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ABSTRACT
Operating systems have historically had to manage only a single
type of memory device. The imminent availability of heterogeneous
memory devices based on emergingmemory technologies confronts
the classic single memory model and opens a new spectrum of
possibilities for memory management. Transparent data movement
between different memory devices based on access patterns of
applications is a desired feature to make optimal use of such devices
and to hide the complexity of memory management to the end user.
However, capturing memory access patterns of an application at
runtime comes at a cost, which is particularly challenging for large-
scale parallel applications that may be sensitive to system noise.

In this work, we focus on the access pattern profiling phase prior
to the actual memory relocation. We study the feasibility of using
Intel’s Processor Event-Based Sampling (PEBS) feature to record
memory accesses by sampling at runtime and study the overhead
at scale. We have implemented a custom PEBS driver in the IHK/-
McKernel lightweight multi-kernel operating system, one of whose
advantages is minimal system interference due to the lightweight
kernel’s simple design compared to other OS kernels such as Linux.
We present the PEBS overhead of a set of scientific applications and
show the access patterns identified in noise sensitive HPC applica-
tions. Our results show that clear access patterns can be captured
with a 10% overhead in the worst-case and 1% in the best case when
running on up to 128k CPU cores (2,048 Intel Xeon Phi Knights
Landing nodes). We conclude that online memory access profiling
using PEBS at large-scale is promising for memory management in
heterogeneous memory environments.
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1 INTRODUCTION
The past decade has brought an explosion of new memory tech-
nologies. Various high-bandwidth memory types, e.g., 3D stacked
DRAM (HBM), GDDR and multi-channel DRAM (MCDRAM) as
well as byte addressable non-volatile storage class memories (SCM),
e.g., phase-change memory (PCM), resistive RAM (ReRAM) and the
recent 3D XPoint, are already in production or expected to become
available in the near future.

Management of such heterogeneous memory types is a major
challenge for application developers, not only in terms of placing
data structures into the most suitable memory but also to adaptively
move content as application characteristics changes in time. Oper-
ating system and/or runtime level solutions that optimize memory
allocations and data movement by transparently mapping applica-
tion behavior to the underlying hardware are thus highly desired.

One of the basic requirements of a system level solution is the
ability to track the application’s memory access patterns in real-
time with low overhead. However, existing solutions for access pat-
tern tracking are often based on dynamic instrumentation, which
have prohibitive overhead for an online approach [16]. Conse-
quently, system level techniques targeting heterogeneous memory
management typically rely on a two-phase model, where the ap-
plication is profiled first, based on which the suggested allocation
policy is then determined [5, 19].

Intel’s Processor Event-Based Sampling (PEBS) [3] is an exten-
sion to hardware performance counters that enables sampling the
internal execution state of the CPU (including the most recent
virtual address accessed) and periodically storing a snapshot of it
into main memory. The overhead of PEBS has been the focus of
previous works [1, 15], however, not in the context of large-scale
high-performance computing (HPC).

The hardware PEBS support provides a number of configuration
knobs that control how often PEBS records are stored and how often
the CPU is interrupted for additional background data processing.
Because such disruption typically degrades performance at scale [6,
12], it is important to characterize and understand this overhead to
assess PEBS’ applicability for heterogeneous memory management
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in large-scale HPC. Indeed, none of the previous studies focusing
on PEBS’ overhead we are aware of have addressed large-scale
environments.

We have implemented a customPEBS driver in the IHK/McKernel
lightweight multi-kernel operating system [8, 9]. Our motivation
for a lightweight kernel (LWK) is threefold. First, lightweight ker-
nels are known to be highly noise-free and thus they provide an
excellent environment for characterizing PEBS’ overhead. Second,
McKernel has a relatively simple code-base that enables us to rapidly
prototype kernel level features for heterogeneous memory man-
agement and allow direct integration with our PEBS driver. Our
custom driver can be easily configured and enables fine-grained
tuning of parameters that are otherwise not available in the Linux
driver (see Section 3 for more details). Finally, the Linux PEBS dri-
ver on the platform we used in this study, i.e., the Oakforest-PACS
machine [13] based on Intel’s Xeon Phi Knight’s Landing chip, was
not available.

