
HeterogeneousMemory and Arena-Based Heap Allocation
SeanWilliams

NewMexico Consortium
swilliams@newmexicoconsortium.org

Latchesar Ionkov
Los Alamos National Laboratory

lionkov@lanl.gov

Michael Lang
Los Alamos National Laboratory

mlang@lanl.gov

Jason Lee
Los Alamos National Laboratory

jasonlee@lanl.gov

ABSTRACT
NonuniformMemory Access (NUMA) will likely continue to be the
chief abstraction used to expose heterogeneous memory. One major
problemwith usingNUMA in thisway is, the assignment ofmemory
to devices, mediated by the hardware and Linux OS, is only resolved
to page granularity. �at is, pages, not allocations, are explicitly
assigned to memory devices. �is is particularly troublesome if
one wants to migrate data between devices: since only pages can be
migrated, other data allocated on the same pages will be migrated
as well, and it isn’t easy to tell what data will be swept along to
the target device. We propose a solution to this problem based on
repurposing arena-based heap management to keep locality among
related data structures that are used together, and discuss our work
on such a heap manager.
ACMReference format:
SeanWilliams, Latchesar Ionkov, Michael Lang, and Jason Lee. 2018. Het-
erogeneous Memory and Arena-Based Heap Allocation. In Proceedings of
MCHPC’18: Workshop on Memory Centric High Performance Computing, Dal-
las, TX, USA, November 11, 2018 (MCHPC’18), 5 pages.
DOI: 10.1145/3286475.3286568

1 INTRODUCTION
�ere have been some steps recently to incorporate heterogeneous
memory into high-performance computing. Most prominently, the
now-defunct Intel Knights Landing [4] included integrated higher-
bandwidth memory. Likewise, Nvidia is working to unify CPU
and GPU memory with its NVLink[8] fabric and include higher-
bandwidth memory, and Intel and others are bringing non-volatile
memory to DIMM slots in order to have a higher-capacity, lower-
performance option that is integrated into the memory address
space.

�e Intel Knights Landing exposes its high-bandwidth memory
to the user as a NUMA node as do the IBM CORAL [7] systems.
�is makes perfect sense, since NUMA is a preexisting facility for
bridging the gap between physical and virtualmemory—in principle,
virtual memory removes the need to care about physical devices.
�us, we expect that NUMA will continue to be used as the �rst-
order abstraction for heterogeneous memory. In the past NUMA

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
MCHPC’18, Dallas, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-6113-2/18/11. . .$15.00
DOI: 10.1145/3286475.3286568

distance has just been representative of the ”hop” distance between
a CPU and a memory node. With high-bandwidth memory the
NUMA distance is being used as a way to di�erentiate types of
heterogeneous memory. Nevertheless, both multisocket machines
(the traditionalNUMAuse case) andheterogeneousmemory reassert
the importance of knowing and specifying a physical home for a
page of memory.

In Linux, users can interact with NUMA-informed placement via
memorypolicies. �e chief policies are, a�ach this page to the closest
NUMA node; try to a�ach this page to a speci�c node, and if it’s full,
a�ach to the closest node; and a�ach this page to a speci�c node,
and fail if it’s full. �is situation opens up many both practical and
theoretical problems of varying importance and tractability—there’s
a large conceptual gap between these simple policies and the actual
use cases of heterogeneous memory. �is paper is about one of the
simpler, more practical ones: that all these policies operate at page
granularity.

�e canonical bridge between pages and data structures is the
heap manager, which dices up pages in such a way as to balance
e�cient utilization ofmemorywith the performance of the allocator.
But part of the point of heterogeneous memory is the fundamental
trade-o� between speed and capacity, so one would expect optimal
use of such memory systems to involve a lot of churn. On the other
hand, since memory can only be moved between NUMA nodes in
page-sized chunks, an obvious problem arises: what’s good for the
data structure may not be good for the page. If a page contains both
“hot” and “cool” data (i.e., data that would bene�t from residing in
high-performance memory, along with data that wouldn’t), then
it’s never clear what the right choice is: should the page be on a
high-performance device, wasting some of this precious resource, or
should it be on a normal-performance device, to makemore e�cient
use of limited space?

�ere’s a potential answer in the concept of arenas, in which a
heapmanagermaintainsmultiple heaps. �iswas traditionally done
to reduce lock contention: heaps require substantial bookkeeping,
and the associated data structures can need updatingwhen servicing
malloc and free calls. Having one or more heaps per thread can
reduce or eliminate contention for each heap’s bookkeeping data.

