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ABSTRACT

One design principle of modern network architecture seems
to be set in stone: a software-based control plane drives a
hardware- or software-based data plane. We argue that it is
time to revisit this principle after the advent of programmable
switch ASICs which can run complex logic at line rate.

We explore the possibility and benefits of accelerating the
control plane by offloading some of its tasks directly to the net-
work hardware. We show that programmable data planes are
indeed powerful enough to run key control plane tasks includ-
ing: failure detection and notification, connectivity retrieval,
and even policy-based routing protocols. We implement in P4
a prototype of such a “hardware-accelerated” control plane,
and illustrate its benefits in a case study.

Despite such benefits, we acknowledge that offloading
tasks to hardware is not a silver bullet. We discuss its tradeoffs
and limitations, and outline future research directions towards
hardware-software codesign of network control planes.

1 INTRODUCTION

As the “brain” of the network, the control plane is one of
its most important assets. Among other things, the control
plane is responsible for sensing the status of the network (e.g.,
which links are up or which links are overloaded), computing
the best paths along which to guide traffic, and updating
the underlying data plane accordingly. To do so, the control
plane is composed of many dynamic and interacting processes
(e.g., routing, management and accounting protocols) whose
operation must scale to large networks. In contrast, the data
plane is “only” responsible for forwarding traffic according
to the control plane decisions, albeit as fast as possible.
These fundamental differences lead to very different de-
sign philosophies. Given the relative simplicity of the data
plane and the “need for speed”, it is typically entirely imple-
mented in hardware. That said, software-based implementa-
tions of data planes are also commonly found (e.g., Open-
VSwitch [30]) together with hybrid software-hardware ones
(e.g., CacheFlow [20]). In short, data plane implementations
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cover the entire implementation spectrum, from pure software
to pure hardware. In contrast, there is much less diversity in
control plane implementations. The sheer complexity of the
control plane tasks (e.g., performing routing computations)
together with the need to update them relatively frequently
(e.g., to support new protocols and features) indeed calls for
software-based implementations, with only a few key tasks
(e.g., detecting physical failures, activating backup forward-
ing state) being (sometimes) offloaded to hardware [13, 22].

Yet, we argue that a number of recent developments are
creating both the need and opportunity for rethinking basic
design and implementation choices of network control planes.

Need There is a growing need for faster, more scalable, and
yet more powerful control planes. Nowadays, even beefed-
up and highly-optimized software control planes can only
process thousands of (BGP) control plane messages per sec-
ond [23], and can take minutes to converge upon large fail-
ures [17, 36]. Parallelizing only marginally helps: for instance,
the BGP specification [31] mandates to lock all Adj-RIBs-In
before proceeding with the best-path calculation, essentially
preventing the parallel execution of best path computations.
A concrete risk is that convergence time will keep increasing
with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the
performance benefits of controlling networks with extremely
tight control loops, among others to handle congestion (e.g.,
[7,21, 29]).

Opportunity Modern reprogrammable switches (e.g., [1]) can
perform complex stateful computations on billions of packets
per second [19]. Running (pieces of) the control plane at such
speeds would lead to almost “instantaneous” convergence,
leaving the propagation time of the messages as the primary
bottleneck. Besides speed, offloading control plane tasks to
hardware would also help by making them traffic-aware. For
instance, it enables to update forwarding entries consistently
with real-time traffic volumes rather than in a random order.

Research questions Given the opportunity and the need, we
argue that it is time to revisit the control plane’s design and im-
plementation by considering the problem of offloading parts
of it to hardware. This redesign opens the door to multiple re-
search questions including: Which pieces of the control plane
should be offloaded? What are the benefits? and How can
we overcome the fundamental hardware limitations? These
fundamental limitations come mainly from the very limited
instruction set (e.g., no floating point) and the memory avail-
able (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this
paper and make two contributions.
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First, we illustrate that the next-generation of programmable
switches is powerful enough to run many control tasks directly
in hardware. Specifically, we implement a working prototype
of a hardware-accelerated control plane in P4 [3]. Our ap-
proach enables P4-enabled switches’ hardware to perform the
following tasks, autonomously and at line rate: (i) detect full
and gray failures; (ii) run distributed path-vector computa-
tions that support both shortest-path and BGP-like policies;
and (iii) update the forwarding state.

