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  ABSTRACT 
Several systems that collect data from students’ problem solving 
processes exist. Within computing education research, such data has 
been used for multiple purposes, ranging from assessing students’ 
problem solving strategies to detecting struggling students. To 
date, however, the majority of the  analysis has  been  conducted 
by individual researchers or research groups using case by case 
methodologies. 

Our belief is that with increasing possibilities for data collection 
from students’ learning process, researchers and instructors will 
benefit from ready-made analysis tools. 

In this study, we present ArAl, an online machine learning 
based platform for analyzing programming source code snapshot 
data. The benefit of ArAl is two-fold. The computing education 
researcher can use ArAl to analyze the source code snapshot data 
collected from their own institute. Also, the website provides a col- 
lection of well-documented machine learning and statistics based 
tools to investigate possible correlation between different vari- 
ables. The presented web-portal is available at online-analysis- 
demo.herokuapp.com. This tool could be applied in many different 
subject areas given appropriate performance data. 

 

CCS CONCEPTS 
• General and reference → Metrics; • Mathematics of com- 
puting → Contingency table analysis; Exploratory data anal- 
ysis; • Information systems → Data mining; 

 
 

1 INTRODUCTION 
Every year, tens of thousands of students fail introductory pro- 
gramming courses world-wide, and numerous students pass their 
courses with substandard knowledge. As a consequence, studies are 
retaken and postponed, careers are reconsidered, and substantial 
capital is invested into student counseling and support. World-wide, 
on average one third of students fail their introductory program- 
ming course [7]. It has always been of interest to the computing 
education researcher to identify those who might struggle when 

learning to program. Particularly, it has been of great interest to 
identify those who show low performance at early stages of the 
semester as the novices who fall behind at early stages not only 
stay behind, but also tend to perform poorly in the final course 
assessment [4]. 

Collecting data from students’ problem solving processes has 
led to the creation of several algorithms that can profile students’ 
coding ability [10]. This stream of research became popular begin- 
ning with the Error Quotient [11] which is used to quantify how 
students fix errors in their source code and subsequently to detect 
students who struggle. This method has been extended to include 
different parameters such as the error location in the code [14] and 
time required to fix the error [15]. 

Adopting such algorithms and approaches outside the original 
institution can be hard, as their power can partially rely on tacit 
contextual factors such as tools or how a specific programming 
language is used [3, 13]. In a broader sense, the computing education 
research community as a whole struggles to adopt tools such as 
smart learning content outside the original institutions [8]. 

Like the authors of the snapshot visualization software SnapViz [6], 
we see that the problem of adoption can be partially explained 
through the need to install specific software, and partially through 
the need to understand and implement the required analysis pro- 
cedures. To solve both of these specific challenges, we have imple- 
mented a (programming) language-independent system called ArAl 
for the analysis of source code snapshot metadata that can be used, 
among other things, to provide information on assignments that are 
highly predictive of course outcomes. By metadata in this context, 
we mean the number of source code programming snapshots gen- 
erated by a students when working on a particular programming 
task. 

More specifically, ArAl implements the source code snapshot 
analysis methodology introduced by Ahadi et al. [1, 5], and provides 
an easy-to-use online application1 for the analysis. The system 
reads in tab-separated data with information on course assignments 
and exam outcomes, and provides the researcher a list of variables 
of interest. 

While the aforementioned research work on the error quotient 
and other measures is very promising, in this paper the authors 
study students in a simpler way, without directly analyzing student 
code, for the following reasons: 

 
 

1The application is hosted at https://online-analysis-demo.herokuapp.com, and the 
source code will be made public for publication. 



(1) As practicing teachers, we often find ourselves focusing on 
two simpler aspects of a student’s performance in practical 
programming tasks, before we look at the student’s code: 
(1) whether or not the student provided a piece of code 
that generates correct answers, and (2) how long it took 
the student to write the code. 

(2) As practicing teachers, we also want ways of assessing the 
quality of the exercises we are giving the students. 

(3) As education researchers, we feel the work on the error quo- 
tient and other measures currently lacks a suitable bench- 
mark, a simpler approach, upon which those more compli- 
cated approaches are incumbent to improve. 