Amajor drawback to the current situation, where pages are tied to
NUMAnodes, is that it can be hard to assess the value of transferring
a page to or from a high-performance memory device. Our proposal
is that, rather than using arenas for the purpose of reducing lock
contention, arenas be used to group data structures that should
“travel together.” Under this proposal, the assessment is not, “is
it a good idea to transfer this data structure”? but, “is it a good
idea to transfer this whole arena”? �e remainder of this paper

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3286475.3286568&domain=pdf&date_stamp=2018-11-11

MCHPC’18, November 11, 2018, Dallas, TX, USA SeanWilliams, Latchesar Ionkov, Michael Lang, and Jason Lee

will be devoted to discussing various aspects, and pros and cons,
of this approach. Additionally, we provide some use cases for our
implementation and results from experiments.

2 APPROACH
2.1 Homogeneity
NUMA was designed for multisocket machines, so it is based on
an assumption that the only di�erence between memory devices is
latency. �us, the default NUMA policy, in which allocations are
preferentially located on the memory node nearest the allocating
processor, makes perfect sense. �is point is even baked into the
name, nonuniformmemory access: the assumption is that memory
devices are homogeneous, and only their access is di�erent.

With heterogeneous memory, it is typically the case that both the
characteristics (e.g., performance) and the access of memory devices
will be di�erent. �is makes it di�cult to determine what the right
allocation policy is and, whether there actually is a right allocation
policy. Heterogeneity makes the problem of allocation placement
far more di�cult than the merely nonuniform-access situation.

In essence, we can reduce this problem to three components: map-
ping allocations to pages, mapping pages to policies, and mapping
policies to devices.

2.2 Allocations→ Pages: Arenas
At the operating system level, memory is only available to page
granularity, via the mmap system call. As a consequence, memory can
only be a�ached to devices (i.e., NUMA nodes) at page granularity.
Of course, most data structure sizes are not multiples of a page size
(4 KiB, 2 MiB, etc.), so we use heap managers (i.e., malloc) to pack
data onto pages in a reasonably e�cient way. But this is another
situation where a traditional assumption of homogeneity becomes
pernicious.

But what relationship should be established between pages, al-
locations, and devices? Intel’s memkind [3] library allows one to
create heaps associatedwith particular “kinds” ofmemory, e.g., high-
bandwidth. �e basic idea of memkind, that it’s necessary to address
the problem of matching allocations to heterogeneous pages using
an arena-based heap allocator, is sound.

Whatrole shouldarenasserve insolving thisproblem? Inmemkind,
the intention seems to be that arenas enumerate the kinds of mem-
ory, so that one has a default arena, a high-bandwidth arena, a
high-capacity arena, and so on.

As will be discussed in Section 2.3, we believe that the ability
to move allocations between devices is an important capability.
How does one move allocations? �e memcpy function puts the
allocation at a new address, so preexisting pointers to the alloca-
tion will continue to point to its old address. On the other hand,
the migrate pages system call preserves pointers, but as the name
suggests, it only operates on whole pages.

�is has the obvious consequence that, if one migrates an allo-
cation, migrate pagesmoves all pages containing that allocation.
Since the exact behavior of malloc is hard to predict, this could cause
arbitrarily bad datamovement to occur: Imagine a data structurewas
involved in an intensive computation and was on high-performance
memory, but that computation is over. In principle, these data should

be moved back to normal memory. But it is unclear what else occu-
pies that page and if there is other data on it that are still needed in
high-performance memory.

�e key dynamic here is, since data must be migrated in page-
sized chunks, that arenas should be deployed based on assumptions
about the coherence of data structures. If the programmer believes
data structures A and B are typically operated on together, then they
should be placed on the same page. If data structure C has nothing
to do with A or B, then C should not be placed on a page with them.

What this means in practice is, the proposed API allows one to
de�ne any number of arenas, and select which arena any particular
data structure is placed on. When onewants tomigrate data to a new
device, one migrates its entire arena. �is has the e�ect of ensuring
that migration occurs only with data structures that should migrate
together, and excluding data structures that should not be swept
along for the ride.

2.3 Pages→ Policies: Modeling
�e big problem of the previous section is, how does one decide
when to move an arena, and to which device? �is opens up a vast
con�guration space, which some “hero programmers” may use for
obsessive optimization, but most people won’t want to bother. One
could imagine treating memory placement as a sort of numerical
optimization problem, i.e., one could imagine constructing a model
of where each allocation should reside as a function of time.

