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ABSTRACT
The global urbanization imposes unprecedented pressure on urban
infrastructure and public resources. The population explosion has
made it challenging to satisfy the daily needs of urban residents.
‘Smart City’ is a solution that utilizes different types of data col-
lection sensors to help manage assets and resources intelligently
and more efficiently. Under the Smart City umbrella, the primary
research initiative in improving the efficiency of car-hailing services
is to predict the citywide passenger demand to address the imbalance
between the demand and supply. However, predicting the passenger
demand requires analysis on various data such as historical passen-
ger demand, crowd outflow, and weather information, and it remains
challenging to discover the latent relationships among these data. To
address this challenge, we propose to improve the passenger demand
prediction via learning the salient spatial-temporal dynamics within
a reinforcement learning framework. Our model employs an infor-
mation selection mechanism to focus on the most distinctive data
in historical observations. This mechanism can automatically adjust
the information zone according to the prediction performance to
find the optimal choice. It also ensures the prediction model to take
full advantage of the available data by introducing the positive and
excluding the negative correlations. We have conducted experiments
on a large-scale real-world dataset that covers 1.5 million people
in a major city in China. The results show our model outperforms
state-of-the-art and a series of baselines by a large margin.
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1 INTRODUCTION
The past decades have witnessed people increasingly migrate from
rural into urban areas following the rapid pace of worldwide urban-
ization. Estimators project that approximately 70% of the world’s
population will live in urban before 2050 [2]. While the urbanization
can bring some positive effects such as creating new employment
opportunities, advancing technologies, infrastructures, and economic
growths, it also leads to the problem of how to balance the limited
public resources and rapidly increasing populations. The notion of
‘Smart city’ has been proposed to integrate information and commu-
nication technology (ICT), using various physical devices connected
to the network (Internet of Things or IoT) to optimize the efficiency
of city operations and services and connect to citizens. Smart city
involves several aspects: traffic and transportation systems, power
plants, water supply networks, waste management, law enforcement,
information systems, schools, libraries, hospitals, and other commu-
nity services. Among all these aspects, we focus on the traffic and
transportation sector, which has been transformed by the evolution
of the Internet. As an integral mode of transport in urban cities, taxis
serve a large number of passengers on a daily basis. However, the
traditional taxis hailing system may suffer low efficiency due to the
information asymmetry between passengers and drivers, as well as
adverse external conditions like weather.

Several online peer-to-peer ride-sharing services (e.g., Uber and
Didi) have emerged in recent years aimed to address this problem.
They bring the supplies and demands for ride and delivery services
on a unified platform where customers can book their rides via mo-
bile apps, and the drivers can pick up the orders based on the prox-
imity. These services usually employ dynamic pricing models and
have revolutionized the taxi markets in many countries significantly.
Although these services can alleviate the information asymmetry
problem, they cannot fully crack the code between passenger demand
and ride supply. On the one hand, a passenger might experience a
long waiting for a driver to pick his order in some high-demand
area; on the other hand, a driver may find it difficult to receive an
order in some areas where the number of passenger demand is low
[15]. The imbalance between taxi demand and supply can waste the
public transportation resources, influence the passenger experience,
and further affect driver’s income. Therefore, a more efficient car-
hailing prediction model is crucial for reducing the delay time for
the passenger order.

However, it is very challenging to accurately predict the passen-
ger demand of a city in a real-time manner because the passenger
demand can fluctuate in a relatively wide range and be affected by a



Mobiquitous, Nov,2018, New York City, United States X. Ning et al.

variety of factors. For example, the passenger demand can boost in
some extreme weather (e.g., snowy days, stormy days) or during the
holidays while it may decrease during the weekdays. Besides, the
demand patterns of passengers in an area are highly related to the
characteristics of the area. The area characteristics consist of many
aspects such as the point-of-interests in that area, the population of
the area, and the size of the area. These factors do not only affect
the passenger demand independently but also mutually impact each
other. For example, the meteorological factor can have a different
impact on the passenger demand in different areas. The passenger
demand of the central areas of a city can increase more than the
remote areas because of the large rigid commuting requirements.
Furthermore, due to the characteristic of traffic flow, the passenger
demand pattern of a particular region can also be influenced by other
areas. In this context, it is necessary to formulate a model which
can capture the complicated spatial and temporal relationships of
multiple sources of information across different domains for predict-
ing the passenger demand. Some of the previous work attempt to
tackle this problem. For example, some researchers [8, 14] employ
the time-series models to capture the temporal relationship for taxi
prediction, but they do not take other available data (e.g., spatial and
weather information) into consideration. Some previous research
[9, 18, 19, 22] has already confirmed that there exists a strong cor-
relation between spatial information and taxi demand. Hence, it
is essential to explore the complex relationships between different
kinds of data sources and efficiently utilize them for accurate predic-
tion. In recent years, deep learning based technique [15, 17, 20, 21]
have been widely used to model the complex relationships between
various data sources. However, these models either utilize data from
all regions or only consider surrounding regions. None of them use
the temporal and spatial correlations fully and directly.