This article is organized as follows. First, we outline the design 
decisions of the online system and review the analysis methodology. 
Then, we provide a case  study where  data  from  SQL problems 
of an introductory databases course are analyzed. This section is 
followed by a second case study where data from an introductory 
programming course is analyzed to identify students who perform 
poor in the final exam of the course. This is followed by a discussion 
on the benefits and limitations of the creation and use of such online 
tools. Finally, we review the future work and conclude the article. 

2 DESCRIPTION OF ARAL 
ArAl is an online platform designed for analyzing source code 
snapshot data. The server side functionality is written in Java, and 
the front end of the application is written in HTML, JavaScript  
and CSS. The system runs on a cloud-based server at Heroku2. 
ArAl offers two main features - the first is a descriptive tool where 
a user can enter the values in the cells of the contingency table 
manually (representing data for a pair of questions) and observe the 
output, and the second is where the user can upload a set of data 
representing multiple questions (in which case ArAl automatically 
generates all contingency tables and displays those that appear 
most significant). 

The first service module of ArAl is dedicated to the contingency 
based analysis of two given variables based on their distribution in 
a 2 by 2 contingency table. This includes analysis of risk factors for 
unfavorable outcomes, analysis of the effectiveness of a diagnostic 
criterion for a pre-determined condition such as course outcomes, 
and measures of inter-rater reliability and measures of association. 
The second module is concerned with the machine learning based 
metrics obtained from contingency tables. This includes accuracy, 
the F1 score (measure of a test’s accuracy), the G score (geometric 
mean), precision, recall, sensitivity, specificity, logical necessity, 
logical sufficiency etc. All these topics and metrics are presented in 
great detail in the documentation page of the system. 

The second module implements the educational data analytics 
algorithm presented by Ahadi et al. [5] with an aim of identify- 
ing a) students at risk, b) correlation between the performance in 
the programming task and the pen and paper based assessments, 
and c) finding reasonable number of steps required to solve the 
programming task. This module is also based on the contingency 
tables, but compared to the first modules, it also includes the num- 
ber of attempts required to complete a programming exercise in 
the construction of the contingency tables (see Section 2.3). 

 
 

2 https://heroku.com 

Here, we first discuss the analysis of contingency tables that is 
the cornerstone of the described system. Then, we outline two of 
the main features of the system, namely a descriptive tool for un- 
derstanding contingency tables, and an analytical tool for studying 
data from individual contexts. 

 

2.1 Analysis of Contingency Tables 
The core algorithm of ArAl is dependent on the construction of 
contingency tables (a variation of the truth table), which are well 
known statistical constructs. A model of a two by two contingency 
table is illustrated in Table 1, and in the description here, we assume 
that the data comes from students. The four variables in Table 1, a, 
b, c and d represent the number of students who satisfy each of the 
four possible combinations of the two dichotomous categories, for 
two given variables V1 and V2. The simplest example of a criterion 
for any two questions V1 and V2 is the correctness of students’ an- 
swers to given questions – for example, a programming assignment 
in the course and and a question in the exam. Given the example 
criterion, then a in Table 1 represents students who answered both 
questions correctly, b represents the students who answered ques- 
tion V1 correctly but question V2 incorrectly, c the students who 
answered question V1 incorrectly but question V2 correctly, and d 
the students who answered both questions incorrectly. 

Based on the values of a, b, c and d, one can construct a set of 
metrics that focus on the association between the two variables (the 
first module of ArAl). After passing a set of statistical significance 
tests, the metrics can give useful information on the correlation or 
the degree of association between given variables. 

Note that the contingency tables can be analyzed in a machine 
learning context where the tables are regarded as a confusion ma- 
trices. In this context, the values stored in cells "a", "b", "c" and "d" 
are regarded as true positive (TP), false negative (FN), false positive 
(FP) and true negative (TN) respectively. 

