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ABSTRACT
In this paper, we present benchmark data for Intel Memory Drive
Technology (IMDT), which is a new generation of Software-defined
Memory (SDM) based on Intel ScaleMP collaboration and using
3D XPoint TM based Intel Solid-State Drives (SSDs) called Optane.
We studied IMDT performance for synthetic benchmarks, scientific
kernels, and applications. We chose these benchmarks to represent
different patterns for computation and accessing data on disks and
memory. To put performance of IMDT in comparison, we used two
memory configurations: hybrid IMDT DDR4/Optane and DDR4
only systems. The performance was measured as a percentage
of used memory and analyzed in detail. We found that for some
applications DDR4/Optane hybrid configuration outperforms DDR4
setup by up to 20%.

CCS CONCEPTS
• Hardware → Non-volatile memory; • Computing method-
ologies → Massively parallel and high-performance simulations; •
Applied computing; • Software and its engineering → Mem-
ory management;
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1 INTRODUCTION
In the recent years the capacity of system memory for high perfor-
mance computing (HPC) systems has not been kept with the pace
of the increased central processing unit (CPU) power. The amount
of system memory often limits the size of problems that can be
solved. System memory is typically based on dynamic random ac-
cess memory (DRAM). DRAM prices have significantly grown up
in the recent year. In 2017, DRAM prices were growing up approxi-
mately 10-20% quarterly [10]. As a result, memory can contribute
up to 90% to the cost of the servers.

A modern memory system is a hierarchy of storage devices with
different capacities, costs, latencies, and bandwidths intended to
reduce price of the system. It makes a perfect sense to introduce yet
another level in the memory hierarchy between DRAM and hard
disks to drive price of the system down. Solid-State Drives (SSDs)
are a good candidate because they are cheaper than DRAM up to 10
times. What is more important, over the last 10 years, SSDs based
on NAND technology emerged with higher read/write speed and
Input/Ouput Operations per Second (IOPS) metric than hard disks.

Recently, Intel announced [21] a new SSD product based on
novel 3D XPointTM technology under the name Intel® OptaneTM.
It was developed to overcome the drawbacks of NAND-technology:
block-based memory addressing and limited write endurance. To
be more specific, with 3D XPoint each memory cell can be ad-
dressed individually and write endurance of 3D XPoint memory is
significantly higher than NAND SSDs. As a result, 3D XPoint flash
memory can be used instead of DRAM, albeit as a slow memory,
which can be still an attractive solution given that Intel Optane is
notably cheaper than random access memory (RAM) per gigabyte.
A novel Intel Memory Drive Technology (IMDT) allows to use Intel
Optane drives as a system memory. Another important advantage
of 3D XPoint compared to DRAM is that it has a high density of
memory cells, which allows to build compact systems with massive
memory banks.

In this work, we evaluated the capabilities of Intel Optane drives
together with IMDT for numerical simulations requiring large
amount of memory. We started with the overview of IMDT tech-
nology in section 2. In section 3, we described the methodology. In
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Figure 1: This figure describes how IntelMemoryDrive Technologyworks. Solid lines represent inquiry, dashed lines represent
data transfer, and double lines represent commands issued.

Sections 4 and 5 we described all benchmarks and corresponding
performance results. In section 6 we discussed the performance
results, and in Section 7 we presented our conclusions and plans
for the future work.

2 OVERVIEW OF INTEL MEMORY DRIVE
TECHNOLOGY

For effective use of Intel Optane in hybrid RAM-SSD memory sys-
tems, Intel corporation and ScaleMP developed a technology called
IMDT [4, 7]. IMDT integrates the Intel Optane into the memory sub-
system and makes it appear like RAM to the operating system and
applications. Moreover, IMDT increases memory capacity beyond
RAM limitations and performs in a completely transparent manner
without any changes in operating system and applications. The
key feature of IMDT is that RAM is effectively used as cache. As a
result, IMDT can achieve good performance compared to all-RAM
systems for some applications at a fraction of the cost as we have
shown in this paper.