Our implementation compensates for the computation and
memory limitations with additional packet exchanges. For
example, during path computations, each switch only stores
the best path, forgetting its alternatives. This implies that
more packets have to be exchanged upon configuration or
topological changes. Yet, this only induces a marginal cost
for hardware implementations, as packet processing takes
nanoseconds [32].

Second, we discuss the pros and cons of offloading control
plane tasks to hardware. Based on this analysis, we sketch a re-
search agenda centered around the investigation of a software-
hardware codesign approach to network control planes, aimed
at systematically exploring the tradeoffs of running tasks in
software, hardware, or a combination of the two.

Our observations complement recent proposals on hard-
ware offloading for network monitoring tasks [27, 28, 34],
congestion control [8], coordination services [18], consensus
algorithms [10, 11], and application-level caching [19, 32].
A few proposals, like DDC [25], have also shown how to of-
fload specific functions to the data plane, such as maintaining
connectivity. We expand on this intuition, considering any
control plane task as a candidate for hardware offloading.

Overall, we think that offloading control plane tasks to hard-
ware has the potential to radically change the way networks
are designed in the future.

2 HARDWARE-BASED CONTROL PLANE

Networks are organized around two planes: the control and
the data plane. The Control Plane (CP) is the “brain” of the
network and is responsible for computing forwarding paths.
It can be either logically-centralized, as in SDN networks, or
distributed, as in “traditional networks” running distributed
protocols (IGP, BGP, etc.). The role of the Data Plane (DP)
is simply to forward traffic (as fast as possible) according
to the CP decisions. While the DP can be implemented in
either hardware or software, the CP is typically implemented
in software and involves three main processes:

(1) Sensing: The CP monitors the network topology and
configuration, in order to detect changes (e.g., link fail-
ures) that may require to adapt the forwarding state.

(2) Notification: When detecting a change, the CP notifies
the path computation component. If the CP is logically
centralized [26], the central controller is notified. If the
CP is distributed, all the network nodes must be notified
about the change.

(3) Computation: When becoming aware of a topological
change, the routing component of the CP recomputes
the forwarding paths. Once new paths are computed,
the CP updates the data-plane.

In this section, we show that each step can run directly in
hardware, paving up the way for hardware-based CPs.

We use the 4-switches network of Figure 1 as visual sup-
port. The figure illustrates how a hardware-based CP senses
and retrieves connectivity upon a partial link failure happen-
ing between switch B and C.

2.1 Hardware-based sensing

Some forms of hardware-based sensing are already avail-
able today. Existing approaches rely on either monitoring
properties of the physical medium (e.g., loss of light in an op-
tical fiber) or running the Bidirectional Forwarding Detection
(BFD) protocol [22]. BFD sends small echo packets every x
ms (50 ms by default [2]) and generates an alert if more than
k have not been received.

Challenges Existing hardware sensing schemes can only de-
tect hard failures, such as a link or a node failing, not gray
ones. Gray failures are partial failures that affect only a subset
of the traffic (e.g., packets matching a specific forwarding
entry [16]). The key challenge here is that detecting gray fail-
ures requires them to be exerted by actual traffic, preventing
simple hardware hello-based mechanisms from working.

Our approach We generalize the concept of BFD to detect
both hard and gray failures, in hardware. We program adja-
cent switches to “acknowledge” the data-plane traffic that
they exchange, rather than BFD hello packets. While this
may seem excessive, acknowledgments only need to con-
tain enough header information for identifying the rule being
touched by the packet (e.g., the 32-bits destination prefix).
Assuming 32-bits acknowledgements,! the overhead would
be 267 Mbps for 100 Gbps of traffic with 1500 bytes packet.
With minimal size packets (64 bytes), the same volume of
traffic would require 6.25 Gbps of acknowledgements.

To avoid acknowledging every single packet, we propose
a scheme in which switches synchronously exchange packet
counts processed by any given forwarding rule. Specifically,
an upstream switch instructs a downstream switch to start
and stop counting packets matching a given forwarding rule.
When receiving the stop signal, the downstream switch sends
the counter back to its upstream which compares it with
its own packet count. This process is illustrated in Figure 1
(left), where C, the upstream switch, sends packets to B. The
different counter values for the red destination indicate a gray
failure which is reported by C network-wide.