One of the features of ArAl is the construction of the contin- 
gency tables by including the number of steps required/spent on 
a programming task, regardless of the correctness/score on that 
task. Ahadi et al. [5] showed that the number of steps, which at a 
higher level represents the degree of students’ engagement with 
the programming task, can be used as a predictor of success in the 
course. Hence, ArAl considers the construction of different con- 
tingency tables by considering performance, number of attempts, 
and a combination of both (the second module of ArAl). Contin- 
gency tables which review the association between the number of 
attempts and the score in a given test are mainly concerned with 
two questions, regardless of the success in the programming task: a) 
how much effort successful students put on a given programming 
task, and b) what are the features of the number of attempts spent 
by unsuccessful students. 

One can also use contingency tables that consider both the num- 
ber of attempts and success ratio in the programming task, and aim 
to find correlations with the performance in the final exam. These 
tables can be used to identify upper/lower borders of number of 
attempts required to successfully complete a programming task, 
and the correlation between this success and the final exam result. 
The basic idea is to capture different groups of students [2]. 



Table 1: A 2 by 2 contingency table constructed based on two 
variables. 

 
 V1 

Category=α Category=β row totals
 

V2 
Category=γ a b r1 
Category=δ c d r2 
column totals c1 c2 n

 
2.2 Feature 1: Descriptive Tool 
One of the features of ArAl is the analysis of the association of two 
given variables that a researcher or an educator can use for study 
purposes. The tool provides a possibility of entering values to a 
contingency matrix, and then selecting a metrics of interest that the 
system should calculate based on the matrix (Figure 1 shows the 
data entry page). Each metric is explained in detail in the system, 
and a short list of the metrics analyzed by ArAl is present in Table 2. 

 

 
Figure 1: The data entry page for contingency table analysis. 

 
Upon completion of data entry, ArAl checks to make sure that the 

three following criteria are satisfied: a) no user inserted value for a, 
b, c or d should be less than 5 – this is related to the functionality of 
contingency tables, see [16], b) the p value of the χ 2 test of the given 
table is calculated. If the p value is less than 0.01, then the given con- 

To illustrate the role of the number of attempts in constructing 
a contingency table, consider 100 students who attempted a pro- 
gramming task. A typical contingency table (as reviewed in the 
first module) would result in the calculation of the associations 
between students’ score on this programming task (V1) and their 
final exam marks (V2). If we know the number of attempts (consider 
the number of snapshots generated as the metadata) made by each 
student, then we can create variations of the original contingency 
tables. For example, consider the value 8 as the threshold value for 
the number of attempts. Given this number, we will have 2 different 
types of students for V1: those who passed the exercise with less 
than 8 attempts, and those who failed the exercises with less than 
8 attempts. Now, the new contingency table can be constructed 
based on V1, and the final exam mark for those students (V2). Since 
we know the number of attempts made by each student, we now 
can define more contingency tables using different values (16, 32, 
64, etc). ArAl constructs multiple contingency tables based on the 
maximum number of attempts observed. ArAl can also generate 
contingency tables without considering the achieved score in the 
programming task. As with the previous scenario, using different 
values for the threshold of the number of attempts, different con- 
tingency tables are built where each contingency table considers 
different types of students according to their number of attempts as 
V1 (those with a number of attempts of less than a specific number 
(8 for example), and those with a number of attempts of more than 
the specific number) and the score in the final exam (for example) 
as V2. 

After uploading the files, the user can specify metrics from a 
provided panel that they want to include in the analysis (See Table 
2). After construction of the contingency tables, those tables with 
significant p-value according to the p-value cut off for the χ 2 test 
specified by the user are displayed. At this stage, a series of rules 
to filter overlapping tables and identify the most efficient result are 
applied. The filtering (pruning) rules are as follows: 

(1) If the φ values of two contingency tables differ by less than 

tingency table is significantly representative of valid associations, 
regardless of the strength and direction of associations, and c) that 
a + b is equal to c + d, if accuracy is selected, as the positive set size 
and the negative set size must be equal to calculate some metrics. 
Upon clicking the calculate button, all metrics are calculated and 
displayed. Table 2 represents a list of calculated metrics and a short 
description of what each measures. A detailed explanation of each 
metric and how they should be interpreted are available on the web- 
server (See http://online-analysis-demo.herokuapp.com/metrics). 

