
ArAl: An Online Tool for Source Code Snapshot Metadata
Analysis

Alireza Ahadi
University of Technology

Sydney, Australia
Alireza.Ahadi@uts.edu.au

Raymond Lister
University of Technology

Sydney, Australia
Raymond.Lister@uts.edu.au

Luke Mathieson
University of Technology

Sydney, Australia
Luke.Mathieson@uts.edu.au

 ABSTRACT
Several systems that collect data from students’ problem solving
processes exist. Within computing education research, such data has
been used for multiple purposes, ranging from assessing students’
problem solving strategies to detecting struggling students. To
date, however, the majority of the analysis has been conducted
by individual researchers or research groups using case by case
methodologies.

Our belief is that with increasing possibilities for data collection
from students’ learning process, researchers and instructors will
benefit from ready-made analysis tools.

In this study, we present ArAl, an online machine learning
based platform for analyzing programming source code snapshot
data. The benefit of ArAl is two-fold. The computing education
researcher can use ArAl to analyze the source code snapshot data
collected from their own institute. Also, the website provides a col-
lection of well-documented machine learning and statistics based
tools to investigate possible correlation between different vari-
ables. The presented web-portal is available at online-analysis-
demo.herokuapp.com. This tool could be applied in many different
subject areas given appropriate performance data.

CCS CONCEPTS
• General and reference → Metrics; • Mathematics of com-
puting → Contingency table analysis; Exploratory data anal-
ysis; • Information systems → Data mining;

1 INTRODUCTION
Every year, tens of thousands of students fail introductory pro-
gramming courses world-wide, and numerous students pass their
courses with substandard knowledge. As a consequence, studies are
retaken and postponed, careers are reconsidered, and substantial
capital is invested into student counseling and support. World-wide,
on average one third of students fail their introductory program-
ming course [7]. It has always been of interest to the computing
education researcher to identify those who might struggle when

learning to program. Particularly, it has been of great interest to
identify those who show low performance at early stages of the
semester as the novices who fall behind at early stages not only
stay behind, but also tend to perform poorly in the final course
assessment [4].

Collecting data from students’ problem solving processes has
led to the creation of several algorithms that can profile students’
coding ability [10]. This stream of research became popular begin-
ning with the Error Quotient [11] which is used to quantify how
students fix errors in their source code and subsequently to detect
students who struggle. This method has been extended to include
different parameters such as the error location in the code [14] and
time required to fix the error [15].

Adopting such algorithms and approaches outside the original
institution can be hard, as their power can partially rely on tacit
contextual factors such as tools or how a specific programming
language is used [3, 13]. In a broader sense, the computing education
research community as a whole struggles to adopt tools such as
smart learning content outside the original institutions [8].

Like the authors of the snapshot visualization software SnapViz [6],
we see that the problem of adoption can be partially explained
through the need to install specific software, and partially through
the need to understand and implement the required analysis pro-
cedures. To solve both of these specific challenges, we have imple-
mented a (programming) language-independent system called ArAl
for the analysis of source code snapshot metadata that can be used,
among other things, to provide information on assignments that are
highly predictive of course outcomes. By metadata in this context,
we mean the number of source code programming snapshots gen-
erated by a students when working on a particular programming
task.

More specifically, ArAl implements the source code snapshot
analysis methodology introduced by Ahadi et al. [1, 5], and provides
an easy-to-use online application1 for the analysis. The system
reads in tab-separated data with information on course assignments
and exam outcomes, and provides the researcher a list of variables
of interest.

While the aforementioned research work on the error quotient
and other measures is very promising, in this paper the authors
study students in a simpler way, without directly analyzing student
code, for the following reasons:

1The application is hosted at https://online-analysis-demo.herokuapp.com, and the
source code will be made public for publication.

(1) As practicing teachers, we often find ourselves focusing on
two simpler aspects of a student’s performance in practical
programming tasks, before we look at the student’s code:
(1) whether or not the student provided a piece of code
that generates correct answers, and (2) how long it took
the student to write the code.

(2) As practicing teachers, we also want ways of assessing the
quality of the exercises we are giving the students.

(3) As education researchers, we feel the work on the error quo-
tient and other measures currently lacks a suitable bench-
mark, a simpler approach, upon which those more compli-
cated approaches are incumbent to improve.

