Polyglot CerberOS: Resource Security, Interoperability and
Multi-Tenancy for loT Services on a Multilingual Platform

Sven Akkermans

imec-DistriNet, KU Leuven, Celestijnenlaan 200A, Leuven

3001, Belgium
sven.akkermans@cs.kuleuven.be

Wouter Joosen

imec-DistriNet, KU Leuven, Celestijnenlaan 200A, Leuven

3001, Belgium
wouter.joosen@cs.kuleuven.be

ABSTRACT

The Internet of Things (IoT) promises to tackle a range of environ-
mental challenges and deliver large efficiency gains in industry by
embedding computational intelligence, sensing and control in our
physical environment. Multiple independent parties are increas-
ingly seeking to leverage shared IoT infrastructure, using a similar
model to the cloud, and thus require constrained IoT devices to
become microservice-hosting platforms that can securely and con-
currently execute their code and interoperate. This vision demands
that heterogeneous services, peripherals and platforms are provided
with an expanded set of security guarantees to prevent third-party
services from hijacking the platform, resource-level access control
and accounting, and strong isolation between running processes to
prevent unauthorized access to third-party services and data. This
paper introduces Polyglot CerberOS, a resource-secure operating
system for multi-tenant IoT devices that is realised through a re-
configurable virtual machine which can simultaneously execute
interoperable services, written in different languages. We evaluate
Polyglot CerberOS on IETF Class-1 devices running both Java and C
services. The results show that interoperability and strong security
guarantees for multilingual services on multi-tenant commodity IoT
devices are feasible, in terms of performance and memory overhead,
and transparent for developers.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Software and its engineering — Embedded software; - Com-
puter systems organization — Embedded and cyber-physical
systems;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiQuitous 18, November 5-7, 2018, New York, NY, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6093-7/18/11...$15.00
https://doi.org/10.1145/3286978.3286997

59

Bruno Crispo

imec-DistriNet, KU Leuven, Celestijnenlaan 200A, Leuven

3001, Belgium
University of Trento, Via Sommerive 9, I-38123 Trento,
Italy
bruno.crispo@cs.kuleuven.be

Danny Hughes

imec-DistriNet, KU Leuven, Celestijnenlaan 200A, Leuven

3001, Belgium
danny.hughes@cs.kuleuven.be

KEYWORDS

Internet of Things, Services, Interoperability, Security

ACM Reference Format:

Sven Akkermans, Bruno Crispo, Wouter Joosen, and Danny Hughes. 2018.
Polyglot CerberOS: Resource Security, Interoperability and Multi-Tenancy
for IoT Services on a Multilingual Platform . In EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous ’18), November 5-7, 2018, New York, NY, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3286978.3286997

1 INTRODUCTION

The Internet of Things (IoT) aims to reduce costs for business,
improve services for society, tackle environmental challenges and
foster economic growth by connecting the digital and physical
worlds. These different worlds are being connected through the
integration of smart networked Things to the Internet to generate
data and provide services to multiple parties [15]. The IoT market
is rapidly embracing more open innovation where knowledge and
resources are shared. This demands more collaboration with a wider
variety of participants in the IoT. Siloed approaches simply cannot
capture the full value potential of networking all types of services
and smart devices in the IoT [11, 23].

State-of-the-art IoT research offers poor support for using con-
strained devices in the role of microservice-hosting platforms or
with very different software and hardware modules [19, 21, 26].
Thus, IoT developers still need to develop custom services for spe-
cific platforms using dedicated technologies providing little interop-
erability. Similarly, IoT infrastructure providers cannot share their
devices while maintaining full accountability of their resources.
In addition, ensuring secure IoT programs requires custom secu-
rity approaches that are not general across technologies. These
issues make the development of secure multi-tenant IoT devices
difficult and form a significant roadblock to achieving commercial
large-scale IoT deployments.