2.3 Feature 2: Analytics Tool 
The core feature of ArAl is the analysis of user submitted source 
code snapshot metadata. The system requires two sets of data files: 
a) a file including the assessment marks that correspond to the sec- 
ond variable investigated in the contingency table (final exam score, 
mid-term score, etc.), and b) the source code snapshot metadata 
with information on the students’ attempts for each problem. The 
former includes the marks and the identifiers of the participants 
and the latter should include the identifiers, performance on the 
problem, the identifier of the problem and the number of steps 
taken by the student on that corresponding problem. 

0.01, then the less general table is pruned. 
(2) If the φ values of two contingency tables differ by more than 

0.01, and the φ value of the more general contingency table 
is higher than the φ value of less general table, then the less 
general table is pruned. 

(3) If the φ value of the more general contingency table is lower 
than the φ value of another table, but a statistical test for 
significant difference (see [9] and [12]) reveals no significant 
difference (p < 0.01), then the less general bin is pruned. 

(4) Contingency tables with accuracy or F1-score of less than 
0.5 are pruned. 

 
3 RESULTS 
In this Section, we will explore the application of ArAl in two 
different contexts. In the first case study, we demonstrate how 
ArAl can be used to identify the possible correlations between 
the correctness of the answer provided for an SQL question with 
the correctness of an answer for another question. In the second 
case study, we demonstrate the correlation between the number 
of attempts made in coding exercises and the results of the final 
exam of the course in an introduction to programming course. Note 



Table 2: A brief list of quantitative metrics evaluated based on the values extracted from the contingency table. 

 
metric what does it measure? 

odds ratio  the association between an exposure and an outcome 

sensitivity the proportion of positive data points that are correctly categorized 

specificity  the proportion of negative data points that are correctly categorized 

accuracy the proportion of correctly categorized data points among all data points 

mis-classification rate the proportion of incorrectly categorized data points among all data points 

+ predictive value proportion of data points categorized as positive that are truly positives 

- predictive value proportion of data points categorized as negative that are truly negatives 

false positive ratio  the probability of incorrectly rejecting the true null hypothesis test  

false negative ratio   the probability of incorrectly not rejecting a false null hypothesis   

false discovery ratio    the rate of type I error in a particular null hypothesis test 

F1 score  the harmonic mean of precision and recall 

informedness how informed a predictor is for the specified condition 

markedness how marked a condition is for the specified predictor 

φ (also known as MCC) the association based on adjusting χ 2 to factor out sample size 

Yule’s Q  the intensity of association between two variables 

Cramer’s V A measure of association between two nominal variables 

diagnostic odds ratio  the effectiveness of a condition 

Error Odds Ratio the standard error for the odds ratio 

relative risk the probability of the occurrence of the event in the presence of a condition 

to the probability of the event occurrence in the absence of the condition 

Kappa the inter-rater agreement between categorical items. 

+ likelihood ratio  the probability of an individual with the condition having a positive test   

divided by the probability of an individual without the condition having a positive test 

- likelihood ratio  the probability of an individual with the condition having a negative test   

divided by the probability of an individual without the condition having a negative test 

difference in proportions the significance of the difference between two populations based 

on some single categorical characteristics 

relative risk reduction how much the condition reduced the risk of undesired outcome 

 

that both case studies are focused on the core feature of ArAl (See 
Section 2.3) . 

 
3.1 Case study 1: Application on SQL Problems 
To demonstrate the application of ArAl, we examined inter- 
relationships between mid-semester SQL test questions in an in- 
troductory database course (see reference removed for review pur- 
poses) for additional details on the data and the context). Data from 
2,300 students, with a total of approximately 161,000 attempts at 

answering SQL queries, were used. Here we investigate whether 
the performance of students on a question (V1) predicts whether 
students will correctly answer another question (V2) in that same 
online test. Each question is marked either 0 or 1. 

As explained, ArAl can construct the contingency tables based 
on number of steps required for an exercise, the success score for 
the exercise or a combination of the two. In our case, we show the 
output of ArAl with two different types of contingency tables: (1) 
contingency tables that ignore the success score in completing the 



Table 3: The result of the analysis on the source code snap- 
shot meta-data. 