ScaleMP initially has developed a technology tomake virtual non-
uniform memory access (NUMA) system using high speed node
interconnect of modern high performance computational clusters.
NUMA systems are typically defined as any contemporary multi-
socket system. It allows a processor to access memory at varying
degrees of latency or “distance” (e.g. memory attached to another
processor), over a network or fabric. In some cases, this fabric is
purpose-built for such processor communication, like Intel® Quick-
Path and UltraPath Interconnects (Intel® QPI and UPI respectively).
In other cases, standard fabrics such as Peripheral Component In-
terconnect Express (PCIe) or Intel® Omni-Path Fabric are used for
the same purpose along with software-defined memory (SDM) to
provide memory coherency, operating as if additional memory was
installed in the system.

Accessing memory at varying lower performance over networks
has proven to be feasible and useful by using predictive memory
access technologies that support advanced caching and replication,
effectively trading latency for bandwidth. This is exactly what
IMDT is doing to enable non-volatile memory (NVM) to be used
as system memory. Instead of doing it over fabric, however, it does
so with storage. With IMDT, most of the Intel Optane capacity is

transparently used as an extension to the DRAM capacity of the
system.

IMDT is implemented as an operating system (OS)-transparent
virtual machine (Figure 1). In IMDT, Intel Optane SSDs are used as
part of the systemmemory to present the aggregated capacity of the
DRAM and NVM installed in the system as one coherent, shared
memory address space. No changes are required to the operating
system, applications, or any other system components. Additionally
IMDT implements advanced memory access prediction algorithms
to optimize memory access performance.

A popular approach to virtualize disk memory is to store part
of virtual memory (VM) pages on special disk partition or file is
implemented in all popular operating systems nowadays. However,
the resulting performance is very sensitive not only to the storage
speed but also to VM manager implementation. It is very important
to correctly predict whichmemory page on disk will be needed soon
and to load it in RAM to avoid program spinning in a page fault state.
The built-in OS swap in Linux kernel is not very intelligent and
usually affected by this problem. On the contrary, IMDT analyzes
memory access patterns and prefetches the data into the RAM
“cache” (Figure 1) before it is used, resulting in better performance.

IMDT leverage the low-latency media access provide by Intel
Optane SSDs. NAND SSD latency cannot be improved by simply
aggregating multiple drives. Transitioning to Intel Optane SSDs is
another step forward to the reductions of the gap between DRAM
and SSD performance by using lower latency media based on the
3D XPoint technology. However, DRAM still has lower latency
than Intel Optane, which can potentially affect the performance
of applications with DRAM+Optane configuration studied in this
paper.

3 METHODOLOGY
IMDT architecture is based on the hypervisor layer which manages
paging exclusively. This makes a hybrid memory transparent from
one side, however, standard CPU counters become unavailable to
performance profiling tools. Thus, we took an approach to make a
comparison with DRAM-based system side by side. The efficiency
metric was calculated as a ratio of software defined performance
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counters, if available, or simply the ratio of the time-to-solution on
DRAM-based system and IMDT-based system.

3.1 Hardware and software configuration
In this study, we used dual-socket Intel Broadwell (Xeon E5 2699
v4, 22 cores, 2.2 GHz) node with latest version of BIOS. We have
used two memory configurations for this node. In the first configu-
ration, it was equipped with 256 GB DDR4 registered ECC memory
(16×16 GB Kingston 2133 MHz DDR4) and four Intel® OptaneTM
SSDs P4800X (320 GB memory mode). We used Intel Memory Drive
Technology 8.2 to expand system memory with Intel SSDs up to
approximately 1,500 GB. In the second configuration, the node was
exclusively equipped by 1,536 GB of DDR4 registered ECC memory
(24×64 GBMicron 2666MHzDDR4). In both configurations we used
a stripe of four 400 GB Intel DC P3700 SSD drives as a local storage.
Intel Parallel Studio XE 2017 (update 4) was used to compile the
code for all benchmarks. Hardware counters on non-IMDT setup
were collected using Intel® Performance Counter Monitor [5].

3.2 Data size representation
IMDT assumes that all data is loaded in the RAM before it is actu-
ally used. It is important to note that if the whole dataset fits in
the RAM, it is very unlikely that it will be moved to the Optane
disks. In this case, the difference between IMDT and RAM should
be negligible. The difference will be more visible only when the
data size is significantly larger than the available RAM. Since the
performance results are connected to the actual RAM size, we find
more convenient to represent benchmark sizes in parts of RAM in
IMDT configuration (256 GB) and not in GB or problem dimensions.
Such representation of data sets is more general and the results can
be extrapolated to different hardware configurations.

