
13

Discovering Patterns for Fact Checking

in Knowledge Graphs

PENG LIN, QI SONG, and YINGHUI WU, Washington State University

JIAXING PI, Siemens Corporation

This article presents a new framework that incorporates graph patterns to support fact checking in knowl-
edge graphs. Our method discovers discriminant graph patterns to construct classifiers for fact prediction.
First, we propose a class of graph fact checking rules (GFCs). A GFC incorporates graph patterns that best
distinguish true and false facts of generalized fact statements. We provide statistical measures to characterize
useful patterns that are both discriminant and diversified. Second, we show that it is feasible to discover GFCs

in large graphs with optimality guarantees. We develop an algorithm that performs localized search to gener-
ate a stream of graph patterns, and dynamically assemble the best GFCs from multiple GFC sets, where each
set ensures quality scores within certain ranges. The algorithm guarantees a (1

2 − ϵ) approximation when it
(early) terminates. We also develop a space-efficient alternative that dynamically spawns prioritized patterns
with best marginal gains to the verified GFCs. It guarantees a (1 − 1

e) approximation. Both strategies guar-
antee a bounded time cost independent of the size of the underlying graph. Third, to support fact checking,
we develop two classifiers, which make use of top-ranked GFCs as predictive rules or instance-level features
of the pattern matches induced by GFCs, respectively. Using real-world data, we experimentally verify the
efficiency and the effectiveness of GFC-based techniques for fact checking in knowledge graphs and verify
its application in knowledge exploration and news prediction.

CCS Concepts: • Information systems → Data cleaning;

Additional Key Words and Phrases: Fact checking, supervised graph pattern mining, knowledge graph

ACM Reference format:

Peng Lin, Qi Song, Yinghui Wu, and Jiaxing Pi. 2019. Discovering Patterns for Fact Checking in Knowledge
Graphs. J. Data and Information Quality 11, 3, Article 13 (May 2019), 27 pages.
https://doi.org/10.1145/3286488

1 INTRODUCTION

Knowledge graphs have been adopted to support emerging applications such as knowledge search
[9], recommendation [34], and decision making [17]. A knowledge graph consists of a set of facts.
Each fact is a triple statement <vx , r , vy>, where vx and vy denote a subject entity and an object

entity, respectively, and r refers to a predicate (a relationship) between vx and vy . One of the

Y. Wu, P. Lin, and Q. Song were supported in part by NSF IIS-1633629, USDA/NIFA 2018-67007-28797, and research grants
from Siemens and Huawei Technologies.
Authors’ addresses: P. Lin, Q. Song, and Y. Wu, Washington State University, 355 NE Spokane Street, Pullman, WA 99164;
emails: {peng.lin, qi.song, yinghui.wu}@wsu.edu; J. Pi, Siemens Corporation, 755 College Road East, Princeton, NJ 08540;
email: jiaxing.pi@siemens.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1936-1955/2019/05-ART13 $15.00
https://doi.org/10.1145/3286488

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

https://doi.org/10.1145/3286488
mailto:permissions@acm.org
https://doi.org/10.1145/3286488
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3286488&domain=pdf&date_stamp=2019-05-07

13:2 P. Lin et al.

Fig. 1. Facts and associated graph patterns

cornerstone tasks for knowledge base management is fact checking. Given a knowledge graph G,
and a fact t , it is to decide whether t belongs to the missing part of G. Fact checking can be used
to (1) enrich incomplete knowledge bases [5, 9, 25, 33], (2) provide evidence for error detection in
“dirty” knowledge bases [6, 16, 28, 48], and (3) improve the quality of knowledge search [32, 35].

Facts in real-world knowledge graphs are often associated with nontrivial regularities that in-
volve both topological and semantic constraints. Such regularities can often be captured by graph
patterns and their matches. Consider the following example.

Example 1. The graphG1 in Figure 1 illustrates a fraction of DBpedia [25] about facts of philoso-
phers. A user is interested in understanding whether and how philosophers influence each other.
To check whether a fact <Cicero, influencedBy, Plato> is true in G1, a regularity can be speci-
fied, which states that “if a philosophervx (e.g., ‘Cicero’) gave one or more speeches (e.g., ‘Against
Piso’) that cited a book (e.g., ‘Dialogues of Plato’) of a philosopher vy (e.g., ‘Plato’) with the same
topic (e.g., ‘Ancient Philosophy’), then vx is likely to be influenced by vy .” Such regularities can
be easily represented by a graph pattern P1 associated to philosophers. As “Cicero” and “Plato” are
matches of P1, the triple <Cicero, influencedBy, Plato> should be true in G1.

Consider graph G2, a fraction of a real-world offshore activity network [19] in Figure 1. To find
whether an active intermediary (AI) A is likely to serve a company in transition (CT) C, a pattern
P2 that explains such an action may identify G2 by stating that “A is likely an intermediary of C if
it served for a dissolved company D which has the same shareholder O and one or more providers
with C.”

We also have the following observations:

(1) Patterns with “weaker” constraints may not explain facts well. Consider a graph pat-
tern P ′1 obtained by removing the edge cited(speech, book) from P1. Although “Ci-
cero” and “Plato” match P ′1, a false fact <Cicero, influencedBy, John Stuart Mill> also
matches P ′1 (not shown), thus P ′1 alone does not distinguish true and false facts for
influencedBy(philosopher , philosopher) well.

(2) Facts that “approximately” match P1 can also be true. Consider a fact <St.Augustine,
influencedBy, Plato> in G1. It states that “theologian” St. Augustine was influenced by
Plato, indicated by his book (e.g., “Soliloquies”) that cited “Dialogues of Plato.” The fact

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:3

should be identified as true, given that “theologian” is usually related to “philosopher,”
and “book” may record “speech,” although these pairs of labels do not match exactly.

The preceding examples show that discriminant patterns, which can distinguish between true
and false facts well, are often more useful in “defining” true facts. These graph patterns can be
easily interpreted as rules, and the matches of the graph patterns readily provide relevant instance-
level evidence to “explain” the facts. These matches also indicate accurate predictive models for
various similar facts. We ask the following question: How to characterize useful graph patterns
and efficiently discover these graph patterns to support fact checking in large knowledge graphs?

Contributions. We propose new fact checking models that explicitly incorporate discriminant
graph patterns to support fact checking in knowledge graphs. It nontrivially extends Lin et al. [27]
by including new rule models, complete proofs, new pattern discovery algorithms with optimality
guarantees, and enriched experimental studies.

A new rule model. We introduce a class of graph fact checking rules (GFCs) (Section 2). GFCs

incorporate discriminant graph patterns as the antecedent and generalized triple patterns as the
consequent, and characterize fact checking with approximate graph pattern matching. GFCs ex-
tend their counterparts in Lin et al. [27] with a new capacity of automatically identifying and
exploiting similar facts that are not necessarily exact instances of the targeted triple pattern. Thus,
GFCs can predict new triples that may not exactly match any known triple patterns (consequent).
We adopt computationally efficient pattern matching to ensure tractable fact checking.

We develop several statistical measures, including support, confidence, significance, and diver-
sity, to characterize useful GFCs (Section 3). These criteria are defined under a weak partial closed
world assumption (WPCA) that reduces the impact from uncertain facts, especially for nonfunc-
tional relations. Based on these measures, we formulate the top-k GFC discovery problem to dis-
cover useful GFCs for the fact checking task.

Feasible rule discovery algorithms. We develop supervised pattern discovery algorithms to
compute useful GFCs (Section 4). These algorithms solve a submodular optimization problem with
provable optimality guarantees by a single scan of graph patterns without visiting the entire pat-
tern set. They incur a small update cost in response to the arrival of new patterns. The general
ideas of our two discovery algorithms are summarized as follows:

(1) We extend the “sieve-streaming” strategy in Lin et al. [27] for the new GFC model. We
show that stream-based pattern mining guarantees a (1

2 − ϵ) approximation with an up-
date cost determined by ϵ and the size of neighborhood of training facts up to a certain
hop.

(2) We also introduce a new rule discovery strategy that exploits a prioritized spawning strat-
egy. By exploiting the antimonotonicity of marginal gains of GFCs, we dynamically select
the patterns that can best improve the marginal benefit during the pattern generation and
selection. We show that this ensures a (1 − 1

e
) approximation.

We compare and suggest the scenarios for which each method works better than the others.

New fact checking models. To ensure the applications of GFCs, we develop two classifiers to
predict the existence of the facts to be checked. The first model directly uses GFCs as predictive
rules to enhance rule-based classifiers. The second extracts richer instance-level features from the
pattern matches induced by GFCs to learn a feature-based classifier (Section 5).

Enriched experimental studies. Using real-world graphs, we experimentally verify the ef-
ficiency and effectiveness of GFC-based techniques (Section 6). We found that the discovery

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:4 P. Lin et al.

algorithms of GFCs are feasible over large graphs. GFC-based fact checking also achieves high
accuracy and outperforms its counterparts using Horn clause rules and path-based prediction. We
also show that the models are highly interpretable and can predict facts that do not exactly match
known triple patterns in the graph, as verified by our case studies.

These results verify the effectiveness of GFC-based techniques compared to additional baseline
fact checking models, over diversified real-world datasets, and case analysis that leads to new
applications of GFC algorithms. These are not addressed in Lin et al. [27].

Related work. We categorize the related work as follows.
Fact checking. Fact checking has been studied for both unstructured data [13, 38] and struc-

tured (relational) data [18, 49]. This work relies on text analysis and crowd sourcing. Automatic
fact checking in knowledge graphs is not addressed in this work. Beyond relational data, several
methods have been studied to predict triples in graphs:

(1) Rule-based models extract rules that describe associations between a pattern P (an-
tecedent) and a template of facts r (consequent). The rules state that an instance of r
should exist if it also satisfies the description of the pattern P . These models infer the ex-
istence of a fact by testing if it satisfies at least one of a set of rules. For example, AMIE

[14, 15] discovers rules with conjunctive Horn clauses for knowledge base enhancement.
Beyond Horn rules, GPARs [11] discover association rules in the form of Q ⇒ p, with a
subgraph pattern Q (defined by subgraph isomorphism) and a single edge p. GPARs rec-
ommend users via co-occurred frequent subgraphs. The rules can be provided by users or
learned from positive examples that are validated as true.

(2) Supervised link prediction has been applied to train predictive models with (latent) fea-
tures extracted from entities [9, 23]. Recent works make use of path features [7, 8, 23, 39]
and subgraph features [16, 45]. The paths involving targeted entities are sampled from
1-hop neighbors [8] or via random walks [23], or are constrained to be shortest paths [7].
Discriminant paths with the same ontology are grouped to generate positive and negative
examples in Shi and Weninger [39]. Beyond random walk-based sampling, Gardner and
Mitchell [16] and Thor et al. [45] also exploit subgraph-based features. Subgraphs around
entities are first extracted and summarized. Paths are then sampled and repopulated by
replacing original labels with similar ones. These paths are then used as features to train
classifiers for link prediction.

(3) Embedding-based algorithms differ from rule-based algorithms in that they predict links
by computing proper vector transformations. Entities are first mapped to vectorized rep-
resentations called embeddings. Given training facts, the goal is then to learn a transfor-
mation model that minimizes a ranking loss such that pairs of entities in true facts are
closer to each other than those in nonexisting relationships. They optimize a score func-
tion carried out by, for example, stochastic gradient decent, to make the sum of the subject
vector and the relation vector be close to the object vector as much as possible (cf. [4, 22]).
Deep learning is also applied, mostly for facts in unstructured texts instead of exploiting
topological features in graphs [32].