As the baseline for OS level hierarchy memory management, we
aimed at answering the following questions. What is the overhead
of real-time memory accesses tracking at scale? What is the trade-
off between sampling granularity and the introduced overhead? Is
it feasible to rely on PEBS for collecting such information online?

Specifically, in this paper we make the following contributions:
• An implementation of a custom PEBS driver in an LWK with
the ability of fine-tuning its parameters

• Systematic evaluation of PEBS’ overhead on a number of
real HPC applications running at large scale

• Demonstration of captured memory access patterns as the
function of different PEBS parameters

Previous studies have reported PEBS failing to provide increased
accuracy with reset values (see Section 2.1) lower than 1024 [1, 15]
as well as the Linux kernel becoming unstable when performing
PEBS based sampling on high frequency [18]. On up to 128k CPU
cores (2,048 Xeon Phi KNL nodes), we find that our custom driver
captures increasingly accurate access patterns reliably even with
very low reset values. Across all of our workloads, PEBS incurs an
overhead of 2.3% on average with approximately 10% and 1% in the
worst and best cases, respectively.

The rest of this paper is organized as follows. We begin by ex-
plaining the background and motivations in Section 2. We describe
the design and implementation of our custom PEBS driver in Sec-
tion 3. Our large-scale evaluation is provided in Section 4. Section 5
discusses related work, and finally, Section 6 concludes the paper.

2 BACKGROUND AND MOTIVATION
This section lays the groundwork for the proposed driver archi-
tecture by providing background information on Intel’s Processor
Event-Based Sampling facility [3] and the IHK/McKernel light-
weight multi-kernel OS [7–9].

2.1 Processor Event-Based Sampling
Processor Event-Based Sampling (PEBS) is a feature of some In-
tel microarchitectures that builds on top of Intel’s Performance
Counter Monitor (PCM).

The PCM facility allows to monitor a number of predefined
processor performance parameters (hereinafter called "events") by

counting the number of occurrences of the specified events1 in a set
of dedicated hardware registers. When a PCM counter overflows
an interrupt is triggered, which eases the process of sampling.

PEBS extends the idea of PCMby transparently storing additional
processor information while monitoring a PCM event. However,
only a small subset of the PCM events actually support PEBS. A
"PEBS record" is stored by the CPU in a user-defined memory buffer
when a configurable number of PCM events, named "PEBS reset
counter value" or simply "reset", occur. The actual PEBS record
format is microarchitecture dependent, but it generally includes
the set of general-purpose registers.

A "PEBS assist" in Intel nomenclature is the action of storing
the PEBS record into the CPU buffer. When the record written in
the last PEBS assist reaches a configurable threshold inside the
CPU PEBS buffer, an interrupt is triggered. The interrupt handler
should process the PEBS data and clear the buffer, allowing the CPU
to continue storing more records. The PCM’s overflow interrupt
remains inactive while a PCM event is being used with PEBS.

2.2 Lightweight Multi-kernels
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Figure 1: Overview of the IHK/McKernel architecture.

Lightweight multi-kernels emerged recently as a new operating
system architecture for HPC, where the basic idea is to run Linux
and a LWK side-by-side in compute nodes to attain the scalabil-
ity properties of LWKs and full compatibility with Linux at the
same time. IHK/McKernel is a multi-kernel OS developed at RIKEN,
whose architecture is depicted in Figure 1. A low-level software
infrastructure, called Interface for Heterogeneous Kernels (IHK)
[21], provides capabilities for partitioning resources in a many-core
environment (e.g., CPU cores and physical memory) and it enables
management of lightweight kernels. IHK is capable of allocating
and releasing host resources dynamically and no reboot of the host
machine is required when altering its configuration. The latest ver-
sion of IHK is implemented as a collection of Linux kernel modules
without any modifications to the Linux kernel itself, which enables
relatively straightforward deployment of the multi-kernel stack
on a wide range of Linux distributions. Besides resource and LWK
management, IHK also facilitates an Inter-kernel Communication
(IKC) layer.