Consider the form of such a model: f (A,t ,I)= (···), whereA is the
set of allocations the programwill make, t is time (i.e., the number of
instructions previously executed), and I is an input deck. What is the
cardinality ofA for a particular program? In other words, howmany
allocations does a particular programmake? We could simplify this
question even further to, howmany allocations are made by a call
to mallocwithin a loop or recursive function? �e answer to that
question iswell known; unfortunately, the answer is⊥, i.e., the value
of undecidable computation. �us, the cardinality of A, the set of
allocations made by a program, cannot be known in general, so this
modeling exercise would seem to be o� to a rough start.

If we instead pose ourmodel in terms of arenas, then this problem
goes away: the number of arenas is explicitly chosen by the program-
mer, so the cardinality of the set of arenas is not dependent on any
particular run of the program, much less on all possible runs. Under
this arrangement, therefore, we can indeed pose a model of memory
placement by allowing the programmer to give the problem known
bounds.

Notably, this present work only addresses the decidability ofA,
which makes it possible to pose models. Whether those models will
be any good likely hinges on the decidability of f overall, which is a
tall order. We can certainly bound this problem by using knowledge
of our HPC applications. By categorizing HPC applications we can
come upwith a set of ad-hocmethods thatwill improve performance
of HPC applications in most cases.

2.4 Policies→Devices: Orderings
Intel’s memkind allows one to allocate memory on “kinds” of devices,
and one kind is high-bandwidth memory. How do its authors decide
what constitutes a high-bandwidth NUMA node? Let us begin with
a di�erent question: what is NUMA distance?

HeterogeneousMemory and Arena-Based Heap Allocation MCHPC’18, November 11, 2018, Dallas, TX, USA

Remember that NUMAwas developed for homogeneousmemory
that has heterogeneous access. NUMA distance is, not surprisingly,
a relative measure of latency. Among other things, this assumes ho-
mogeneous capacity, so it always makes sense to choose the lowest-
latency memory—there are no trade-o�s here.1

High-bandwidth memory does represent a trade-o�: we can de-
duce this from the fact that one has even bothered to di�erentiate
them, i.e., to make normal memory in addition to high-bandwidth
memory. If high-bandwidth memory were strictly be�er, then sys-
tem designers would do away with normal memory. �e ordinary
trade-o� is capacity, so the designers were faced with a conundrum:
if high-bandwidth memory is given a low NUMA distance, then
allocations will default to it, and bandwidth-insensitive data will �ll
it up. Specialmemory requires special allocation, so high-bandwidth
memory is given a high NUMA distance.

�is means, in order to allocate high-bandwidth memory, one
needs to know it’s there. Which gets us back around to memkind:
how does it know that a systemhas high-bandwidthmemory? If you
dig into the library, youwill eventually �nd an inline assembly block
with cpuid, followed by some bitwise operations onmagic numbers.
�ese identify whether the CPU family is Intel Knights Landing, and
if it is, then high-bandwidth allocations are bound to the NUMA
node with the magic distance of 31. Other architectures are not
supported—though in Intel’s defense, heterogeneous memory is still
pre�y exotic.

�is discussion was intended to motivate the following one: how
do we decide the properties of memory devices? Memory policy is
the current hammer, and NUMA is the current nail, so the question
for today is, how could we categorize NUMA nodes? �is doesn’t
quite capture the reality of the situation, since we don’t exactly need
categories, but we need orderings. �at is, if we want memory on
a high-bandwidth device, well, there could be several devices with
di�erent bandwidths, some of which are high and some of which
are not. �e be�er question, therefore, is, how do we construct a
bandwidth ranking of devices?

�e �rst answer that will jump into most people’s heads is em-
piricism. Bandwidth is measurable, so take measurements. �is
approach is problematic, as the central tenet of empirical approaches
is that “incidental” observations are representative of a general phe-
nomenon. �ismakes testingmethodology an important issue, since
(e.g.) bandwidth measurements are only meaningful if the testing
protocol is representative of the conditions underwhich thememory
will be used, size of access and stride of memory comes into play.

A more compelling answer would be to extend NUMA and/or
ACPI to include standardized results (e.g., fromwell-conducted tests)
of various memory metrics for the di�erent NUMA nodes. Such a
standard iswell outside the scopeof thispaper, though it is something
we would be interested in working on, given enough interest and
collaborators.