Here, we consider the use of protocol-independent switches which do not
mandate the use of an Ethernet header.
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Figure 1: Despite being limited in terms of computation logic and memory, programmable data planes are powerful
enough to run key control plane tasks enabling them to compute forwarding state entirely on their own.

2.2 Hardware-based notification

We take inspiration from the simplest, least memory consum-
ing routing protocols, and implement a broadcasting notifica-
tion mechanism in hardware. As shown in Figure 1, notifica-
tions correspond to the generation of path-vector messages.
Those messages are also used during the path computation,
and carry information on: (i) affected destinations; (ii) the
most updated path (i.e., empty for the link failure in the fig-
ure); and (iii) its cost (i.e., infinity for failures).

Challenges Broadcasting in hardware poses two main chal-
lenges. First, notifications must be exchanged reliably to guar-
antee correctness. Implementing reliable communication in
hardware is challenging as it requires to maintain state, track
timers, and deal with the inevitable retransmissions. Second,
broadcasting notifications requires extra care to avoid broad-
cast storms in the presence of physical cycles.

Our approach We deal with packet loss in two ways. First,
we classify control packets in high priority queues, reducing
the likelihood of packet loss. Second, we leverage that the
cost of processing a packet is almost negligible in hardware,
and either duplicate messages k times, for notifications, or
repeat them regularly, e.g. every few ms, for regular state
exchange. While continuously repeating state exchange guar-
antees its eventual consistency network-wide, there is still
a small probability that some switches will not receive any
of the k retransmitted notifications, leading to a partially
converged network. In future work, we intend to develop a
lightweight form of reliable message exchanges.

To avoid broadcast storms, the originator switch attaches
its identifier and a sequence number to the broadcasted packet.

Each switch maintains a register with the last sequence num-
ber observed for every other switch. Whenever a switch re-
ceives a broadcast message, it checks whether the sequence
number is smaller than the one stored for the message orig-
inator, and drops the packet if it is the case. The sequence
number is increased by one during the next broadcasting.

2.3 Hardware-based computation

We implement a distributed path vector routing algorithm
in hardware in which switches exchange vectors and locally
select the vector with the best attributes, e.g. the one with
the lowest cost or the one with the highest preference. By
doing so, our hardware computation supports policy-based
(i.e., BGP-like) routing logic.

Challenges A key challenge is that the computation logic
available is limited and geared towards forwarding pipelines,
not distributed algorithms. For instance, P4 does not support
basic constructs like loops. On top of that, resources are
heavily limited (in terms of size and data structure types),
which clashes with the typical choice of routing protocols to
maintain a lot of state, such as all the routes received or the
entire network map. Finally, supporting routing policies adds
an extra level of complexity as the presence of policies render
many routing problems computationally-hard [15].

Our approach To manage complexity and reduce the amount
of state maintained by each switch, we only make them store
the best path and its attributes. This simplifies the computa-
tion as it removes the need to iterate: a switch only needs to
compare the received attributes with the currently best known
path, and possibly adapt the latter accordingly. Of course, it
also reduces the amount of state maintained by each switch
to the bare minimum.



Observe that this strategy is sufficient to compute a new
best path if some input changes, provided each switch re-
advertises its best known path upon a change. To ensure this,
the failure notifications are flooded and necessarily trigger
a re-advertisement. While doing so leads to more messages
than software CPs storing alternative paths, we stress that
this is not a problem since hardware-based computation can
process billions of such packets per second [19].

Finally, we leverage the seminal results from Sobrinho [35]
to compute the outcome of policy-based protocols such as
BGP in hardware. Those results show that generic path vector
protocols can emulate the semantics of policy-based protocols,
if the right set of costs is chosen. This observation enables
to move the complexity of dealing with policies from the
protocol to the path costs. We show how our hardware-based
CP encodes typical BGP policies (prefer customer over peer
over provider routes) in Section 3.

3 PRELIMINARY IMPLEMENTATION

We now describe a preliminary P4 implementation of our
hardware-accelerated control plane and illustrate its useful-
ness through a case study in which switches converge entirely
on their own, for both intra- and inter-domain destinations.