In this work, we propose an information zone selection based deep
learning framework to predict the passenger demand. Our model
incorporates different data sources together: historical passenger
demand, historical crowd outflow, PoI data, weather data, air quality
data, and time meta. The previous deep learning based methods
either utilize all the historical data (all the regions) or fixed partial
data (surrounding regions). This way, they can sometimes introduce
irrelevant or negative correlations into the model or miss some sig-
nificant correlations. Our model differs from them in the ability to
find the most distinctive temporal-spatial information zone from
the historical observations automatically. The contributions of our
model are as follows:

• We propose a deep learning based model that jointly incorpo-
rates temporal information, spatial information, and supple-
mentary data for passenger demand prediction to improve the
efficiency of car hailng services.
• Our model employs a reinforcement learning method to choose

the most distinctive information zone from all the available
historical observations instead of utilizing all the historical
observation directly.
• We conduct extensive experiments on a real-world large-scale

dataset collected from a major city in China covering 1.5
million people, and demonstrate that our method outperforms
a series of benchmark methods and state-of-the-art methods.

2 RELATED WORK
There exists some previous work on the taxi flow forecasting area.
Moreira and Li [8, 14] try to capture the temporal relationship be-
tween passenger demand using the time series model auto-regressive
integrated moving average (ARIMA) and its variant. Moreira et al.
[14] aim to solve the best taxi stand choice problem after a passen-
ger drop-off. Their work combines three time-series model (Time-
Varying Poisson Model, Weighted Time-Varying Poisson Model,
ARIMA model) to predict the number of services that will emerge
at a given taxi stand. Li et.al [8] propose an improved ARIMI model
to predict the spatial-temporal variation of passengers in hotspots.
However, their work make predictions based on the GPS trajectory
data, which may not reflect the actual taxi flow. Besides the temporal
information, Zhang et.al [22] and Li et.al [9] also add the spatial and
external data as the supplementary information. Zhang et al. [22]
apply the exponentially weighted moving-average (EWMA) model
to recommend the top k hotspots for taxi drivers. However, their
method can predict the hotpots instead of predicting an accurate de-
mand number. Li et al. [9] try to predict the short-term traffic demand
utilizing a wave SVM model which can take fully advantages of two
model. However, they do not consider meteorological data which is
crucial in passenger demand prediction. Zheng et al. [24] infer the
real-time and fine-grained air quality information throughout a city
based on the historical air quality report and a variety of data sources
including meteorology, traffic flow, human mobility, the structure
of road networks, and point of interests (POIs). Although this work
explores the relationships between the traffic flow and other data, it
aims to infer the air quality instead of predicting the traffic flow.

Besides traditional methods, deep learning techniques have also
been widely used in the traffic forecasting area. Wang et al. [15] pro-
pose Deep Supply-Demand model (DeepSD) which utilizes a novel
deep neural network structure to predict the gap between the car-
hailing supply and demand in a specific area in the future. Though
the work successfully utilizes multiple data sources, it requires hand-
crafted features and cannot accurately capture the sequential rela-
tionship. Zhang et al. [21] propose a deep spatiotemporal residual
network (ST-ResNet) to collectively forecast the inflow and outflow
of crowds in every region of a city. They design three residual net-
works to model the temporal closeness, period, and trend properties
of crowd traffic. For each property, they design a branch of residual
convolutional units, each of which models the spatial properties
of crowd traffic. However, the objective of this paper is to predict
the taxi trajectories which differs from the real passenger demand.
Another disadvantage of this model is that it takes the information
about all the available regions into consideration which may intro-
duce weak or negative correlations. Yao et al. [17] propose a Deep
Multi-View Spatial-Temporal Network (DMVST-Net) to model both
spatial and temporal relations. Their model consists of three views:
temporal view (modeling the temporal relationship via LSTM), spa-
tial view (modeling spatial correlation via CNN) and semantic view
(modeling correlations among similar regions). This work is actually
most similar to ours, but it only applies to the city data partitioned by
the grid-based method. Also, the model does not leverage advanced
partitioning methods such as road network based partition. Differ-
ent from the previous studies, Yu et al. [20] focus on the extreme
condition traffic forecasting. They apply deep LSTM to forecast
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peak-hour traffic and manage to identify unique characteristics of
the traffic data. They also improve the model for the post-accident
forecast with Mixture Deep LSTM model. As their primary goal is
to forecast traffic flow under extreme condition, we do not compare
ours with their work.

3 BACKGROUND
In this section, we will introduce the background of our model. We
introduce reinforcement learning, dueling deep Q network and data
description in Section 3.1, 3.2 and 3.3 respectively.

3.1 Reinforcement Learning
Reinforcement learning is an important type of machine learning
where an agent learns how to behave in an environment by perform-
ing actions and seeing the results.