McKernel is a lightweight co-kernel developed on top of IHK.
It is designed explicitly for HPC workloads, but it retains a Linux
1The exact availability of events depends on the processor’s microarchitecture. How-
ever, a small set of "architectural performance events" remain consistent starting from
the Intel Core Solo and Intel Core Duo generation.
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compatible application binary interface (ABI) so that it can execute
unmodified Linux binaries. There is no need for recompiling appli-
cations or for anyMcKernel specific libraries. McKernel implements
only a small set of performance sensitive system calls and the rest
of the OS services are delegated to Linux. Specifically, McKernel
provides its own memory management, it supports processes and
multi-threading, it has a simple round-robin co-operative (tick-less)
scheduler, and it implements standard POSIX signaling. It also im-
plements inter-process memory mappings and it offers interfaces
for accessing hardware performance counters.

For more information on system call offloading, refer to [8], a
detailed description of the device driver support is provided in [9].
Recently we have demonstrated that lightweight multi-kernels can
indeed outperform Linux on various HPC mini-applications when
evaluated on up to 2,048 Intel Xeon Phi nodes interconnected by
Intel’s OmniPath network [7]. As mentioned earlier, with respect
to this study, one of the major advantages of a multi-kernel LWK is
the lightweight kernel’s simple codebase that enables us to easily
prototype new kernel level features.

3 DESIGN AND IMPLEMENTATION
This section describes the design and implementation of theMcKernel
PEBS driver. Figure 2 shows a summary of the entire PEBS records
lifecycle.
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Figure 2: Memory addresses acquisition processes using In-
tel’s PEBS facility in IHK/McKernel

McKernel uses PEBS as a vehicle to keep track of memory ad-
dresses issued by each monitored system thread. Ideally, McKernel
would keep track of all load and store instructions. However, this is
not supported by all Intel microarchitectures. In particular, our test
environment powered by the Intel Knights Landing processor only
supports recording the address of load instructions that triggered
some particular event. PEBS records are always associated with a
PCM event. The most general KNL PCM events that support load
address recording are L2_HIT_LOADS and L2_MISS_LOADSwhich
account for L2 hits and L2 misses, respectively.

Both the count of L2 misses and L2 hits in a page boundary for
a given time frame can be used as a metric that determines how
likely is the page to be accessed in the future. A page with a high

count of either L2 misses or L2 hits reveals that the page is under
memory pressure. In the case of misses, we additionally know that
the cache is not able to hold the pages long enough to be reused.
And in the case of hits, we know that either pages are accessed
with high enough frequency to remain in the cache or simply the
whole critical memory range fits into the cache.

In principle, a page with a high L2 miss ratio seems to be a good
candidate for being moved into a faster memory device because
missing the L2 in the case of KNL means that data must be ser-
viced from either main memory or the L2 of another core. However,
the same page might actually have a higher ratio of L2 hits, indi-
cating that another page with a lower hit ratio might benefit still
more from being moved. In consequence, fair judgment should take
into consideration both events. Unfortunately, KNL features a sin-
gle PCM counter with PEBS support, which means that sampling
both events requires to perform dynamic switching at runtime.
Nonetheless, the purpose of this work is just a step behind. Our
objective is to focus on the study of a single PEBS enabled PCM
counter at scale. Therefore, for simplicity, we decided to rely on the
L2_MISS_LOADS event to record the load addresses.

McKernel initializes the PEBS CPU data structures at boot time
on each CPU. Processes running in McKernel will enable PEBS
on all the CPUs where its threads are running as soon as they
start. As long as the threads are being run, PEBS assists will write
PEBS records into the CPU’s buffer transparently regardless of their
execution context (user or kernel space).

