

This is a postprint version of the following published document:

Valcarenghi, L., Martini, B., Antevski, K., Bernardos,
C.J., Landi, G., Capitani, M., Mangues-Bafalluy, J.,
Martinez, R., Baranda, J., Pascual, I., Ksentini, A.,
Chiasserini, C.F., Malandrino, F., Li, X., Andrushko, D.
y Tomakh.K. (2018). A Framework for Orchestration
and Federation of 5G Services in a Multi-Domain
Scenario. In: Workshop on Experimentation and
Measurements in 5G (EM-5G'18). ACM, 2018, pp. 19-
24.

DOI: https://www.doi.org/10.1145/3286680.3286684

© 2018 Association for Computer Machinery

https://www.doi.org/10.1145/3286680.3286684

EM-5G'18 '18, December 4, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6083-8/18/12…$15.00
https://doi.org/10.1145/3286680.3286684

A Framework for Orchestration and Federation of

5G Services in a Multi-Domain Scenario

L. Valcarenghi1, B. Martini1,2
1Scuola Superiore Sant’Anna, Pisa,

Italy
2CNIT, Pisa, Italy

J. Mangues-Bafalluy, R.
Martinez, J. Baranda,

I. Pascual
Centre Tecnològic de

Telecomunicacions de Catalunya
CTTC/CERCA, Spain

K. Antevski, C. J. Bernardos
Universidad Carlos III de Madrid,

Spain

A. Ksentini
EURECOM, France

Xi Li
NEC Laboratories Europe,

Germany
Xi.Li@neclab.eu

G. Landi, M. Capitani
Nextworks, Italy

C. F. Chiasserini, F. Malandrino
Politecnico di Torino, Italy

D. Andrushko
KhNURE, Ukraine

Konstantin Tomakh
Mirantis, Ukraine

ABSTRACT

This paper presents the design of the 5GT Service Orchestrator
(SO), which is one of the key components of the 5G-
TRANSFORMER (5GT) system for the deployment of vertical
services. Depending on the requests from verticals, the 5GT-SO
offers service or resource orchestration and federation. These
functions include all tasks related to coordinating and providing
the vertical with an integrated view of services and resources from
multiple administrative domains. In particular, service
orchestration entails managing end-to-end services that are split
into various domains based on requirements and availability.
Federation entails managing administrative relations at the
interface between the SOs belonging to different domains and
handling abstraction of services. The SO key functionalities,
architecture, interfaces, as well as two sample use cases for
service federation and service and resource orchestration are
presented. Results for the latter use case show that a vertical
service is deployed in the order of minutes.

CCS CONCEPTS

Networks, Network services, Programmable networks

KEYWORDS

5G, mobile transport, NFV, end-to-end service orchestration,
federation

1 Introduction

5G networks are envisioned to expand the scope of current mobile
networks services to support various vertical services, hence
enriching the telecom network ecosystem. A wide range of
vertical industries, such as eHealth, automotive, media, or cloud
robotics, act as drivers to construct this ecosystem. The support of
the diverse service requirements of different vertical industries is
not only a question of providing broadband capacity, but also a

matter of “ultra-reliable low-latency communications” and
“massive density connections”.

To enable such vision, EU H2020 5G-PPP phase 2 5G-
TRANSFORMER (5GT) project [1] proposes a flexible and
adaptable SDN/NFV-based design of the next generation Mobile
Transport Networks. In this design, Network Function
Virtualization (NFV), Network Slicing, Multi-access Edge
Computing (MEC), and network federation are considered as key
concepts to enable such mobile network transformation.

The 5GT solution consists of three novel building blocks, namely:

1) Vertical Slicer (VS) as the common entry point for all
verticals into the system. The VS dynamically creates and
maps the services onto network slices according to their
requirements, managing their lifecycle. It also translates
the vertical and slicing requests into NFV network
services (NFV-NS) sent towards the SO. In this sense, a
slice will be deployed as a NFV-NS instance.