Rule-based models are easy to interpret but usually cover only a subset of useful patterns [32].
Path-based features sampled by random walks or from subgraphs also provide explainable models
[7, 23, 39] but lack the necessary expressiveness to explicitly describe subgraphs as discriminant
features. However, latent feature models are more difficult to interpret than rule models [32]. Our
work aims to balance the interpretability and the construction cost of the models. In contrast to
AMIE [15], we use more expressive rules enhanced by graph patterns to express both constant

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:5

and topological context of facts. Unlike Fan et al. [11], we use approximate pattern matching for
GFCs instead of subgraph isomorphism, which may produce redundant examples and is compu-
tationally hard in general. GFCs can induce useful and discriminant features from patterns and
subgraphs, beyond path features [7, 23, 39]. GFCs can be used as a stand-alone rule-based method.
They also provide context-dependent features to support supervised link prediction to learn highly
interpretable models. These are not addressed in Fan et al. [11] and Galárraga et al. [15].

Graph pattern mining. Frequent pattern mining defined by subgraph isomorphism has been stud-
ied for a single graph. GRAMI [10] discovers frequent subgraph patterns without edge labels. Par-
allel algorithms are also developed for association rules with subgraph patterns [11]. In contrast,
first, we adopt approximate graph pattern matching for feasible fact checking rather than sub-
graph isomorphism as in Elseidy et al. [10] and Fan et al. [11]. Second, we develop a more feasible
stream mining algorithm with optimality guarantees on rule quality, which incurs a small cost to
process each pattern. Third, supervised graph pattern mining over observed ground truth is not
discussed in Elseidy et al. [10] and Fan et al. [11]. In contrast, we develop algorithms that discover
discriminant patterns that best distinguish observed true and false facts.

Graph dependency. Data dependencies have been extended to capture errors in graph data. Func-
tional dependencies for graphs (GFDs) [12] enforce topological and value constraints by incor-
porating graph patterns with variables and subgraph isomorphism. These hard constraints (e.g.,
subgraph isomorphism) are useful for detecting data inconsistencies but are often violated by in-
complete knowledge graphs for fact checking tasks. We focus on “soft rules” to infer new facts
toward data completion rather than identifying errors with hard constraints [35].

Graph completion. Several other problems related to fact checking have been studied, such as
knowledge graph completion [3, 40] (see Cai et al. [4] for a survey). In addition, node classification
infers missing node labels [2], entity resolution [36] can be viewed as predicting a sameAs rela-
tion between two entities, and fact checking specifically for social networks recommends potential
friendships or collaborations between users [11]. Notable learning-based fact checking models in-
clude translation embedding (TransE) [3] and its variants [28, 40]. For example, ProjE [40] solves a
ranking problem by projecting the entities onto a ranking score vector with a combining operator.
Factorization-based methods treat the graph completion as a dimension reduction problem, which
preserves the invariant properties between entities [46]. Beyond rule models, GFCs can be used to
provide useful, interpretable, and discriminant features for embedding-based methods. We envi-
sion that such a combination provides more interpretable knowledge graph completion methods.
We will study such methods in future work.

2 FACT CHECKING WITH GRAPH PATTERNS

We first review several notions of knowledge graphs and fact checking.

Knowledge graphs. A knowledge graph is a directed graphG = (V ,E,L), whereV is a finite set of
nodes (entities) and E ⊆ V ×V is a set of edges (relationships). For each node v ∈ V (respectively,
edge e ∈ E), L(v) (respectively, L(e)) is a label that encodes the content of v (respectively, e), such
as types, properties, or names (respectively, relations or actions) as found in knowledge bases and
social networks. Knowledge graphs are graph-based representations of knowledge bases [9]. A
fact (triple) <vx , r , vy> in a knowledge base [9] can be encoded as an edge e = (vx ,vy) with an
edge label r , where vx and vy are two nodes in G, and x and y are their node labels, respectively
(i.e., x = L(vx) and y = L(vy)).

Fact checking in knowledge graphs. Given a knowledge graph G = (V ,E,L) that contains two
nodes vx and vy , and a fact <vx , r , vy> not in E, the task of fact checking is to decide whether

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:6 P. Lin et al.

<vx , r , vy> exists in G [32]. In other words, the goal is to compute a model that can answer the
question “does relation r exist between entities vx and vy?”

Graph pattern matching revisited. Before we present our fact checking model, we first intro-
duce a class of graph patterns that incorporate approximate label and topological matching.

Graph pattern. A graph pattern P (ux ,uy)=(VP ,EP ,LP) is a directed graph that contains a set of
pattern nodesVP and pattern edges EP . Each pattern nodeup ∈ VP (respectively, edge ep ∈ EP) has
a label LP (up) (respectively, LP (ep)). Moreover, it contains two designated anchored nodes ux and
uy inVP , with labels x and y, respectively. For simplicity, we will refer to P (ux ,uy) as P (x ,y) or P .

Specifically, a triple pattern r (ux ,uy) (or simply r (x ,y)) is a graph pattern that contains a single
pattern edge with two pattern nodes with labels x and y, respectively.

Graph pattern matching. Applying graph patterns that are defined by subgraph isomorphism
for fact checking can be expensive for large graphs, due to an excessive number of identical
matches, leaving alone its high complexity (NP-hard) [27]. In contrast, we incorporate both label
and topological similarities for graph pattern-based fact checking, bringing pattern matching to
tractable cases.

Given two labels l and l ′, we make use of a label similarity predicate to verify if l and l ′ are similar
for a similarity threshold α , denoted as l ∼α l ′. Given a label similarity predicate, we extend the
approximate pattern matching [27, 43] as a matching relation R ⊆ Vp ×V between pattern P and
graphG, under similarity threshold α . For each node pair, (u,v) ∈ R, L(u) ∼α L(v), and moreover,

• for every edge e = (u,u ′) ∈ EP , there exists an edge e ′ = (v,v ′) ∈ E such that L(u ′) ∼α

L(v ′), and L(e) ∼α L(e ′), and
• for every edge e = (u ′′,u) ∈ EP , there exists an edge e ′′ = (v ′′,v) ∈ E such that L(u ′′) ∼α

L(v ′′), and L(e) ∼α L(e ′′).

In other words, the relationR preserves parent-child relations of each pattern node to its matches
with similar entity and relation labels. We say a pattern P covers a fact <vx , r , vy> in G with
threshold α if vx and vy match its anchored nodes ux and uy , respectively, via matching relation
R. In practice, the predicate can be defined by string transformations [51], such as synonyms and
acronyms, or semantic similarity [52] for labels that are concepts.

Example 2. The fact t = <Cicero, influencedBy, Plato> (Figure 1) is represented by an
edge between two nodes, “Cicero” and “Plato,” with label “influencedBy” in G1. Both “Ci-
cero” and “Plato” have a label specifying their type “philosopher.” The regularity in Example
1 that verifies the fact t can be represented by a graph pattern P1 with two anchored nodes
x and y, both labeled by “philosopher.” A targeted triple pattern for the fact checking task is
r (x ,y)=influencedBy(philosopher , philosopher). Both P1 and r (x ,y) cover the fact t .

The fact <St. Augustine, influencedBy, Plato> is also covered by P1, given that (1) a predicate,
such as concept similarity [52], asserts that “theologian” is related to “philosopher,” and “book”
is similar to “speech,” and (2) “St. Augustine” and “Plato” match the two anchored nodes of P1,
respectively.

We now introduce our rule model that incorporates graph patterns.

Rule model. A graph fact checking rule (denoted as GFC) is in the form of φ : P (x ,y) → r (x ,y),
where (1) P (x ,y) and r (x ,y) are two graph patterns carrying the same pair of anchored nodes
(ux ,uy), and (2) r (x ,y) is a triple pattern and is not in P (x ,y).

Semantics. A GFC φ : P (x ,y) → r (x ,y) states that a fact <vx , r ,vy> holds between vx and vy in

G, if (vx ,vy) is covered by P . In other words, given a new fact t=<vx , r ,vy> not inG, φ states that
t should exist in G if it is an instance (match) of r (x ,y), and vx and vy are also matches of P (x ,y).

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:7

To ensure computationally efficient fact checking, we prefer approximate patterns instead of
subgraph patterns. Subgraph isomorphism may be an overkill in capturing meaningful patterns
[29, 42, 43] and is computationally expensive (NP-hard). Moreover, it generates (exponentially)
many isomorphic subgraphs and thus introduces redundant features for model learning. In con-
trast, it is tractable to decide whether a fact is covered by an approximate pattern [29, 43]. The
tractability carries over to the validation of GFCs (Section 4).

Example 3. Consider the patterns and graphs in Figure 1. First, to verify the influ-
ence between philosophers, a GFC is given by φ1:P1 (philosopher ,philosopher)→influencedBy
(philosopher ,philosopher). Second, another GFC is given by φ2:P2 (AI ,CT) →intermediaryOf
(AI ,CT) to verify whether there is a service relationship between the pair of offshore entities
(A, C) in G2.

When the graph pattern P1 is defined by subgraph isomorphism, it induces two subgraphs ofG1

that only differ by entities with label speech. Subgraphs with highly overlapped entities induced
by a same graph pattern P (x ,y) are often redundant for predicting instances of r (x ,y), not to
mention the high cost of enumeration. However, φ1 defined by rules in Lin et al. [27] cannot be
used to predict the fact <St. Augustine, influencedBy, Plato> due to enforced label equality.

Remarks. The rule model in Lin et al. [27] is a special case of our GFC model by enforcing label
equality. By incorporating approximate pattern matching with label similarity, GFCs further miti-
gate incomplete data and capture richer features for supervised fact checking (see Section 4). This
differs GFCs (even with label equality) from Horn-clause rules [14] and subgraph isomorphism–
based association rules [11], as verified in Lin et al. [27].

3 DISCOVERING GFCS FOR FACT CHECKING

We next introduce several criteria to characterize useful GFCs. These measures extend their con-
ventional counterparts used by established rule models [15] and discriminant patterns [50], and
are specialized for training facts and the approximate graph pattern matching.

3.1 Statistical Measures

Given a knowledge graph G = (V ,E,L), we characterize useful GFCs in terms of a set of training

facts Γ. The training facts Γ consists of a set Γ+ of true facts in G and a set Γ− of false facts that
are known not in G, respectively. Extending the silver standard in knowledge base completion
[35], (1) Γ+ can be usually sampled from manually cleaned knowledge bases [30], and (2) Γ− are
populated following a weak form of the conventional partial closed world assumption (see the
Confidence section).

We shall use the following notations. Given a GFC φ : P (x ,y) → r (x ,y), the graph G, training
facts Γ, first, P (Γ+) (respectively, P (Γ−)) refers to the set of training facts in Γ+ (respectively, Γ−)
that are covered by P (x ,y) in Γ+ (respectively, Γ−). P (Γ) is defined as P (Γ+) ∪ P (Γ−) (i.e., all the
facts in Γ covered by P). Second, r (Γ+), r (Γ−), and r (Γ) are defined similarly. For the rest of this
section, we assume that a knowledge graph G, training facts Γ, and a label similarity predicate
(with a similarity threshold α) are given.

Support. The support of a GFC φ : P (x ,y) → r (x ,y), denoted by supp(φ), is defined as

supp(φ) =
|P (Γ+) ∩ r (Γ+) |
|r (Γ+) | .

The support is the fraction of the true facts that covered by both P (x ,y) and r (x ,y) over those
only covered by r (x ,y). It extends head coverage, a practical version for rule support [15] to address
triple patterns r (x ,y) without many matches due to the incompleteness of knowledge bases.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:8 P. Lin et al.

We show that the support of GFCs is well defined, with antimonotonicity under rule refinement.

Rule refinement. Given two GFCs φ1 : P1 (x ,y) → r (x ,y) and φ2 : P2 (x ,y) → r (x ,y), where
P1 (x ,y), P2 (x ,y), and r (x ,y) pertain to the same anchored nodes ux and uy , we say that φ2 re-

fines φ1, denoted as φ1
 φ2, if P1 is a subgraph of P2.

Lemma 3.1 [Antimonotonicity of Rule Support]. Given the graph G, and any two GFCs φ1:

P1 (x ,y) → r (x ,y) and φ2 : P2 (x ,y) → r (x ,y), supp(φ2) ≤ supp(φ1) if φ1
 φ2.