A reinforcement learning agent interacts with its environment in
discrete time steps. At each time t, the agent receives an observation
ot , which typically includes the reward rt . It then chooses an action
at from the set of available actions, which is later sent to the envi-
ronment. The environment moves to a new state st+1 and the reward
rt+1 associated with the transition (st ,at , st+1) is determined. The
goal of a reinforcement learning agent is to collect as much reward
as possible. The agent can (possibly randomly) choose any action as
a function of the history.

The performance difference between an agent and the agent that
acts optimally gives rise to the notion of regret. To act near opti-
mally, the agent must reason about the long-term consequences of
its actions (i.e., maximize future income), although the immediate
reward associated with this may be low.

Thus, reinforcement learning is particularly well-suited to prob-
lems that include a long-term versus short-term reward trade-off.
It has been applied successfully to various problems, including ro-
bot control, elevator scheduling, telecommunications, backgammon,
checkers and go (AlphaGo).

3.2 Dueling Deep Q Network
Dueling Deep Q Network is proposed by Wang et.al[16] in 2015.
Actually, Dueling Deep Q Network is a variant of original Deep Q
Network(DQN). So we will introduce the Deep Q Network firstly.
Deep Q Network is the the first deep reinforcement learning method
proposed by DeepMind[12]. Q learning is a reinforcement learning
method which produces a Q-table that an agent uses to find the best
action to take given a state. However, it is not efficient to create and
update a Q table for environment. In this context, Deep Q learning
has been proposed, which utilizes neural network to approximate,
given a state, the different Q-values for each action. The DQN can be
regarded as a combination of CNN and Q learning. It contains four
technique advantages to overcome stable learning problem: experi-
ence replay, target network, clipping rewards and skipping frames.
Based on the DQN, a new variant Dueling Deep Q Network is pro-
posed. It explicitly separates the representation of state values and
(state-dependent) action advantages. The dueling architecture con-
sists of two streams that represent the value and advantage functions,
while sharing a common convolutional feature learning module.

3.3 Data Description
There are five types of data in our dataset: Passenger Demand Data,
Crowd Out Flow Data, Meterological Data, Poi Data and Time Data.
We will introduce them detailed in the following:

• Passenger Demand Data: This data contains taxi request data
of Didi Chuxing. Each item contains the time and location
(latitude and longitude) of a request. We pre-process this
dataset to map requests to related regions and time intervals
and set the time interval to 1 hour in our experiment.
• Meteorological Data: The meteorlogical data contains infor-

mation about weather and air quality, including temperature,
wind speed, visibility, weather state and air quality level. Tem-
perature, wind speed, and visibility are continuous data and
update every one hour. Weather state and air quality level are
categorical data.
• Time Data: Time meta includes the hour of the day, the day

of the week, and holiday information.
• PoI data: We collected PoI data of 12 categories, including

offices, entertainment facilities, hotels, shopping malls, resi-
dences (i.e., apartments), schools, banks, restaurants, govern-
ment facilities, bus stations, tourist attractions and hospitals.
Each PoI item contains name and location (latitude and longi-
tude). We pre-process this data by mapping PoI data to related
regions.
• Crowd Outflow Data: it comes from the cellular networks

which cover more than 1.5 × 106 mobile users. This data is
also mapped to the related regions and time intervals, with
the time interval set to 1 hours.

Table 2 shows the details of meteorological and time data. Among all
the five kinds of data, meteorological, time and historical passenger
demand data has already shown their capability of passenger demand
order prediction in the previous work [10, 17, 24]. However, the
previous work seldom uses PoI data and crowd outflow data for
passenger demand prediction. Generally, different regions in a city
can have different patterns of passenger demand. The pattern of a
specific region is highly dependent on its characteristics such as the
PoIs in that region. For example, the region with a lot of shopping
malls and restaurants will have a much higher amount of passenger
demand on weekends while the demand will decrease significantly
on weekdays. Also, if a region has many tourist attractions, it will
have a burst in the passenger demand on holidays. Therefore, PoI
data can be a useful index to characterize regions and help find
the regions with similar passenger demand patterns. Analyzing the
historical passenger demand of regions with similar patterns to a
target region can provide much useful information and help the
final prediction. In this context, we take the PoI data as auxiliary
information in our work. When collecting the crowd outflow data, we
consider passengers as a subset of the crowd outflow. Thus passenger
demand should be closely related with crowd outflow data. Modeling
the correlation between passenger demand and crowd outflow could
help predict passenger demand.

4 PROBLEM FORMULATION
In this section, we will first introduce the terms used in our paper
and formalize the passenger demand prediction problem.
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Table 1: Details of meteorological and time data.

Subtypes Data Condition

Meteorological Data

Weather State 4 Types
Temperature(◦C) [-21.24,6.11]
Wind Speed (m/s) [0,7.15]

Visibility (km) [0.16,16.09]
Air Quality 4 Types

Time Data
Hour of Day [1,24]
Day of Week [1,7]

Holiday 2 Types

Region We utilize the same city partition method as Deng et.al[3]
did. It is a more flexible partition which divides the entire city into
many blocks. We divide the city into M regions (M is 35 in our
work). The ith region is denoted as Ri where i ∈ [1,M].