4 DESCRIPTION OF BENCHMARKS
In this section, we described various types of benchmarks to evalu-
ate performance of IMDT. We broadly divided benchmarks in three
classes – synthetic benchmarks, scientific kernels, and scientific
applications. The goal is to test performance for a diverse set of sci-
entific applications, which have different memory access patterns
with various memory bandwidth and latency requirements.

4.1 Synthetic benchmarks
4.1.1 STREAM. [17] is a simple benchmark commonly used to
measure sustainable bandwidth of the system memory and cor-
responding computation rate for a few simple vector kernels. In
this work, we have used multi-threaded implementation of this
benchmark. We studied memory bandwidth for a test requiring
≈ 500 GB memory allocation on 22, 44, and 88 threads.

4.1.2 Polynomial benchmark. was used to compute polynomials
of various degree of complexity. Polynomials are commonly used
in mathematical libraries for fast and precise evaluation of various
special functions. Thus, they are virtually present in all scientific
programs. In our tests, we calculated polynomials of predefined
degree over a large array of double precision data stored in memory.

Memory access pattern is similar to the STREAM benchmark.
The only difference that we can finely tune the arithmetic intensity

of the benchmark by changing the degree of computed polynomials.
From this point of view STREAM benchmark is a particular case
of the polynomial benchmark when the polynomial degree is zero
(STREAM copy) or one (STREAM scale). We used Horner’s method
of polynomial evaluation which is efficiently translated to the fused
multiply-add (FMA) operations.

We have calculated performance for polynomials of degrees
16, 64, 128, 256, 512, 768, 1024, 2048, and 8192 using various data
sizes (from 50 to 900 GB). We studied two data access patterns. In
the first one we just read the value from the array of arguments,
calculate the polynomial value and add it to a thread-local variable.
There is only one (read) data stream to the IMDT disk storage
in this case. In another case the result of polynomial calculation
updates corresponding value in the array of arguments. There are
two data streams here (read and write). Arithmetic intensity of this
benchmark was calculated as follows:

AI = 2 · polynomial deдree

sizeo f (double) , (1)

where factor two corresponds to the one addition and one multipli-
cation for each polynomial degree in Horner’s method of polyno-
mial evaluation.

4.1.3 GEMM. (GEneral Matrix Multiplication) is one of the core
routines in Basic Linear Algebra Subprograms (BLAS) library. It is
a level 3 BLAS operation defining matrix-matrix operation. GEMM
is often used for performance evaluations and it is our first bench-
mark to evaluate IMDT performance. GEMM is a compute-bound
operation with O(N 3) arithmetic operations and O(N 2) memory
operations, where N is a leading dimension of matrices. Arithmetic
intensity grows as O(N ) depending on matrix size and is flexible.
The source code of the benchmark used in our tests is available
here [6].

4.2 Scientific kernels
4.2.1 LU decomposition. (where “LU” stands for “lower upper” of a
matrix, and also called LU factorization) is a commonly used kernel
in a number of important linear algebraic problems like solving
system of linear equations, finding eigenvalues, etc. In current study,
we used Intel Math Kernel Library (MKL) [3] implementations of
LU decomposition, more specifically dgetrf and mkl_dgetrfnpi.
We also studied the performance of an LU decomposition algorithm
using tile algorithm, which dramatically improved performance
of IMDT. The source code of the latter was taken from the hetero-
streams code base [2].

4.2.2 Fast Fourier Transform (FFT). is an algorithm that samples a
signal over a period of time or space and divides it into its frequency
components. FFT is an important kernel in many scientific codes. In
this work, we have studied the performance of the FFT implemented
in MKL library [3]. We have used three-dimensional decomposition
of the N × N × N grid data. The benchmark sizes were N = (500 ÷
5800) resulting in 0.001-1.5 TB memory footprint.