Proof. It suffices to show that any node pair (vx2 ,vy2) inG covered by P2 in Γ+ is also covered
by P1 (i.e., P2 (Γ+) ⊆ P1 (Γ+)). Assume that there exists a node pair (vx2 ,vy2) covered by P2 but not
covered by P1, and assume that, without loss of generality, vx2 does not match the anchored node
ux in P1. Then there exists either (a) an edge (ux ,u) (or (u,ux)) in P1 such that no edge (vx2 ,v)
(or (v,vx2)) is a match or (b) a node u as an ancestor or a descendant of ux in P1 such that no
ancestor or descendant of vx2 in G is a match. As P1 is a subgraph of P2, both (a) and (b) lead to a
contradiction that vx2 is covered by P2. Thus, P2 (Γ+) ⊆ P1 (Γ+). As r (Γ+) is fixed for given r (x ,y)
and Γ+, |P2 (Γ+) ∩ r (Γ+) |≤ |P1 (Γ+) ∩ r (Γ+) |. Hence, supp(φ2) ≤ supp(φ1). �

Confidence. We evaluate the confidence of GFCs under a “weaker” form of the established partial
closed world assumption (PCA) [9, 15], denoted as weak PCA or WPCA. The motivation is to
reduce the impact of facts that are not necessarily false to the evaluation of the confidence of
GFCs, given their similarity to true facts asserted by the label similarity predicate.

Weak PCA. Given a triple pattern r (x ,y) and a true fact <vx , r , vy> ∈ r (Γ+), we say that a fact
(vx , r ,v

′
y) is a false fact witnessed by <vx , r ,vy> if L(vy) �α L(v ′y), under WPCA. We remark that

PCA used in other works [9, 15, 27] is a special case of WPCA: when L(vy) � L(v ′y) is enforced,
WPCA “degrades” to PCA. Indeed, a true fact <vx , r , vy> witnesses a false fact (vx , r ,v

′
y) as long

as L(vy) � L(v ′y) under PCA. This nevertheless may not hold for many nonfunctional (many-to-
many) relations.

Example 4. Considered a triple pattern r ′(x ,y)=influences(philosopher , philosopher) (the in-
verse relation of “influencedBy”), and a true fact t1 = <Plato, influences, Cicero> in Γ+, ob-
serve the following. First, t2 = <Plato, influences, Kurt Gödel>, where Kurt Gödel is labeled
as “logician,” is a true fact in the real world. This missing fact is considered to be false under
PCA (due to a witness t1) but is excluded to be a false case under WPCA, given that “logician”
is often considered as a type of philosopher, asserted by a predicate that quantifies closeness of
concepts (i.e., L(Kurt Gödel) ∼α L(Cicero)). Note that WPCA does not assert t2 to be true unless
t2 ∈ Γ+. Second, t3 = <Plato, influences, “Tom & Jerry”> is a false fact under both PCA and
weak PCA. For the latter, the TV show Tom & Jerry is not semantically close to a “philosopher”
(i.e., L(Plato) �α L(“Tom & Jerry”). Third, t4 = <Plato, isFriendOf, Kurt Gödel> is undecidable
to be false under both PCA and WPCA, given that no friend of Plato is known in Γ+, in which case
the witness true fact is missing.

Intuitively, WPCA excludes “false” facts (vx , r ,v
′
y) under PCA that are actually “unknown” cases

unless these facts have significantly different objects v ′y witnessed by known true facts having
same subjectvx and predicate r . This helps GFCs to better predict true facts carrying nonfunctional
relations (e.g., influencedBy), for which PCA may not hold.

Under WPCA, the confidence of a GFC φ in G, denoted as conf(φ), is defined as

conf(φ) =
|P (Γ+) ∩ r (Γ+) |
|N (Γ+) | .

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:9

The confidence is normalized by a set N (Γ+) of entity pairs (vx ,vy) such that (1) vx and vy

occur in some (but not necessarily the same) true fact in P (Γ+) and (2) there exists a false fact
given (vx ,vy), “assuming” <vx , r , vy> is a true fact under WPCA.

The confidence measures the probability that a GFC holds over the entity pairs that satisfy
P (x ,y), normalized by all the possible true facts that witness at least a false fact under WPCA. We
follow this assumption to construct false facts in our experimental study (see Section 6).

Significance. Our third criterion quantifies how well a GFC φ “distinguishes” between the true
and false facts. To this end, we extend the G-test [50] for φ. Specifically, its significance score
(denoted as sig(φ,p,n), or simply sig(φ)) is defined as

sig(φ,p,n) = 2|Γ+ |
(
p ln

p

n
+ (1 − p) ln

1 − p
1 − n

)
,

where p (respectively, n) is the fraction of the facts covered by graph pattern P of φ in Γ+ (re-

spectively, Γ−) (i.e., p = |P (Γ+) |
|Γ+ | (respectively, n = |P (Γ−) |

|Γ− |)). Intuitively, the G-test verifies the null
hypothesis that the number of true facts covered by P (x ,y) fits its distribution in the false facts.
If not, P (x ,y) is considered to be statistically significant in distinguishing true and false facts. For
example, when P does not distinguish true and false facts (p = n), sig(φ) is 0. The higher sig(φ) is,
the more “discriminant” P is.

Remarks. It is observed that significance determined by p values and a user-specific threshold
can be sensitive to applications [37]. We do not compute p values nor assign a threshold of sig(·)
to decide whether a pattern is discriminant. Instead, we incorporate sig(·) directly as a part of a
normalized ranking function to discover top GFCs (see the Redundancy-aware selection section).

Redundancy-aware selection. In practice, one wants to choose GFCs with both high signifi-
cance and low redundancy. Indeed, a set of GFCs can be less useful if they “cover” the same set of
true facts in Γ+. We introduce a bi-criteria function that favors significant GFCs that cover more
diversified true facts. Given a set of GFCs S, when the true facts Γ+ and the false facts Γ− are
known, the coverage score of S, denoted as cov(S), is defined as

cov(S) = sig(S) + div(S).

More specifically, (1) the term sig(S), defined as (
∑

φ ∈S sig(φ))
1
2 , aggregates the total signifi-

cance of GFCs in S, and (2) the term div(S), defined as (
∑

t ∈Γ+ (
∑

φ ∈Φt (S) supp(φ))
1
2)/|Γ+ |, quan-

tifies the diversity of S following a diversity reward function [26]. Here, Φt (S) refers to the set
of GFCs in S that cover a true fact t ∈ Γ+. Intuitively, it rewards the diversity benefit in selecting
a GFC that covers new facts not covered by other GFCs in S yet. Both terms are normalized to
(0, |S| 12].

The coverage score favors GFCs that cover more distinct true facts with more discriminant
patterns. We now formulate the supervised top-k GFC discovery problem.

Problem statement. Given the graph G, a triple pattern r (x ,y), thresholds σ and θ for support
and confidence, and training facts Γ of r (x ,y), the top-k GFC discovery problem is to compute a
set S∗ of k GFCs that pertain to r (x ,y) such that for each GFC φ ∈ S∗, supp(φ) ≥ σ , conf(φ) ≥ θ ,
and S∗ = argmax |S |=k cov(S).

4 COMPUTING TOP-K GFCS

Unsurprisingly, the discovery problem for GFCs is intractable [27]. We show that GFC discovery
is feasible for large graphs by developing efficient near-optimal algorithms. To this end, we apply

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:10 P. Lin et al.

rounding techniques to the coverage measure of GFCs to ensure that our problem is approximable.
We then develop efficient approximation algorithms that aim to optimize the rounded scores.

4.1 Rounding Selection Criteria

The first technique is to “round up” the significance and coverage scores. The idea is to round up
sig(·) (respectively, cov(·)) to a counterpart ˆsig(·) (respectively, ˆcov(·)), which has good properties
to ensure feasible pattern discovery, and moreover, the discovery problem becomes approximable.

We next show how to construct such functions.

“Rounded up” significance. The significance score sig(·) does not preserve the antimonotonicity
property under rule refinement. Given a GFC φ, we round up sig(φ) to a function ˆsig(φ), which is
defined as tanh(max{sig(φ,p,δ), sig(φ,δ ,n)}), where δ > 0 is a small constant (to prevent the case
that ˆsig(φ) = ∞). ˆsig(φ) is normalized in range [0, 1] by the hyperbolic tangent function tanh(·).
We show the following result.

Lemma 4.1 [Antimonotonicity of Rounded Significance]. Given the graphG, for any GFCs

φ1 : P1 (x ,y) → r (x ,y) and φ2 : P2 (x ,y) → r (x ,y), ˆsig(φ2) ≤ ˆsig(φ1), if φ1
 φ2.

Proof. As ˆsig(φ) = tanh(max{sig(φ,p,δ), sig(φ,δ ,n)}), it suffices to show that both sig(φ,p,δ)
and sig(φ,δ ,n) are antimonotonic in terms of rule refinement:

(1) As sig(φ,p,δ) = 2|Γ+ |(p ln p

δ
+ (1 − p) ln 1−p

1−δ
), the derivative w.r.t. p is

sig′p (φ,p,δ) = 2|Γ+ |
(
ln

p

1 − p − ln
δ

1 − δ

)
.

In addition, as sig(φ,δ ,n) = 2|Γ+ |(δ ln δ
n
+ (1 − δ) ln 1−δ

1−n
), the derivative w.r.t. n is

sig′n (φ,δ ,n) = 2|Γ+ |
(

1 − δ
1 − n −

δ

n

)
= 2|Γ+ |

(
n − δ

n(1 − n)

)
.

When δ � min{p,n}, both sig′p (φ,p,δ) ≥ 0 and sig′n (φ,δ ,n) ≥ 0. Hence, both sig(φ,p,δ)

and sig(φ,δ ,n) are monotonic w.r.t. p and n, respectively.
(2) Given Lemma 3.1, we have p2 ≤ p1 and n2 ≤ n1 if φ1
 φ2. Then sig(φ2,p2,δ) ≤

sig(φ1,p1,δ) and sig(φ2,δ ,n2) ≤ sig(φ1,δ ,n1), and thus
ˆsig(φ2) = tanh(max{sig(φ2,p2,δ), sig(φ2,δ ,n2)}) ≤ tanh(max{sig(φ1,p1,δ), sig(φ1,δ ,
n1)}) = ˆsig(φ1).

This completes the proof of Lemma 4.1. �

Rounded coverage score. We next round up cov(·) with rounded significance. Given a set of GFCs

S, the rounded coverage ˆcov(S) is defined as ˆsig(S) + div(S), where ˆsig(S) = (
∑

φ ∈S ˆsig(φ))
1
2 .

The new coverage ˆcov(·) is well defined in terms of submodularity [31], a property widely used
to justify goodness measures for set mining. Indeed, adding a new GFC φ to a set S improves its
significance and coverage at least as much as adding it to any superset of S (diminishing gain to
S). Define the marginal gain mg(φ,S) of a GFC φ to S (φ � S) as ˆcov(S ∪ {φ})- ˆcov(S). We show
the following result.

Lemma 4.2 [Submodularity of Coverage]. The function ˆcov(·) is a monotone submodular func-

tion for GFCs—that is, (1) for any two sets S1 and S2, if S1 ⊆ S2, then ˆcov(S1) ≤ ˆcov(S2), and (2)

for any two sets S1 and S2, if S1 ⊆ S2 and for any GFC φ � S2, mg(φ,S2) ≤ mg(φ,S1).

Proof. We show that both parts pertaining to ˆcov(S) (i.e., ˆsig(S) and div(S)) are monotone
submodular functions w.r.t. S, and therefore ˆcov(S) is a monotone submodular function w.r.t. S:

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:11

(1) We show that both ˆsig(S) and div(S) are monotone functions w.r.t. S. Each term ˆsig(φ) is
positive, and the sum

∑
φ ∈S1

ˆsig(φ) ≤ ∑
φ ∈S2

ˆsig(φ), as every φ in S1 is also in S2 for any

two sets S1 ⊆ S2 of GFCs. Hence, ˆsig(S) is a monotone function w.r.t. S.