Time Data In our paper, we utilizeT to represent a time point and
t to represent a time interval [T ,T + ∆T ]. Accordingly ti+1 represents
the next time interval [T + ∆;T + 2∆] after ti . As we also take the
time data as a kind of feature for passenger demand prediction, then
we denote A(t ) to represent the time feature in time interval t.

Point of Interest We use Pi to denote the all the POI information
of the region i. The Pi is a K dimensional vector (K is 12 in our
work) with each element of it representing the correct PoIs category
(such as schools, restaurant, shopping malls and so on) in region i.

Passenger Demand For a region Ri , the passenger demand of
region Ri in a given time interval t is defined as the number of taxi re-
quest originating in this region during this time period, which can be
represented asDt (Ri ). Additionally, we denoteDt = [Dt (R1),Dt (R1),
· · · ,Dt (RM )] (a M dimensional vector) to represent the passenger
demand of all the M regions in time interval t.

Meteorological Data Meteorological Data consists of the weather
and air quality information in each region. We denote the Mt to rep-
resent the meteorological data in time interval t.

Crow Outflow Similar to the definition of passenger demand,
we denote Ct (Ri ) as the crowd outflow of region Ri and Ct =
[Ct (R1),Ct (R1), · · · ,Ct (RM )] (a M dimensional vector) to represent
the crowd outflow of all the M regions in a given time interval t

Given all the historical information including the passenger de-
mand and crow outflow in all the M regions, the meteorological data
of region i in time interval t , our goal is to predict the passenger de-
mand Dt (Ri ) of region i in time interval t. We formulate the problem
as the following equation:

Dt (Ri ) =F (Dt−h , · · · ,Dt−2,Dt−1,Ct−h , · · · ,

Ct−2,Ct−1,Mt ,A(t )) (1)

where Dt (Ri ) is the passenger demand of region i in time interval
t, h is the historical window of time that is used for prediction,
Dt−1 is the passenger demand of all regions in time interval t, Ct−1
is the crowd outflow of all regions at time interval t, Mt is the
meteorological data at time interval t, and A(t ) is the time feature at
time interval t.

5 PROPOSED METHOD
As discussed in Section 3, we aim to predict the passenger demand
of a region based on the historical observations supplemented with
meteorological and time features. Previous studies [17, 21] have
revealed that a region’s passenger demand is not only dependent
on its own historical data but also related to other regions’ demand.
Therefore, exploiting the spatial relationship between regions could
help improve the prediction performance. Based on this reason, we
decide to consider the historical observations from both the target
region and other related regions[23]. This way, we can exploit the
temporal and spatial relationships of passenger demand in different
regions. The most critical question now turns into the following: how
to efficiently exploit the latent temporal-spatial dependency between
the historical observations of all the regions with the current pas-
senger demand of the target region. To deal with this problem, we
propose a spatial-temporal attention reinforcement learning model
(STAR) to predict the passenger demand by automatically select-
ing the most informative historical observations. We explain the
motivation of our proposed model in Section 5.1. The structure of
our model is shown in Figure 1. The proposed approach contains
three components: 1) Data Organization and Preparation model; 2)
Information Zone Selection model; 3) Convolutional Neural Net-
work based prediction model. We will introduce them in 5.2, 5.3,
5.4, respectively.

5.1 Motivation
The proposed model focuses on utilizing the historical observa-
tions of all the regions efficiently. This problem involves two sub-
problems: (1) selecting the optimal time window of historical obser-
vations (considering the temporal relationship) (2) selecting the best
combinations of relevant regions for the target region (considering
the spatial relationship). The previous research efforts solve the two
problems by making the above selections manually in a data-driven
manner. However, manual selection cannot guarantee the optimal
time window and the best combinations of relevant regions. Manual
selection can sometimes introduce weak or negative correlations into
prediction model which can influence the final performance. Besides,
it is unfeasible for humans to select the combinations manually when
the number of regions is enormous. Based on the above reasons, we
design a historical and spatial zone selection mechanism to select
the time window and relevant regions combination automatically. In
our work, we transform the selection of time window and relevant
regions into a problem that choosing the most distinctive subset from
the overall historical observations of all regions. It is difficult to find
the distinctive subset(denoted as information zone in the rest of our
paper) manually by trial and error. In this context, we decide to de-
sign a selection mechanism which can find the optimal information
zone automatically instead of utilizing exhaustive attack method
manually.To optimize the information zone automatically, we em-
ploy deep reinforcement learning as the optimization framework for
its excellent performance in policy optimization[13].

5.2 Data Preparation and Organization
Meteorological and Time Data As the passenger demand of region
i in a time interval of t , DtRi , is only related to the meteorological
and time data of this region in the same time interval, we do not
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Figure 1: Flowchart of the proposed model. The information zone is a selected fragment from the historical information matrix to
feed to the state transition and the reward model. In each step t , the state transition selects one action to update st based on the agent’s
feedback. The reward model evaluates the quality of the information zone. The dueling DQN finds the optimal information zone and
pass it as the input of the prediction model. The prediction model serves as a reward model as well. The state transition contains six
actions. Each action adjusts the information zone by one unit. The solid and dashed rounded rectangles denote the positions of the
information zone before and after an action, respectively.

need to consider any historical information of this kind of data or
the meteorological data in other regions. Therefore, we can utilize
the meteorological and time data directly without any additional
processing and organization.