2) Service Orchestrator (SO). It offers service or resource
orchestration and federation, depending on the request
coming from the VS. Orchestration entails managing end-
to-end services or resources that were split into multiple
administrative domains based on requirements and
availability. Federation entails managing administrative
relations at the interface between SOs belonging to
different domains and handling abstraction of services and
resources.

3) Mobile Transport and Computing Platform (MTP) as the
underlying unified transport stratum, responsible for
providing the resources required by the NFV-NS
orchestrated by the SO. This includes their instantiation
over the underlying physical transport network,
computing, and storage infrastructure. It also may
(de)abstract the MTP resources offered to the SO.

1

This paper focuses on the architecture, functionalities and
interfaces of the SO of the 5GT system with a particular attention
to resource orchestration and federation. Current software
implementing Network Function Virtulisation Orchestrators
(NFVOs) (e.g., Cloudify, OpenBaton, Open Source MANO) often
simply takes in input Network Service Descriptors (NSDs) where
the placement of the Virtual Network Functions (VNFs), their
interconnections, and the utilized resources are already specified
by the vertical/user.

The SO developed within 5GT goes beyond the current state of
the art by autonomously making some of the aforementioned
decisions. As proposed for other frameworks [2][3], the SO takes
decisions based on the slice requirements imposed by the different
verticals’ service requests and the network context (e.g., topology,
available resources, etc.). When reaching the SO, vertical requests
from the VS have been translated into NFV-NS requests. The SO
takes decisions on end-to-end NFV-NS (de)composition along
with the allocation of virtual resources from multiple
administrative domains so that NFV-NS requirements are met.
This decision implies not only the allocation of underlying
network, computing and storage resources, and placement of
virtual network functions, but also the interaction (federation)
with the SOs of other administrative domains when, for instance,
requirements cannot be met with services and resources of a
single domain. In this way, the virtual resources and the services
offered by multiple providers can be aggregated by federating
them through their respective SOs.

2 State of the Art Solutions for the Service

Orchestration

Service orchestration and automated lifecycle management are
mandatory components of the 5G network softwarisation vision.
Multiple software implementations of the management and
orchestration (MANO) platform are already available both as
open source and proprietary solutions.

Open Network Automation Platform (ONAP) was founded in
2017 by merging AT&T driven OpenECOMP project and another
NFV orchestration project called Open-O [4]. This project is
hosted by Linux foundation and has one of the largest Telco and
vendor community among all existing NFV orchestration projects.
The first platform release, called Amsterdam, was delivered in
November 2017. It was mostly focused on the integration of the
software artifacts from the OpenECOMP and Open-O. Thus, just
two use-cases are supported in the first release and one of them
utilizes proprietary Virtual Network Functions (VNFs). The
second platform release is about to emerge, however still at this
moment ONAP cannot be considered as a generic orchestration
platform suitable for arbitrary NFV use cases.

Open Source MANO (OSM) [5] is an ETSI-hosted project
focused on the development of the software stack aligned with
ETSI NFV specifications. At present the platform release 4
(OSMv4) is available. The platform has a flexible architecture and
each component is both replaceable and pluggable. Overall
OSMv4 was targeting production readiness of the OSM platform

and multiple improvements were made in this direction. Thus, this
platform might be used in pre-production scenarios.

Cloudify [6] is another quite mature open source solution that is
already widely implemented in production environments. It has
powerfull workflow engine and flexible plugin mechanism and
service templates are declared in a form of the TOSCA dialect.
Despite of the open source nature of this product, Cloudify is a
vendor solution and developed by a single company. Another
project, OpenBaton [7] has only few developers behind and quite
tiny community. OpenStack Tacker [8] project, even if it claimed
to be an NFV Orchestrator, focuses on the OpenStack only.

In addition to the industry-driven communities, there are a number
of R&D projects funded under the 5G-PPP/H2020 programs,
which aim to deliver NFV orchestration platforms. For example,
5G-Crosshaul project [9] delivered an NFVO software prototype
able to support the instantiation and termination of Network
Services composed of VNFs over a Crosshaul transport network.
Other 5G-PPP/H2020 projects like SONATA [10], 5GEx [11]
focused on a various operation and use case specific scenarios,
like VNF SDK development and multi-domain operation.