4.3 Scientific applications
4.3.1 LAMMPS. (Large-scale Atomic/Molecular Massively Parallel
Simulator) is a popular molecular simulation package developed in
Sandia National Laboratory [18]. Its main focus is a force-field based
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molecular dynamics. We have used scaled Rhodopsin benchmark
distributed with the source code. Benchmark set was generated
from the original chemical system (32,000 atoms) by its periodical
replication in X ,Y (8 times) and Z (8-160 times) dimensions. The
largest chemical system comprises 328,000,000 atoms (≈ 1.1 TB
memory footprint). Performance metrics – number of molecular
dynamics steps per second.

4.3.2 GAMESS. (General Atomic and Molecular Electronic Struc-
ture System) is one of the most popular quantum chemistry pack-
ages. It is a general purpose program, where a large number of
quantum chemistry methods are implemented. We used the latest
version of code distributed from GAMESS website [8]. In this work,
we have studied the performance of the Hartree-Fock method. We
have used stacks of benzene molecules as a model chemical system.
By changing the number of benzene molecules in stack we can vary
memory footprint of the application. 6-31G(d) basis set was used in
the simulations.

4.3.3 AstroPhi. is a hyperbolic PDE engine which is used for nu-
merical simulation of astrophysical problems [1]. AstroPhi realizing
a multi-component hydrodynamic model for astrophysical objects
interaction. The numerical method of solving hydrodynamic equa-
tions is based on a combination of an operator splitting approach,
Godunov’s method with modification of Roe’s averaging, and a
piecewise-parabolic method on a local stencil [19, 20]. The rede-
fined system of equations is used to guarantee the non-decrease of
entropy [15] and for speed corrections [11]. The detailed descrip-
tion of a numerical method can be found in [16]. In this work, we
used the numerical simulation of gas expansion into vacuum for
benchmarking. We have used 3D arrays with up to 20003 size (≈ 1.5
TB memory footprint) for this benchmark.

4.3.4 PARDISO. is a package for sparse linear algebra calculations.
It is a part of Intel MKL library [3]. In our work, we studied the
performance of the Cholesky decomposition of sparse (O(N ) non-
zero elements) N ×N matrices, where N = (5, 10, 20, 25, 30, 35, 40) ·
106. Memory footprint of benchmarks varied from 36 to 790 GB.

4.3.5 Intel-QS. (former qHiPSTER) is a distributed high-performance
implementation of a quantum simulator on a classical computer,
that can simulate general single-qubit gates and two-qubit con-
trolled gates [22]. The code is fully parallelized with MPI and
OpenMP. The code is architectured in the way that memory con-
sumption exponentially grows as more qubits are being simulated.
We benchmarked a provided quantum FFT test for 30-35 qubit sim-
ulations. 35 qubits simulation required more than 1.5TB of memory.
The code used in our benchmarks was taken from Intel-QS reposi-
tory on Github [9].

5 RESULTS
5.1 Synthetic benchmarks
5.1.1 STREAM. benchmark was used as a reference to a worst case
scenario, where application has low CPU utilization and high mem-
ory bandwidth requirements. We obtained 80 GB/s memory band-
width for the DRAM-configured node, while for IMDT-configured
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Figure 2: Polynomial benchmark results. (A) – one data
stream for 44 (A-1) and 88 (A-2) threads. (B) – two data
streams for 44 (B-1) and 88 (B-2) threads. The efficiency is
denoted by color with a legend on corresponding row. See
text for more details.

node we got 10 GB/s memory bandwidth for the benchmarks re-
questing maximum available memory. In other words, we are com-
paring best case scenario for DRAM bandwidth with the worst
case scenario on IMDT. Thus, we can expect the worst possible
efficiency of 10/80 = 12.5% IMDT vs DRAM. It should be noted that
running benchmarks which fit in DRAM cache of IMDT results in
the bandwidth equal to (80-100 GB/s), which is comparable to the
DRAM bandwidth. This is what we expected and it is the proof that
IMDT utilizes optimally DRAM cache. The measured bandwidth
actually depends only on the number of threads and it was higher
for the less concurrent jobs. It applies only to IMDT benchmarks
requesting memory smaller than the size of DRAM cache. Mem-
ory bandwidth of DRAM-configured node does not depend on the
workload size nor on the number of threads.