3.1 Implementation

We implement our algorithms in P44 [5] and use the bmv2 [6]
behavioral model to test them. We also implement a software-
based control plane logic which is in charge of populating the
switches initial state. Overall, our implementation consists of
1800 lines of P4 and 3000 lines of Python code. We performed
our experiments on a server equipped with a 2x12 Xenon
E5-2670 2.30GHz, 128GB RAM and running Ubuntu 16.04.
In the future, we intend to adapt and run our algorithms on
Tofino switches [1] with a dynamic control plane.

Challenges We enumerate some of the implementation-related
challenges we encountered and how we solved them.

e Modifying the forwarding state at line rate: In P4, the
content of the forwarding tables is provisioned by the
control plane through dedicated APIs. Unfortunately,
the content of these match-action tables cannot be mod-
ified at line rate unless the hardware architecture sup-
ports it. We solved this challenge by making the LPM
match-action tables (TCAM) point to stateful objects
(i.e., registers implemented using SRAM), which can
then be modified at line rate.

e Loops: P4 does not allow loop constructs. We address
this by unrolling loops and performing each iteration
step in parallel. If the loop is longer than the maximum
number of parallel steps supported by the switch, we
recirculate the packet.

o Generating packets: P4 does not enable to instruct the
switch to generate packets. To address this limitation,
we use the actual traffic as a carrier for our protocols.

If not enough traffic is present, we periodically send
empty packets from the network edge.

e Parsing limits: Current hardware switches can parse up
to 300 bytes per packet to maintain line rate [33], hence
limiting the amount of data switches can exchange in
a packet. We use this limit as constraint in our design,
mandating the switches to generate smaller packets.

3.2 Intra/inter-domain routing ...
in hardware!

We now describe the key insights behind our path-vector
implementation and how it manages to compute intra-domain
and inter-domain paths.

Computing intra-domain routes Each switch keeps the best
cost, path and output port towards every other switch in state-
ful registers (see Figure 1). Switches periodically advertise a
vector [(ID;, cost;, path);, ...]. To generate it, the switch reads
a fixed amount of register entries and pushes them into a new
header. If the number of switches is bigger than the maximum
number of times we can read a register, we recirculate the
packet. Once the entire vector is placed into the packet, the
switch sends it to all its neighbors.

Upon receiving a vector, a switch parses a fixed amount of
fields and runs the shortest path computation in parallel for
all of them. Specifically, the switch checks if the cost stored
plus the cost to reach the advertising neighbor is smaller than
the advertised cost. To avoid count-to-infinity, the switch also
verifies that it is not in the path. If both hold, the switch
updates its register with the new cost, path and output port.
This process is repeated until the entire vector is processed. If
any cost was changed during the updating phase, the switch
generates an advertisement.

Our prototype assumes that the switch receives a link down
notification. Upon receiving it, the switch iterates through its
distance vector register and forgets all the routes using that
link. Finally it generates an advertisement.

Computing inter-domain routes To compute new egresses
for inter-domain routes, switches keep both: (i) a register
that maps a prefix to the best exit point known in the net-
work; and (ii) a register with prefixes that the switch can
reach from its external peers. To support the normal BGP
decision process, switches also keep the AS path length for
each route along with the type of peering relationship (e.g.,
customer/peer/provider) for all the egress points.

The computation process is triggered once a switch receives
a prefix withdrawal from one of its peers. It then proceeds in
two steps. First, it broadcasts a special packet indicating that
the prefix cannot be reached though that egress. Second, the
switch removes the corresponding route (if it exists).

Upon receiving a broadcasted withdrawal, a switch looks
at its registers to check whether it affects its egress. If so,
it removes the route. If it uses another egress or if it knows
how to reach the prefix via one of its direct peers, the switch
broadcasts a message announcing the backup egress.



(2) external link
failure

(3) prefix x *
withdrawal cust A54 AS7 \
/ \ /
peer / \ peer
/ \ *53)
p1 ‘ /

AS1 \
/

B -
/~ / cust v

pZ (1) internal link
AS2 failure

Figure 2: Case study topology

Each switch runs a BGP-like route selection algorithm
upon receiving a backup announcement and compares the
best route they currently know with the advertised one. Route
selection is done as follows: if the local preference is higher,
the egress is accepted as a backup; if the local preference is
equal, the egress with shortest AS path length is selected; if
the path lengths are equal, the shortest distance to the egress
is used; otherwise, the route is rejected. Besides computing
the best egress point, upon an egress update, switches also
immediately block all the traffic that violates export policies
(e.g., traffic from a peer to a peer).