A �nal, simple approach would be to require administrators of
high-performance computers to maintain a con�guration �le listing
standardized characteristics of the NUMA nodes. �is is tractable
(in principle) because the population of heterogeneous-memory
high-performance computers in the world will likely remain small,
1In fact, there is one trade-o�: one can theoretically get higher bandwidth and higher
latency by interleaving memory across all NUMA nodes. �is is the intention behind
the “interleave” kernel policy, but it isn’t used much in practice.

and such a con�guration only needs to be wri�en at initial setup
and following major upgrades. It would then also be up to the
system administration to oversee a testing protocol, or else to rely
on speci�cations or similar material from the hardware vendors.

In any case, this section remains speculative because of the simple
fact that heterogeneous memory is itself largely speculative at this
time. All we can do, therefore, is speculate about what the future
may hold.

2.5 SharedMemory Arenas
�e heap memory managers, as implemented at the moment, allow
for memorywaste due to fragmentation. Although themodern heap
managers can be con�gured to aggressively return free pages to
the operating system, the task is further complicated by the more
complexdata structures themanagers use. In addition to themultiple
arenas they create, the memory is further split into bins that try to
group data of the same size, and extents that belong to the same bin.

Incomputerswithuniformmemory,while fragmentation iswaste-
ful, the problem can usually be �xed by installing more DRAM. For
high performance memory, like HBM, the size is usually �xed and
memory waste becomes a bigger issue.

In the general case of computer use, the memory waste is consid-
ered a normal result of a hard optimization problem. Each process
has its own resources and the processes generally don’t trust each
other. In theHPC environment the biggestmemory users on a server
usually belong to the same job, and while theymight run as separate
processes (for example, the normal case for MPI applications), they
implicitly trust each other. �is trust can be used for be�er memory
utilization by creating a shared memory heap manager that can be
used across multiple processes.

�e proposedAPIwith its arenas �twell with the implementation
of a shared memory heap manager. �e developer can choose which
data to be in private arenas, handled by the local heap manager, and
which to be shared with other processes from the same job.

In addition to the bene�ts of using sharedmemoryheapmanagers,
there are also some drawbacks. Sharing arenas might cause worse
memory allocation performance due to lock contention. Data from
multiple processes will be interspersed in the same arena, which
will require careful handling of data movement. Bugs like bu�er
over�ows can be harder to detect, as the bug could originate from a
di�erent process than the one it appears in.

3 IMPLEMENTATION
3.1 Arena Implementation
�e arena API is implemented as part of the SICM [6] project. Cur-
rently it restricts an arenamemory to belong to a single NUMAnode.
�emain functions of the API are:

sicm_arena sicm_arena_create(size_t maxsize,
sicm_device *dev)

int sicm_arena_set_device(sicm_arena sa,
sicm_device *dev)

void *sicm_arena_alloc(sicm_arena sa, size_t sz)
void *sicm_realloc(void *ptr, size_t sz)
void sicm_free(void *ptr)
sicm_arena sicm_arena_lookup(void *ptr)

MCHPC’18, November 11, 2018, Dallas, TX, USA SeanWilliams, Latchesar Ionkov, Michael Lang, and Jason Lee

Upon arena creation, it is assigned to the speci�ed sicm_device.
If requested, the arena can be moved to another device by using the
sicm_arena_set_device function. A maximum size of the arena
can be speci�ed. If the user tries to allocate more memory than that
size, sicm_arena_allocwill return NULL pointer.

�e arenas functionality is implemented as an extension to the
jemalloc [5] arenas. �e SICM library provides custom hooks to
jemalloc that ensure the arena’s extents use pages from the appropri-
ate NUMAmemory. �ey also keep track of the extents so the pages
can be migrated to another node if requested. �e page migration is
implemented by using the mbind Linux system call. If not all extents
for an arena can be migrated, sicm_arena_set_device returns an
error.

3.2 Integration with ExistingMiddleware
�e interface described in the preceding text is targeted for HPC
runtimes and libraries. Advanced programmers could use it directly
with in applications we see enabling access to heterogeneous mem-
ory for common runtimes such as OpenMP, MPI and Global Arrays,
Legion, Charm++, etc. We have initial implementations for MPI,
Global Arrays and are evaluating functionality for OpenMP.

Global Arrays[1] is an ideal candidate for integration with our
API, having been wri�en with both NUMA and shared memory
in mind. What it does not have is the ability to actively choose
memory devices or create arenas to use for its allocations. Our API
will allow for Global Arrays to do so, which in turn will allow for
be�er performance through be�er placement of data. Currently,
Global Arrays has been modi�ed so that its calls to shm_open are
redirected to SICM. No selection of memory device is done beyond
selecting the �rst device. �e shared memory arenas used for Global
Arrays depend on the pthreads support for shared memory mutexes.