To overcome this roadblock, we introduce Polyglot CerberOS,
a resource-secure multilingual Operating System (OS) for execut-
ing multi-tenant interoperable services on constrained IoT devices
that delivers instruction-level monitoring and fine-grained resource

https://doi.org/10.1145/3286978.3286997
https://doi.org/10.1145/3286978.3286997

MobiQuitous *18, November 5-7, 2018, New York, NY, USA

management through a virtual machine (VM) running on the de-
vice. Polyglot CerberOS extends our previous work [2] which fo-
cused primarily on providing resource security, the accounting and
contractual limitation of service resource use, for Java-based IoT
services. Polyglot CerberOS provides isolation, resource security
and secure interactions between all services on a device, including
those provided by the platform, peripherals and third-party sources.
To further promote use by multiple parties, Polyglot CerberOS
compiles services in different languages to a common interme-
diate representation (IR) language ready for execution. Finally, a
microservice message bus provides interoperability between hetero-
geneous services. The core idea of the lightweight microservice bus
is to enable flexible and transparent interactions using standards-
based serialisation and viewing everything, user programs, device’s
functions and peripherals, as addressable services.
Summarized, the key contributions of Polyglot CerberOS are:

(1) Ensuring memory isolation, resource security and secure
interactions between services, peripherals and platforms.
(2) A paradigm and toolchain that can deploy multiple services
in different programming languages on the same platform.
(3) Providing secure interoperability between services, periph-
erals and platforms through a microservice message bus.
(4) Transparency for developers who can use their preferred pro-
gramming languages and existing libraries while obtaining
high-level language benefits and interoperability.

We implemented a prototype of Polyglot CerberOS on two dis-
tinct platforms: a representative IoT platform based on the AT-
megal284P, an IETF Class-1 device [7], and Linux-based devices
such as a Raspberry Pi or server. Polyglot CerberOS is modular
and can work stand-alone but also allows the use of discrete assets
from other OSs, such as timers, scheduling and networking. Our
experimental evaluation proves that the performance overhead and
energy impact of running secure interoperable services written in
different programming languages on Polyglot CerberOS are low,
making it feasible for real-world IoT scenarios with Class-1 devices.

The remainder of this paper is structured as follows: Section
2 gives the background and motivation for microservices on IoT
devices, Section 3 discusses related work, Section 4 describes the
design and architecture of Polyglot CerberOS, Section 5 explains
the implementation, Section 6 presents the evaluation and Section
7 concludes and proposes future work.

2 SECURE MULTI-TENANT IOT PLATFORMS

Contemporary IoT networks are appearing in many different forms
and expanding in scale from smart buildings to smart cities. At the
same time, the IoT landscape is becoming more difficult to navigate
with many disparate technologies and a notable lack of security,
interoperability or support for multi-tenancy. This prevents stake-
holders from deploying services on shared platforms [19, 21, 26].
As such, there is an unclear Return-on-Investment (Rol) for large-
scale IoT deployments, which demand significant investment in
infrastructure and staff to deploy, manage and maintain the system.

Supporting secure multi-tenant IoT deployments allows providers
to increase their Rol. Running multiple microservices on IoT plat-
forms satisfies more stakeholders and therefore minimizes the costs
arising from the deployment, management and maintenance of

Sven Akkermans, Bruno Crispo, Wouter Joosen, and Danny Hughes

60

devices. IoT infrastructure providers can specialize in hardware
deployment and lease out resources on underutilized devices to
third parties. Software developers can thus focus on their core com-
petencies while still having access to scalable and secure hardware
and software solutions. Cloud computing demonstrates the attrac-
tiveness of a model where the same platforms are shared between
multiple stakeholders. Realizing secure multi-tenant IoT platforms
requires support for strong security mechanisms that can isolate
concurrent services and perform fine-grained accounting of and
control over resource access as well as providing secure interactions
between the heterogeneous software and hardware in the IoT.