3.3 Case study

‘We now show that our implementation enables programmable
switches to converge on their own upon different failures.

Methodology: We use a small topology consisting of 5 in-
ternal switches running our hardware-based control plane
algorithms (Figure 2). Each switch is connected externally to
either one customer or one peer.

We generate two TCP flows, one from AS1 and one from
AS2, both flows have network X (in AS7) as a destination.
To show that switches can react autonomously to internal
and external failures, we introduce two events at different
times. First, we fail the internal link S2-S3, which will trigger
the intra-domain computation. Then, after some seconds, we
send a withdrawal for prefix X to S1 from AS3, henceforth
triggering the inter-domain computation enabling the switches
to find the second best egress for destination X.

We start the experiment with a converged network in which
the control plane has populated the forwarding register that
maps external prefixes to best egress IDs using BGP. Each
switch also stores in memory which external prefixes can be
reached via itself. To avoid being CPU bounded during the
study, we set the bandwidth of every link to 10Mbps.

Results We study how and for how long failures affect traffic
that crosses our hardware-based control plane network. Fig-
ure 3 depicts the throughput observed over the link S1-AS3
and S5-ASS. Initially, we see that both flows are using S1-
AS3 to leave the network (i.e., using the customer link) and,
as such, get on average a throughput of SMbps.
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Figure 3: Per flow bandwidth at two egress points to-
wards prefix X. Red vertical lines indicate network events

We first fail the link S2-S3 and send a notification to the
affected switches 200ms after the failure, which triggers the
intra-domain routing algorithm. As we can see in Figure 3
(left), the failure affects both flows for a short period of time,
mainly due to the detection delay.

We then fail the link S1-AS3 by sending a withdrawal to S1.
S1 immediately removes its route and starts dropping pack-
ets.2 S1 then broadcasts that network X cannot be reached,
making S3 and S5 broadcast back their alternative egress
point. This in turn triggers the inter-domain route selection al-
gorithm on all switches. Since S3 and S5 have the same local
preference, the tie is broken using the AS path length making
S5 the preferred egress. As S5-ASS is a peer link, only the
customer flow from AS2 is allowed (due to BGP export policy
violations). Accordingly, we can see in Figure 3 (right) that
S1 stops forwarding traffic and that the flow coming from
AS?2 starts egressing at S5-AS5 at 10Mbps.

Overall, we see that our data-plane implementation is able
to automatically converge while respecting the BGP policies.

4 HARDWARE IS NOT “ALL ROSES”

In this section we discuss the pros and cons of offloading
control plane tasks to hardware.

The pros A key motivation to offload control plane tasks to
programmable hardware is that most control plane operations
are compatible with programmable hardware’s capabilities.
In our approach, for example, sensing, notification and com-
putation are implemented by exchanging packets of a given
format, processing them in a predefined way, updating the
hardware state, and generating packets of potentially a differ-
ent format as a result. Receiving, elaborating and generating
packets is exactly what the hardware is powerful at.

In addition, it is very natural for the hardware implementa-
tion of control plane tasks to be driven by data-plane traffic,
so that the forwarding state is computed and updated accord-
ing to the actual data traffic. In our prototype, forwarding

2We leave for future work the implementation of a mechanism to maintain
connectivity while learning the backup egress.



entries tend to be updated in an order consistent with per-
destination traffic volumes: since packets trigger actions from
the hardware-based control plane, traffic for destinations car-
rying more traffic are probabilistically rerouted first. This
produces less packet losses than updating forwarding entries
in a random order, as software control planes often do.

Even better, running the control plane in hardware unlocks
capabilities that cannot be easily implemented otherwise,
such as the cheap and prompt detection of gray failures (Sec-
tion 2). In fact, state-of-the-art approaches to detect gray
failures either generate and post-process a huge amount of
data-plane traffic, like [16], or do use programmable hardware
to track packets as they cross different devices [24].