This article is organized as follows. First, we outline the design
decisions of the online system and review the analysis methodology.
Then, we provide a case study where data from SQL problems
of an introductory databases course are analyzed. This section is
followed by a second case study where data from an introductory
programming course is analyzed to identify students who perform
poor in the final exam of the course. This is followed by a discussion
on the benefits and limitations of the creation and use of such online
tools. Finally, we review the future work and conclude the article.

2 DESCRIPTION OF ARAL
ArAl is an online platform designed for analyzing source code
snapshot data. The server side functionality is written in Java, and
the front end of the application is written in HTML, JavaScript
and CSS. The system runs on a cloud-based server at Heroku2.
ArAl offers two main features - the first is a descriptive tool where
a user can enter the values in the cells of the contingency table
manually (representing data for a pair of questions) and observe the
output, and the second is where the user can upload a set of data
representing multiple questions (in which case ArAl automatically
generates all contingency tables and displays those that appear
most significant).

The first service module of ArAl is dedicated to the contingency
based analysis of two given variables based on their distribution in
a 2 by 2 contingency table. This includes analysis of risk factors for
unfavorable outcomes, analysis of the effectiveness of a diagnostic
criterion for a pre-determined condition such as course outcomes,
and measures of inter-rater reliability and measures of association.
The second module is concerned with the machine learning based
metrics obtained from contingency tables. This includes accuracy,
the F1 score (measure of a test’s accuracy), the G score (geometric
mean), precision, recall, sensitivity, specificity, logical necessity,
logical sufficiency etc. All these topics and metrics are presented in
great detail in the documentation page of the system.

The second module implements the educational data analytics
algorithm presented by Ahadi et al. [5] with an aim of identify-
ing a) students at risk, b) correlation between the performance in
the programming task and the pen and paper based assessments,
and c) finding reasonable number of steps required to solve the
programming task. This module is also based on the contingency
tables, but compared to the first modules, it also includes the num-
ber of attempts required to complete a programming exercise in
the construction of the contingency tables (see Section 2.3).

2 https://heroku.com

Here, we first discuss the analysis of contingency tables that is
the cornerstone of the described system. Then, we outline two of
the main features of the system, namely a descriptive tool for un-
derstanding contingency tables, and an analytical tool for studying
data from individual contexts.

2.1 Analysis of Contingency Tables
The core algorithm of ArAl is dependent on the construction of
contingency tables (a variation of the truth table), which are well
known statistical constructs. A model of a two by two contingency
table is illustrated in Table 1, and in the description here, we assume
that the data comes from students. The four variables in Table 1, a,
b, c and d represent the number of students who satisfy each of the
four possible combinations of the two dichotomous categories, for
two given variables V1 and V2. The simplest example of a criterion
for any two questions V1 and V2 is the correctness of students’ an-
swers to given questions – for example, a programming assignment
in the course and and a question in the exam. Given the example
criterion, then a in Table 1 represents students who answered both
questions correctly, b represents the students who answered ques-
tion V1 correctly but question V2 incorrectly, c the students who
answered question V1 incorrectly but question V2 correctly, and d
the students who answered both questions incorrectly.

Based on the values of a, b, c and d, one can construct a set of
metrics that focus on the association between the two variables (the
first module of ArAl). After passing a set of statistical significance
tests, the metrics can give useful information on the correlation or
the degree of association between given variables.

Note that the contingency tables can be analyzed in a machine
learning context where the tables are regarded as a confusion ma-
trices. In this context, the values stored in cells "a", "b", "c" and "d"
are regarded as true positive (TP), false negative (FN), false positive
(FP) and true negative (TN) respectively.

One of the features of ArAl is the construction of the contin-
gency tables by including the number of steps required/spent on
a programming task, regardless of the correctness/score on that
task. Ahadi et al. [5] showed that the number of steps, which at a
higher level represents the degree of students’ engagement with
the programming task, can be used as a predictor of success in the
course. Hence, ArAl considers the construction of different con-
tingency tables by considering performance, number of attempts,
and a combination of both (the second module of ArAl). Contin-
gency tables which review the association between the number of
attempts and the score in a given test are mainly concerned with
two questions, regardless of the success in the programming task: a)
how much effort successful students put on a given programming
task, and b) what are the features of the number of attempts spent
by unsuccessful students.

One can also use contingency tables that consider both the num-
ber of attempts and success ratio in the programming task, and aim
to find correlations with the performance in the final exam. These
tables can be used to identify upper/lower borders of number of
attempts required to successfully complete a programming task,
and the correlation between this success and the final exam result.
The basic idea is to capture different groups of students [2].