Resource Constraints. 10T networks consist of many different
types of devices from battery-powered IETF Class-1 devices [7] with
10KB RAM and 100KB ROM through gateway-class devices such
as Raspberry Pi’s to desktop computers. The resource constraints
and battery limits of many IoT devices has driven the development
of lightweight OSs such as Contiki, TinyOS and RIOT [4, 13, 20].
These OSs are inherently single user and do not provide memory
protection or platform resource management. They also require the
use of a specific programming language and limit interoperability.
In contrast, a microservice-centric IoT OS would execute efficiently
on the constraints of Class-1 embedded devices while securing the
execution and resource usage of coexisting services and tackling the
problem of language heterogeneity and interoperability between
heterogeneous systems.

Security for Microservice-Hosting Platforms. Services need
to be isolated from each other and provide guarantees on resource
access and use, as motivated by [2]. Key resources, such as mem-
ory, energy and peripherals, require management so that services
run safely and consistently on a node without mutual interfer-
ence. CerberOS secures services on constrained platform via two
mechanisms: (i) explicitly linking services to a service contract that
describes their allowed capabilities on the device and (ii) instruction-
level monitoring that allows fine-grained device resource manage-
ment through per-service resource buckets that track the resource
usage and determines the allowed resource access. These mecha-
nisms secure Java services in CerberOS, providing a software se-
curity solution for Class-1 IoT devices. Polyglot CerberOS inherits
these benefits by expanding upon this previous work.

The Problem of Language Heterogeneity. The IoT landscape
features a wide range of communication protocols, programming
languages, OSs and middleware [3]. Commonly, platforms require
specific methodologies to develop and deploy services and the user
needs to adjust accordingly. Different methodologies mandate the
use of different programming languages which may not offer the
same safety guarantees, interoperability capabilities or program-
ming model. Beyond burdening programmers with the need to
learn new languages, language heterogeneity inhibits the shared
and transparent reuse of code on multiple platforms. Likewise, de-
velopers have no common foundation of security, memory safety
or platform independence. This is a major impediment towards the
secure, shared and transparent use of services in the IoT.

Interoperability between Heterogeneous Services. A core is-
sue for the transparent use of heterogeneous services is how they

Polyglot CerberOS

should interoperate across platforms and languages. To do so, ser-
vices in the IoT need to exchange data and interact with each other
transparently. This implies a common communication format or in-
teraction pattern such that no party needs to be concerned with the
specific implementation of the other. Achieving this for the many
heterogeneous systems in the IoT to enable flexible multi-tenant
platforms remains an open challenge [28].

3 RELATED WORK

This section provides an overview of research related to security,
multilingualism and interoperability.

Security for Heterogeneous Programs. Security for IoT plat-
forms is steadily advancing but often relies on dedicated hardware
support or does not consider multi-tenancy or heterogeneous ser-
vices. We discuss recent work that proposes security solutions. The
Security MicroVisor [12] is a middleware which provides memory
isolation and custom security operations using software virtuali-
sation and assembly-level code verification. It is a pure software
solution that utilizes a layer of indirection and code verification
to realise a trusted computing base for constrained IoT devices.
This is a lightweight solution with minimal overhead, but, in con-
trast to Polyglot CerberOS, the Security MicroVisor operates at a
lower level and thus lacks the semantic insights to secure hetero-
geneous services or their resource access. For example, it cannot
limit peripheral access to contractually agreed bounds.

A source of inspiration for Polyglot CerberOS is Sulong [24], an
interpreter for LLVM-based languages that run on the Java Virtual
Machine. Similarly to Polyglot CerberOS, Sulong leverages an effi-
cient virtual machine and provides memory safety for previously
unsafe languages such as C. However, Sulong does not consider
constrained devices, the IoT environment or other security aspects
such as resource guarantees. In contrast, Polyglot CerberOS focuses
specifically on the IoT and considers resource security. Sulong is
an example of the active research in exploring the potential of
interpreters to secure languages.