Maintaining connectivity during failures is another case
where hardware offloading is strictly needed as waiting for
the control plane to react would necessarily lead to packet
losses. This is the reason why existing fast-reroute frame-
works, like [13], pre-load backup paths in the switches, so
as to activate them, in hardware, as soon as the failure is de-
tected. Of course, pre-loading backup states consumes a lot
of memory and is generally not scalable with respect to the
exponential number of possible failure cases. Recent works,
like DDC [25], show that performing control-plane computa-
tions in hardware enables to break this otherwise-fundamental
tradeoff between switch memory and reaction time.

Finally, being able to take forwarding decisions entirely in
the data plane, without any control plane or controller, can
be critical in environments where microseconds matter. For
example, in data center networks where traffic loads change
rapidly, decisions have to be taken almost instantaneously.
Having a control-loop that goes though a software control
plane leads to outdated decisions. Recent research, has shown
that being able to load-balance traffic entirely in the data plane
is not only possible, but surprisingly simple and effective (e.g.,
[7, 14, 21]).

In general, the investigation of additional use cases opened
by the hardware implementation of control plane capabilities
is an interesting direction for future research.

The cons Hardware offloading is not infinitely expressive:
some tasks cannot be delegated to hardware. For example,
hardware sensing cannot be used for detecting software fail-
ures, hence detection and reaction mechanisms to these types
of failures must remain in software.

Also, even when technically possible, offloading tasks to
hardware might not be desirable. For example, it makes lit-
tle sense to implement protocols like BGP and the under-
lying TCP in hardware. First, a hardware implementation
would consume many hardware resources for little or no
gain—especially if we consider that BGP performance is
often limited by the TCP’s internal algorithms [4]. Second,
performance and capabilities cannot be radically changed
without revisiting the implementation of the protocol on mul-
tiple administrative authorities.

For the remaining control plane tasks for which offloading
to hardware can come with benefits, a major limitation is

represented by the scalability of hardware implementations, a
characteristic for which a software component of the control
plane is likely to be needed in many realistic settings. In par-
ticular, hardware offloading is likely to scale poorly with the
number of control plane tasks. On the one hand, hardware re-
sources, like ASICS registers or memory, are typically scarce,
and hard (and expensive) to scale. On the other hand, offload-
ing control plane tasks are likely to consume a lot of hardware
resources, e.g., because of the need to store messages, data,
and computation parameters in hardware. Combined together,
these two factors create the need for limiting the number of
tasks offloaded to hardware, and hence to accurately select
which functions to offload to hardware.

Carefully, and perhaps dynamically, allocating resources to
different hardware computations is an interesting challenge
to address in future research.

S HARDWARE-SOFTWARE CODESIGN
MEETS CONTROL PLANES

So far we have shown the benefits but also the limitations
of offloading task to hardware. This duality indicates that
accelerating the control plane by offloading some tasks to
hardware and keeping others in software can lead to control
plane design points of great practical interest.

Our vision is that the search for an optimal design point
can be formalized as a hardware-software codesign problem
and solved using the classical 4-phases methodology [12]:
specification, analysis, synthesis and validation. Instantiating
this methodology to our context is a challenging problem
which calls for interesting future research contributions.

More specifically, the specification phase requires precise
models of the current control plane functions (e.g., failure
detection, routing, updates). These models should allow for
the efficient evaluation of the performance and cost of per-
forming each function in software, hardware, or a mix of
both. Interestingly, realistic models and cost functions must
take into account the dynamic interaction between distinct
control plane components, which potentially make the cost
of each specific design higher than the cost of running each
component separately. Furthermore, these models should also
account for the cost of “hybridizing” control plane tasks by
allocating some parts in software and others in hardware (e.g.,
accounting for the cost of synchronizing both entities).

Likewise, the analysis and synthesis phases call for the
design of efficient search heuristics which leverage domain-
specific knowledge to navigate the exponential space of pos-
sible hardware-software codesigns (a problem known to be
NP-hard [9]). In particular, we plan to explore if it is possible
to learn probabilistic models of the likelihood that a particular
design is better than another.

Finally, the validation of (partially) offloaded control planes
opens up interesting verification questions such as how to
ensure that a specific design will perform accordingly both
feature- and performance-wise.
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