We denote each term (
∑

φ ∈Φt (S) supp(φ))
1
2 in div(S) as Tt (S). For each term Tt (S) in

div(S), similarly, supp(φ) is positive and the sum
∑

φ ∈Φt (S1) supp(φ) ≤ ∑
φ ∈Φt (S2) supp(φ),

as every φ in Φt (S1) covers t is also in Φt (S2) for any two sets S1 ⊆ S2 of GFCs. Hence,
each termTt (S) in div(S) is a monotone function w.r.t. S, and thus div(S) is a monotone
function w.r.t. S.

(2) Next, we show that both ˆsig(S) and div(S) are submodular functions w.r.t.S. For any GFC

φ ′ � S, the marginal gain for ˆsig(S) is ˆsig(S ∪ {φ ′}) − ˆsig(S) = (
∑

φ ∈S∪{φ′ } ˆsig(φ))
1
2 −

ˆsig(S) = (ˆsig
2
(S) + ˆsig(φ ′))

1
2 − ˆsig(S) = ˆsig(φ ′)

/
((ˆsig

2
(S) + ˆsig(φ ′))

1
2 + ˆsig(S)), which

is an antimonotonic function w.r.t. ˆsig(S). As ˆsig(S) is monotonic w.r.t. S, for any two
sets S1 ⊆ S2 and φ ′ � S2, ˆsig(S1) ≤ ˆsig(S2). Hence, ˆsig(S2 ∪ {φ ′}) − ˆsig(S2) ≤ ˆsig(S1 ∪
{φ ′}) − ˆsig(S1). Therefore, ˆsig(S) is a submodular function w.r.t. S.

Similarly, for any GFC φ ′ � S, the marginal gain of div(·) for each termTt (S) isTt (S ∪
{φ ′}) −Tt (S) = (

∑
φ ∈Φt (S∪{φ′ }) supp(φ))

1
2 −Tt (S). If φ ′ does not cover t , then Tt (S ∪

{φ ′}) −Tt (S) = 0. Otherwise, if φ ′ covers t , following the similar process for sig(S), we

have Tt (S ∪ {φ ′}) −Tt (S) = supp(φ ′)
/
((T 2

t (S) + supp(φ ′))
1
2 +Tt (S)), which is an anti-

monotonic function w.r.t.Tt (S). AsTt (S) is monotonic w.r.t. S, for any two sets S1 ⊆ S2

and φ ′ � S2, Tt (S1) ≤ Tt (S2). Hence, Tt (S2 ∪ {φ ′}) −Tt (S2) ≤ Tt (S1 ∪ {φ ′}) −Tt (S1), no
matter whether φ ′ covers t . Thus, each term Tt (S) in div(S) is a submodular function
w.r.t. S, and div(S) is a submodular function w.r.t. S.

In summary, both ˆsig(S) and div(S) are monotone submodular functions w.r.t. S, and therefore
ˆcov(S) is a monotone submodular function w.r.t. S. Lemma 4.2 thus follows. �

Keeping all other constraints (e.g., support and confidence thresholds) intact, the problem of
GFC discovery with rounded coverage is to compute top-kGFCs S∗ that maximizes ˆcov(S). We
next show that there are efficient approximations for GFC discovery with the rounded coverage.

4.2 Stream-Based Rule Discovery

An “enumeration-and-verify” algorithm iterates and verifies all k-subsets of GFCs that cover some
facts in Γ. This is clearly impractical for large G and Γ. We consider more efficient algorithms.

“Batch + Greedy.” We start with an algorithm, denoted as GFC_batch, which performs a batch
pattern discovery, following a greedy selection process as follows. First, apply a standard graph
pattern mining process (e.g., Apriori [21]) to generate and verify all the graph patterns P. The
verification is conducted by an operator Verify to compute the support and confidence for each
pattern. Second, invoke a greedy algorithm to do k passes of P. In each iteration i , it selects the
pattern Pi such that the corresponding GFC φi : Pi (x ,y) → r (x ,y) maximizes the marginal gain

ˆcov(Si−1 ∪ {φi }) - ˆcov(Si−1), then it updates Si as Si−1 ∪ {φi }.

Verification. Given a graph pattern P (x ,y) and a graph G = (V ,E,L), for each pattern node u
in P (x ,y), the operator Verify first initializes a set of match sets V (u) = {v |L(v) ∼α L(u),v ∈ V },
determined by a given label similarity predicate. It then invokes approximate pattern matching
algorithms [29, 43] to iteratively refine the match set V (u) by removing nodes that cannot satisfy
the parent-child relation of pattern node u, with ranging u over all pattern nodes in P , until no
nodes can be removed from any match set. The support and confidence are then computed by

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:12 P. Lin et al.

Fig. 2. Algorithm GFC_stream

aggregating the match sets. It is known that it takes O (|VP | + |Vm |) (|EP | + |E ′ |) time to verify a
pattern, where Vm is the largest initial match set and E ′ ⊆ E refers to the edges induced by all the
initial node matches of P (x ,y).

The algorithm GFC_batch is a (1 − 1
e

) approximation, following Lemma 4.2 and the seminal
result in Nemhauser et al. [31] on the optimization problem of submodular functions. Neverthe-
less, it requires verification of all patterns before the construction of GFCs. The selection further
requires k passes of all the verified patterns. This is expensive for large G and Γ.

“Stream + Sieve.” We can do better by capitalizing on stream-based optimization [1, 43]. In con-
trast to “batch”-style mining, we organize newly generated patterns in a stream and assemble new
patterns to top-k GFCs with small update costs. This requires a single scan of all patterns with-
out waiting for all patterns to be verified. We develop such an algorithm to discover GFCs with
optimality guarantees, as verified by the following result.

Theorem 4.3. Given a constant ϵ > 0, there exists an algorithm that computes top-k GFCs with

rounded coverage, and

(1) it achieves an approximation ratio (1
2 − ϵ);

(2) it performs a single pass of patterns, with update cost in O ((b + |Γb |)2 +
log k

ϵ
), where b is the

largest edge number of a pattern, and Γb is the b hop neighbors of the entities occurred in Γ;

and

(3) it early terminates without visiting the entire pattern set.

As a proof of Theorem 4.3, we next introduce such a stream-based discovery algorithm. Our dis-
covery algorithm, denoted as GFC_stream (illustrated in Figure 2), interleaves supervised pattern
generation and GFC selection as follows:

(1) Pattern stream generation. The algorithm GFC_stream invokes a procedure PGen to pro-
duce and update a pattern stream P (lines 2 and 8). In contrast to GFC_batch that veri-
fies all patterns against the entire graph G, it partitions facts Γ to blocks, and iteratively
spawns and verifies patterns by visiting local neighbors of the facts in each block. This
progressively finds patterns that better “purify” the labels of only those facts they cover
and thus reduces unnecessary verification.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:13

(2) Selection on-the-fly. GFC_stream invokes a procedure PSel (line 7) to select patterns and
construct GFCs on-the-fly. To achieve the optimality guarantee, it applies the stream-
sieving strategy in stream data summarization [1]. In a nutshell, it estimates the opti-
mal value of a monotonic submodular function F (·) with multiple “sieve values,” which
is initialized by the maximum coverage score of single patterns (Section 3), denoted as
maxpcov=maxP ∈P (ˆcov(P)) (lines 4 and 5), and it eagerly constructs GFCs with high mar-
ginal benefits that refine sieve values progressively.

The preceding two procedures interact with each other: each pattern verified by PGen

is sent to PSel for selection. The algorithm terminates when no new pattern can be verified
by PGen or the set S can be no longer improved by PSel (as will be discussed). We next
introduce the details of the procedures PGen and PSel.

Procedure PGen. Procedure PGen improves its “batch” counterpart in GFC_batch by locally gen-
erating patterns that cover particular facts, following the construction of decision trees. We refer
to the pattern size as the number of pattern edges. PGen maintains the following structures in each
iteration i: (1) a pattern set Pi , which contains graph patterns of size i (|EP | = i) and is initialized
to contain a single size-0 (|EP | = 0) pattern with two independent anchored nodes ux and uy only,
and (2) a partition set Γi (P), which records the sets of facts P (Γ+) and P (Γ−) and is initialized as
{Γ+, Γ−}, for each pattern P ∈ Pi . Each iteration i performs the following:

(1) For each block B ∈ Γi−1, PGen generates a set of patterns Pi with size i . Each pattern P in
Pi is constructed by adding a triple pattern r ′(u,u ′) to its size-(i-1) counterpart P ′ (|EP ′ | =
i-1) in Pi−1. Moreover, it only inserts r ′(u,u ′) with instances from the neighborhood of
matched nodes of P ′, bounded by P ′(Γ).

(2) For each pattern P ∈ Pi , PGen computes its support, confidence, and significance (G-test)
as in the procedure Verify of the GFC_batch algorithm and prunes Pi by removing un-
satisfied patterns. It refines P ′(Γ+) and P ′(Γ−) to P (Γ+) and P (Γ−) accordingly. Note that
P (Γ+) ⊆ P ′(Γ+), and P (Γ−) ⊆ P ′(Γ−). Once a promising pattern P is verified, PGen returns
P to the procedure PSel for the construction of top-k GFCs S∗.

Procedure PSel. To compute the size-k set of GFCsS∗ that maximizes ˆcov(S) for a given r (x ,y), it
suffices for the procedure PSel to compute top-k graph patterns that maximize ˆcov(S) accordingly.
It solves a submodular optimization problem over the pattern stream that specializes the sieve-
streaming technique [1] to GFCs.

Sieve streaming [1]. Given a monotone submodular function F (S), a constant ϵ > 0, and an
element set D, sieve streaming finds top-k elements S∗ that maximize F (S) as follows. It first
finds the largest value of singleton sets m = maxe ∈D F ({e}) and then uses a set of sieve values
(1 + ϵ) j (j is an integer) to discretize the range [m,k ∗m]. As the optimal value, denoted as F (S∗),
is in [m,k ∗m], there exists a value (1 + ϵ) j that “best” approximates F (S∗). For each sieve value
v , a set of top patterns Sv is maintained by adding patterns with a marginal gain at least (v

2 −
F (Sv))/(k − |Sv |). It is shown that selecting the sieve of the best k elements produces a set S with
F (S) ≥ (1

2 − ϵ)F (S∗) [1].
A direct application of the preceding sieve streaming for GFCs seems still infeasible: one needs

to find the maximum ˆcov(φ), which requires verifying the entire pattern set. For a fixed r (x ,y),
this is equivalent to finding the pattern P (x ,y) that maximizes ˆcov(P), where ˆcov(P) is computed
as the coverage of the singleton set ˆcov({φ}), and φ = P (x ,y) → r (x ,y). We use ˆcov(φ) and ˆcov(P)
interchangeably when the context is clear.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:14 P. Lin et al.

Fig. 3. Procedure PSel

Capitalizing on data locality of graph pattern matching, as well as Lemma 4.2, and Lemma 3.1 for
rounded measures of GFCs, the maximum ˆcov(P) can be computed efficiently without enumerating
the entire pattern set in advance, as verified by the following result.

Lemma 4.4. It is in O (|Γ1 |) time to compute the maximum ˆcov(P).

This can be verified by observing that ˆcov(P) also preserves antimonotonicity in terms of pattern
refinement—that is, ˆcov(P ′) ≤ ˆcov(P) if P is a subgraph of P ′. Thus, maxP ∈P ˆcov(P) is contributed
by single-edge patterns. In other words, procedure PSel only needs to cache at most |Γ1 | size-1
patterns (|EP | = 1) from PGen to find the global maximum ˆcov(P) (lines 4 and 5 of GFC_stream

in Figure 2). The rest of PSel follows the sieve-streaming strategy, as illustrated in Figure 3. The
GFCs are constructed with the top-k graph patterns (line 8).