Historical Passenger Demand and Crowd Outflow As discussed
above, selecting the optimal historical time window and the combi-
nations of relevant regions remains a significant challenge, as most
of the previous work choose both the time window and the rele-
vant regions manually in a data-driven manner. That can be both
time-consuming and resource-consuming when a large amount of
data is concerned. There are generally two ways to select the rele-
vant regions for a target region:(1) Considering all the regions as
relevant with each other, treating the whole city as an image (a
two-dimensional matrix), and then applying CNN directly to the im-
age to capture relationships among regions. This method introduces
not only the positive correlations but also the weak and negative
correlations between regions, which may adversely impact the final
prediction results. Additionally, the method may consume significant
resources and time if there is a large number of regions in a city. (2)
Instead of taking all the regions into account, the second method
focuses on discovering local relationships, given that the adjacent
regions are more likely to be relevant than the distant regions. This

method only uses the historical information from the target region
and its surrounding regions but neglects the remote regions which
have similar characteristics to the target region. Such remote regions
usually share similar passenger demand patterns as the target region,
and exploiting the relationships between these remote regions can
also provide rich and discriminate information. Based on the above
discussion, we design a new methodology to calculate the relevance
between regions by considering both the distance and characteristics.
The overview of our historical data organization is shown in figure 2.
Since the existence of PoIs can be a key index of the characteristics
of a region and consequently impact the passenger demand pattern
of the region, we define the relevance score between two regions
(region i and region j) as follows:

Reli j =
1

| |PoIi − PoIj | |1∗||Ci −Cj | |2
(2)

Where PoIi and PoIj are both N -dimensional vectors (N is 12 in
this work) representing the PoI information of the corresponding
regions, Ci and Cj are both two-dimensional vectors representing
the horizontal and vertical coordinates of the geometric center in
region i and region j, Reli j denotes the relevance score between
the region i and region j. The above equation considers both the
distance and characteristics of regions to calculate the relevance
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Figure 2: Organization of historical data. PoI stands for point-
of-interest. The light cyan rectangle labeled with i denotes the
historical information(passenger demand or crowd outflow) in
region i while rectangel labeled with iK denotes the historical
information from Kth relevant region of region i

scores of regions. The relevance score is inversely proportional
to the distance between the geometric centers of the two regions
and the difference of PoIs in the two regions. After calculating the
relevance scores, we propose a method to reorganize the historical
observations of different regions. The historical passenger demand
and crowd outflow data are organized separately but in the same
manner. For a given region i, we rank the remaining M-1 regions by
the relevance scores between them and region i. Then, we manually
set the upper limit of historical time window as H to extract the H
hours historical information (passenger demand or crowd outflow)
and can get a H -dimensional vector Vk (k ∈ [1,M]) for each of the
M regions. To select the most informative zone from the overall
historical information for region i, we first form a matrix using
the M vectors. Instead of combining them randomly, we put the
M-1 vectors Vk (k ∈ [1,M]k ̸= i) at the two sides of the vector
Vi successively according to region relevance. Finally, we obtain a
M × H historical information matrix where the target region and its
highly relevant regions are placed in the central part while the lowly
relevant regions are near the edge.

5.3 Information Zone Selection
After the data preparation, we get two matrices of historical ob-
servations (historical passenger demand and crowd outflow) for all
the regions. The historical observations consist of two independent
parts with the same dimension (historical passenger demand and
historical crowd outflow), and we select the same information zone
for the two parts in one unified selection model. In the following
section, we take one of the two historical observation matrices as
an example to explain the selection model. It is notable that the two
historical information matrices actually share the same information
zone. Hence, we only show on matrix and information zone in figure
2. We aim to find the most distinctive information zone (optimal
time window and best combinations of relevant regions) from the
whole matrix and feed it into the subsequent prediction model.

According to previous experience [17, 21], the passenger demand
of target region is more related to the historical information of itself
and other regions that have high relevance score with it. Based on
this reason, we first initialize the information zone by choosing an h-
hour historical observation of the target region and get a 1×h matrix.
Then, our selection mechanism can include or exclude other regions
into the information zone or adjust the length of time window step by
step. After a certain number of operations, our selection mechanism
can find the most distinctive zone by setting the optimal time window

and region combinations, and then feed the stable information zone
from the matrices into the following prediction model.