5.1.2 Polynomial benchmark. Results of the polynomial bench-
marks are presented in Figure 2. As one can see in Figure 2, patterns
of efficiency are very similar. If the data fits in the RAM cache of
IMDT then IMDT typically shows better performance than DRAM-
configured node, especially for short polynomials. High concur-
rency (88 threads, Figure 2 (A-2 and B-2)) is also beneficial to IMDT
in these benchmarks. However, a better efficiency can be obtained
for benchmarks with higher order of polynomials. In terms of arith-
metic intensity (eq. (1)), it is required to have at least 256 floating-
point operations (FLOPs) per byte to get IMDT efficiency close to
100%. It will be discussed later in detail (see Section 5.4).

5.1.3 GEMM benchmark. According to our benchmarks shown in
Figure 3, GEMM shows very good efficiency for every problem size.
All observed efficiencies vary from 90% for large benchmarks to
125% for small benchmarks. Such efficiency is expected because
GEMM is purely compute bound. To be more specific, the arithmetic
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Figure 3: IMDT efficiency plot for GEMM benchmark.
Higher efficiency is better. 100% efficiency corresponds to
DRAM performance.

Figure 4: IMDT efficiency plots for LU and FFT benchmarks.
Two implementations (MKL and tiled) of LU decomposition
were benchmarked. Higher efficiency is better. 100% effi-
ciency corresponds to DRAM performance.

intensity even for a relatively small GEMM benchmark is much
higher than the required value of 250 FLOP/byte per data stream,
which was estimated in polynomial benchmarks. In our tests, we
have used custom (“segmented”) GEMM benchmark with improved
data locality: all matrices are stored in a tiled format (arrays of
“segments”) and matrix multiplication goes tile-by-tile. Thus the
arithmetic intensity of all benchmarks is constant and equal to the
arithmetic intensity of a simple tile-by-tile matrix multiplication.
It is approximately equal to 2 FLOPs multiplied by tile dimension
and divided by the size of data type in bytes (4 for float and 8 for
double). In our benchmark with a single-precision GEMMwith typ-
ical tile dimension size of ≈43000, the arithmetic intensity is ≈21500
FLOPs/byte, which is far beyond the required 250 FLOPs/byte.

5.2 Scientific kernels
5.2.1 LU decomposition. The efficiency of LU decomposition im-
plemented in MKL library strongly depends on the problem size.
The efficiency is excellent when a matrix fits into the memory (Fig-
ure 4). We observe about 150% − 180% speedup on IMDT for small

matrices. However, the efficiency decreases down to ≈ 30% for
very large matrices with leading dimension equal or greater than
≈ 2·105. This result was unexpected; in fact, our LU implementation
calls BLAS level 3 functions such as GEMM, which has excellent
efficiency on IMDT as we demonstrated in previous section. We
can provide two explanations for unfavorable memory access pat-
terns in LU decomposition. First one is the partial pivoting which
interchanges rows and columns in the original matrix. Second, ma-
trix is stored as a contiguous array in memory that is known for
its inefficient memory access to the elements of the neighboring
columns (rows in case of Fortran). Both problems are absent in a
special tile-based LU decomposition benchmark implemented in
hetero-streams code base. We also ran benchmarks for this opti-
mized LU decomposition benchmark. Tiling of the matrix not only
improved the performance by about 20% for both “DRAM” and
“IMDT” memory configurations, but also improved the efficiency
of IMDT to ≈90% (see Figure 4). Removing of pivoting only with-
out introducing matrix tiling does not significantly improve the
efficiency of LU decomposition.

5.2.2 Fast Fourier Transform. The results of MKL-FFT benchmark
are similar to those obtained for MKL-LU as shown in Figure 4. For
small problem sizes the efficiency of IMDT exceeds 100%, but for
large benchmarks the efficiency drops down to ≈ 40%. Performance
drop occurs at 100% of RAMutilization. FFT problems typically have
relatively small arithmetic intensity (small ratio of FLOPs/byte).
Thus, obtaining relatively low IMDT efficiency was expected. We
still believe that the FFT benchmark can be optimized for memory
locality to improve IMDT efficiency even higher (see [12–14] for
the examples of memory-optimized FFT implementations).

5.3 Scientific applications
The benchmarking results for different scientific applications are
shown in Figure 5 and Figure 6. The applications are PARDISO,
AstroPhi, LAMMPS, Intel-QS, and GAMESS. All applications ex-
cept PARDISO show similar efficiency trends. When a benchmark
requests memory smaller than the amount of available DRAM, the
application performance on the IMDT-configured node is typically
higher than for DRAM-configured node. At a certain threshold,
which is typically a multiple of DRAM size, the IMDT efficiency
declines based on the CPU Flop/S and memory bandwidth require-
ments.