Optimization. To further prune unpromising patterns, procedure PGen estimates an upper
bound m̂g(P ,Svj

) (line 5 of PSel) without verifying a new size-i pattern P (|EP | = i). If m̂g(P ,Svj
) <

(
vj

2 − ˆcov(Svj
))
/
(k − |Svj

|), P is skipped without further verification.
To this end, PGen first traces to a GFCφ ′ : P ′(x ,y) → r (x ,y), where P ′ is a verified subpattern of

P (i.e., P ′
 P), and P is obtained by adding a triple pattern r ′ to P ′. It estimates an upper bound of
the support of the GFC φ : P (x ,y) → r (x ,y) as ˆsupp(φ) = supp(φ ′)- l

|r (Γ+) | , where l is the number

of the facts in r (Γ+) that have no match of r ′ in their i hop neighbors (and thus cannot be covered
by P). Similarly, one can estimate an upper bound for p and n in ˆsig(φ) and thus get an upper

bound ˆsigi (φ) for ˆsig(φ). For each t in Γ+, denote term (
∑

φ ∈Φt (S) supp(φ))
1
2 in div(S) as Tt (S); it

then computes m̂g(P ,S) as

m̂g(P ,S) =
ˆsigi (φ)

2sig(S)
+
��
�

∑
t ∈P (Γ+)

ˆsupp(φ)

2Tt (S)
��
�

/
|Γ+ |.

To see that m̂g(P ,S) is an upper bound for mg(P ,S), one may note that the marginal gains for
the significance part ˆsig(S) and the diversity part div(S) are both defined in terms of square roots.
Given any two positive numbers a1 and a2, an upper bound of

√
a1 + a2 −

√
a1 is a2

2
√

a1
. We apply

this inequality to each square root term in ˆcov(S). Taking significance, for example, sig(S ∪ {φ}) −
sig(S) ≤

√
sig2 (S) + ˆsigi (φ) −

√
sig2 (S). When substitute a1 and a2 in the inequality by sig2 (S)

and ˆsigi (φ), respectively, we can have the upper bound
ˆsig

i
(φ)

2sig(S)
. Similarly, for other square root

terms in div(S), one can apply the inequality to obtain their upper bounds. We found that using
upper bound estimation effectively reduces redundant verifications.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:15

Performance analysis. Denoting the total patterns verified by the algorithm GFC_stream as P,
it takes O (|P |(b + |Γb |)2) time to compute the pattern matches and verify the patterns. Each time

a pattern is verified, it takes O (
log k

ϵ
) time to update the sets Sv for sieve values in SV . Thus, the

update time for each pattern is in O ((b + |Γ |b)2 +
log k

ϵ
).

Optimality. The approximation ratio follows the analysis of sieve-stream summarization in
Badanidiyuru et al. [1]. Specifically, (1) there exists a sieve value vj = (1 + ϵ) j ∈ [maxpcov,k ∗
maxpcov] that is closest to F (S∗), say, (1 − 2ϵ)F (S∗) ≤ vj ≤ F (S∗), and (2) the set Svj

with vj is
a (1

2 − ϵ) answer for an estimation of F (S∗). Indeed, if mg(P ,Svj
) satisfies the test in PSel (line 5),

ˆcov(Svj
) is at least

vj |Svj
|

2k
≥ vj

2 (when |Svj
| = k) ≥ (1

2 − ϵ)F (S∗). Following Badanidiyuru et al.
[1], the value vj ∈ SV best estimates the optimal ˆcov(S∗) and achieves (1

2 − ϵ) ˆcov(S∗). Thus, se-
lecting the GFCs constructed from patterns in the sieve S with the largest coverage ˆcov(S) guar-
antees the approximation ratio (1

2 − ϵ).

4.3 Discovering GFCs With Dynamic Spawning

The stream-based algorithm GFC_stream has tunable time cost and quality guarantees, which
makes it feasible for large graphs. However, the space cost can be large when a set of size-k sieve
sets are created for a small ϵ . We next introduce a space-efficient alternative of GFC_stream. The
algorithm preserves the optimality of its batch counterpart GFC_batch, as verified in the following.

Theorem 4.5. There is a (1 − 1
e

) approximation algorithm to compute top-k GFCs with rounded

coverage, in (1) O (min{k,b}kT (b + |Γb |)2) time, where T is the total distinct triple patterns with

nonempty instances in G and (2) has space cost in O (min{k,b}kT + |Γb |).

We first show that the marginal gain of GFCs also ensures the antimonotonicity property under
rule refinement, as verified by the following result.

Lemma 4.6 [Antimonotonicity of Marginal Gains]. Given the graph G, for any set of GFCs

S, and two GFCs φ1: P1 (x ,y) → r (x ,y) and φ2: P2 (x ,y) → r (x ,y), if φ1
 φ2 and both φ1 and φ2

are not in S, then mg(φ2,S) ≤ mg(φ1,S).

Proof. Define two marginal gains mgs (φ,S) = ˆsig(S ∪ {φ}) - ˆsig(S) and mgd (φ,S) = div(S ∪
{φ}) - div(S). As mg(φ,S) = mgs (φ,S) + mgd (φ,S), it suffices to show that when φ1
 φ2,
(1) mgs (φ2,S) ≤ mgs (φ1,S) and (2) mgd (φ2,S) ≤ mgd (φ1,S). We next prove both marginal gains
preserve antimonotonicity:

(1) Asφ1
 φ2, P1 is a subgraph of P2. Given Lemma 4.1, ˆsig(φ2) ≤ ˆsig(φ1). Thus, mgs (φ2,S) =

(ˆsig
2
(S) + ˆsig(φ2))

1
2 − ˆsig(S)≤ (ˆsig

2
(S) + ˆsig(φ1))

1
2 − ˆsig(S) = mgs (φ1,S).

(2) Given Lemma 3.1, supp(φ2) ≤ supp(φ1), and P2 (Γ+) ⊆ P1 (Γ+). Define the term mg(φ,S, t)
as (

∑
φ′ ∈Φt (S∪{φ }) supp(φ))

1
2 – (

∑
φ′ ∈Φt (S) supp(φ))

1
2 . Clearly, mg(φ,S, t) = 0 if φ does

not cover t . Then, mg(φ1,S, t) – mg(φ2,S, t) is 0 if t � P1 (Γ+) (i.e., none of φ1 and
φ2 covers t); is greater than 0 if t ∈ P1 (Γ+) \ P2 (Γ+) (i.e., t is covered by P1 but not

P2), as mg(P2,S, t) is 0; and is (
∑

φ ∈Φt (S∪{φ1 }) supp(φ))
1
2 – (

∑
φ ∈Φt (S∪{φ2 }) supp(φ))

1
2 ≥ 0,

as supp(φ2) ≤ supp(φ1). Thus, mg(φ2,S, t) ≤ mg(φ1,S, t) for any fact t ∈ Γ+. Summing
over each fact t ∈ Γ+, mgd (φ2,S) = 1

|Γ+ |
∑

t ∈Γ+ mg(φ2,S, t) ≤ 1
|Γ+ |

∑
t ∈Γ+ mg(φ1,S, t) =

mgd (φ1,S).

Putting (1) and (2) together, Lemma 4.6 follows. �

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:16 P. Lin et al.

Fig. 4. Algorithm GFC_spawn

We next introduce an approximation algorithm with the performance guarantee in Theorem 4.5.
Instead of verifying all patterns, it utilizes the antimonotonicity of mg(·) to dynamically spawn
and select the most promising patterns.

Algorithm. The algorithm, denoted as GFC_spawn and shown in Figure 4, maintains two sets
of patterns: set P to be used to construct top-k GFCs and set P′ for verified patterns. It uses P∗

to mark the best pattern chosen to be spawned from, initialized as the single-edge pattern with
maximized rounded coverage score (line 2). The setS is also initialized as a single GFC constructed
with P∗ (line 3). The algorithm next spawns and verifies patterns from P∗ and greedily selects a new
P∗ as the pattern from the verified patterns so far (maintained in P′), which maximizes marginal
gain to set S (lines 6 and 7). Each time a new pattern P∗ is identified, a GFC is constructed and
added to S (line 9). The process returns S once k GFCs are constructed.

Given a pattern P∗, the procedure Spawn dynamically spawns new patterns to be verified. It first
generates a set of patterns by adding single triple patterns to P∗. It then adopts a “lazy verification”
to reduce unnecessary verifications. For each newly generated pattern P ′, if there is a subpattern
P ′′ in P′ (i.e., P ′′
 P ′), Spawn skips the verification of P ′. Indeed, such patterns P ′ contribute no
more marginal gain than their subpatterns, given Lemma 4.6.

Analysis. Denote T as the number of distinct triple patterns with nonempty instances in G. For
time complexity, observe that GFC_spawn spawns at most k times and verifies at most |VP ∗ |T
patterns in each iteration. First, if b > k , GFC_spawn verifies O (1T + 2T + · · · + kT)=O (k2T)
patterns. Second, if b ≤ k , it spawns patterns with size no larger than b only in k iterations. In
this case, GFC_spawn verifiesO (b2T + (k − b) (b − 1)T) = O (kbT) patterns. It thus takes in total
O (min{k,b}kT (b + |Γb |)2) time to verify the patterns. The space cost is in O (min{k,b}kT + |Γb |),
as GFC_spawn only needs to store min{k,b}kT spawned patterns from the best pattern P∗ in each
iteration and incurs a once-for-all cost of |Γb | to store all the candidates of these patterns.

For optimality, observe that GFC_spawn preserves the invariant that at any step, the selected
pattern P∗ has the maximum marginal gain mg(P ,S) among all unvisited patterns, given the an-
timonotonicity of marginal gains (Lemma 4.6) and the spawning operator Spawn. As ˆcov(·) is a
monotone submodular function w.r.t. S, a k round of greedy selection of patterns that maximize
dynamically updated marginal gain in each round guarantees a (1 − 1

e
) approximation ratio.

The preceding analysis completes the proof of Theorem 4.5.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:17

Table 1. Overview of real-world graph datasets

Dataset Category Entities (#) Triples (#) Entity Labels (#) Relations (#) Triple Patterns (#)

YAGO Knowledge base 2.1M 4.0M 2,273 33 15.5K

DBpedia Knowledge base 2.2M 7.4M 73 584 8,240

Wikidata Knowledge base 10.8M 41.4M 18,383 693 209K

MAG Academic network 0.6M 1.71M 8,565 6 11,742

Offshore Social network 1.0M 3.3M 356 274 633

GDELT Event network 13K 66M 34 255 78K

5 GFC-BASED FACT CHECKING

The GFCs can be applied to enhance fact checking as rule models or via supervised link prediction.
We introduce two GFC-based models.

Generating training facts. Given a knowledge graphG = (V ,E,L) and a triple pattern r (x ,y), we
generate training facts Γ as follows. First, for each fixed r (x ,y), a set of true facts Γ+ are sampled
from the matches of r (x ,y) in the knowledge graph G. For each true fact <vx , r , vy> ∈ Γ+, we
further introduce “noise” by replacing their labels to similar counterparts asserted, for example,
by synonyms or acronyms. This generates a set of true facts that approximately match r (x ,y).
Second, given Γ+, a set of false facts Γ− are sampled under WPCA (Section 3). For a missing fact
t = <vx , r ,v ′y> ∈ (V ×V) \ E, if there exists a true fact <vx , r ,vy> in Γ+ and L(vy) �α L(v ′y), then
t is added to Γ− as a false example. Note that Γ+ ∩ Γ− = ∅.