Table 5: Correlation between different exam questions when 
the number of attempts for the source question is ignored. 

 
Assignment Correctness Attempts Split φ F1-score X Y a b c d attempt phi 

Robots 1 <3 133/32 0.31 0.77 4 5 1074 212 350 735 - .52 (notable) 
Robots 1 <7 129/36 0.28 0.75 4 7 903 383 229 856 - .48 (moderate) 
Robots 1 >127 133/32 0.34 0.77 6 7 602 114 530 1125 - .47 (moderate) 
Robots 1 >31 77/88 0.25 0.64 5 7 955 469 177 770 - .47 (moderate) 
Loops 1 >15 55/127 0.21 0.5 3 4 966 317 320 768 - .45 (moderate) 
Loops 1 >31 110/72 0.22 0.67 1 3 1162 570 121 518 - .42 (moderate) 

      3 
4 

5 
6 

1018
620 

265
666

406
96 

682 
989 

- 
- 

.42 (moderate) 

.42 (moderate) 
Table 4: Correlation between different questions V1 and V2 5when only the number of attempts is the criterion for ques- 6 656 768 60 887 - .42 (moderate) 

tion V1. 2 4 1153 579 133 506 - .40 (moderate)
       

 
V1 V2 a b c d attempt phi 

6 7 860 596 272 643 more than 3 .29 (low)
2 4 886 480 400 605 less than 8 .25 (low)
2 7 796 570 336 669 less than 8 .25 (low)
1 4 1027 631 259 454 less than 8 .24 (low)
2 6 539 827 177 828 less than 8 .24 (low)
2 7 999 864 133 375 less than 15 .23 (low)
2 4 1119 744 167 341 less than 15 .22 (low)
1 3 1012 646 271 442 less than 8 .21 (low)
2 3 852 514 431 574 less than 8 .19 (low)
1 5 1098 560 326 387 less than 8 .19 (low)

 
first SQL question, and (2) contingency tables that ignore the num- 
ber of steps taken in the students’ attempt in completing the SQL 
question. The aim of both tables is to predict students’ performance 
in a separate SQL question. 

3.1.1 Analyzing number of attempts. Table 4 shows the simpli- 
fied output of ArAl on the correlation analysis between different 
SQL questions for the contingency tables with the 10 highest φ 
values. The first two columns of Table 4 (as well as Table 5) describe 
the type of questions for V1 and V2, where 1 represents SINGLE 
TABLE QUERIES, 2 represents GROUP BY, 3 represents GROUP BY 
WITH HAVING questions, 4 represents SIMPLE SUBQUERY, 5 rep- 
resents NATURAL JOIN, 6 represents SELF JOIN and 7 represents 
CORRELATED SUBQUERY. That is, the first row of data in Table 4 
has V1 = 6 and V2 = 7, meaning that the system studies the con- 
nection between students’ performance in writing a self join and a 
correlated subquery. Columns a, b, c and d in Table 4 represent the 
values from the contingency table used to generate each row of the 
table. All contingency tables represented in Table 4 have p < 0.001 
(χ 2 test). Table 4 shows that there is only a low correlation between 
the number of attempts on question V1 and success in answering 
question V2 – that is, the number of attempts that students need to 
solve a specific SQL question cannot be solely determined by the 
number of attempts that are needed to solve another SQL question. 

3.1.2 Analyzing correctness. Next, we study the same data, but 
instead of number of attempts, we focus on correctness. That is, 
the only criterion for question V1 in Table 5 is whether the student 

 
answered question V1 correctly. All contingency tables represented 
in the rows of Table 5 have p < 0.001 (χ 2 test). Table 5 shows that 
there is a moderate correlation between successfully answering 
given questions in the course. 

 
3.2 Case study 2: Application on Programming 

source code snapshots 
The data for this case study was collected from students enrolled in 
a 6 week introductory Java programming course at the University 
of name removed for review. In the course, 50% of the overall mark 
comes from completing online exercises during the 6 week semester, 
while the other 50% comes from a final exam. Furthermore, to pass 
the course, students must achieve at least half of the available marks 
in both the exercises and the final exam. 