Upon a detailed analysis of the existing open source orchestration
platforms (like OSM, ONAP and Cloudify), they do not support
slicing, federation and MEC, which are the key technology
enablers for 5G. 5GEx and 5G-Crosshaul projects explored
network slicing and multi-domain aspects, but only limited
support was provided, e.g., 5G-Crosshaul mainly focused on data
plane solution to support network slicing, 5GEx was focused on
resource federation part. Therefore, in this work the SO advances
the aforementioned solutions by providing: i) support for network
slicing (mapped to NFV network services) by offering isolated
network service instance management along with their lifecycle
management and design of novel algorithms for resource
allocation and function placement per slice; ii) support for MEC
services by extending orchestration for MEC applications; iii)
support for federation by developing new functional components
for resource and service federation including network service
decomposition, service and resource advertisement entity, and
interfaces to interact with other administrative domains: iv)
support of integrated orchestration of heterogeneous cloud and
WAN technologies by developing and integrating a set of new
plugins for specific cloud and network technologies. The new
features brought by the SO will pave the way to an autonomic
service provisioning to support various vertical services in 5G.
The SO implementation is based on Cloudify, while extensive
extensions will be made to support the above new features. The
selection of Cloudify was made due to its platform maturity,
extendable TOSCA dialect to declare service templates and
resource dependencies, powerful workflow engine and flexible
plugin architecture.

3 SO Architecture and Key Functionalities

This section details the main functions and interworking of the SO
subsystems and the related interfaces.

3.1 SO functional system architecture

2

Figure 1 presents the SO system architecture with a high level
overview of the main functional modules and the interactions that
need to be developed to achieve the SO operation. The SO system
architecture is in line with ETSI NFV guidelines [12] and is
inspired by 5GEx [11] and 5G-Crosshaul [9] design.

Northbound Interface (NBI): it offers Application Program
Interfaces (APIs) to support requests for service on-boarding,
service creation, service instantiation, service modification,
service termination.
NS/VNF Catalogue DB and Manager: it is the repository of all
usable Network Service Descriptors (NSDs) and VNF Descriptors
(VNFDs) that can be accessed through the Catalogue Manager.
The NSD is a deployment template for a Network Service the SO
can provide (either on its own or by leveraging neighboring SOs).
VNFD is a deployment template which describes a VNF in terms
of its deployment and operational behavior requirements. The
NSD/VNFD is used by the SO in the process of NS-VNF
instantiation and their lifecycle management to obtain relevant
information, e.g., configuration rules, out-scaling rules. The
Catalogue Manager also takes care of advertising NSD to other
domains for federation purposes.
NFV Orchestrator (NFVO): it is responsible for orchestration of
virtual resources across multiple domains, fulfilling the Resource
Orchestration (NFVO-RO) functions, as well as of coordinating
the deployment of Network Services (NS) along with their
lifecycle management, thereby fulfilling the Network Service
Orchestration (NFVO-NSO) functions.

Figure 1: SO functional level architecture

More specifically, the NFVO-NSO coordinates all NS deployment
operations including AAA and formal checks of service requests
based on attributes retrieved from NSDs and VNFDs. Through the
NS-Orchestration Engine (NS-OE), it decomposes the NSDs into
several segments and decides to implement them either in the
local administrative domain or by federating with the neighbor
SOs. Finally, NFVO-NSO requests the NFVO-RO of the local
domain or the NFVO-NSO of a neighbor domain to deploy the
Network Service segment. The NFVO-RO maps the service
segment into a set of virtual resources through the RO
Orchestration Engine (RO-OE) by deciding where, in the virtual
infrastructure exposed by the MTP, each VNF shall be placed