The informative zone selection is shown in Figure 1, which in-
cludes two key components: the environment (including state transi-
tion and reward model) and the agent. The two components interact
by exchanging three elements: the state s, the action a, and the re-
ward r . All of the three elements are customized based on the specific
situation. Next, we introduce the design of the crucial components
of our deep reinforcement learning structure:

• The State S = {st , t = 0, 1, ...,T } ∈ R3 describes the size of
information zone, where t denotes the time stamp. Since the
information zone is a variable-size fragment in the historical
observation matrix, we design three parameters to denote the
state at time interval t : st = {Start tid ,End

t
id ,TW

t
id }, where

Start tid and Endtid denote the start index and end index of
information zone at time interval t, and TW t denotes the
length of time window at time stamp t. For example, for a
historical information matrix (number of regions is 3 and
time window is 3 hours) [3,1,3,4;2,6,7,11;1,3,8,7], the state
{Start tid = 1,Endidt = 2,TW t

id = 1} is sufficient denoted the
information zone as [1,3;6,7;3,8]. We set the upper limit of the
historical time window toH hours in data organization section.
The size of historical information matrix is 35 × H (where 35
is the total number of regions). During the training, s0 is
initialized from the historical information of target region and
denoted by [M − 1/2,M + 1/2,h], where h is the initial time
window set by us manually.
• The Action A = {at , t = 0, 1, 2, ...,T } ∈ R6, describes which

the agent could choose to act on the environment. In our case,
we define six categories of actions for the information zone (as
described in the State Transition part in Figure 1): combining
the left region, combining the right region, excluding the
left region, excluding the right region, extending the time
window, shortening time window. Each kind of action only
adjusts the information zone by one unit on the historical
observation matrix. At time stamp t, the state transition only
chooses one action to implement following the agent’s policy:
st+1 = π (st ,at )
• The reward R = {rt , t = 0, 1, 2, ...,T } ∈ R1 is calculated by

the reward model, which also serves as the prediction model
at the final stage. The reward is model is a convolutional
neural network (to be detailed later). The principle of the
reward model is to receive the current state and returns an
evaluation as the reward.
• We employ the Dueling DQN (Deep Q Networks [16]) as the

optimization policy π (st ,at ) to learn the state-value function
efficiently. Dueling DQN learns the Q value V (st ) and the
advantage function A(st ,at ) and combines them: Q(st ,at )←
V (st ),A(st ,at ). The primary reason that we employ a dueling
DQN to optimize the information zone is that it updates all
the six Q values (since we have six actions in at , the Q(st ,at )
contains six Q values. This arrangement is similar to the one-
hot label) at each step while other policies only update one
value at each step.

Reward Model. The purpose of the reward model is to evaluate how
the current state (the information zone) impact our final target which
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refers to the passenger demand prediction in our case. Intuitively, the
state which can lead to better prediction performance should gain
a higher reward from the reward model: rt = F (st ). The standard
reinforcement learning framework mostly focuses on the classifica-
tion problem, so the original reward model regards the accuracy as
the reward. In contrast, our framework aims to predict the passenger
demand, which is essentially a regression problem. Therefore, we
can regard the root mean square error as the index to evaluate the
state. As the amount of the training samples is relatively small in
our case, we reuse the final prediction model as the reward model,
which is a convolutional neural network. The specific structure of
the reward model is as follows: The first and third layers are convo-
lutional layers, the second and fourth are max-pooling layers, and
the fifth and sixth are two fully-connected layers.

The first and third convolutional layers in our model take a set
of independent filters and slide them over the whole information
zone. Along the way, the dot product is made between the filters and
chunks of the input information zone. Filters are used to generate
the feature maps in each filter zone. In this way, the original feature
map is projected into a stack of feature maps. Additionally, we
apply the rectified linear unit (ReLU) activation function on the
dot product from filters. After the convolutional layers, the hidden
relationships between features can be combined by the dot product
from each filter. The multiple filters in convolutional layers can be
updated automatically via the evolution of the network. Following
each convolutional layer, we add one max-pooling layer, which
down-samples the feature representation, reduces its size and further
allows for assumptions to be made about features contained in the
sub-regions binned. The critical features are selected after the max-
pooling layer. The information zone It (i) selected at time interval t of
target region i is fed into the convolutional and max-pooling layers
firstly, and then unfolded to a one-dimensional vector I ′t . Then, we
combine the one-dimensional vector and meteorological data Mt+1
at time interval t + 1, followed by feeding them into the following
fully connected layers. The neurons in each fully-connected layer
have full connections to all the activations in the previous layer,
as in regular Neural Networks. Their activations can, therefore, be
computed using matrix multiplication followed by a bias offset. As
our case is a regression problem, we replace the softmax function
used in a traditional CNN with a linear function. The output D ′t+1(i)
from the last year is the predicted passenger demand of region i. The
loss function is defined as follows

L = RMSE(D ′t+1(i) − Dt+1(i)) (3)

where RMSE is the root mean square error, L denotes the loss. The
loss function can gradually converge via the training of the reward
model, and it stops when the number of training epochs reaches the
pre-defined value or when the updated value meets the criteria. After
the convergence of the reward model, we define the reward value at
time interval t as a function of the loss:

rt =
1
L

(4)

After obtaining the reward value rt at time interval t , we can feed
it back to the agent for choosing the next action. By doing so, we
can link the reward with the performance of the selected information
zone. The reward becomes larger when the loss of reward model
decreases.