5.3.1 MKL-PARDISO. PARDISO is very different from other stud-
ied benchmarks. The observed IMDT efficiency is 120-140% of
“DRAM”-configured node for all studied problem sizes. It was not
very surprising because Cholesky decomposition is known to be
compute intensive. MKL-PARDISO is optimized for the disk-based
out-of-core calculations resulting in excellent memory locality to
access data structures. As a result, this benchmark always benefits
from faster access to the non-local NUMAmemory on IMDT which
results in the improved performance on “IMDT”-configured node.

5.3.2 AstroPhi. In Figure 5 we presented the efficiency plot of
Lagrangian step of the gas dynamic simulation, which is the most
time consuming step (> 90% compute time). This step describes
the convective transport of the gas quantities with the scheme
velocity for the gas expansion into vacuum problem. The number
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Figure 5: IMDT efficiency plots for various scientific appli-
cations. Higher efficiency is better. 100% efficiency corre-
sponds to DRAM performance.

Figure 6: GAMESS Hartree-Fock simulation (10 iterations)
for stacks of benzene molecules with 6-31G(d) basis set. (A)
Time to solution in seconds, lower is better. (B) IMDT ef-
ficiency, higher efficiency is better, 100% efficiency corre-
sponds to DRAM performance. The performance of the di-
rect Hartree-Fock on “IMDT” and “DRAM”-configured node
(see text for details) is the same ((A), green line).

of FLOPs/byte is not very high and the efficiency plot follows the
trend we described above. We observe a slow decrease in efficiency
down to ≈50% when the data does not fit into DRAM cache of IMDT.
Otherwise the efficiency is close to 100%.

5.3.3 LAMMPS. We studied the performance of the molecular
dynamics of the Rhodopsin benchmark provided with LAMMPS
distribution. It is an all-atom simulation of the solvated lipid bilayer
surrounding Rhodopsin protein. The calculations are dominated by

the long-range electrostatics interactions in particle-particle mesh
algorithm. The results of benchmarks are presented in Figure 5.
It is obvious that LAMMPS efficiency follows the same pattern as
AstroPhi and FFT: it is more than 100% when tests fit in the DRAM
cache of the IMDT and it is dropping down when tests do not fit.
For tests with high memory usage the efficiency is ≈50%.

5.3.4 Intel-QS. We benchmarked Intel-QS using provided quan-
tum FFT example for 30-35 qubits. Actually, each additional qubit
doubles the amount of memory required for the job. For that reason
we had to stop at 35 qubit test which occupy about 1 TB of memory.
The observed IMDT efficiency was greater than 100% for 30-34
qubits and drops down to ≈70% at 35 qubit simulation. A signifi-
cant portion of the simulation take FFT steps. Thus, degradation
of the performance at high memory utilization was not surprising.
However, the overall efficiency is almost two times better than for
FFT benchmark.

5.3.5 GAMESS. We studied the performance of the two Hartree-
Fock method (HF) algorithms. HF is solved iteratively and for each
iteration a large number of electron-repulsion integrals (ERIs) need
to be re-computed (direct HF) or read from disk or memory (conven-
tional HF). In the special case of conventional HF called incore HF,
ERIs are computed once before HF iterations and stored in DRAM.
In the subsequent HF iterations, the computed ERIs are read from
memory. We benchmarked both direct and incore HF methods. The
former algorithm has small memory footprint, but re-computation
of all ERIs each iteration (typical number of iterations is 20) results
in much longer time to solution compared to incore HF method if
ERIs fit in memory.

The performance of the direct HF method on “DRAM” and
“IMDT”-configured nodes is very similar (see Figure 6 (A), green
line). However, the performance of the incore method differs be-
tween “DRAM” and “IMDT” (see Figure 6 (A), red and yellow lines).
The efficiency shown in Figure 6 (B) for incore IMDT vs incore
DRAM (purple line) behaves similar to other benchmarks – when
benchmarks fits in the DRAM cache of the IMDT then the efficiency
is close to 100%, otherwise it decreases to≈50%. But for incore IMDT
vs direct DRAM (blue line) the efficiency is much better. The effi-
ciency varies between approximately 200% and 350%. Thus, IMDT
can be used to speed up Hartree-Fock calculations when the amount
of DRAM is not available to fit all ERIs in memory.