based on specified computational, storage and networking (e.g.,
bandwidth, latency) requirements. Then, the NFVO-RO takes care
of resource provisioning in the MTP domains directly by using
So-Mtp/Southbound Interface (SBI) or indirectly by using So-
So/east-westbound interface (EBI/WBI), respectively. In the latter
case, the sharing of abstract views and the required coordination
of correlated actions is carried out by the SO-SO Resource
Federation element that executes/forwards requests to the SO
NFVO-RO of other domains to request allocations.
VNF Manager (VNFM): it is in charge of the VNF deployment
by using either local or remote resources (or a combination of
thereof) and of the lifecycle management of the deployed VNFs.
It receives relevant VNF lifecycle events from the local NFVO
and provides reconfiguration according to specified
counteractions decided by the NFVO through VNFDs/NSDs (e.g.,
auto-scaling).
NFVI Resource Repository: it stores consolidated abstract
resource views received from the underlying MTP or from the
SO-SO Resource Federation block as for the abstract resource
views coming from other domains.
SO-SO Resource Advertisement: it is in charge of exchanging
abstract resource views (e.g., abstract topologies, computing and
storage capabilities) with other domains while feeding the SO-SO
Resource Federation entity that consolidates inputs and stores
federated resources into the NFVI Resource Repository.
NS/VNF Instance Repository: it stores the instances of VNFs
and NSs that have been previously instantiated.
SO Monitoring Service: it provides the quality measurement
reports for the SO to support SO monitoring management
including performance monitoring and fault management, based
on the collected monitoring data provided by the MTP.
Service Monitoring Data Consumer: it supports the lifecycle
management of instantiated VNFs/NSs by collecting quality
measurement reports from the SO Monitoring Service and
reporting data to the NFVO, e.g., to trigger auto-scaling actions
based on scaling rules in the NSD, or to the SLA Manager, e.g.,
to enable SLA on-line verification. Performance reports can be
also used to trigger healing actions to recover from failures or
service degradations. The aim is to adapt deployed services or
provisioned resources while preventing service degradations due
to the concurrent usage of resources from different services.
SLA Manager: it elaborates performance reports from the
Service Monitoring Data Consumer during the service lifecycle
and assures that the agreed SLAs are continuously met through
on-line SLA verification. If a request’s SLA parameters are not
met, the SLA Manager may trigger scaling actions to prevent or
recover from SLA violations.

3.2 Interfaces

The VS-SO is the SO northbound interface (NBI) that enables
the interaction between the VS and the SO. The implementation
of the VS-SO is mostly based on the ETSI NFV IFA 013 [13],
which defines the NBI of an NFVO. However, the VS-SO
implements further methods to allow the SO to handle Network
Services extended to include MEC Applications.

3

The SO-MTP is the SO southbound interface (SBI) that addresses
the interworking between the SO and the MTP building blocks of
the 5GT architecture. It is worth mentioning that the SO and MTP
may follow a 1:N relationship. That is, a single SO may interact
via multiple SBI instances with N MTPs which handle the
configuration and programmability of a number of domains
including heterogeneous virtualized resources for compute,
storage and networking. The SO-MTP is based on ETSI NFV IFA
005 and 006 [15][16].

The SO-SO is the SO eastbound/westbound Interface (EBI/WBI)
that provides service and resource federation. The SO EBI/WBI
enables interaction between the local SO and the SOs of other
administrative domains. This SO-SO interface enables an SO to
request/offer Network Service as a Service (NSaaS) and NFVI as a
Service (NFVIaaS). The SO EBI/WBI implementation is based on
the ETSI NFV IFA 013 and ETSI NFV IFA 005. NSaaS provides
NFV network services through the reference points of the SO
NFVO-NSO mainly by implementing and extending interfaces of
ETSI NFV IFA 013 [13]. NFVIaaS provides resources or resource
abstractions through the reference points of SO NFVO-RO and
SO-SO Resource Advertising block, generally by implementing
interfaces of ETSI NFV IFA 005 [15].

4 SO Use Cases

This section presents two specific use cases involving the SO:
service federation and multicloud content delivery service.