There are 106 online exercises available for inspection at link 
removed for review but only 77 of those exercises are used in the 
course. Students were allowed to make multiple submissions for 
an exercise, henceforth referred to as attempts. So in this context, 
the metadata for a programming task is the number of submissions 
made to the automated grading system. Attempts could fail for both 
syntactic and semantic reasons, and the online system provides 
feedback to students. There were lab sessions where students could 
seek assistance with the exercises from teaching staff, but students 
were also allowed to work on and submit the exercises at any  
other time and place of their choosing. More information about the 
educational context and the data could be found in citation removed 
for review As data for this paper, each student’s performance on 
each exercise was recorded as two values: 

(1) A dichotomous variable; 0 if the student did not succeed 
in answering the exercise correctly, or 1 if the student did 
provide a correct answer. 

(2) An integer; the number of attempts a student submitted 
for the exercise (irrespective of whether or not the student 
provided a correct answer). 

As data for this paper, a student’s performance on each of those 
three questions was recorded as a dichotomous variable; 0 if the 
student’s mark for the question was below the class median mark 
for that question, or 1 if it was above the median. 



× 

≥ 

3.2.1 When number of attempts is ignored. Table 6 shows the 
exercises with the highest correlation to final exam questions 2, 3 
and 4, when the number of attempts by students is ignored. The 
final exam question numbers are designated in the table’s second 
column, the column headed ExamQ. 

For final exam question 2, the three highest correlating exercises 
are 59, 70 and 61, as shown in the third column, headed Ex. These 
three exercises (and all other exercises) are available for inspection 
at link removed for review. The column with the heading Week 
indicates that all the exercises are from weeks 3 and 4 of the 6 week 
semester. 

The columns headed Q1, Q2 and Q3 show the quartile boundaries 
for the number of attempts made by students. For example, row 1.1 
of the table shows that 25% of the students made 10 attempts or 
less on the exercise, 50% of the students made 15 attempts or less, 
and 50% of the students made between 10 and 20 attempts. Note 
that these quartile boundaries are for all students, irrespective of 
whether or not they answered the exercise correctly. 

The values in the column headed Correct indicate that, for the 
contingency table used to construct each row of this table, answer- 
ing each exercise correctly is the sole criteria on an exercise. 

The columns headed φ and Accuracy show the measures of per- 
formance as defined earlier. For each exam question, the rows of 
Table 6 are ordered on φ, from highest to lowest. Both φ and Accu- 
racy in each row are calculated using a contingency table as shown 
in Figure 2. In Table 6, the columns headed a, b, c and d show the 
values for each of these contingency tables. For each row of Table 
6, "Meet criterion on exercise x" in Figure 2 is "yes" if a student 
answered the exercise correctly. For example, column a in row 1.1 
of Table 6 shows that 32 students answered exercise 59 correctly 
and also scored above the median mark on final exam question 2. 
The values recorded for a, b, c and d in that row of Table 6 are the 
four example values shown in Figure 2. The column sum is simply 
the sum of the values in columns a, b, c and d, which show that this 
table used data from approximately 70 students. The sum values  
in that column vary as sometimes a student did not attempt an 
exercise. The column headed p shows the statistical significance of 
the contingency table for each exercise, using the standard χ 2 test. 
All exercises shown in this table easily meet the traditional p < 0.05 
criteria for statistical significance. 

 

Figure 2: A 2 2 Contingency Table for Exercise X (V1) and 
Final Exam Question Y (V2): another way of interpreting a 
contingency table. 