Data placement in the context of MPI communications is of para-
mount importance to achieve high performance: high-performance
data transfers over the network is only e�cient if the data can be
placed correctly in the memory hierarchy and ultimately e�ciently
accessible by MPI ranks or threads that need it. Unfortunately, the
MPI standard andMPI implementations do not provide any mean or
interface for the placement of data in complex memory hierarchies.
In addition, the community agrees that it is bene�cial to provide
mechanisms to application developers so that they can express the
intent related to the data transfer in order to be�er select where to
store the data once the MPI operation completes.

Based on these constraints, we extended OpenMPI to allow users
to allocate memory by providing hints while using the existing
MPI_Mem_alloc function. Our extension consists in the implemen-
tation of a newmpool component in the OPAL layer that interfaces
with SICM.

Practically, application developers can express hints through the
info structure that is passed in when using MPI_Mem_alloc. �ese
hints can then be used to allocatememory arenas using SICM. At the
moment, such hints includes specifying the need for high bandwidth
memories or standard main memory but can easily be extended to
other types of memory and others types of requirements from users.
Finally, this approach has the huge bene�t from not requiring any
modi�cations to the MPI standards or OpenMPI interfaces, while

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 5 10 15 20 25

Ti
m

e
 t

o
 M

o
v
e
 (

1
0

N
 s

e
co

n
d

s)

Arena Size (2N bytes)

 DRAM->DRAM (P9 SICM)
 DRAM->HBM (KNL SICM)
 HBM->DRAM (KNL SICM)

 DRAM->HBM (P9 SICM)
 HBM->DRAM (P9 SICM)

 DRAM->HBM (P9 memmove)
 HBM->DRAM (P9 memmove)

Figure 1: Time ToMoveMemory Between Devices

still giving control over memory allocation and data placement to
users.

4 EXPERIMENTAL STUDY
4.1 MovingMemory Between Devices
Figure 1 shows comparison of the time to move an arena between
di�erent devices, depending on the size of the arena. We ran the ex-
periments on two architectures that support heterogeneousmemory.
�e IBM CORAL Power 9 machines have six active NUMA nodes,
four with DRAM and two with the high bandwidth memory located
on theNvidiaGPU.�eKnight’s Landingmachines have twoNUMA
nodes, one with DRAM and one with high bandwidth memory. We
testedmoving arenas from onememory type to another. �eDRAM-
to-DRAM values show the movement from one DRAMNUMA node
to another. Because the KNLmachines have only one DRAM node,
there is no DRAM-to-DRAM plot for it. Each datapoint represents
the average time taken to move an arena with size 2N bytes. For
comparison, we also show the time it takes to move the data with
memmove.

�e results show that data migration is expensive. Moving 0.5 GB
of data takes approximately a second. �erefore, arena migration to
high performance memory makes sense only if the computational
kernel that is using it runs long enough to amortize the cost of
migration. Arena migration is much slower than moving the data
with memmove. �e main basis for the slowdown is migration uses
the Linux kernel to transport the data to pages of di�erent memory
device while preserving the same addresses, while memmove doesn’t.
�e initial analysis of thekernel shows that the code for themigration
is not optimized for the task, and palpable future work would be to
improve the speed of the arena migration.

4.2 VPIC
In order to quantify the usefulness of our API in real world appli-
cations, we compared using our API with using malloc(3) and
numactl(8) in VPIC[2], a particle-in-cell simulation code for mod-
eling kinetic plasmas in one, two, or three spatial dimensions.

Figure 2 shows the results of running VPIC with malloc(3) run-
ning normally, under the in�uence of numactl(8) --preferred,
and replaced with our API.�e rank count of 64 was chosen to be

HeterogeneousMemory and Arena-Based Heap Allocation MCHPC’18, November 11, 2018, Dallas, TX, USA

Figure 2: VPIC runtimes with di�erent t stop values, using
malloc(3), numactl(8), and SICM. (64 ranks, nppc=25)

Figure 3: VPIC runtimes with di�erent number Of ranks, us-
ing malloc(3), numactl(8), and SICM (with spilling).

small enough to run quickly, while large enough to represent a real
problem. �e value nppc was set to 25 in order to allow for the
entirety of VPIC allocations to reside in high bandwidth memory.
Using malloc(3) normally results in the longest runtimes of each
run of VPIC. Using numactl(8) and our API results in lower run-
times. However, our SICMAPI results in runtimes that are slightly
faster than with numactl(8).