Table 1: A 2 by 2 contingency table constructed based on two
variables.

 V1

Category=α Category=β row totals

V2
Category=γ a b r1
Category=δ c d r2
column totals c1 c2 n

2.2 Feature 1: Descriptive Tool
One of the features of ArAl is the analysis of the association of two
given variables that a researcher or an educator can use for study
purposes. The tool provides a possibility of entering values to a
contingency matrix, and then selecting a metrics of interest that the
system should calculate based on the matrix (Figure 1 shows the
data entry page). Each metric is explained in detail in the system,
and a short list of the metrics analyzed by ArAl is present in Table 2.

Figure 1: The data entry page for contingency table analysis.

Upon completion of data entry, ArAl checks to make sure that the

three following criteria are satisfied: a) no user inserted value for a,
b, c or d should be less than 5 – this is related to the functionality of
contingency tables, see [16], b) the p value of the χ 2 test of the given
table is calculated. If the p value is less than 0.01, then the given con-

To illustrate the role of the number of attempts in constructing
a contingency table, consider 100 students who attempted a pro-
gramming task. A typical contingency table (as reviewed in the
first module) would result in the calculation of the associations
between students’ score on this programming task (V1) and their
final exam marks (V2). If we know the number of attempts (consider
the number of snapshots generated as the metadata) made by each
student, then we can create variations of the original contingency
tables. For example, consider the value 8 as the threshold value for
the number of attempts. Given this number, we will have 2 different
types of students for V1: those who passed the exercise with less
than 8 attempts, and those who failed the exercises with less than
8 attempts. Now, the new contingency table can be constructed
based on V1, and the final exam mark for those students (V2). Since
we know the number of attempts made by each student, we now
can define more contingency tables using different values (16, 32,
64, etc). ArAl constructs multiple contingency tables based on the
maximum number of attempts observed. ArAl can also generate
contingency tables without considering the achieved score in the
programming task. As with the previous scenario, using different
values for the threshold of the number of attempts, different con-
tingency tables are built where each contingency table considers
different types of students according to their number of attempts as
V1 (those with a number of attempts of less than a specific number
(8 for example), and those with a number of attempts of more than
the specific number) and the score in the final exam (for example)
as V2.

After uploading the files, the user can specify metrics from a
provided panel that they want to include in the analysis (See Table
2). After construction of the contingency tables, those tables with
significant p-value according to the p-value cut off for the χ 2 test
specified by the user are displayed. At this stage, a series of rules
to filter overlapping tables and identify the most efficient result are
applied. The filtering (pruning) rules are as follows:

(1) If the φ values of two contingency tables differ by less than

tingency table is significantly representative of valid associations,
regardless of the strength and direction of associations, and c) that
a + b is equal to c + d, if accuracy is selected, as the positive set size
and the negative set size must be equal to calculate some metrics.
Upon clicking the calculate button, all metrics are calculated and
displayed. Table 2 represents a list of calculated metrics and a short
description of what each measures. A detailed explanation of each
metric and how they should be interpreted are available on the web-
server (See http://online-analysis-demo.herokuapp.com/metrics).

2.3 Feature 2: Analytics Tool
The core feature of ArAl is the analysis of user submitted source
code snapshot metadata. The system requires two sets of data files:
a) a file including the assessment marks that correspond to the sec-
ond variable investigated in the contingency table (final exam score,
mid-term score, etc.), and b) the source code snapshot metadata
with information on the students’ attempts for each problem. The
former includes the marks and the identifiers of the participants
and the latter should include the identifiers, performance on the
problem, the identifier of the problem and the number of steps
taken by the student on that corresponding problem.

0.01, then the less general table is pruned.
(2) If the φ values of two contingency tables differ by more than

0.01, and the φ value of the more general contingency table
is higher than the φ value of less general table, then the less
general table is pruned.

(3) If the φ value of the more general contingency table is lower
than the φ value of another table, but a statistical test for
significant difference (see [9] and [12]) reveals no significant
difference (p < 0.01), then the less general bin is pruned.

(4) Contingency tables with accuracy or F1-score of less than
0.5 are pruned.