The PEBS record format for the Knights Landing architecture
consists of (among others) the set of general-purpose registers and
the address of the load instruction causing the record dump (PEBS
assist) if applicable. In total, 24 64-bit fields are stored, adding up
to a total of 192 bytes for each PEBS record. There is no timestamp
information stored in each PEBS record so it is not possible to know
exactly when the record took place.

When the PEBS remaining capacity reaches the configured thresh-
old, an interrupt is triggered. The PEBS interrupt handler filters all
fields in the PEBS records but the load address and saves them into
a per-thread circular buffer. Then, the CPU PEBS buffer is reset,
allowing the CPU to continue storing records. Altogether with the
load addresses, a timestamp is saved at the time the interrupt han-
dler is running. This timestamp tags all the PEBS records processed
in this interrupt handler execution for posterior analysis.

When each of the application’s threads exit, the entire contents
of the per-thread buffer is dumped into a file. We have developed a
small python visualization tool to read and generate plots based on
the information provided.

The registered load addresses might not belong to application-
specific user buffers but from anywhere in the address space. For
offline visualization purposes we are mostly interested in profil-
ing the application’s buffers and hence, it is convenient to provide
some means to filter the undesired addresses. Load addresses can
be sparse, and visualizing the entire address space of an applica-
tion to detect patterns might be difficult. It is important to notice
that filtering is not a requirement for online monitoring of high
demanded pages, this is only necessary for visualization.

A simple heuristic to do so is to filter out all addresses of small
mappings. To minimize the impact of filtering, the postprocessing is
done offline in our visualization script. Hence, McKernel only keeps

3



track of all mappings greater than four megabytes by storing its
start addresses, the length and the timestamp at which the operation
completed. All munmap operations are also registered regardless
of its size because they might split a bigger tracked area. The map-
pings information are stored into a per-process buffer, shared by all
threads using a lock-free queue. The per-process mappings buffer
is also dumped into the PEBS file at each thread’s termination time.

Our PEBS addresses viewer loads the file and reconstructs the
processes virtual memory mappings history based on the mmap
and munmap memory ranges and timestamps. Then, it reads all
the registered PEBS load addresses and classifies them into the
right spatial and temporal mapping or discards them if no suitable
mapping is found. Finally, individual plots are shown per mapping.

The PEBS data acquisition rate is controlled by the configurable
number of events that trigger a PEBS assist and the size of the CPU
PEBS buffer (which indirectly controls the threshold that triggers
an interrupt). We have added a simple interface into McKernel
to dynamically configure these parameters at application launch
time by resizing the CPU buffer and reconfiguring the PEBS MSR
registers as requested. This differs from the current Linux Kernel
driver in which it is only possible to configure the reset counter
value but not the PEBS buffer size.

It would be ideal to have a big enough CPU buffer to hold all
load addresses the application generates to both reduce the mem-
ory movements between buffers and to suppress the interrupts
overhead. However, having a small interrupt rate also diffuses the
time perception of memory accesses because timestamps are asso-
ciated with PEBS records in the interrupt handler. Therefore, this
implementation actually requires to set up a proper interrupt rate
to understand the evolution of memory accesses in time. Note that
instead of relying on the interrupt handler to harvest the PEBS CPU
buffer, another option is to dedicate a hardware thread to this task.
We plan to implement this option in the near future.

4 EVALUATION
4.1 Experimental Environment
All of our experiments were performed on Oakforest-PACS (OFP),
a Fujitsu built, 25 petaflops supercomputer installed at JCAHPC,
managed by The University of Tsukuba and The University of
Tokyo [13]. OFP is comprised of eight-thousand compute nodes
that are interconnected by Intel’s Omni Path network. Each node
is equipped with an Intel® Xeon Phi™ 7250 Knights Landing (KNL)
processor, which consists of 68 CPU cores, accommodating 4 hard-
ware threads per core. The processor provides 16 GB of integrated,
high-bandwidth MCDRAM and it also is accompanied by 96 GB of
DDR4 RAM. The KNL processor was configured in Quadrant flat
mode; i.e., MCDRAM and DDR4 RAM are addressable at different
physical memory locations and are presented as separate NUMA
nodes to the operating system.