Multilingual Systems. There is significant interest in systems
which can flexibly work with multiple languages to unburden devel-
opers from programming constraints. Brunklaus et al. [9] propose
the architecture of a virtual machine to execute multiple languages
by defining a service with an interface generic enough to be used
by many languages. As with Polyglot CerberOS they leverage a
Java Virtual Machine, support two programming languages and
introduce similar mechanisms such as generic components and
interfaces. However, they do not focus on constrained devices, pro-
vide interoperability or solve issues beyond multilingual service
execution such as controlling their resource access.

Mote Runner [10] is a multilingual virtual machine for con-
strained devices. They likewise target multiple programming lan-
guages and embedded hardware platforms and note the benefits
of using high-level programming languages and virtual machines
for easing development and code portability. In contrast to Poly-
glot CerberOS, they only support strictly-typed languages, such as
Java and C#, and use their own bytecode as an IR and strictly limit
language features such as strings and multi-dimensional arrays.

61

MobiQuitous ’18, November 5-7, 2018, New York, NY, USA

Interoperability for Constrained Devices. Interoperability is
a common issue in any evolving technology landscape and es-
pecially so in the IoT with many different parties, products and
vendors. LooCI [16] is a component and binding model for WSNs
which promotes loose coupling of components using an event bus.
Comparable to Polyglot CerberOS, LooCI uses a loosely-coupled
globally-typed event bus to implement service bindings in con-
strained environments. LooCI achieves a good performance and
minimal footprint but it does not support multiple languages on the
same device, only providing consistent messaging between C and
Java services on different platforms, and does not natively monitor
or secure their interactions or resource use.

Kolbe et al. [18] also note the interoperability issues in the IoT
and propose PROFICIENT, a productivity tool that enables the
publication of IoT data and services with minimal effort. Similarly
to Polyglot CerberOS, they leverage open standards to support IoT
data/service providers in wrapping proprietary interfaces to join
an open IoT ecosystem. This is a top-down approach and requires
the generation of an IoT gateway agent that can be deployed on
a device at the edge of the “Web of Things’ to create a managed
interoperable system. In comparison, the bottoms-up approach of
Polyglot CerberOS relies on a common message bus on all platforms
that uses open standards to let heterogeneous services interoperate.

Gap Analysis. State-of-the-art research offers efficient solu-
tions to specific aspects of secure multi-tenant platforms such as
performance [9, 10] or memory safety [12, 24] but all require either
custom solutions; specific to certain technologies, neglect resource
security, are unsuited to constrained IoT devices and/or limit the
possible programming languages or service interoperability. Table
1 compares properties of programs in key IoT languages to pro-
grams running in the CerberOS IR. To the best of our knowledge,
current research offers no way to transparently provide isolation
and resource security for (i) heterogeneous devices, peripherals and
services, (ii) services in different programming languages and (iii)
securely interoperating these entities.

4 DESIGN

This section describes the design of Polyglot CerberOS and how it
tackles the challenges of secure multi-tenancy for the IoT. The ap-
proach of Polyglot CerberOS is based on an intermediate language
representation (IR) and a Virtual Machine (VM). A VM with IR are
the two core elements that together create a secure interoperable
multilingual multi-tenant OS. This section explains how security is
achieved between heterogeneous interoperating entities, followed
by how a multilingual platform can be designed. Finally, we discuss
how to interoperate heterogeneous user and device services in an
extensible and transparent manner.

4.1 Securing Heterogeneous Interoperating
Services

Secure service deployment, isolation and resource guarantees are
critical security aspects in the design of a multi-tenant platform
for hosted microservices. Extending the previous version of Cer-
berOS [2], the design leverages a VM and IR to perform instruction-
level monitoring and control of resource use.

MobiQuitous *18, November 5-7, 2018, New York, NY, USA

Sven Akkermans, Bruno Crispo, Wouter Joosen, and Danny Hughes

Table 1: Comparison properties of programs in programming languages in the IoT.