3 RESULTS
In this Section, we will explore the application of ArAl in two
different contexts. In the first case study, we demonstrate how
ArAl can be used to identify the possible correlations between
the correctness of the answer provided for an SQL question with
the correctness of an answer for another question. In the second
case study, we demonstrate the correlation between the number
of attempts made in coding exercises and the results of the final
exam of the course in an introduction to programming course. Note

Table 2: A brief list of quantitative metrics evaluated based on the values extracted from the contingency table.

metric what does it measure?

odds ratio the association between an exposure and an outcome

sensitivity the proportion of positive data points that are correctly categorized

specificity the proportion of negative data points that are correctly categorized

accuracy the proportion of correctly categorized data points among all data points

mis-classification rate the proportion of incorrectly categorized data points among all data points

+ predictive value proportion of data points categorized as positive that are truly positives

- predictive value proportion of data points categorized as negative that are truly negatives

false positive ratio the probability of incorrectly rejecting the true null hypothesis test

false negative ratio the probability of incorrectly not rejecting a false null hypothesis

false discovery ratio the rate of type I error in a particular null hypothesis test

F1 score the harmonic mean of precision and recall

informedness how informed a predictor is for the specified condition

markedness how marked a condition is for the specified predictor

φ (also known as MCC) the association based on adjusting χ 2 to factor out sample size

Yule’s Q the intensity of association between two variables

Cramer’s V A measure of association between two nominal variables

diagnostic odds ratio the effectiveness of a condition

Error Odds Ratio the standard error for the odds ratio

relative risk the probability of the occurrence of the event in the presence of a condition

to the probability of the event occurrence in the absence of the condition

Kappa the inter-rater agreement between categorical items.

+ likelihood ratio the probability of an individual with the condition having a positive test

divided by the probability of an individual without the condition having a positive test

- likelihood ratio the probability of an individual with the condition having a negative test

divided by the probability of an individual without the condition having a negative test

difference in proportions the significance of the difference between two populations based

on some single categorical characteristics

relative risk reduction how much the condition reduced the risk of undesired outcome

that both case studies are focused on the core feature of ArAl (See
Section 2.3) .

3.1 Case study 1: Application on SQL Problems
To demonstrate the application of ArAl, we examined inter-
relationships between mid-semester SQL test questions in an in-
troductory database course (see reference removed for review pur-
poses) for additional details on the data and the context). Data from
2,300 students, with a total of approximately 161,000 attempts at

answering SQL queries, were used. Here we investigate whether
the performance of students on a question (V1) predicts whether
students will correctly answer another question (V2) in that same
online test. Each question is marked either 0 or 1.

As explained, ArAl can construct the contingency tables based
on number of steps required for an exercise, the success score for
the exercise or a combination of the two. In our case, we show the
output of ArAl with two different types of contingency tables: (1)
contingency tables that ignore the success score in completing the

Table 3: The result of the analysis on the source code snap-
shot meta-data.

Table 5: Correlation between different exam questions when
the number of attempts for the source question is ignored.

Assignment Correctness Attempts Split φ F1-score X Y a b c d attempt phi

Robots 1 <3 133/32 0.31 0.77 4 5 1074 212 350 735 - .52 (notable)
Robots 1 <7 129/36 0.28 0.75 4 7 903 383 229 856 - .48 (moderate)
Robots 1 >127 133/32 0.34 0.77 6 7 602 114 530 1125 - .47 (moderate)
Robots 1 >31 77/88 0.25 0.64 5 7 955 469 177 770 - .47 (moderate)
Loops 1 >15 55/127 0.21 0.5 3 4 966 317 320 768 - .45 (moderate)
Loops 1 >31 110/72 0.22 0.67 1 3 1162 570 121 518 - .42 (moderate)

 3
4

5
6

1018
620

265
666

406
96

682
989

-
-

.42 (moderate)

.42 (moderate)
Table 4: Correlation between different questions V1 and V2 5when only the number of attempts is the criterion for ques- 6 656 768 60 887 - .42 (moderate)

tion V1. 2 4 1153 579 133 506 - .40 (moderate)

V1 V2 a b c d attempt phi

6 7 860 596 272 643 more than 3 .29 (low)
2 4 886 480 400 605 less than 8 .25 (low)
2 7 796 570 336 669 less than 8 .25 (low)
1 4 1027 631 259 454 less than 8 .24 (low)
2 6 539 827 177 828 less than 8 .24 (low)
2 7 999 864 133 375 less than 15 .23 (low)
2 4 1119 744 167 341 less than 15 .22 (low)
1 3 1012 646 271 442 less than 8 .21 (low)
2 3 852 514 431 574 less than 8 .19 (low)
1 5 1098 560 326 387 less than 8 .19 (low)

first SQL question, and (2) contingency tables that ignore the num-
ber of steps taken in the students’ attempt in completing the SQL
question. The aim of both tables is to predict students’ performance
in a separate SQL question.