The software environment was as follows. Compute nodes run
CentOS 7.4.1708 with Linux kernel version 3.10.0-693.11.6. This
CentOS distribution contains a number of Intel supplied kernel
level improvements specifically targeting the KNL processor that
were originally distributed in Intel’s XPPSL package. We used Intel
MPI Version 2018 Update 1 Build 20171011 (id: 17941) in this study.

For all experiments, we dedicated 64 CPU cores to the appli-
cations (i.e., to McKernel) and reserved 4 CPU cores for Linux
activities. This is a common scenario for OFP users where daemons
and other system services run on the first four cores even in Linux
only configuration.

4.2 Mini-applications
Weused a number of mini-applications from the CORAL benchmark
suite [2] and one developed at the The University of Tokyo. Along
with a brief description, we also provide information regarding
their runtime configuration.

• GeoFEM solves 3D linear elasticity problems in simple cube
geometries by parallel finite-element method [17]. We used
weak-scaling for GeoFEM and ran 16 MPI ranks per node,
where each rank contained 8 OpenMP threads.

• HPCG is the High Performance Conjugate Gradients, which
is a stand-alone code that measures the performance of basic
operations in a unified code for sparse matrix-vector mul-
tiplication, vector updates, and global dot products [4]. We
used weak-scaling for HPCG and ran 8 MPI ranks per node,
where each rank contained 8 OpenMP threads.

• Lammps is a classical molecular dynamics code, an acronym
for Large-scale Atomic/Molecular Massively Parallel Simula-
tor [20]. We used weak-scaling for Lammps and ran 32 MPI
ranks per node, where each rank contained four OpenMP
threads.

• miniFE is a proxy application for unstructured implicit finite
element codes [11]. We used strong-scaling for miniFE and
ran 16 MPI ranks per node, where each rank contained four
OpenMP threads.

• Lulesh is the Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics code which was originally defined
and as one of five challenge problems in the DARPA UHPC
program [14]. We used weak-scaling for Lulesh and ran 8
MPI ranks per node, where each rank contained 16 OpenMP
threads.

• AMG2013 is a parallel algebraic multigrid solver for linear
systems arising from problems on unstructured grids [10].
We used weak-scaling for AMG and ran 16 MPI ranks per
node, where each rank contained 16 OpenMP threads.

4.3 Results
For each workload described above, we use nine different PEBS
configurations. We scale the PEBS reset value from 256, through 128
to 64 and used PEBS per-CPU buffer sizes of 8kB, 16kB and 32kB. As
mentioned earlier, the reset value controls the sampling granularity
while the PEBS buffer size impacts the PEBS IRQ frequency. We
emphasize again that contrary to previous reports on PEBS’ inability
to provide increased accuracy with reset values lower than 1024 [1,
15, 18], we find very clear indications that obtaining increasingly
accurate samples with lower reset values is possible, for which we
provide more information below.

We ran each workload for all configurations scaling from 2,048 to
128k CPU cores, i.e., from 32 to 2,048 compute nodes, respectively.
We compare individually the execution time of each benchmark run
on McKernel with and without memory accesses tracking enabled.
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Figure 3: PEBS overhead for GeoFEM, HPCG, LAMMPS, Lulesh, MiniFE and AMG on up to 2,048 Xeon Phi KNL nodes

We report the average value of three executions, except for a few
long-running experiments, where we took only two samples (e.g.,
for GeoFEM). Note that all measurements were taken on McKernel

and no Linux numbers are provided. For a detailed comparison
between Linux and McKernel, refer to [7].

Figure 3 summarizes our application level findings. The X-axis
represents node counts while the Y-axis shows relative overhead
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Figure 4: MiniFE access pattern with different PEBS reset values (8kB PEBS buffer)
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(b) PEBS reset = 128
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(c) PEBS reset = 256

Figure 5: Lulesh access pattern with different PEBS reset values (8kB PEBS buffer)

compared to the baseline performance. For each bar in the plot,
the legend indicates the PEBS reset value and the PEBS buffer size
used in the given experiment. The general tendency of overhead
for most of the measurements matched our expectations, i.e., the
most influential factor in performance overhead is the PEBS reset
value, whose impact can be relaxed to some extent by adjusting the
PEBS buffer size.