Using GFCs as rules. Given facts Γ, a rule-based model, denoted as GFactR , invokes algorithm
GFC_stream to discover top-k GFCs S as fact checking rules. Given a new fact t = <vx , r , vy>, it
follows the “hit and miss” convention [15] to check if there exists a GFC φ in S that covers t (i.e.,
both its consequent and antecedent cover t). If so, GFactR accepts t ; otherwise, it rejects t .

Using GFCs in supervised link prediction. Useful instance-level features can be extracted from
the patterns and their matches induced by GFCs to train classifiers. We develop a second model
(denoted as GFact) that adopts the following specifications.

Features. For each example t = <vx , r , vy> ∈ Γ, GFact constructs a feature vector of size k ,
where each entry encodes the presence of the ith GFC φi in the top-k GFCs S. The class label of
the example t is true (respectively, false) if t ∈ Γ+ (respectively, Γ−).

By default, GFact adopts logistic regression, which is experimentally verified to achieve slightly
better performance than others (e.g., naive Bayes and support vector machines). As verified by
our experimental study (Section 6), GFact outperforms GFactR in accuracy for most cases over
real-world graphs, with some additional learning cost that exploits features induced by patterns
and its matches.

6 EXPERIMENTAL STUDY

Using real-world knowledge bases, we conduct three sets of experiments to evaluate (1) the ef-
ficiency of GFCs discovery for fact checking in large knowledge graphs, (2) the effectiveness of
GFC-based fact checking, and (3) applications of GFCs for fact checking in knowledge bases and
Web news.

6.1 Experimental Settings

Datasets. We used six real-world graph datasets (Table 1), including (1) YAGO [44] (version 2.5), a
knowledge base that contains 2.1M entities with 2, 273 distinct labels, 4.0M edges with 33 distinct

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:18 P. Lin et al.

labels, and 15.5K triple patterns; (2) DBpedia (or simply DBP) [25] (version 3.8), a knowledge base
that contains 2.2M entities with 73 distinct labels, 7.4M edges with 584 distinct labels, and 8.2K
triple patterns; (3) Wikidata (or simply WIKI) [47] (RDF dumps 20,160,801), a knowledge base that
contains 10.8M entities with 18, 383 labels, 41.4M edges of 693 labels, and 209K triple patterns;
(4) MAG [41], a fraction of an academic graph with 0.6M entities (e.g., papers, authors, venues, and
affiliations) of 8,565 labels and 1.71M edges of 6 labels (cite, coauthorship, etc.); (5) Offshore [19],
a social network of offshore entities and financial activities, which contains 1M entities (company,
country, person, etc) with 356 labels, 3.3M relationships (establish, close, etc) with 274 labels, and
633 triple patterns; and (6) GDELT [24], a dense news network crawled online. We dump GDELT
Event 1.0 data in the year of 2017, which has 13K entities of 34 different labels (e.g., country,
business, and school), 66M edges of 255 relationships (e.g., consult), and 78K triple patterns.

Algorithms. We implemented the following methods, all in Java.

GFC-based techniques. We implemented the following: (1) GFC_stream and GFC_spawn that
discover GFCs by sieve streaming and dynamic spawning, respectively, compared to their “Batch +
Greedy” counterpart GFC_batch (Section 4), and (2) the two GFC-based learning algorithms GFact,
and the rule-based counterpart GFactR (Section 5).

Fact checking models. In addition, we compare GFC-based fact checking to the following models.
AMIE+ [14, 15] discovers Horn-clause rules for fact prediction; PRA [23], the well-established path
ranking algorithm, trains classifiers with path features from random walks; SFE [16], a graph-based
method, learns a classifier from subgraphs extracted around the training facts by sampling paths
with replacing similar node and edge labels as features; (d) KGMiner [39], a shortest path–based
method, seeks the discriminative predicate paths as features that “describe” the targeted facts; and
(e) TransD [20], an embedding-based method, builds a mapping matrix for both entities and edges
as a unified model. Among these, PRA, SFE, KGMiner, and GFact are supervised link prediction
models, whereas AMIE+ and GFactR are rule-based models.

Model configuration. For a fair comparison, we have made an effort to calibrate the models and
training/testing sets with consistent settings. First, we sample 80% of the facts in a knowledge
graph as the training facts Γ and 20% of the facts as the testing setT . In Γ (respectively,T), 20% are
true examples Γ+ (respectively,T +), and 80% are false examples Γ− (respectively,T −). We maintain
this ratio empirically because real-world knowledge graphs are often sparse and true facts are far
fewer than false facts. We generate Γ− and T − under WPCA (Section 3) for all the models. We
remove the testing facts in T + from the data graph G. Taking DBpedia, for example, we sample
107 triple patterns, and each triple pattern has around 5 to 50 K matched instances. We use logistic
regression to train the classifiers, which is the default setting of PRA, SFE, and KGMiner. Second,
for rule-based methods GFactR and AMIE+, we discover rules that cover the same set of Γ+. We
set the size of AMIE+ rule body to be at most 3, the same as the pattern size bound (number of
edges) for GFC rules. Third, we adopt the weighted path length as the label similarity predicate
[52], which is the reciprocal of the distance between two node labels on the ontology, weighted by
the counting frequencies of node labels occurred in the data graph. An ontology is usually a graph
consisting of labels and their relationships, such as similarTo(book , speech) [52]. By default, we
set threshold α as 0.75 unless otherwise specified.

Measures. We use the following metrics.

Accuracy. Given the test setT and a fact checking modelM , we evaluateM by computing the true
positive TP as |T + ∩T +M |, true negative TN as |T − ∩T −M |, false positive FP as |T − ∩T +M |, and false
negative FN as |T + ∩T −M |, respectively, whereT +M (respectively,T −M) refers to the true (respectively,

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:19

Fig. 5. Impact factors of efficiency

false) facts reported by M . We evaluate four metrics: prediction rate Pred(M) = TP+TN
|T | , precision

Prec(M) = TP
|T +

M
| , recall Rec(M) = T P

|T + | , and F1 score F1 (M) = 2Prec(M) ·Rec(M)
Prec(M)+Rec(M) .

Efficiency. For GFact and GFactR , we report the performance of GFC_stream, GFC_spawn, and
GFC_batch, compared to (1) the efficiency of rule discovery algorithm AMIE+, and (2) the learning
cost of supervised link prediction methods of KGMiner, PRA, SFE, and TransD. For a fair compar-
ison, we evaluate all of these methods over the same set of training facts Γ.

6.2 Experimental Results

Overview of results. We find the following. First, it is feasible to discover GFCs in large graphs
(Exp-1). For example, it takes 211 seconds for GFC_stream to discover GFCs over YAGO (not
shown) with 4 million edges and 3,000 training facts. On average, it outperforms AMIE+ by
3.4 times. For another example, GFC_spawn takes 100 seconds to discover patterns on DBpedia,
which is nearly 90 times faster than AMIE+ and TransD. Second, GFCs can improve the accuracy
of fact checking models (Exp-2). For example, GFact achieves additional 30%, 20%, and 5% gain of
precision over DBpedia, and 20%, 15%, and 16% gain of F1 score over Wikidata when compared
to AMIE+, PRA, and KGMiner, respectively. Third, our case study shows that GFC-based models
suggest interpretable results (Exp-3) for comprehensive fact checking in knowledge bases and
news data.

Next we report the details of our findings.

Exp-1: Efficiency. We report the efficiency of GFC_stream and GFC_spawn compared to
GFC_batch, rule discovery cost of AMIE+, and learning cost of TransD over DBpedia and
Wikidata. We found that PRA is insensitive to the graph size because it samples a fixed number
of paths from the graphs, SFE is also fast as its inherent simple computation model, and KGMiner

has very unstable learning time. Thus, we omit the results for these algorithms and only compare
the prediction accuracy and discuss them in case studies.

Varying |E |. For DBpedia, fixing |Γ+ | = 15K , support threshold σ = 0.1, confidence threshold θ =
0.005, k = 200, we sampled five graphs with size (number of edges) varied from 0.6 to 1.8M , and
for Wikidata, fixing |Γ+ | = 6K , support threshold σ = 0.001, confidence threshold θ = 5 × 10−5,
k = 50, we sampled five graphs, with size varied from 0.4 to 2.0M edges. Figure 5(a) and 5(b)
both show that all methods take longer time over larger |E |, as expected, and both GFC_stream

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:20 P. Lin et al.

Table 2. Effectiveness: average accuracy

YAGO DBpedia Wikidata MAG

Model Pred Prec Rec F1 Pred Prec Rec F1 Pred Prec Rec F1 Pred Prec Rec F1

GFactR 0.73 0.40 0.75 0.50 0.70 0.43 0.72 0.52 0.85 0.55 0.64 0.55 0.86 0.78 0.55 0.64

AMIE+ (all) 0.71 0.44 0.76 0.51 0.69 0.50 0.85 0.58 0.64 0.42 0.78 0.48 0.70 0.53 0.62 0.52

AMIE+ (top-k) 0.43 0.34 0.49 0.39 0.60 0.45 0.64 0.47 0.52 0.34 0.65 0.42 0.69 0.40 0.62 0.46

GFact 0.89 0.81 0.60 0.66 0.91 0.80 0.55 0.63 0.92 0.82 0.63 0.68 0.90 0.86 0.62 0.71

PRA 0.87 0.69 0.34 0.37 0.88 0.60 0.41 0.45 0.90 0.65 0.51 0.53 0.77 0.88 0.21 0.32

KGMiner 0.87 0.62 0.36 0.40 0.88 0.75 0.60 0.63 0.90 0.63 0.49 0.52 0.76 0.74 0.17 0.27

SFE 0.80 0.56 0.89 0.66 0.69 0.50 0.93 0.60 0.58 0.38 0.96 0.52 0.77 0.56 0.83 0.63

TransD 0.76 0.41 0.65 0.48 0.78 0.37 0.56 0.44 0.70 0.40 0.76 0.51 0.63 0.38 0.76 0.48

and GFC_spawn have comparable performance for Wikidata. We observe the following. First,
Figure 5(a) shows that GFC_spawn is about 90 times faster than AMIE+ and TransD, on average,
due to its greedy selection and the number of verification is bounded. Second, Figure 5(b) shows
that GFC_stream is 3.2 and 4.1 times faster than AMIE+ and GFC_batch, on average, respectively,
due to its approximate matching scheme and top-k selection strategy. Third, although AMIE+ is
faster than GFC_stream over smaller graphs in Figure 5(a), it returns few rules because it ignores
low frequent triple patterns in the data graph. AMIE+ does not run to completion when the rule
size is set to 5. Fourth, the cost of TransD is high for both datasets, as it requires building the
mapping matrix for all the entities and takes many iterations to converge.

Varying |Γ+ |. For DBpedia, fixing |E | = 1.8M , σ = 0.1, θ = 0.005, k = 200, we varied |Γ+ | from 3
to 15K , and for Wikidata, fixing |E | = 2M , σ = 0.001, θ = 5 × 10−5, k = 50, we varied the positive
training facts |Γ+ | from 1,200 to 6,000. As shown in Figure 5(c) and 5(d), although all the methods
take longer time for larger |Γ+ |, GFC_stream and GFC_spawn scale better with |Γ+ | due to their
selection strategies. GFC_stream outperforms GFC_batch and AMIE+ by 3.54 and 5.1 times, on
average, respectively. In addition, both GFC_stream and GFC_spawn have better performance
than AMIE+ and TransD.

Varying σ . For DBpedia, fixing |E | = 1.8M , |Γ+ | = 15K , θ = 0.005, k = 200, we varied σ from 0.05
to 0.25. For Wikidata, fixing |E | = 2.0M , |Γ+ | = 6K , θ = 5 × 10−5, k = 50, we varied σ from 0.002 to
0.010. As shown in Figure 5(e) and 5(f), GFC_batch takes longer time over smaller σ , due to more
patterns and because GFC candidates need to be verified. However, GFC_stream and GFC_spawn

are much less sensitive. This is because GFC_stream selects a bounded number of patterns with
early termination and GFC_spawn has spawned a bounded number of patterns to verify. Neither
requires to enumerate and verify all the patterns.