3.1.1 Analyzing number of attempts. Table 4 shows the simpli-
fied output of ArAl on the correlation analysis between different
SQL questions for the contingency tables with the 10 highest φ
values. The first two columns of Table 4 (as well as Table 5) describe
the type of questions for V1 and V2, where 1 represents SINGLE
TABLE QUERIES, 2 represents GROUP BY, 3 represents GROUP BY
WITH HAVING questions, 4 represents SIMPLE SUBQUERY, 5 rep-
resents NATURAL JOIN, 6 represents SELF JOIN and 7 represents
CORRELATED SUBQUERY. That is, the first row of data in Table 4
has V1 = 6 and V2 = 7, meaning that the system studies the con-
nection between students’ performance in writing a self join and a
correlated subquery. Columns a, b, c and d in Table 4 represent the
values from the contingency table used to generate each row of the
table. All contingency tables represented in Table 4 have p < 0.001
(χ 2 test). Table 4 shows that there is only a low correlation between
the number of attempts on question V1 and success in answering
question V2 – that is, the number of attempts that students need to
solve a specific SQL question cannot be solely determined by the
number of attempts that are needed to solve another SQL question.

3.1.2 Analyzing correctness. Next, we study the same data, but
instead of number of attempts, we focus on correctness. That is,
the only criterion for question V1 in Table 5 is whether the student

answered question V1 correctly. All contingency tables represented
in the rows of Table 5 have p < 0.001 (χ 2 test). Table 5 shows that
there is a moderate correlation between successfully answering
given questions in the course.

3.2 Case study 2: Application on Programming

source code snapshots
The data for this case study was collected from students enrolled in
a 6 week introductory Java programming course at the University
of name removed for review. In the course, 50% of the overall mark
comes from completing online exercises during the 6 week semester,
while the other 50% comes from a final exam. Furthermore, to pass
the course, students must achieve at least half of the available marks
in both the exercises and the final exam.

There are 106 online exercises available for inspection at link
removed for review but only 77 of those exercises are used in the
course. Students were allowed to make multiple submissions for
an exercise, henceforth referred to as attempts. So in this context,
the metadata for a programming task is the number of submissions
made to the automated grading system. Attempts could fail for both
syntactic and semantic reasons, and the online system provides
feedback to students. There were lab sessions where students could
seek assistance with the exercises from teaching staff, but students
were also allowed to work on and submit the exercises at any
other time and place of their choosing. More information about the
educational context and the data could be found in citation removed
for review As data for this paper, each student’s performance on
each exercise was recorded as two values:

(1) A dichotomous variable; 0 if the student did not succeed
in answering the exercise correctly, or 1 if the student did
provide a correct answer.

(2) An integer; the number of attempts a student submitted
for the exercise (irrespective of whether or not the student
provided a correct answer).

As data for this paper, a student’s performance on each of those
three questions was recorded as a dichotomous variable; 0 if the
student’s mark for the question was below the class median mark
for that question, or 1 if it was above the median.

×

≥

3.2.1 When number of attempts is ignored. Table 6 shows the
exercises with the highest correlation to final exam questions 2, 3
and 4, when the number of attempts by students is ignored. The
final exam question numbers are designated in the table’s second
column, the column headed ExamQ.

For final exam question 2, the three highest correlating exercises
are 59, 70 and 61, as shown in the third column, headed Ex. These
three exercises (and all other exercises) are available for inspection
at link removed for review. The column with the heading Week
indicates that all the exercises are from weeks 3 and 4 of the 6 week
semester.

The columns headed Q1, Q2 and Q3 show the quartile boundaries
for the number of attempts made by students. For example, row 1.1
of the table shows that 25% of the students made 10 attempts or
less on the exercise, 50% of the students made 15 attempts or less,
and 50% of the students made between 10 and 20 attempts. Note
that these quartile boundaries are for all students, irrespective of
whether or not they answered the exercise correctly.