Across all workloads, we observe the largest overhead on Ge-
oFEM (shown in Figure 3a) when running with the lowest PEBS
reset value of 64 and the smallest PEBS buffer of 8kB, where the
overhead peaked at 10.2%. Nevertheless, even for GeoFEM a less
aggressive PEBS configuration, e.g., a reset value of 256 with 32kB
PEBS buffer size induces only up to 4% overhead.

To much of our surprise, on most workloads PEBS’s periodic
interruption of the application does not imply additional overhead
as we scale out with the number of compute nodes. In fact, on some
of the workloads, e.g., HPCG (shown in Figure 3b) and Lammps
(shown in Figure 3c) we even observe a slight decrease in overhead
for which we have currently no precise explanation and for which
identifying its root cause further investigation is required. Note

that both of these workloads were weak scaled and thus are pre-
sumed to compute on a quasi-constant amount of per-process data
irrespective of scale.

One particular application that did experience growing over-
head as the scale increased is MiniFE, shown in Figure 3e. MiniFE
was the only workload we ran in strong-scaled configuration and
our previous experience with MiniFE indicates that it is indeed
sensitive to system noise [7]. Despite the expectation that due to
the decreasing amount of per-process data at larger node counts
the PEBS’ overhead would gradually diminish, the disruption from
constant PEBS interrupts appears to amplify its negative impact.

To demonstrate the impact of PEBS’ reset value on the accu-
racy of memory access tracking we provide excerpts on memory
access patterns using different reset values. We have been able to
observe similar memory access patterns for all benchmarks tested,
but we present the results for MiniFE and Lulesh as an example.
Figure 4 and Figure 5 show the heatmaps of the access patterns
captured on 32 nodes for three reset values, 64, 128 and 256. The
X-axis represents the sample set ID, i.e., periods of time between
PEBS interrupts, while the Y-axis indicates the virtual address of
the corresponding memory pages. Although PEBS addresses are
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Figure 7: Access histogram per page for MiniFE execution

captured at byte granularity, page size is the minimum unit the OS’
memory manager works with. In fact, for better visibility, we show
the heatmap with higher unit sizes, i.e., in blocks of 4 pages.

One of the key observations here is the increasingly detailed
view of the captured access pattern as we decrease the PEBS reset
counter. As seen, halving the reset value from 128 to 64 gives a 2X
higher granularity per sample set, e.g., the stride access of MiniFE is
stretched with respect to the sample IDs. Note that one iteration of
MiniFE’s buffer presented in the plot corresponds to approximately
330ms. To put the accuracy into a more quantitative from the 1536
pages of the buffer shown in the figure, PEBS with 64 reset value
reports 1430 pages touched, while using reset values of 128 and 256
report 1157 and 843, respectively. To the contrary, Lulesh’s plots
indicate that access patterns that do not significantly change in time
can be captured also with lower granularity and thus the reset value
should be adjusted dynamically based on the application. Note that
the number of computational nodes used affects the amount of
memory each node works with and might alter the visible pattern.
However, as long as the memory share per core does not fit in the
L2 the patterns will generally remain similar.

The implicit effect of altering the PEBS reset counter is the in-
crease or decrease rate of the PEBS interrupt frequency, assuming
a constant workload. The capacity of controlling the interrupt rate
should have a clear impact on the expected overhead, at least in
noise sensitive applications such as minife. We have presented the
relationship between overhead and PEBS reset counter in Figure
3 and we now show the relationship between PEBS reset counter
and interrupt frequency in Figure 6. The elapsed time between
interrupts is shown for three executions of MiniFE with 64, 128 and
256 values. As expected, we can see a clear correlation between
the average duration and the reset counter value being the former
smaller when the later decreases. We also note that the duration of
the interrupt handler itself took approximately 20 thousand cycles.
It is also interesting to observe the formation of two close peaks per
execution. This tendency identifies two different access patterns
within the application that lead to a different L2 miss generation
scheme.