 

3.2.2 When number of attempts is considered. Table 7 shows 
the exercises with the highest correlation to final exam questions 

2, 3 and 4, when the number of attempts made by students on an 
exercise is considered. Most of the columns in this table contain 
the same type of information as the previous table. The differences 
between the previous table and this table are: 

The column headed "Attempts" describes the range of the 
number of attempts a student must have made on an exercise 
as part of meeting the criteria on exercise X (as shown in 
Figure 2). For example, the " 8" in row 2.1 indicates that a 
student needed to make at least 8 attempts at the exercise to 
be counted within either cell a or b of the contingency table. 
In rows 2.6 and 2.7, <16 indicates that a student needed to 
make less than 16 attempts to meet the criteria. 
Some rows in the column headed Correct contain an asterisk. 
Each of those asterisks indicates that whether a student an- 
swered the exercise correctly is irrelevant; the sole criterion 
for including a student in cell a or b of the contingency table 
is the number of attempts the student made on the exercise. 
Rows 2.8 and 2.9 contain correct in the column headed Cor- 
rect, indicating there are two criteria that need to be met for a 
student to be counted in either cell a or b of the contingency 
table: (1) the student must have answered the exercise cor- 
rectly, and (2) the student must have done so in the number 
of attempts specified in the Attempts column. 

 
4 DISCUSSION 
The summarized result of the metadata analysis performed by ArAl 
is reviewed in Tables 4 and 5. The association between the perfor- 
mance in correctly answering different types of questions in the 
online SQL test is provided in the last column. The φ correlation 
value when of the contingency tables constructed using the number 
of attempts variable is lower than the contingency tables introduced 
in Table 5. 

That is, in the case of the metadata from the SQL source code 
snapshots, using the number of attempts taken in answering one 
SQL question does not strongly relate to the performance in other 
questions. At the same time, the success in completing a specific 
question can be a strong determinant of the performance in other 
questions as well. This result could be interesting from an educa- 
tional point of view as the degree of positive correlation between 
different types of questions are not the same. This could be useful 
(in the sense of having predictive value) for the educator in iden- 
tifying students who, based on their performance in answering a 
specific type of SQL question, may perform poorly when answering 
other types of SQL questions. Also, this sort of information can 
help the subject coordinators to fine tune the subject curriculum to 
better meet the course outcome and learning objectives. 
As reviewed in the second case study, the metadata (number of 
attempts) spent on a programming exercise can (with a high predic- 
tion accuracy) be a good indicator of performance in the final exam. 
The researchers can provide ArAl with such information to identify 
those students who might be in danger of failing the subject or 
dropping out. The provided data can be collected at any stage of 
the semester, however, it is better if the data is collected at the early 
stages of the semester to identify poor performing students as soon 
as possible. 

•

•

•



≥ 
≥ 

≥ 4

Table 6: The exercises with the highest correlation to ftnal exam questions 2, 3 and 4, where the sole criterion is whether        
a student answered the exercise successfully; the number of attempts prior to success is ignored. No exercises correlated 
signiftcantly (p < 0.05) with ftnal exam question 3. 

 
 

Row No. ExamQ Ex Week Q1 Q2 Q3 Correct φ Acc a b c d sum p
1.1 2 59 3 10 15 20 correct 0.33 0.66 32 6 18 16 72 0.004
1.2 2 70 4 15 40 70 correct 0.32 0.63 29 5 21 17 72 0.005
1.3 2 61 3 11 14 20 correct 0.28 0.61 27 5 23 17 72 0.01 

1.4 3 — — — — — ——— — — — — — — — —— 

1.5 4 52 3 16 24 35 correct 0.34 0.66 30 6 18 17 71 0.004
1.6 4 59 3 10 15 20 correct 0.33 0.66 31 7 17 17 72 0.004
1.7 4 55 3 19 26 35 correct 0.31 0.65 30 7 18 17 72 0.007

 

Table 7: The exercises with the highest correlation to ftnal exam questions 2, 3 and 4, when the number of attempts by students 
is considered. 

 
 
 

2.3 2 103 6 1 86    190 * 
≥ 16 

0.46 0.76 38 6    11    15 70 <0.001 

2.4 3 92 5 4 53 91 * 4 0.43 0.77 44    10 6    11 71 <0.001 
2.5 3 93 5 2 40 69 * 16 0.36 0.72 38 8    12    13 71 0.002 
2.6 3 28 2 7 9 14 * < 16 0.35 0.75 46    12 6 9 73 0.003 
2.7 3 49 3 12 14 18 * < 16 0.34 0.70 37 8    13    13 71 0.004 

2.8 4 52 3 16 24 35 correct ≥ 8 0.38 0.68 30 5    18    18 71 0.001 
2.9 4 59 3 10 15 20 correct ≥ 8 0.37 0.68 31 6    17    18 72 0.002 
2.10 4 103 6 1 86   190 * ≥ 16 0.37 0.70 34 7    14    15 70 0.002 

 

 

The increase in systems that collect data from students’ problem 
solving process in various courses has led to a situation where data 
exists but many do not know what to do with such data. In this 
article, we have introduced a tool for the analysis of this data, and 
demonstrated the use of the tool with a data set from a databases 
course with 2,300 participants. 