4.1 Service Federation in 5GT

In 5GT orchestration decisions are triggered whenever the VS
requests the creation of a NFV-NS or changes to an existing NFV-
NS. In either case, the SO NFVO must make the following
decisions: i) how to decompose a complex NFV-NS (i.e., NSDs)
into several segments for efficiency; ii) consequently, where to
implement each segment, whether in the local domain or by
leveraging neighbor SOs; iii) how to map an NFV-NS segment
into a set of virtual resources, i.e., where to run the component
VNFs in the virtual infrastructure based on specified resource
demand.
This use case focuses on the second decision. Service federation is
a mechanism for integrating multiple administrative domains
unifying them into an open platform for sharing services with a
certain degree of trust between each other. Different
administrative entities create a peer-to-peer network with pre-
established business level terms translated into Service Level
Agreements (SLAs). An administrative domain that requests
federation procedure is a consumer domain whereas an
administrative domain that provides federated resources and/or
services is a provider domain.
In 5GT, the paradigm of Network Service as a Services (NSaaS)
is used for service federation. All federation procedures are
executed at the SO level through the EBI/WBI. NSaaS is a
federation procedure where NFV-NS are provided to a consumer
domain by a provider domain. The provider domain is responsible
for instantiation and life-cycle management of a federated

network service. The consumer is only a user of a federated
network service. The NSaaS is established in two phases: pre-
phase and instantiation phase.

The pre-phase of the NSaaS consists of business agreement
between administrative domains, established “offline” on business
meetings. Each domain can offer to other administrative domains
a set of agreed and offered NFV-NS referred to as catalogue of
services. Once the pre-phase is finished, peering catalogues are
shared and stored into the NS Catalogue Database of each
administrative domain.

Once the instantiation phase of NSaaS is triggered, SO NFVO-
NSO checks the NS Catalogue for a desired NFV-NS. A
consumer SO decides how to decompose the NFV-NS (i.e.,
NSDs) into several segments, for example based on service or
resource availability, and for the most suitable provider domain. A
request for NFV-NS creation is delivered over the EBI/WBI
interface to the chosen provider’s SO NFVO-NSO. The chosen
provider’s SO NFVO-NSO initiates service creation and
instantiation procedure to its constituent MTP. Upon creation of a
federated NFV-NS, positive feedback is sent to the consumer SO
NFVO-NSO. Then the consumer SO starts using the federated
NFV-NS or adds it to a set of nested services.

The provider SO is responsible for the Lifecycle Management
(LCM) of the federated NFV-NS. The consumer SO only keeps
track of the quality of the consumed federated NFV-NS and reacts
accordingly in case there are violations of the SLA or there is a
change in nesting of services.

An example of service federation is included in the workflow
depicted in Figure 2. The workflow describes the federation of

Figure 2: SO Service Federation

VS VS

4

NFV-NSs (NSaaS) between different administrative domains. It is
assumed that the consumer SO receives a request for instantiating
a certain NFV-NS (with the NSD) and that it is not capable of
satisfying it with its own resources or services. Thus, it exploits
service federation to accomodate the requested service. The
service federation steps are described here below.

1. The administrative domains (white and grey in Figure 2)
create a white-list of agreed and offered NFV-NSs
which is referred to as catalogue of services. The pre-
phase is concluded when the catalogues from each
peering administrative domain is stored into the
Catalogue DB.

2. The NFV-NS instantiation request is received from the
VS. The SO NFVO-NSO performs decomposition of
the requested NFV-NS. In this workflow, a decision is
made to consume one of the set of decomposed nested
NFV-NSs through federation of NFV-NS or by
consuming NFV-NSaaS. As mentioned, the
decomposition process of NFV-NS is for further study.

3. NFVO-NSO checks the NFV-NS Catalogue to find out if
the desired decomposed NFV-NS can be consumed from
another administrative domain. The selection of the
potential peering SOs is based on either the parameters of
the NSD or best-matching capabilities to enable the
requested NFV-NS instance. The SO takes the role of
consumer SO (white on Figure 2).

4. Consumer SO NFVO-NSO sends the “check for
availability” requests to multiple peering SOs (or their
NFVO-NSOs) that potentially could enable the NFV-NS.

5. The peering SO NFVO-NSOs check their availability
of the requested service and make decision if it can
provide a service instance to the consumer SO NFVO-
NSO. The peering SO NFVO-NSOs send feedback to
the consumer SO NFVO-NSO.