The values in the column headed Correct indicate that, for the
contingency table used to construct each row of this table, answer-
ing each exercise correctly is the sole criteria on an exercise.

The columns headed φ and Accuracy show the measures of per-
formance as defined earlier. For each exam question, the rows of
Table 6 are ordered on φ, from highest to lowest. Both φ and Accu-
racy in each row are calculated using a contingency table as shown
in Figure 2. In Table 6, the columns headed a, b, c and d show the
values for each of these contingency tables. For each row of Table
6, "Meet criterion on exercise x" in Figure 2 is "yes" if a student
answered the exercise correctly. For example, column a in row 1.1
of Table 6 shows that 32 students answered exercise 59 correctly
and also scored above the median mark on final exam question 2.
The values recorded for a, b, c and d in that row of Table 6 are the
four example values shown in Figure 2. The column sum is simply
the sum of the values in columns a, b, c and d, which show that this
table used data from approximately 70 students. The sum values
in that column vary as sometimes a student did not attempt an
exercise. The column headed p shows the statistical significance of
the contingency table for each exercise, using the standard χ 2 test.
All exercises shown in this table easily meet the traditional p < 0.05
criteria for statistical significance.

Figure 2: A 2 2 Contingency Table for Exercise X (V1) and
Final Exam Question Y (V2): another way of interpreting a
contingency table.

3.2.2 When number of attempts is considered. Table 7 shows
the exercises with the highest correlation to final exam questions

2, 3 and 4, when the number of attempts made by students on an
exercise is considered. Most of the columns in this table contain
the same type of information as the previous table. The differences
between the previous table and this table are:

The column headed "Attempts" describes the range of the
number of attempts a student must have made on an exercise
as part of meeting the criteria on exercise X (as shown in
Figure 2). For example, the " 8" in row 2.1 indicates that a
student needed to make at least 8 attempts at the exercise to
be counted within either cell a or b of the contingency table.
In rows 2.6 and 2.7, <16 indicates that a student needed to
make less than 16 attempts to meet the criteria.
Some rows in the column headed Correct contain an asterisk.
Each of those asterisks indicates that whether a student an-
swered the exercise correctly is irrelevant; the sole criterion
for including a student in cell a or b of the contingency table
is the number of attempts the student made on the exercise.
Rows 2.8 and 2.9 contain correct in the column headed Cor-
rect, indicating there are two criteria that need to be met for a
student to be counted in either cell a or b of the contingency
table: (1) the student must have answered the exercise cor-
rectly, and (2) the student must have done so in the number
of attempts specified in the Attempts column.

4 DISCUSSION
The summarized result of the metadata analysis performed by ArAl
is reviewed in Tables 4 and 5. The association between the perfor-
mance in correctly answering different types of questions in the
online SQL test is provided in the last column. The φ correlation
value when of the contingency tables constructed using the number
of attempts variable is lower than the contingency tables introduced
in Table 5.

That is, in the case of the metadata from the SQL source code
snapshots, using the number of attempts taken in answering one
SQL question does not strongly relate to the performance in other
questions. At the same time, the success in completing a specific
question can be a strong determinant of the performance in other
questions as well. This result could be interesting from an educa-
tional point of view as the degree of positive correlation between
different types of questions are not the same. This could be useful
(in the sense of having predictive value) for the educator in iden-
tifying students who, based on their performance in answering a
specific type of SQL question, may perform poorly when answering
other types of SQL questions. Also, this sort of information can
help the subject coordinators to fine tune the subject curriculum to
better meet the course outcome and learning objectives.
As reviewed in the second case study, the metadata (number of
attempts) spent on a programming exercise can (with a high predic-
tion accuracy) be a good indicator of performance in the final exam.
The researchers can provide ArAl with such information to identify
those students who might be in danger of failing the subject or
dropping out. The provided data can be collected at any stage of
the semester, however, it is better if the data is collected at the early
stages of the semester to identify poor performing students as soon
as possible.

•

•

•

≥
≥

≥ 4

Table 6: The exercises with the highest correlation to ftnal exam questions 2, 3 and 4, where the sole criterion is whether
a student answered the exercise successfully; the number of attempts prior to success is ignored. No exercises correlated
signiftcantly (p < 0.05) with ftnal exam question 3.