Our belief is that systems such as ours will be beneficial for re- 
searchers and educators, as the system does not require installation 
or manual coding of the algorithms. Moreover, as the system pro- 
vides an opportunity to try out the contingency tables manually, it is 
likely that the users will become familiar with such methodologies. 
That is, the system can be also used for educational purposes. 

Such systems also include downsides. As the system is hosted by 
a third party, there is an inherent trust issue. What if the system ac- 
tually stores the data that is sent to it instead of simply analysing it? 
In our case, the source code of the system will be published, which 
means that each individual can run or host it at their institution     
if needed. Another issue is related to the adoption of tools. As re- 
search has demonstrated [8], the tools produced by the computing 
education research community are rarely adopted at other institu- 
tions. Will it also be the case for online analytics tools? Perhaps    
a solution would be to create an online repository or a platform 

for such tools, to which researchers and educators could refer as 
needed. 

 

5 LIMITATIONS AND FUTURE WORK 
As mentioned earlier, the source code snapshot data and metadata 
collection by different IDEs has lead to development of multiple al- 
gorithms which can measure student’s ability in writing/debugging 
the code. These algorithms can help the computer science educa- 
tors develop a better understanding of how well their students are 
doing during the course. However, these algorithms have not been 
implemented in an online platform and hence the calculation of the 
metrics introduced by these algorithms is not yet publicly available 
in an integrated web-based tools. Future work to improve ArAl 
will be focused on implementation of these metrics. This provides 
computer science researchers with a platform which makes the use 
of such metric on their own data possible in an easy fashion. Also, 
implementation of such metrics within the analysis framework 
introduced by ArAl makes it possible to investigate the relationship 
between these metrics and performance in assessments, or other 
variables of interest. 

Row No. ExamQ Ex Week Q1 Q2 Q3 Correct Attempts φ Acc a b c d sum p
2.1 
2.2 

2 
2 

92 
102 

5 
6 

4 
2 

53 
113 

91 
199

* 
*

≥ 8 0.57
0.48

0.82
0.77

43 
38

7 
6 

6 
10 

15 
15 

71 <0.001 
69 <0.001



At the moment, the only variables that can be analyzed are 
attempts/correctness on a particular assignment compared to out- 
comes on particular assignments or the final exam. This imple- 
mentation of ArAl is a first step towards a complete source code 
snapshot analysis tool. 

6 CONCLUSION 
In this paper, we have introduced ArAl, a publicly available, open 
source, online snapshot data analysis tool. The tool mainly offers 
two streams of service including bi-variate contingency tables based 
analysis of the association of machine learning bases and statistics 
based metrics, and the implementation of Ahadi et al’s algorithm [5] 
for source code snapshot data analysis with aims of predicting 
students’ performance, identifying weak students and providing a 
systematic way to identify the reasonable number of steps required 
to handle a programming task. Using the data collected from an 
online SQL test and the data collected from and introduction to 
programming course, we have demonstrated the application, work 
pipeline and the correct result interpretation of ArAl. 

The contribution of ArAl is three-fold. First it benefits the com- 
puting education researcher by providing means of finding the 
association between computer based assessments and paper based 
exams. In more general terms, it can be used to identify those assess- 
ment items/questions which are more correlated. Secondly, through 
analysis of the source code snapshot data, ArAl can be used to iden- 
tify those students who might be in the danger of performing poor 
in the course. Finally, ArAl can be used to identify interrelationships 
between the number of steps spent on the programming task, and 
its the relationship to the course outcome. 
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