Memory Safety Resource Security Multilingual Support

Interpreted Impact Constrained Platforms

Native C No No No No Low
Native Java Yes No Limited (JNT) Yes High
CerberOS IR Yes Yes Yes Yes Medium
Service loading occurs over a trusted channel: either through a Device
physical flasher or wirelessly over an AES-128-CCM secured net- Il Canguage service ||)
work connection. On loading, services are registered with a resource |
contract, which is also loaded over a secure channel, and the asso- Device ‘ Guest Language]
ciated buckets. This contract is configured by an authorized party, Support Package
e.g., the infrastructure owner, during deployment. The contract and . . - | accesses 5
what it allows for should be agreed upon beforehand between the ([Native © Service] ‘ Polyglot CerberOS ’
. Runtime
device provider and the service deployer. For instance, it can allow
i i i imi i Unmonitored -
a service t'o access only certain p?rlpherals and limit bandwidth montto! Virtual Machine + Wonitored
consumption. As such, every service has a linked contract and as- W access
sociated buckets that are monitored at runtime. Standard runtime, h 4 [Microservéce Message] -/
resource access and service interactions must be secured so that Board Support Package | 2 s]
. . . 8 Service Resource)
a service may not access private data from others, nor deplete its 5l Accounting
. Provides H
resou.rce allocation due to sp.urlous invocations. Ipteractlons may access to § Con[racts5 :
not circumvent the VM and its resource accounting and thus are ® ‘
also monitored at runtime. Se‘gce R7Sso;rces
. o
Figure 1 shows how Polyglot CerberOS secures both user and (Hardware/Software) [Board Support Pac.kage] z
system services and contrasts it to resource access in standard sys- | Memory | CPU | :Jg:sietz ?:,.
tems. The architecture operates through a system of monitored . Dov ;V 8
virtual message signatures, named stubs, that are subject to access | Network | Peripherals) (H;\g:\,zrjssg#x:;) &
control and monitoring, as explained in the next sections. This pre-
vents attackers from making unmonitored calls to other services or (A) | Memory CcPU |
passing dangerous data.l in messages (.e.g., to cause a buffer overflow | Network ||Peripherals
attack). The stubs are implemented in the Polyglot CerberOS run-
time, which provides access to the CerberOS functionalities, and (B) -~

in the language-specific Guest Language Support Package (GLSP),
which provide additional support for languages as needed. Service
calls are secure since the GLSP maps them to either the default
Polyglot CerberOS runtime or to native code stubs, so all calls are
stubs which are checked before execution. Service calls for interac-
tions pass messages, which contain data for actions and an address,
and are also secured. Since messages are serialised using common
standards, messages can be parsed by the bus to ensure they re-
quest contractually allowed actions and to account for the service
resource usage. Messages that cannot be parsed are blocked. Hence,
an attack cannot hide malicious data in messages. For instance, a
message that would cause a write to restricted memory is parsed,
checked and blocked from execution.

4.2 Multilingual Platform Architecture

Requirements on Guest Languages. A general-purpose pro-
gramming language may vary greatly in syntax, semantics, type
system, core libraries and intended application areas [1]. Specifi-
cally, languages provide different properties to programmers, e.g.,
memory safety, execution methodology, runtime overhead, as Table
1 demonstrates. The multilingual platform design of Polyglot Cer-
berOS requires a minimal set of core capabilities of a service in a
guest language so that it can be used in a transparent, interoperable

62

Figure 1: Comparison of how a service accesses device re-
sources for a standard OS (A) and Polyglot CerberOS (B).

IoT application context. The service has to be able to pass data to
the Polyglot CerberOS VM using a (i) standard service addressing
method and (ii) language-independent serialisation scheme.

Guest Language Platform Independence. Polyglot CerberOS
supports languages on different platforms by compiling the lan-
guage to the IR which it interprets, monitors and executes in native
code. The difficulty lies in language dependencies and compiler
constraints, which may be unsuitable for constrained platforms.
For instance, a C program requires an extensive set of supporting
libraries. The design of Polyglot CerberOS introduces a general way
of solving these dependencies to achieve platform independence
for languages that can be compiled down to the IR.