Row No. ExamQ Ex Week Q1 Q2 Q3 Correct φ Acc a b c d sum p
1.1 2 59 3 10 15 20 correct 0.33 0.66 32 6 18 16 72 0.004
1.2 2 70 4 15 40 70 correct 0.32 0.63 29 5 21 17 72 0.005
1.3 2 61 3 11 14 20 correct 0.28 0.61 27 5 23 17 72 0.01

1.4 3 — — — — — ——— — — — — — — — ——

1.5 4 52 3 16 24 35 correct 0.34 0.66 30 6 18 17 71 0.004
1.6 4 59 3 10 15 20 correct 0.33 0.66 31 7 17 17 72 0.004
1.7 4 55 3 19 26 35 correct 0.31 0.65 30 7 18 17 72 0.007

Table 7: The exercises with the highest correlation to ftnal exam questions 2, 3 and 4, when the number of attempts by students
is considered.

2.3 2 103 6 1 86 190 *
≥ 16

0.46 0.76 38 6 11 15 70 <0.001

2.4 3 92 5 4 53 91 * 4 0.43 0.77 44 10 6 11 71 <0.001
2.5 3 93 5 2 40 69 * 16 0.36 0.72 38 8 12 13 71 0.002
2.6 3 28 2 7 9 14 * < 16 0.35 0.75 46 12 6 9 73 0.003
2.7 3 49 3 12 14 18 * < 16 0.34 0.70 37 8 13 13 71 0.004

2.8 4 52 3 16 24 35 correct ≥ 8 0.38 0.68 30 5 18 18 71 0.001
2.9 4 59 3 10 15 20 correct ≥ 8 0.37 0.68 31 6 17 18 72 0.002
2.10 4 103 6 1 86 190 * ≥ 16 0.37 0.70 34 7 14 15 70 0.002

The increase in systems that collect data from students’ problem
solving process in various courses has led to a situation where data
exists but many do not know what to do with such data. In this
article, we have introduced a tool for the analysis of this data, and
demonstrated the use of the tool with a data set from a databases
course with 2,300 participants.

Our belief is that systems such as ours will be beneficial for re-
searchers and educators, as the system does not require installation
or manual coding of the algorithms. Moreover, as the system pro-
vides an opportunity to try out the contingency tables manually, it is
likely that the users will become familiar with such methodologies.
That is, the system can be also used for educational purposes.

Such systems also include downsides. As the system is hosted by
a third party, there is an inherent trust issue. What if the system ac-
tually stores the data that is sent to it instead of simply analysing it?
In our case, the source code of the system will be published, which
means that each individual can run or host it at their institution
if needed. Another issue is related to the adoption of tools. As re-
search has demonstrated [8], the tools produced by the computing
education research community are rarely adopted at other institu-
tions. Will it also be the case for online analytics tools? Perhaps
a solution would be to create an online repository or a platform

for such tools, to which researchers and educators could refer as
needed.

5 LIMITATIONS AND FUTURE WORK
As mentioned earlier, the source code snapshot data and metadata
collection by different IDEs has lead to development of multiple al-
gorithms which can measure student’s ability in writing/debugging
the code. These algorithms can help the computer science educa-
tors develop a better understanding of how well their students are
doing during the course. However, these algorithms have not been
implemented in an online platform and hence the calculation of the
metrics introduced by these algorithms is not yet publicly available
in an integrated web-based tools. Future work to improve ArAl
will be focused on implementation of these metrics. This provides
computer science researchers with a platform which makes the use
of such metric on their own data possible in an easy fashion. Also,
implementation of such metrics within the analysis framework
introduced by ArAl makes it possible to investigate the relationship
between these metrics and performance in assessments, or other
variables of interest.

Row No. ExamQ Ex Week Q1 Q2 Q3 Correct Attempts φ Acc a b c d sum p
2.1
2.2

2
2

92
102

5
6

4
2

53
113

91
199

*
*

≥ 8 0.57
0.48

0.82
0.77

43
38

7
6

6
10

15
15

71 <0.001
69 <0.001

At the moment, the only variables that can be analyzed are
attempts/correctness on a particular assignment compared to out-
comes on particular assignments or the final exam. This imple-
mentation of ArAl is a first step towards a complete source code
snapshot analysis tool.