Varying k . For DBpedia, fixing E=1.8M , |Γ+ | = 15K , σ = 0.1, θ = 0.005, we varied k from 200 to
1000. For Wikidata, fixing E = 2.0M , |Γ+ | = 6K , σ = 0.001, θ = 5 × 10−5, we varied k from 100 to
500. Figure 5(g) and 5(h) show that GFC_stream is more sensitive tok because it takes longer to find
k best patterns for each sieve value. Although GFC_batch is less sensitive, the major bottleneck is
its verification cost. In addition, we found that (1) with larger ϵ , less number of patterns are needed,
and thus GFC_stream takes less time, and (2) GFC_spawn and GFC_stream may outperform each
other for different input and datasets. Even though GFC_stream has a tunable parameter ϵ , the
actual performance is based on the actual number of verified patterns.

Exp-2: Accuracy. We report the accuracy of all the models in Table 2.

Rule-based models. We apply the same support threshold σ = 0.1 for AMIE+ and GFactR . We
sample 20 triple patterns r (x ,y) and report the average accuracy. We set θ = 0.005 for GFactR and

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:21

Fig. 6. Impact factors of accuracy

set k = 200. We compare GFactR to two cases: using top 200 (AMIE+ (top-k)) or all (AMIE+ (all))
AMIE rules discovered by AMIE+. For the latter case, AMIE+ discovers, on average, 854, 1,078,
780, and 330 AMIE rules for each triple pattern r (x ,y) over YAGO, DBpedia, Wikidata, and MAG,
respectively.

The accuracy (prediction rate, precision, recall, and F1) are reported in Table 2 (first three rows).
First, even with 200 rules, GFactR constantly improves AMIE+ using all the AMIE rules in predic-
tion rate with up to 21% gain and comparable performance on precision, recall, and F1 measure.
This verifies the effectiveness of the discovered graph patterns and their matches, as well as the
feature sets derived from GFCs. Second, moreover, when top 200 AMIE rules are used, GFactR has
on average 23% gain in prediction rate and 15% gain in F1 score compared to AMIE+.

Supervised models. We next compare GFact to the supervised link prediction models PRA,
KGMiner, SFE, and TransD (Table 2). In general, GFact achieves the highest prediction rates and
F1 scores. It outperforms PRA with 12% gain on precision and 23% gain on recall on average, and
it outperforms KGMiner with 14% gain on precision and 19% recall. On average, it achieves 16%
higher F1 scores over KGMiner, SFE, and TransD. Indeed, GFact extracts useful features with both
high significance and diversity, beyond path features.

We observe the following. First, GFact achieves the highest prediction rate for all datasets, be-
cause it exploits richer sets of features from graph patterns and matches, contributed by discovered
GFCs. Second, even with a small amount of positive examples (20% true facts and 80% false facts),
GFact achieves the highest precision over YAGO, DBpedia, and Wikidata, and outperforms PRA

and KGMiner in most cases. Third, the recall of GFact is comparable with, if not better than, PRA

and KGMiner over all the datasets. SFE and TransD achieve higher recall, at a cost of sacrificing
the prediction rate and precision. We found that more false facts are introduced by both methods,
which can be mitigated by incorporating features from both topology and semantics as in GFact.

We next evaluate the impact of various factors to the accuracy of GFC-based fact checking.

Varying σ and θ . For Wikidata, fixing |E | = 2.0M , |Γ+ | = 135K , and k = 200, we varied σ from
0.05 to 0.25 and compare patterns to confidence 0.02 and 0.04, respectively, as shown in Figure 6(a).
For YAGO, fixing |E | = 1.5M , |Γ+ | = 250K , and k = 200, we varied σ from 0.05 to 0.25 and compare
patterns to confidence 0.001 and 0.002, respectively, as shown in Figure 6(b). Both figures show
that GFact and GFactR have higher prediction rates when the support threshold (respectively,

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:22 P. Lin et al.

confidence) is lower (respectively, higher). This is because fewer patterns can be discovered
with higher support, leading to more “misses” in facts; whereas higher confidence leads to
stronger association of patterns and more accurate predictions. In general, GFact achieves higher
prediction rates.

Varying |Γ+ |. For Wikidata, fixing |E | = 2.0M , σ = 0.001, θ = 5 × 10−5, k = 200, we vary |Γ+ |
from 75 to 135K as shown in Figure 6(c), For YAGO, fixing |E | = 1.5M , σ = 0.01, θ = 0.005, k =
200, we vary |Γ+ | from 50 to 250K as shown in Figure 6(d). Both figures tell us that GFact and
GFactR have a higher prediction rate with more positive examples provided. The results for their
precisions (not shown) are consistent. We also observe that the accuracy of our methods is not
sensitive to the actual graph size if |Γ | remains unchanged (thus not shown).

Varying k . For Wikidata, fixing |E | = 2.0M , |Γ+ | = 135K , σ = 0.001, and θ = 5 × 10−5, we varied
k from 50 to 250 as shown in Figure 6(e). For YAGO, fixing |E | = 1.5M , |Γ+ | = 250K , σ = 0.01, and
θ = 0.05, we varied k from 50 to 250 as shown in Figure 6(f). Both figures show that the prediction
rate first increases and then decreases. For rule-based models, more rules increase accuracies by
covering more true facts while increasing the risk of hitting false facts. For supervised link pre-
diction, models will be underfitting with few features for small k and will be overfitting with too
many features due to large k . We observe that k = 200 is the best setting for a high prediction rate
for both datasets. This also explains the need for top-k discovery instead of a full enumeration of
rules in applications like fact checking.

Varying b. For Wikidata, fixing |E | = 2M , σ = 0.001, θ = 5 × 10−5, and k = 200, and for YAGO,
fixing |E | = 1.5M , σ = 0.01, θ = 0.005, and k = 200, we varied b from 1 to 4 for both datasets to
train the models. Figure 6(g) verifies an interesting observation: smaller patterns contribute more
to recall. This is because smaller patterns are more likely to be matched to the graphG and thus are
easier to “hit” facts, whereas larger ones tend to have more informative constraints to recognize
true facts once learned, yet harder to be satisfied by a new fact. For precision, as the matches
are harder for both positive and negative examples, for each single model M , the true positives
TP = |T + ∩T +M | and false positives FP = |T − ∩T +M | both drop with b increased. Thus, the changes
of precisions are determined by which of TP and FP drops faster.

Varying α . We next evaluate the impact of label similarity threshold α . As the result varies for
different triple patterns from each dataset, we selected 10 triple patterns, all carrying pseudofunc-
tional predicates (to favor PCA), and report the average accuracy. Figure 6(h) shows the impact of
α for the performance of GFact over YAGO and DBpedia. The precision is generally not sensitive
to the change of α . In contrast, recall is more sensitive: smaller α improves recall. This is because
smaller α allows GFact to learn from more facts (some are marked as false under PCA) and thus
capture more true facts that cannot be predicted with larger α . Note that when α = 1, it predicates
facts under strict PCA, which achieves much smaller recall.

Exp-3: Case study. We perform case studies to evaluate the application of GFCs.

Test cases. A test case consists of a triple pattern r (x ,y) and a set of test facts that are instances
of r (x ,y). We categorize each triple pattern into the following four classes of cases:

(1) Functional cases refer to test facts that pertain to a functional predicate (a “one-to-one”
mapping). For example, the relation capitalOf between two locations can only map to
each other through the relation. For example, “London” is the capital of “United Kingdom.”

(2) Pseudofunctional cases carry predicates that can be “one-to-many” but have high func-
tionality (“usually” functional). For example, the relation graduatedFrom between a per-
son and a school is not necessarily functional, but it is functional for most “persons.”

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:23

Table 3. Case Study: F1 scores over 30 test cases

Type ID Test case r (x, y) AMIE+ PRA KGMiner SFE TransD GFactR GFact

1 <prefecture, hasCapital, district> (YAGO) 0.75 1.00 1.00 0.67 0.29 0.60 0.88

2 <site, hasCapital, district> (YAGO) 1.00 1.00 1.00 0.57 0.29 1.00 1.00

3 <organisation, owningCompany, place> (DBP) 0.67 1.00 1.00 1.00 0.00 0.67 1.00

Functional 4 <sportPlayer, successor, sportPlayer> (DBP) 1.00 1.00 1.00 1.00 0.00 0.90 1.00

5 <position, appliesTo, jurisdiction> (WIKI) 0.74 1.00 1.00 0.41 0.50 0.77 1.00

6 <wikipedia, mainTopic, family> (WIKI) 0.00 1.00 1.00 0.91 0.59 0.17 1.00

7 <railStation, isLocatedAt, village> (WIKI) 0.67 0.77 0.93 0.52 0.63 0.12 0.88

8 <team, created, song> (YAGO) 0.00 0.00 0.00 0.96 0.73 0.79 0.98

9 <district, participatedIn, conflict> (YAGO) 0.52 0.60 0.92 0.58 0.67 0.96 0.96

10 <event, maidenFlight, aircraftType> (DBP) 1.00 0.00 0.86 0.55 0.89 0.87 0.94

Pseudofunctional 11 <place, representative, politician> (DBP) 0.35 0.90 0.95 0.81 0.61 0.83 0.98

12 <route, junctionOf, city> (DBP) 0.57 0.67 1.00 0.44 0.75 0.64 0.93

13 <music, subsequentWork, book> (DBP) 0.45 0.93 0.93 0.52 0.42 0.84 0.88

14 <film, followedBy, book> (WIKI) 0.35 1.00 1.00 0.40 0.44 0.31 0.83

15 <person, graduatedFrom, institute> (YAGO) 0.54 0.09 0.47 0.65 0.73 0.76 0.97

16 <person, worksAt, school> (YAGO) 0.52 0.19 0.59 0.56 0.70 0.51 0.90

Pseudofunctional 17 <scientist, residenceOf, city> (YAGO) 0.37 0.14 0.77 0.45 0.56 0.30 0.88

(inverse) 18 <event, previousMission, event> (DBP) 1.00 1.00 0.33 0.54 0.56 0.57 0.93

19 <music, subsequentWork, music> (DBP) 0.49 1.00 0.96 0.54 0.53 0.64 1.00

20 <article, isOf, genre> (WIKI) 0.83 0.00 0.75 0.83 0.67 0.24 0.84

21 <MLPaper, publishedIn, journal> (MAG) 0.24 0.11 0.00 0.59 0.49 0.46 0.67

22 <airport, isConnectedTo, airport> (YAGO) 0.54 0.35 0.00 0.84 0.72 0.76 0.88

23 <country, dealsWith, country> (YAGO) 0.35 0.00 0.82 0.62 0.52 0.74 0.91

24 <politician, associate, politician> (DBP) 0.34 0.55 0.67 0.44 0.23 0.57 0.75

25 <athlete, almaMater, school> (DBP) 0.51 0.00 0.84 0.51 0.69 0.80 0.88

Nonfunctional 26 <film, basedOn, book> (WIKI) 0.32 0.29 0.36 0.41 0.43 0.45 0.64

27 <drawing, createdBy, human> (WIKI) 0.80 0.06 0.11 0.66 0.60 0.81 0.93

28 <AIPaper, reference, DBPaper> (MAG) 0.62 0.51 0.48 0.70 0.43 0.49 0.82

29 <DMPaper, reference, AIPaper> (MAG) 0.51 0.38 0.43 0.64 0.42 0.54 0.64

30 <author, isAffiliatedTo, institute> (MAG) 0.70 0.37 0.51 0.84 0.88 0.50 0.99

(3) Inverse pseudofunctional cases include the facts with predicates (“many-to-one”) as pseud-

ofunctional predicates inversed. For example, almaMaterOf is the inverse predicate of
graduatedFrom.

(4) Nonfunctional cases are those predicates that allow “many-to-many” mapping. For exam-
ple, ActIn between “actors” and “movies.”