5.4 Analysis of IMDT performance
Modern processors can overlap data transfer and computation very
efficiently. A good representative example is the Polynomial bench-
mark (see Section 4.1.2). When the polynomial degree is low the
time required to move data from system memory to CPU is much
higher than the time of polynomial computation (Section 5.1.2, Fig-
ure 2). In this case, the performance is bound bymemory bandwidth.
By increasing the amount of computation, the overlap between data
transfer and computation becomes more efficient and the bench-
mark gradually transforms from a memory-bound to a compute-
bound problem. Increasing of arithmetic intensity is achieved by
increasing the degree of polynomials (see eq. (1)).

On Figure 7 the dependence of average DRAM bandwidths on
the arithmetic intensity is shown for polynomial benchmarks with
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Figure 7: Average DRAM bandwidth in the polynomial
benchmark depending on the arithmetic intensity (poly-
nomial degree), number of data streams (1 data stream –
read-only access pattern, 2 data streams – read/write ac-
cess pattern, see text for details), and the number of work-
ing threads. The results were obtained by Intel Processor
Counter Monitor (sum of System READ and WRITE coun-
ters).

different number of data streams. The improvement of overlap
between data transfer and computation is observed at about 16-
32 FLOP/byte. The computation of low-order polynomials (less
than 16 FLOP/byte) is not limited by the compute power, resulting
in high memory bandwidth. The bandwidth value depends on I/O
pattern (i.e. the number of data streams) and it is limited by the
DRAM memory bandwidth, which is about 80 GB/s.

The bandwidth dependence on the number of data streams of
low-order polynomials results from NUMA memory access. If the
benchmark was optimized for NUMA, the highest bandwidth for
one and two data streams would be the same. However, in IMDT
architecture, while application thread accesses the remote NUMA
node for writes, IMDT places the data to the DRAM attached to the
local NUMA node. This can significantly reduce the pressure on
the cross-socket link and as a result the performance can become
better than DRAM based system performance. It is exactly what
we observed in our tests when all the data fits in the DRAM cache
(see Figure 2).

When the arithmetic intensity grows beyond 16 FLOP/byte, the
memory bandwidth starts decreasing. At 64 FLOP/byte and beyond
the benchmark becomes compute bound. It means that the memory
bandwidth does not depend on the number of data streams but on
the availability of computational resources (i.e. number of threads).
However, the memory bandwidth decreases slowly with the arith-
metic intensity (Figure 7). Taking into account that the memory
bandwidth of our IMDT system is capped by 10 GB/s, we expect
that only those benchmarks that are below this threshold will have
good efficiency. It is expected that it will apply to all benchmarks
with different problem sizes. In terms of the arithmetic intensity, it
corresponds to ≈ 128 − 256 FLOP/byte. This correlation is shown
on Figure 2. The same analysis can be applied to any benchmark to
estimate the potential efficiency of the IMDT approach.

5.5 Summary
To sum up our benchmarking results, our tests show that there is
virtually no difference between using DRAM and IMDT if a bench-
mark requires memory less than the amount of available RAM.
IMDT correctly handles these cases, if the test fits in RAM and
there is no need to use Optane memory. In fact, IMDT frequently
outperforms RAM because IMDT has advanced memory manage-
ment system. The situation is very different for large tests. For some
tests like dense linear algebra, PARDISO and Intel-QS efficiency
remains high, while for other applications like LAMMPS, AstroPhi,
and GAMESS the efficiency slowly declines to about 50%. Even in
the latter case IMDT can be attractive for scientific users since it
enables larger problem sizes to be addressed.