A system of monitored virtual message signatures, called stubs,
are subject to access control and monitoring and map to an efficient
native implementation to generically solve dependencies [6]. A lan-
guage executes as normal whether or not the stubbed dependencies
in the IR are implemented at the native code level. The design stubs
dependencies on the device with the GLSP that is present on the

Polyglot CerberOS

device. These dependencies map to an implementation in native
code to perform the desired action.

Toolchain Design. The Polyglot CerberOS toolchain compiles
guest languages to the executable IR on the VM. Importantly, the
toolchain is transparent and flexible: it starts from a standard IDE
which compiles the language to the IR. The design solves required
dependencies by providing knowledge of the stubbed dependencies
to the toolchain through the GLSP. The service in the language
can then be compiled with the stubbed dependencies by the default
compilation tool. The burden is not on the programmer, who is
agnostic to the compilation, or on the compiler, which is potentially
third-party and unmodifiable, but on the toolchain which provides
the GLSP which stubs all necessary dependencies, either to existing
runtime or in native code. The toolchain links the compiler to the
GLSP and ensures the end results is a correctly compiled program
in the IR which is linked to the stubbed dependencies. Figure 3 in
Section 5 provides a visual example.

4.3 Microservice Message Bus

As argued in Section 2, microservices from multiple parties need
to easily interoperate across platform and language barriers to
promote their flexible and transparent use. A message bus is a
common communication and integration system for connecting
multiple components [16, 22]. A bus enables services to interact
with each other while maintaining loose coupling.

Messaging Approach. The message bus has four core goals: it
should be lightweight, general, transparent for user and device ser-
vices and message-oriented. The design relies on a minimal set of
assumptions on the guest languages and constrained heterogeneous
platforms. We assume that all services are able to build a message
using a supporting library, i.e., the GLSP, and pass it to the runtime.
To enable transparency and interoperability, messages are subject
to (i) a common data serialisation scheme and (ii) a standardised
addressing scheme. Accordingly, messages include the address of
the recipient (i.e., the addressed service) and the serialised data
needed to perform the desired operation. The message is passed to
the message bus of the platform and interpreted. As discussed in
Section 4.1, since messages are serialised using common standards,
they can be checked for safety. The bus forwards it to either local
services or remote services, depending on the address. For device
services, the message is interpreted and the requested action un-
dertaken (e.g., actuation or producing a temperature sensing). For
user services, the message is put into a queue and the user service
is notified, which can then retrieve and handle the message using a
supporting library to deconstruct the message.

Standardised Serialisation and Addressing. In light of the
requirements, a lightweight standardised data format is necessary
that serialises data to enable useful interactions between services.
The design adopts CBOR [8], a binary data serialisation format with
small code and message sizes and a focus on extensibility. CBOR is a
standard proposed by the IETF and specifically designed for the fast
evolving constrained IoT landscape. It is based on the successful
JSON data model and hence allows for easy transformation from
and to that format by a resource-rich back-end.

63

MobiQuitous ’18, November 5-7, 2018, New York, NY, USA

Services need to be uniquely addressable to correctly transmit
messages to the intended recipients. The design includes the IETF
standard COAP [25] which is a specialized web transfer protocol
for use with constrained nodes and networks in the IoT. COAP
provides an URI scheme for identifying and locating resources; here
equivalent to services. Considering device functions, peripherals
and user services as COAP resources gives a unique COAP-URI
based on the host name, the network (IP) address of the device, and
the path of the service. The COAP-URI is used to uniquely address
the services present on devices and in the IoT infrastructure. COAP
integrates with many data formats, including CBOR and JSON, and
is designed with resource discovery and security in mind.

Figure 2 shows how the microservice message bus works. Ser-
vices view a single unified microservice message bus that operates
across different networks, platforms, types of services and lan-
guages. Each service has an identifier for addressing, a COAP-URI,
and each user service has a service queue for receiving data. User
services interact with the message bus and other services through
the GLSP, passing CBOR-formatted messages with address infor-
mation to the bus and retrieving messages from their queue.