Accuracy. We show 30 relations from each of the categories and report their overall F1 measure
in Table 3. Nonfunctional cases refer to facts with predicates that are many-to-many relations,
for which PCA may not hold [14]. We found that GFact has good performance for all test cases,
especially for those with nonfunctional cases. Indeed, we find that the relaxation of label equality
in both pattern matching and in extracting training facts by the WPCA help in improving both
precision and recall of the fact checking models.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

13:24 P. Lin et al.

Fig. 7. Real-world GFCs discovered by GFact

Interpretability. We further illustrate four top GFCs in Figure 7, which contribute to highly im-
portant features in GFact with high confidence and significance over real-world financial network
Offshore, news GDELT, and knowledge bases DBpedia and Wikidata, respectively:

(1) GFC φ3 : P3 (x ,y) → has_same_name_and_reg_date(x ,y) (Offshore) states that two
(anonymous) companies are likely to have the same name and registration date if they
share the same shareholder and beneficiary, and one is registered within a jurisdiction
in Panama, and the other one is active in Panama. This GFC has support 0.12 and is
quite significant. For this r (x ,y), AMIE+ discovers a top rule as registerIn(x , Jurisdic-
tion_in_Panama) ∧registerIn(y, Jurisdiction_in_Panama) implies x and y has the same
name and registration date. This rule has a relatively low prediction rate.

(2) GFC φ4 : P4 (x ,y) → relevant(x ,y) (DBpedia) states that a TV show and a film have
relevant content if they have the common language, authors, and producers. This GFC

has a support 0.15 and high confidence and significant scores. Within bound 3, AMIE+

reports a top rule as Starring(x , z)∧Starring(y, z) → relevant(x ,y), which has low
accuracy.

(3) GFC φ5 : P5 (x ,y) → provide_aid(x ,y) (GDELT) is a Web news pattern that predicts to
which country the intergovernmental organization (IGO) will provide aid. It states that
if a country starts to evacuate its residents (denoted by appeal_to_yield) and a Person
(e.g., “Guterres”) gives condolence to this country, then the IGO (e.g., United Nation) that
interacted with the person will likely provide aid to this country. We found that φ5 suc-
cessfully predicted the missing values of many triples that satisfy P5 (x ,y) by tracing back
to the original news report. In this example, the missing object in the triple is predicted
as “Mexico,” which indicates the 2017 Mexico earthquake.

(4) GFC φ6 : P6 (x ,y) → influences(x ,y) (Wikidata) states that a writer vx influences a
philosopher vy if vx influences a philosopher p and a scholar s , who both influence the
philosopher vy . This rule identifies true facts such as <Bertrand Russell, influences,

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

Discovering Patterns for Fact Checking in Knowledge Graphs 13:25

Ludwig Wittgenstein>, the influence between a logician and a philosopher, enabled by
label similarity following an associated ontology.1

7 CONCLUSION

We have introduced GFCs, a class of rules that incorporate graph patterns to predict facts in
knowledge graphs. We developed a stream-based rule discovery algorithm to find useful GFCs,
given observed true and false facts, with optimality guarantees on rounded quality scores. We also
developed a space-efficient alternative. We have shown that GFCs can be readily applied as rule
models or provide useful instance-level features in supervised link prediction. Our experimen-
tal study has verified the effectiveness and efficiency of GFC-based techniques, as well as their
applications in knowledge base completion.

This is a first step toward applying graph patterns to improve fact checking in graph data. We
are evaluating GFCs with more real-world graphs and pattern models. One future topic is to extend
GFC techniques for learning-based knowledge base completion, link prediction, entity resolution,
social recommendation, and graph data imputation. A second topic is to extend GFC model to
cope with multilabel knowledge graphs. A third topic is to develop parallel GFC discovery and
fact checking algorithms over distributed knowledge bases.

REFERENCES

[1] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. 2014. Streaming submod-
ular maximization: Massive data summarization on the fly. In Proceedings of KDD.

[2] S. Bhagat, G. Cormode, and S. Muthukrishnan. 2011. Node classification in social networks. In Social Network Data

Analytics. Springer, 115–148.
[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating

embeddings for modeling multi-relational data. In Proceedings of NIPS.
[4] Hongyun Cai, Vincent W. Zheng, and Kevin Chang. 2018. A comprehensive survey of graph embedding: Problems,

techniques and applications. arXiv:1709.07604.
[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M. Mitchell. 2010.

Toward an architecture for never-ending language learning. In Proceedings of AAAI.
[6] Yang Chen and Daisy Zhe Wang. 2014. Knowledge expansion over probabilistic knowledge bases. In Proceedings of

SIGMOD.
[7] Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M. Rocha, Johan Bollen, Filippo Menczer, and Alessandro

Flammini. 2015. Computational fact checking from knowledge networks. PloS One 10, 6, 30128193.
[8] William Cukierski, Benjamin Hamner, and Bo Yang. 2011. Graph-based features for supervised link prediction. In

Proceedings of IJCNN.
[9] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, et al. 2014.

Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proceedings of KDD.
[10] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. 2014. GRAMI: Frequent subgraph and

pattern mining in a single large graph. Proceedings of the VLDB Endowment 7, 7, 517–528.
[11] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association rules with graph patterns. Proceedings of the

VLDB Endowment 8, 12, 1502–1513.
[12] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for graphs. In Proceedings of SIGMOD.
[13] Samantha Finn, Panagiotis Takis Metaxas, Eni Mustafaraj, Megan O’Keefe, Lindsay Tang, Susan Tang, and Laura

Zeng. 2014. TRAILS: A system for monitoring the propagation of rumors on Twitter. In Proceedings of the Computation

and Journalism Symposium.
[14] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. 2015. Fast rule mining in ontological knowl-

edge bases with AMIE+. VLDB Journal 24, 6, 707–730.
[15] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. 2013. AMIE: Association rule mining

under incomplete evidence in ontological knowledge bases. In Proceedings of WWW.
[16] Matt Gardner and Tom M. Mitchell. 2015. Efficient and expressive knowledge base completion using subgraph feature

extraction. In Proceedings of EMNLP.

1http://tools.wmflabs.org/wikidata-exports/rdf/exports/20160801/dump_download.html.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

http://tools.wmflabs.org/wikidata-exports/rdf/exports/20160801/dump_download.html

13:26 P. Lin et al.

[17] Travis R. Goodwin and Sanda M. Harabagiu. 2016. Medical question answering for clinical decision support. In Pro-

ceedings of CIKM.
[18] Naeemul Hassan, Afroza Sultana, You Wu, Gensheng Zhang, Chengkai Li, Jun Yang, and Cong Yu. 2014. Data in, fact

out: Automated monitoring of facts by factwatcher. Proceedings of the VLDB Endowment 7, 13, 1557–1560.
[19] ICIJ. 2016. Offshore Dataset. Retrieved April 8, 2019 from https://offshoreleaks.icij.org/pages/database.
[20] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge graph embedding via dynamic mapping

matrix. In Proceedings of ACL.
[21] Chuntao Jiang, Frans Coenen, and Michele Zito. 2013. A survey of frequent subgraph mining algorithms. Knowledge

Engineering Review 28, 1, 75–105.
[22] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. 2017. Knowledge base completion: Baselines strike back. In Pro-

ceedings of RepL4NLP.
[23] Ni Lao, Tom Mitchell, and William W. Cohen. 2011. Random walk inference and learning in a large scale knowledge

base. In Proceedings of EMNLP.
[24] Kalev Leetaru and Philip A. Schrodt. 2013. Gdelt: Global data on events, location, and tone, 1979–2012. In Proceedings

of the ASA Annual Convention, Vol. 2. 1–49.
[25] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann,

et al. 2015. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 1, 1–5.
[26] Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document summarization. In Proceedings of

ACL/HLT.
[27] Peng Lin, Qi Song, Jialiang Shen, and Yinghui Wu. 2018. Discovering graph patterns for fact checking in knowledge

graphs. In Proceedings of DASFAA.
[28] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning entity and relation embeddings for

knowledge graph completion. In Proceedings of AAAI.
[29] Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, and Tianyu Wo. 2011. Capturing topology in graph pattern matching.

Proceedings of the VLDB Endowment 5, 4, 310–321.
[30] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. 2014. YAGO3: A knowledge base from multilingual

wikipedias. In Proceedings of CIDR.
[31] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. 1978. An analysis of approximations for maxi-

mizing submodular set functions—I. Mathematical Programming 14, 1, 265–294.
[32] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2016. A review of relational machine

learning for knowledge graphs. Proceedings of the IEEE 104, 1, 11–33.
[33] Feng Niu, Ce Zhang, Christopher Ré, and Jude W. Shavlik. 2012. DeepDive: Web-scale knowledge-base construction

using statistical learning and inference. In Proceedings of VLDS.
[34] Alexandre Passant. 2010. dbrec-music recommendations using DBpedia. In Proceedings of ISWC.
[35] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web

0, 1-23.
[36] Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. 2013. Knowledge graph identification. In Proceedings of ISWC.
[37] Sayan Ranu and Ambuj K. Singh. 2009. Graphsig: A scalable approach to mining significant subgraphs in large graph

databases. In Proceedings of ICDE.
[38] Chengcheng Shao, Giovanni Luca Ciampaglia, Alessandro Flammini, and Filippo Menczer. 2016. Hoaxy: A platform

for tracking online misinformation. In Proceedings of the WWW Companion.
[39] Baoxu Shi and Tim Weninger. 2016. Discriminative predicate path mining for fact checking in knowledge graphs.

arXiv:1510.05911.
[40] Baoxu Shi and Tim Weninger. 2017. ProjE: Embedding projection for knowledge graph completion. In Proceedings of

AAAI.
[41] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul Hsu, and Kuansan Wang. 2015. An

overview of Microsoft Academic Service (MAS) and applications. In Proceedings of WWW.
[42] Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang. 2014. Event pattern matching over graph streams. Proceedings

of the VLDB Endowment 8, 4, 413–424.
[43] Qi Song, Yinghui Wu, Peng Lin, Xin Luna Dong, and Hui Sun. 2018. Mining summaries for knowledge graph search.

IEEE Transactions on Knowledge and Data Engineering 30, 10, 1887–1900.
[44] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A core of semantic knowledge. In Proceedings

of WWW.
[45] Andreas Thor, Philip Anderson, Louiqa Raschid, Saket Navlakha, Barna Saha, Samir Khuller, and Xiao-Ning Zhang.

2011. Link prediction for annotation graphs using graph summarization. In Proceedings of the ISWC.
[46] Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guillaume Bouchard.

2017. Knowledge graph completion via complex tensor factorization. Journal of Machine Learning Research 18, 1,
4735–4772.

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

https://offshoreleaks.icij.org/pages/database

Discovering Patterns for Fact Checking in Knowledge Graphs 13:27

[47] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A free collaborative knowledgebase. Communications of the

ACM 57, 10, 78–85.
[48] Quan Wang, Jing Liu, Yuanfei Luo, Bin Wang, and Chin-Yew Lin. 2016. Knowledge base completion via coupled path

ranking. In Proceedings of ACL.
[49] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2014. Toward computational fact-checking. Pro-

ceedings of the VLDB Endowment 7, 7, 589–600.
[50] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. 2008. Mining significant graph patterns by leap search. In

Proceedings of SIGMOD.
[51] Shengqi Yang, Yinghui Wu, Huan Sun, and Xifeng Yan. 2014. Schemaless and structureless graph querying. Proceed-

ings of the VLDB Endowment 7, 7, 565–576.
[52] Ganggao Zhu and Carlos A. Iglesias. 2017. Computing semantic similarity of concepts in knowledge graphs. IEEE

Transactions on Knowledge and Data Engineering 29, 1, 72–85.

Received May 2018; revised August 2018; accepted October 2018

ACM Journal of Data and Information Quality, Vol. 11, No. 3, Article 13. Publication date: May 2019.