6 CONCLUSION
In this paper, we have introduced ArAl, a publicly available, open
source, online snapshot data analysis tool. The tool mainly offers
two streams of service including bi-variate contingency tables based
analysis of the association of machine learning bases and statistics
based metrics, and the implementation of Ahadi et al’s algorithm [5]
for source code snapshot data analysis with aims of predicting
students’ performance, identifying weak students and providing a
systematic way to identify the reasonable number of steps required
to handle a programming task. Using the data collected from an
online SQL test and the data collected from and introduction to
programming course, we have demonstrated the application, work
pipeline and the correct result interpretation of ArAl.

The contribution of ArAl is three-fold. First it benefits the com-
puting education researcher by providing means of finding the
association between computer based assessments and paper based
exams. In more general terms, it can be used to identify those assess-
ment items/questions which are more correlated. Secondly, through
analysis of the source code snapshot data, ArAl can be used to iden-
tify those students who might be in the danger of performing poor
in the course. Finally, ArAl can be used to identify interrelationships
between the number of steps spent on the programming task, and
its the relationship to the course outcome.

REFERENCES
[1] Alireza Ahadi, Arto Hellas, and Raymond Lister. 2017. A contingency table

derived method for analyzing course data. ACM Transactions on Computing
Education (TOCE) 17, 3 (2017), 13.

[2] Alireza Ahadi and Raymond Lister. 2013. Geek Genes, Prior Knowledge, Stum-
bling Points and Learning Edge Momentum: Parts of the One Elephant?. In
Proceedings of the Ninth Annual International ACM Conference on International
Computing Education Research (ICER ’13). ACM, New York, NY, USA, 123–128.
https://doi.org/10.1145/2493394.2493416

[3] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.
Exploring Machine Learning Methods to Automatically Identify Students in

Need of Assistance. In Proceedings of the Eleventh Annual International Conference
on International Computing Education Research (ICER ’15). ACM, New York, NY,
USA, 121–130. https://doi.org/10.1145/2787622.2787717

[4] Alireza Ahadi, Raymond Lister, and Donna Teague. 2014. Falling behind early and
staying behind when learning to program. In Proceedings of the 25th Psychology
of Programming Conference (PPIG ’14).

[5] Alireza Ahadi, Raymond Lister, and Arto Vihavainen. 2016. On the Number of
Attempts Students Made on Some Online Programming Exercises During Semes-
ter and their Subsequent Performance on Final Exam Questions. In Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 218–223.

[6] Evan Balzuweit and Jaime Spacco. 2013. SnapViz: Visualizing Programming
Assignment Snapshots. In Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’13). ACM, New York, NY,
USA, 350–350. https://doi.org/10.1145/2462476.2465615

[7] Jens Bennedsen and Michael E Caspersen. 2007. Failure rates in introductory
programming. ACM SIGCSE Bulletin 39, 2 (2007), 32–36.

[8] Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi, Luciana
Benotti, Duane Buck, Petri Ihantola, Rikki Prince, Teemu Sirkiä, Sergey Sos-
novsky, Jaime Urquiza, Arto Vihavainen, and Michael Wollowski. 2014. Increas-
ing Adoption of Smart Learning Content for Computer Science Education. In
Proceedings of the Working Group Reports of the 2014 on Innovation & Tech-
nology in Computer Science Education Conference (ITiCSE-WGR ’14). ACM, New
York, NY, USA, 31–57. https://doi.org/10.1145/2713609.2713611

[9] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 1983. Applied
multiple regression/correlation for the behavioral sciences. (1983).

[10] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, 41–63.

[11] Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. ACM, 73–84.

[12] Athanasios Papoulis. 1990. Probability and Statistics. Prentence-Hall International
Editions.

[13] Andrew Petersen, Jaime Spacco, and Arto Vihavainen. 2015. An Exploration
of Error Quotient in Multiple Contexts. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research (Koli Calling ’15). ACM, New York,
NY, USA, 77–86. https://doi.org/10.1145/2828959.2828966

[14] Maria Mercedes T Rodrigo, Emily Tabanao, Ma Beatriz E Lahoz, and Matthew C
Jadud. 2009. Analyzing online protocols to characterize novice Java programmers.
Philippine Journal of Science 138, 2 (2009), 177–190.

[15] Christopher Watson, Frederick WB Li, and Jamie L Godwin. 2013. Predicting
Performance in an Introductory Programming Course by Logging and Analyzing
Student Programming Behavior. In Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on. IEEE, 319–323.

[16] F. Yates. 1934. Contingency Tables Involving Small Numbers and the ÏĞ2 Test.
Supplement to the Journal of the Royal Statistical Society 1, 2 (1934), 217–235.