5 IMPLEMENTATION

This section details the implementation of the design. At its core,
Polyglot CerberOS implements an IR and VM that are extended to
create a secure interoperable multi-tenant multilingual OS. Specifi-
cally, a micro Java VM serves as the interpreter and Java Bytecode
as an IR. Polyglot CerberOS currently supports both services in C
and Java. This section goes further into the implementation details
important to the challenges outlined in Section 2.

Secure Interoperating Services. Polyglot CerberOS secures ser-
vices and their interactions by monitoring calls and messages, ex-
tending the security mechanisms of [2]. The monitored virtual
message signatures are subject to access control and monitoring
so that the content of the messages is interpreted and properly
accounted and no data or instructions are executed that break re-
source security guarantees. The VM uses internal data structures to
implement resource contracts and buckets. When user services are
loaded, the device initializes these structures based on the contract
agreed upon between user and device owner. With each passed
message, the service contract and resource buckets are checked
for violations based on the content of the message. If the message
violates the contract, it is not executed but handled which can
be ignoring it, removing the service or changing the message. If
the message instruction is to be executed, the resource buckets
are adjusted with the amount of consumed resources to support
accounting.

Transparent Multilingual Services. The minimal language
requirements, defined by Section 4.2, states that services can pass
messages that contain an address and CBOR data, which contains
the instruction for the recipient. Depending on the language, this
can be in the form of function calls with arguments, supported by
the GLSP. For instance, a Java service calls a GLSP stub to build a
CBOR data array containing a string denoting a command and an
integer array serving as arguments to that command. It then passes
this message and an address as a string, again using the GLSP, to

MobiQuitous ’18, November 5-7, 2018, New York, NY, USA

from
_'I' " notifies
—————— -1 === =.|
" Servi b, "o W e
I'Service Queue,! |ass I'Service Queue,! |Fass
Voo o o ! [msgto . 1 [msgto

COAP-URI COAP-URI

Sven Akkermans, Bruno Crispo, Wouter Joosen, and Danny Hughes

Node

Retrieve msg
from ,;z2=

=

" servi Wi,
IISerwce Queue, ass

=y
! - 1

i'Service Queue,! |Pass

' msg to

- o= =

COAP-URI

—-— e o =

COAP-URI

msg to

- ===
o o =

Messages are CBOR-encoded and addressed to other services

Microservice Message Bus ===

Jt pass data r‘ pass data
y

) Software) Software
Peripheral Function Peripheral Function
Service Service Service Service

[|coap-url[| [[coap-url]| [lcoap-url[| [[coar-uri]|

e

LI | ‘k T

t pass data L pass data t 1

o L) 4 1

) oftware 1 Software |
Peripheral Function 1y Peripheral Fungion 1
Service Service : : Service Service :
[[coap-uri]| [[coar-uri[| | 14 | [[coap-url] [[coap-uri[] | 1
1y 1

Figure 2: Overview Microservice Message Bus showing a unified communication paradigm across nodes and networks.

the message bus of the platform. The bus monitors the message and
checks the content. If the message is non-local, it is first transmitted
to the microservice message bus of the remote device. After, the
message is either placed by the bus into the addressed service’s
queue, if the message was addressed to another user service, or
executed as a command, if addressed to a platform service. For
demonstration purposes, we implemented Java, since it is native to
the IR, and C, since it is a challenging and representative example
of an unsafe programming language in the IoT. Critically, languages
are supported by a GLSP to build CBOR messages, making all ser-
vices equally expressive by leveraging the CBOR format.