5.4 Prediction Model
As we have mentioned in the above section, our prediction model
also serves as the reward model. After several training epochs, the
selection model will gradually converge, and the information zone
will be optimized. Note that the reward model is trained at each time
stamp of the selection model. Once the information zone is set, it is
sent to the prediction model as the input, and the prediction model
will be trained for the last time.

6 EXPERIMENT
In this section, we will describe the experiment settings(dataset and
comparison methods) in Section 6.1, and detail the hyper-parameters
used in our model in Section 6.2. Finally, the comparison results are
shown in Section 6.3

6.1 Experiment Settings
We evaluate our method with the real-world dataset described in Sec-
tion 4.1. This dataset is collected in a major city in China provided
by Chu et al. [1]. Before feeding data into the model, we first transfer
categorical features such as the weather state, air quality level, hour
of the day, the day of week and holiday by one-hot encoding. Con-
tinuous features including temperature, wind speed, and visibility
are normalized. We set the length of the time interval to one hour,
the upper limit of time window length H to 12 hours, and the initial
time window h to four hours. As for the comparative models which
require one-dimensional input (MLP and DBN), we unfold the two
historical information matrices into one-dimensional vectors and
combine them with the meteorological and time data as the final
input. As for the other three deep learning methods(LSTM, CNN
and CNN-SVR), we feed the historical passenger demand and crowd
outflow as initial input. Similar to our model, we combine the me-
teorological and time data with the initial input before they are fed
into the first fully connected layer. As for the LSTM+CNN model,
we utilize the convolutional layer and long short term memory layer
to process the historical information respectively, and then combine
them with meteorological and time data as the above methods do.
We compare our model with a series of methods including bench-
mark baselines and state-of-art method. For each method, we tune
its parameters to report the best performance.

• HA: The historical average model predicts future passenger
demand by calculating the average value of previous pas-
senger demand in the same related time interval at the same
region.
• ARIMA: The Auto-Regressive Integrated Moving Average

model is a widely used time series prediction model which
is a generalization of the Auto-Regressive Moving Average
(ARMA) model.
• SARIMA: The Seasonal Auto-Regressive Integrated Moving

Average model [11] is a variance of ARIMA, which can
capture the seasonality in a time series data.
• OLSR: The Ordinary Least Square Regression [7] model is

a kind of linear regression model. It can estimate the relation-
ship between multiple variables.
• MLP: Multiple Layers Perception is a typical class of feed-

forward neural network. In our case, we combine all the
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data into a one-dimensional vector and feed it into the MLP
network.
• Deep Belief Network Regression (DBN): A deep belief net-

work [4] where deep belief network sites at the bottom for
unsupervised feature learning with a linear regression layer
set at the top of supervised prediction.
• Convolutional Neural Network (CNN): is a variation of

the various traditional perceptions. It utilizes the filters in
the convolutional layers to capture the relationships between
various features.
• Convolutional Neural Network with Support Vector Re-

gressor (CNN-SVR): is the regression version of Huang’s
work [6] which utilizes the support vector regressor to replace
the output layer of original CNN. The parameters are set
to the same configurations as the CNN with support vector
regressor.
• Long Short Term Memory Neural Network (LSTM): LSTM

is a variation of recurrent neural networks[5], which is promi-
nent in sequence data processing. LSTM employs all the data
to predict future passenger demand.
• Long Short Term Memory and Convolutional Neural Net-

work (LSTM+CNN): We combine the LSTM and CNN
model, and employ them to capture the temporal and spa-
tial relationship respectively.
• DMVST-Net:DMVST-Net [21] is a state-of-art method pro-

posed by Yao et.al. DMVST-Net consists of three main com-
ponents capturing the temporal view, spatial view and seman-
tic view respectively. We reproduce this model on our dataset
and tune the parameters for optimal performance.

6.2 Hyper-parameters Tuning
The hyper-parameters of the prediction model (CNN) are configured
as follows: the number of layers in CNN is set to 6 with two con-
volutional layers, two max-pooling layers, and two fully connected
layers. As the size of the information zone selected can differ in
each step, we extend the information zone to keep the same input
size (35xH ) of CNN by filling zeroes. We set the number of filters
in each convolutional layer to 10, and the convolutional kernel size
set to 2x3, the number of nodes in first and second fully connected
layer to as 100 and 1, the loss function as RMSE.

6.3 Comparison Results
We show the overall root mean square error (RMSE) for all regions
and mean absolute error (MAE) for each region in Table 2. We will
explain the RMSE and MAE respectively in the following equation:

RMSE =

√∑N
i=1 |Ri − Pi |

2

T
(5)

where T is the total number of time intervals in testing data, N is the
number of testing samples, Ri denotes the real value of ith sample
and Pi denotes the predicted value of ith sample.

MAE =
∑N
i=1 |Ri − Pi |

N
(6)

where N is the total number of testing samples, Ri denotes the real
value of ith sample and Pi denotes the predicted value of ith sample.