6. Depending on the received results, the consumer SO
NFVO-NSO selects the provider SO NFVO-NSO or
the procedure is terminated if all received responses are
negative. The consumer SO NFVO-NSO decides for the
best-matching provider SO NFVO-NSO (e.g., it provides
lowest latency for a low-latency NFV-NS and/or at
minimal cost). The consumer SO NFVO-NSO sends a
request for NFV-NS instantiation to the selected provider
SO NFVO-NSO. The selected provider SO NFVO-
NSO initiates the service creation and consequently the
instantiation procedure involving its constituent MTP.

7. Once the requested federated NFV-NS is instantiated,
a positive feedback is sent back to the SO NFVO-
NSO which becomes the consumer of the federated
NFV-NS instance.

8. The selected provider SO NFVO-NSO updates its
constituent Catologue DB (grey) . The consumer SO
NFVO-NSO consumes the federated NFV-NS by
adding it to the set of nested services.

4.2 Multicloud Content Delivery Service

In this use case the implementation of a multicloud content
delivery service is considered. The architecture of the

implemented service is shown in Figure 3. Content delivery
service is deployed in both Amazon Web Service (AWS) public
cloud (i.e., SPR.1) and in a private Telco/NFV edge cloud (i.e.,
SPR.2). The SO, based on extensions of Cloudify, orchestrates the
deployment of the service and resources both in the AWS public
cloud and in the Telco/NFV edge cloud, including setting an IPsec
tunnel between them with a predefined deployment. In this setup,
a local cache is deployed in the private cloud at the edge next to
the end user in order to ensure low latency content delivery to the
end user.

Figure 3: Multicloud content delivery service

The first set of performed experiments measures the service
deployment time, defined as the time elapsing between the service
deployment request and the successful service deployment. The
phases followed by the SO to deploy the service and the time each
phase is taking are summarized in Table 1. Results show that the
overall service deployment time is about 280s (i.e., less than 5
minutes).
Table 1 Multicloud content delivery service phases

Order Node

New

or

Exists

Start

creating

End

creating, end

configure,

node started

Duration of

sum(creating,

configuring,

node starting)

[s]