6 DISCUSSION
One of the most important benefits of IMDT is that it significantly
reduces data traffic trough Intel QuickPath Interconnect (QPI) bus
on NUMA systems. For example, GEMM unoptimized benchmark
on “DRAM”-configured node performs about 20-50% slower for
large datasets compared to a small ones. The main reason is over-
loaded QPI bus. When a benchmark saturates QPI bandwidth then
it causes CPU stalls waiting for data. QPI bandwidth in our sys-
tem is 9.6 GT/s (1 GT/s= 109 transfers per second) or ≈10 GB/s
unidirectional (≈20 GB/s bidirectional) and it can easily become a
bottleneck. It is an inherent issue of multisocket NUMA-systems
which adversely affects performance of not only GEMM, but any
other applications.

There are a few ways to resolve this issue. For example, in opti-
mized GEMM implementation [6] matrices are split to tiles, which
are placed in memory intelligently taking into the account the “first-
touch” memory allocation policy in Linux OS. As a result, QPI bus
load drops to 5-10% and performance significantly improves achiev-
ing almost theoretical peak. It was observed in our experiments
with GEMM by using Intel Performance Counter Monitor (PCM)
software [5].

There is no such issue with IMDT and performance is consis-
tently close to theoretical peak even for the unoptimized GEMM
implementation. IMDT provides optimal access to the data on the
remote NUMA node improving the efficiency of almost all applica-
tions. This is why we almost never seen in practice a very low IMDT
efficiency even for strongly memory-bandwidth bound benchmarks
like FFT and AstroPhi. Theoretical efficiency minimum of 12.5%
was observed only for the specially designed synthetic benchmarks
like STREAM and polynomial benchmark.

However, IMDT is not a solution to all memory-related issues.
For example, it cannot help in situations when an application has
random memory access patterns across a large number of mem-
ory pages with a low degree of application parallelism. While the
performance penalty is not very high for DRAM memory, frequent
access of the IMDT backstore on SSD can be limited by the band-
width of Intel Optane SSD, and IMDT can only compensate for that
if the workload has a high degree of parallel memory accesses (us-
ing many threads or many processes concurrently). In such cases,
it may be beneficial to redesign data layout for better locality of
data structures. In this work, we observed it when we ran MKL
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implementation of LU decomposition. Switching to the tiled imple-
mentation of the LU algorithm results in the significantly improved
efficiency of IMDT because of better data locality. The similar ap-
proach can be applied to other applications. However, it is beyond
the scope of this paper and it is a subject for our future studies.

7 CONCLUSIONS AND FUTUREWORK
IMDT is a revolutionary technology that flattens the last levels
of memory hierarchy: DRAM and disks. One of the major IMDT
advantages is the high density of memory. It will be feasible in the
near future to build systemswithmany terabytes of Optanememory.
In fact, the bottleneck will not be the amount of Optane memory,
but the amount of available DRAM cache for IMDT. It is currently
possible to build an IMDT systemwith 24 TB of addressablememory
(with 3 TB DRAM cache), which is not possible to build with DRAM.
Even if it was possible to build a such system, IMDT offers a more
cost effective solution.

There are HPC applications with large memory requirements.
It is a common practice for such applications to store data in par-
allel network storage or use distributed memory. In this case, the
application performance can be limited by network bandwidth.
There is now another alternative which is to use DRAM+Optane
configuration with IMDT. In theory, the bandwidth of the multiple
striped Optane drives exceeds network bandwidth. IMDT especially
benefits the applications that poorly scale on the multi-node envi-
ronment due to high communication overhead. A good example of
such application is a quantum simulator. Indeed, Intel-QS simulator
efficiency shown in Figure 5 is excellent compared to other applica-
tions. Another good application that fits profile is the visualization
of massive amount of data. We plan to explore the potential of
IMDT for such applications in our future work.

IMDT prefetching subsystem analyzes memory access patterns
in the real time and makes appropriate adjustments according to
workload characteristics. This feature is crucial for IMDT perfor-
mance and differentiates it from other solutions such as OS swap.
We plan to analyze it in detail in our future work.

This work is important because we systematically studied per-
formance of IMDT technology for a diverse set of scientific appli-
cations. We have demonstrated that applications and benchmarks
exhibit reasonable performance level, when the system main mem-
ory is extended with the help of IMDT by Optane SSD. In some
cases, we have seen DRAM+Optane configuration to outperform
DRAM-only system by up to 20%. Based on performance analysis,
we provide recipes how to unlock full potential of IMDT technology.
It is our hope that this work will educate professionals about this
new exciting technology and promote its wide-spread use.
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