The presence of particularly hot pages can be easily localized by
inspecting the histogram of aggregated L2 misses shown in Figure
7. The plot shows the number of different pages that had N number
of L2 misses on the Y-axis, where N is shown on the X-axis. We
can easily see that most of the pages in MiniFE had a small number
of misses at the leftmost side of the histogram. However, the plot
reveals an important group of pages above the 50 L2 misses that
could be tagged as movable targets.

In summary, we believe that our large-scale results well demon-
strate PEBS’ modest overhead to online memory access tracking
and we think that a PEBS based approach to heterogeneous memory
management is worth pursuing.

5 RELATEDWORK
This section discusses related studies in the domains of heteroge-
neous memory management and memory access tracking.

Available tools that help to determine efficient data placement
in heterogeneous memory systems typically require developers
to run a profile phase of their application and modify their code
accordingly. Dulloor et al. proposed techniques to identify data
objects to be placed into DRAM in a hybrid DRAM/NVM configu-
ration [5]. Peng et al. considered the same problem in the context
of MCDRAM/DRAM using the Intel Xeon Phi processor [19]. In
order to track memory accesses, these tools often rely on dynamic
instrumentation (such as PIN [16]), which imposes significant per-
formance overhead that makes it impractical for online access track-
ing.

Larysch developed a PEBS system to assess memory bandwidth
utilization of applications and reported low overheads, but the
authors did not provide a quantitative characterization of using
PEBS for this purpose [15]. Akiyama et al. evaluated PEBS overhead
on a set of enterprise computing workloads with the aim of find-
ing performance anomalies in high-throughput applications (e.g.,
Spark, RDBMS) [1]. PEBS has been also utilized to determine data
placement in emulated non-volatile memory based heterogeneous
systems [22]. None of these works, however, have focused on exclu-
sively studying PEBS overhead on large-scale configurations. To the
contrary, we explicitly target large-scale HPC workloads to assess
the scalability impacts of PEBS based memory access tracking.
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Olson et al. reported in a very recent study that decreasing the
PEBS reset value below 128 on Linux caused the system to crash [18].
While they disclosed results only for a single node setup, we demon-
strated that our custom PEBS driver in McKernel performs reliably
and induces low overheads even when using small PEBS reset val-
ues in a large-scale deployment.

6 CONCLUSION AND FUTUREWORK
This paper has presented the design, implementation and evalua-
tion of a PEBS driver for the IHK/McKernel which aims to provide
the groundwork for an OS level heterogeneous memory manager.
We have shown the captured access patterns of two scientific ap-
plications and demonstrated the evolution of their resolution as
we change the PEBS profiling parameters. We have analyzed the
overhead impact associated with the different recording resolutions
in both timing and interrupt domains at scale up to 128k CPUs (or
2,048 computer nodes) for six scientific applications. We observed
overheads highly dependent on both the application behavior and
the recording parameters which range between 1% and 10.2%. How-
ever, we have been able to substantially reduce the overhead of
our worst-case scenario from 10.2% to 4% by adjusting the record-
ing parameters while still achieving clearly visible access patterns.
Our experience contrast with the current Linux kernel PEBS im-
plementation which is not capable of achieving very fine-grained
sample rates. We conclude that PEBS efficiency matches the basic re-
quirements to be feasible for heterogeneous memory management
but further work is necessary to quantify the additional overhead
associated with using the recorded data at runtime.

Our immediate future work is to address the challenge of prop-
erly using the recorded addresses at runtime to reorganize memory
pages on memory devices based on access patterns. We will study
the benefits of dedicating a hardware thread to periodically harvest
the CPU PEBS buffer instead of relying on interrupts that constantly
pause the execution of the user processes. We also intend to deeply
analyze the difference between the IHK/McKernel PEBS driver and
the Linux kernel driver to better quantify the observed limitations.
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