1

AWS
Customer
Gateway new

2018-06-15
10:44:17

2018-06-15
10:44:26 10.01388882

2

Open
Stack VM
VPN
Gateway new

2018-06-15
10:44:37

2018-06-15
10:45:17 46.15972211

3

AWS
VPN
Connectio
n new

2018-06-15
10:44:37

2018-06-15
10:48:02 237.8518519

4

AWS
VPN
Gateway new

2018-06-15
10:44:27

2018-06-15
10:44:36 10.26736136

5

AWSVPN
Connectio
n new

2018-06-15
10:48:03

2018-06-15
10:48:06 3.1574069

6
AWS
exists_vpc

check
if
exists

2018-06-15
10:44:16

2018-06-15
10:44:25 10.38078699

5

7

Open
Stack
external_n
etwork

check
if
exists

2018-06-15
10:44:17

2018-06-15
10:44:25 8.811342559

8

Open
Stack
ole_mgmt
_network

check
if
exists

2018-06-15
10:44:17

2018-06-15
10:44:25 8.811342559

9

Open
Stack
security_g
roup

check
if
exists

2018-06-15
10:44:17

2018-06-15
10:44:24 7.628472667

10

AWS
exists_rout
e_table

check
if
exists

2018-06-15
10:44:18

2018-06-15
10:44:29 12.9351858

11

Open
Stack
ole_data_n
etwork

check
if
exists

2018-06-15
10:44:18

2018-06-15
10:44:25 7.587963046

12

Open
Stack
external_n
etwork1_p
ort

check
if
exists

2018-06-15
10:44:26

2018-06-15
10:44:32 7.756944979

13

Open
Stack
ole_mgmt
_network1
_port

check
if
exists

2018-06-15
10:44:27

2018-06-15
10:44:32 6.203704106

14

Open
Stack
ole_data_n
etwork1_p
ort

check
if
exists

2018-06-15
10:44:28

2018-06-15
10:44:32 4.789352533

15
AWS
route_vpc

check
if
exists

2018-06-15
10:44:37

2018-06-15
10:44:42 5.940972187

16

Open
Stack
vyos_vm_
baseline_c
onfig new

2018-06-15
10:48:15

2018-06-15
10:48:22 8.751157293

Whole
Deployme
nt takes

2018-06-15
10:44:17

2018-06-15
10:48:22 283.6921296

Once the service is delivered, two performance parameters are
measured: the data rate (both between the local cache and the end-
user and the local cache and the global repository) and the round
trip time (RTT) (in the two aforementioned scenarios). The traffic
between the end-user and the local cache shows a bursty behavior
with peaks of 10Mbps (the video content used has an average
bitrate of 2Mbps). When the video is not in the local cache the
traffic between this virtual machine and the global repository
exhibits the same traffic pattern. On average the measured RTT
between the end-user and the local cache is about 40μs (notice

that the end user is directly attached to the local cache) while the
one between local cache and global repository is about 40ms.

5 Conclusions

In this paper, we presented the design of the 5G-
TRANSFORMER Service Orchestrator (SO). The SO is a novel
component responsible for end-to-end orchestration of services
and resources across multiple administrative domains. In the
paper, we reviewed state of the art solutions for service
orchestration already available both as open source and as
proprietary solutions, and under research of several EU H2020
5G-PPP projects. We presented in detail the SO functional system
architecture, including the main function modules inside the SO,
the required interfaces to other components of the 5G-
TRANSFORMER system, namely the VS and the MTP, as well
as the interfaces to the SOs of other administrative domains
enabling multi-domain service and resource federations. We
finally presented two use cases where the SO is utilized: service
federation and deployment of a multicloud content delivery
service involving resource orchestration. For the latter use case
results, collected from an experimental testbed involving private
and public cloud resources, a service deployment time in the order
of minutes is achieved.

ACKNOWLEDGMENTS

This work has been partially funded by the EC H2020 5G-
TRANSFORMER Project (grant no. 761536).

REFERENCES
[1] K. Antevski, et al., “Resource Orchestration of 5G Transport

Networks for Vertical Industries”, IEEE PIMRC 2018, Workshop 5G
Cell-Less Nets

[2] F. Slim, et al., "Towards a dynamic adaptive placement of virtual network
functions under ONAP," 2017 IEEE NFV-SDN, Berlin, 2017, pp. 210-215.

[3] V. Sciancalepore, et al. , "z-TORCH: An Automated NFV Orchestration and
Monitoring Solution," in IEEE Transactions on Network and Service
Management.

[4] ONAP project - https://www.onap.org/
[5] OSM project - https://osm.etsi.org/

[6] Cloudify orchestration platform - https://cloudify.co/

[7] OpenBaton project - https://openbaton.github.io/

[8] OpenStack Tacker - https://wiki.openstack.org/wiki/Tacker

[9] 5G-Crosshaul project - http://5g-crosshaul.eu/

[10] SONATA NFV project http://www.sonata-nfv.eu/
[11] 5G-Ex project http://www.5gex.eu/

[12] ETSI GS NFV 002 v1.2.1, “Network Functions Virtualisation (NFV);
Architectural Framework”, Dec. 2014

[13] ETSI GS NFV IFA 13, “Network Functions Virtualisation (NFV) Release 2;
Management and Orchestration; Os-Ma-Nfvo reference point – Interface and
Information Model Specification” v2.3.1, August 2017

[14] ETSI GS MEC 010-2, “Mobile Edge Computing (MEC); Mobile Edge
Management; Part 2: Application lifecycle, rules and requirements
management”, v1.1.1, July 2017

[15] ETSI GS NFV-IFA 005, “Network Function Virtualisation (NFV);
Management and Orchestration; Or-Vi reference point – Interface and
Information Model Specification”, v2.1.1, Apr. 2016

[16] ETSI GS NFV-IFA 006, “Network Functions Virtualisation (NFV);
Management and Orchestration; Vi-Vnfm reference point - Interface and
Information Model Specification”, V2.1.1, Apr. 2016

6