From the table, we can observe that our model outperforms the base-
line and state-of-art methods in both two evaluation metrics (18.856
in RMSE and 1.931 in MAE respectively). The DMVST-Net [21]
performs best among all the comparison methods. Compared to the
DMVST-Net, our model achieves 6.19% and 7.07% in RMSE and
MAE respectively. Among all the baseline methods, deep learning
based methods all outperform the other traditional methods, which
confirms the effectiveness of neural networks in capturing the la-
tent relationship between various data sources. The LSTM+CNN
achieves the best performance among all the baseline methods due
to its ability to capture the spatial and temporal correlations simulta-
neously. By introducing the information zone selection mechanism
to our model, we improve the prediction performance by a large
margin (9.2% and 10.8% in RMSE and MAE respectively) com-
pared to the original CNN. As our model adds the information zone
selection mechanism into the original CNN, the comparison between
CNN and ours can be regarded as an ablation study. The significant
improvement in the real dataset confirms the effectiveness of the
selection component in our model. Furthermore, we also conduct
extensive experiments on exploring how different parameters set-
tings of prediction model can influence final performance and show
the results in Figure 3. We can observe that the performance of our
model is sensitive to four kinds of parameters settings: the number
of filters in the convolutional layer, the kernel size of filters in the
convolutional layer, the number of neurons in the first fully con-
nected layer, and the learning rate of the prediction model. However,
these parameters do not influence the final prediction performance
in a wide range. Among all the four parameters, the learning rate is
the most insensitive parameter to our model. Additionally, we also
evaluate the effectiveness of various data in our work. We exclude
the corresponding data from our model respectively and present
the final results in Figure 5. We denote the four kinds of data as
passenger demand (P), crowd outflow (C), meteorological data (M),
and time data (T). We denote STAR-P, STAR-C, STAR-M, STAR-
T and STAR-TM to represent our model excluding the passenger
demand data, crowd outflow data, meteorological data, time data
and meteorological plus time data. From Figure 5, we can find that
excluding each kind of data can reduce the prediction performance.
There is no doubt that passenger demand is the most crucial data in
our model as excluding it from our model increases 9.6 in RMSE
and 5.1 in MAE. This increase suggests that there exists a strong
correlation between the historical and current passenger demand.
Following the passenger demand, crowd outflow is the second most
important data which can result in 11.1% and 8.09% improvement in
prediction performance.

In order to provide a direct insight of our model performance, we
choose four regions (region 3, region 7, region 14 and region 15
denoted in the dataset) as example to compare the true passenger
demand and predicted passenger demand by our model. We utilize
the latest 132 hours as testing time period. The comparison results
are shown in figure 4. From the figure, we can observe that our model
successfully capture the rise and fall of the true passenger demand.
The peak time interval in our predicted trend can basically match
the true passenger demand, which confirms the value of practical
application in real life. Although the difference between predicted
demand and real demand fluctuates over time, it does not show an
abnormally large value which confirms the stability of our model.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Mean Absolute Error (MAE) (a) and Root Mean Square Error (RMSE) (b) comparison between different number of
filters in first convolutional layer; Mean Absolute Error (MAE) (c) and Root Mean Square Error (RMSE) (d) comparison between
different number of neurons in first fully connected layer;Mean Absolute Error (MAE) (e) and Root Mean Square Error(RMSE) (f)
comparison between different learning rate; Mean Absolute Error (MAE) (g) and Root Mean Square Error (RMSE) (h) comparison
between different kernel size of filters in convolutional layer

Table 2: Comparison of different methods. RMSE represents
root mean square error. MAE represents mean absolute error.

Method RMSE MAE

HA 23.215 2.33
ARIMA 22.147 2.28
SARIMA 21.943 2.24
OLSR 21.570 2.16
MLP 21.628 2.18
DBN 21.613 2.191
LSTM 21.531 2.171
CNN 20.767 2.166
CNN-SVR [6] 20.911 2.134
LSTM+CNN 20.353 2.113
DMVST-Net [21] 20.102 2.078
Ours 18.856 1.931

7 CONCLUSIONS
In this paper, we propose a spatial-temporal dynamics based rein-
forced learning model for citywide passenger demand prediction
which can solve the imbalance problem between supply and demand.
Our model jointly incorporates various data into one framework and
select the most distinctive information zone from historical observa-
tion. The selected information zone can introduce strong spatial and

temporal correlations while avoiding to be influenced by weak or
negative correlations. Extensive experiments on a real dataset show
that our model outperforms a series of state-of-the-art method by
reducing RMSE and MAE by 9.2% and 10.8%, respectively. Further-
more, our model can be easily extended to other prediction problems
with complex relationships between various features. As part of our
future work, we will explore word of mouth information such as
tweets posted at real-time online as the extra hint for the prediction.
Additionally, we hope to design an advanced data organization and
information zone selection mechanism which can traverse each pos-
sible combination of region and time window and select the global
optimal one efficiently. Furthermore, it is also worth to designing a
user-friendly mobile interface for providing a convenient service for
both passengers and drivers.
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