Figure 3 shows the results of running VPIC with provided �xed
input decks. In these runs, the VPIC allocationswere not always able
to �t into high bandwidth memory, so a simple spilling function was
added into VPIC to use DRAM arenas once high bandwidth memory
was exhausted (once DRAMwas chosen to be used, high bandwidth
memory was not used again during a run). �e results show that our
API has higher overhead than both malloc(3) and numactl(8) when
spilling is required.

5 CONCLUSION
Heterogeneity always presents a serious problem for computer scien-
tists’ preference for elegance, and heterogeneousmemory is shaping
up to be no di�erent. Broadly speaking, we see the problem of het-
erogeneous memory as consisting of three major parts: controlling
how allocations end up on pages, deciding how pages end up under
policies, and specifying how policies correspond to actual devices.

�e �rst problem, pu�ing allocations on pages, we addressed
through a rede�ning the meaning of allocator arenas. Under this
scheme, we assume that data will move between devices as the pro-
gram runs, andwegive programmers a tool to handle the unintended
consequences of page migration. We then argued that this view of
arenas also dampens some of the undecidability of the problem of
modeling the behavior of computer programs. Finally, we discussed
the problems of interpreting memory policies, and presented a few
solutions.

We described initial use of the SICMAPI, and showed preliminary
results for micro-benchmarks and an application, VPIC.

Together, we believe this represents a complete “middleware”
package for heterogeneous memory, so that we will be poised to
tackle its issuesonceamajorheterogeneous-memorysupercomputer
is built.

As future work, we are planning to extend the API to support
arenas on multiple NUMA nodes, as well as a way to specify that
an arena can be placed on any available memory, because its data
is not in active use at the moment. Also, an asynchronous version
of the arena migration will help improving the overall performance
of the applications. An important task to look into is improving the
performance of the mbind Linux implementation and closing the
performance gap between memmove and the system call.

6 ACKNOWLEDGEMENT
�e Simpli�ed Interface to Complex Memory (SICM) is supported
by the Exascale Computing Project (17-SC-20-SC), a collaborative
e�ort of the U.S. Department of Energy O�ce of Science and the
National Nuclear Security Administration.

REFERENCES
[1] 2018. Global Arrays. (2018). h�ps://github.com/GlobalArrays/ga
[2] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J. Kerbyson. 2008.

0.374 P�op/s Trillion-particle Kinetic Modeling of Laser Plasma Interaction on
Roadrunner. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(SC ’08). IEEE Press, Piscataway, NJ, USA, Article 63, 11 pages. h�p://dl.acm.org/
citation.cfm?id=1413370.1413435

[3] Christopher Cantalupo, Vishwanath Venkatesan, Je� Hammond, Krzysztof
Czurlyo, and SimonDavidHammond. 2015.memkind: AnExtensibleHeapMemory
Manager for Heterogeneous Memory Platforms and Mixed Memory Policies. Techni-
cal Report. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United
States).

[4] George Chrysos. 2014. Intel® Xeon Phi coprocessor-the architecture. Intel
Whitepaper 176 (2014).

[5] Jason Evans. 2006. A scalable concurrent malloc (3) implementation for FreeBSD.
In Proc. of the BSDCan Conference, O�awa, Canada.

[6] LANL. 2018. SICM – Simpli�ed Interface to Complex Memory. (2018). h�ps:
//github.com/lanl/SICM

[7] LLNL. 2018. CORAL/Sierra System. (2018). h�ps://asc.llnl.gov/coral-info
[8] NVidia. 2018. NVidia NVLink High-Speed Interconnect. (2018). h�ps://www.

nvidia.com/en-us/data-center/nvlink/

https://github.com/GlobalArrays/ga
http://dl.acm.org/citation.cfm?id=1413370.1413435
http://dl.acm.org/citation.cfm?id=1413370.1413435
https://github.com/lanl/SICM
https://github.com/lanl/SICM
https://asc.llnl.gov/coral-info
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

	Abstract
	1 Introduction
	2 Approach
	2.1 Homogeneity
	2.2 Allocations Pages: Arenas
	2.3 Pages Policies: Modeling
	2.4 Policies Devices: Orderings
	2.5 Shared Memory Arenas

	3 Implementation
	3.1 Arena Implementation
	3.2 Integration with Existing Middleware

	4 Experimental Study
	4.1 Moving Memory Between Devices
	4.2 VPIC

	5 Conclusion
	6 Acknowledgement
	References

