness of immersive environments for specific visualization purposes.
This project presents one such practical application of an immersive
environment for inspecting single cell microscopy data.

For life science researchers, such visualization capabilities can
accelerate the derivation of critical knowledge from bio-image big
data. Not simply a matter of exploring more data faster, the inte-
gration of multiple, complementary data representations ensures
that complex insights can be intuitively ’constructed’ on several
synergistic perspectives. This has real potential to enhance rates of
progress in life science research, including in clinical areas related
to cancer diagnosis and therapy development, as described herein.

Moreover, these research enhancements are further buttressed
by collaboration-supporting features of the immersive visualization
environment. By forming intuitive links between images and image-
derived quantitative data, all within a collaborative physical space,
biological and statistical experts can establish tangible connections
between familiar and unfamiliar data forms – thereby extending and
combining their expertise. Again, accelerating a critical and often
rate-limiting process, that of inter-disciplinary communication, this
capacity also has strong potential to promote rapid progress in both
fundamental and clinical research.

Figure 7: Users collaboratively analysing cell data.

A CELL PARAMETERS

Table 1: Summary of cell parameters.

Shape Intensity (PAX/LifeAct) Tracking

Compactness Intensity Distance
Eccentricity – Integrated – Integrated
Euler Number – Max/Min – Traveled
Extent – Mean/Median/Std Displacement
Feret Diameter – Mean Absolute Deviation Lifetime
– Max/Min – Upper/Lower Quartile Linearity

Form Factor Intensity Edge Trajectory
Length – Integrated – X/Y
– Major/Minor Axis – Max/Min

Orientation – Mean/Std
Perimeter Mass Displacement
Radius
– Max
– Mean/Median

Solidity
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