Polyglot CerberOS hosts services in multiple languages by com-
piling them to the IR, Java bytecode. Java is compiled with the
default Java compiler, and C with LLJVM!. Java services and their
dependencies are native to the interpreter, a Java VM, and are thus
compiled and linked with the default Polyglot CerberOS runtime
directly. The LLJVM tool is agnostic to Polyglot CerberOS’ VM
and depends on a full Java runtime, C library support and requires
its own LLJVM runtime support. It compiles .c files to .class
files and expects a runtime which, by default, measures in the hun-
dreds of kilobytes, which is unsuitable to the target IETF Class-1
devices. Hence, C with LLJVM is an example of a third-party com-
pilation which requires more stubs. For instance, libc. java and
Memory . java are necessary for LLJVM to respectively provide stan-
dard library features and a managed memory space. The GLSP for
C stubs libc. java to the default runtime and stubs Memory. java
to native code implementations to match the memory management
of LLJVM in the VM. Stubbing to the default runtime enables code
reuse, stubbing to the native code allows for efficient guest language-
specific implementations as necessary. Stubs avoid implementing
the entire runtime and make the execution of LLJVM-compiled
C services on constrained devices possible. Figure 3 provides an

1A set of open-source third-party tools and libraries for running low level languages
on the JVM, available: https://github.com/davidar/lljvm. Last Access: September 2018.

64

example for C and Java and their compilers and demonstrates how
the system of monitored virtual message signatures maps down
to an efficient native code implementation, solving the dependen-
cies. After compilation, the services in IR are further optimized and
loaded on the device.

Microservice Message Bus. The microservice message bus of

Polyglot CerberOS implements two standards, CBOR [8] and COAP [25],

to enable data serialisation, addressing and transparent interactions
between services. Service messages are built in the CBOR format
through the GLSP and addressed, following the COAP-URI scheme.
Services pass messages to the bus and have a service-specific mes-
sage queue on the bus they access through the GLSP. The message is
delivered to local or remote services, depending on the address. For
device services, the message is parsed to undertake the requested
action, e.g., a temperature sensing for a peripheral. For user ser-
vices, the message is put in the service’s queue in the CBOR format
and the service is notified. The user service can then retrieve the
message from the queue and extract the data using CBOR support
provided by the GLSP. Listing 1 shows how a messaging C service
in the implementation constructs a message and gets an integer
value through the GLSP (specified in 1ib_uj_library_c.h) even
though it was compiled with an agnostic third-party tool.

#include "lib_uj_library_c.h"
int main () {
// IP address of the service host.
char dest_addr[] "2a02 ::d8bc";
// Example COAP-URI of the addressed
int srvIld 5;
// The service interface to be executed.
char func[] "send_packet";
/The data to be transmitted.
unsigned char data[] = {1,2,3,4,5,6,7,8,9,10};
// Construct CBOR Message .
unsigned char cbor_msg create_cbor_msg (func,
// Passing the message to the device.
pass_msg(dest_addr, srvId, cbor_msg);

service .

data) ;

https://github.com/davidar/lljvm

Polyglot CerberOS

Compilation Platform

User Services Sf‘u_l?.s to Stubs to

{service.c, " YGuest Language® YPolyglot

service.java, ...} J] & Support Package | [CerberOS
(GLSP) Runtime

i { libcStub.java, {String.java,
,I{J &Zen:l;?/?:‘;:s MemoryStub.java, Bus.java,
libc.java, ...} -} :) :

1
A 4

Toolchain
C Compiler: C -> IR
Java Compiler: Java -> IR

Device

[luser service (in IR)]}

1
v ¥

Compiled GLSP

Compiled Polyglot o
CerberOS Runtime %™

. makes calls to

Virtual Machine

Stubbed GLSP o

Stubbed Polyglot +"Maps to
CerberOS Runtime

Board Support Package

Device Services (Peripherals, Network, ...)

Figure 3: Overview and example of the compilation and ex-
ecution of a service in two languages.

// Retrieves an int from the queue when notified.
int value = retrieve_int_from_queue ();
return 0;

Listing 1: Example of a messaging C service.

6 EVALUATION

This section repeats the evaluation done by [2] to demonstrate
Polyglot CerberOS as a resource-secure multi-tenant platform with
multilingualism and enhanced interoperability. During evaluation,
we compare Polyglot CerberOS implementations of sample IoT
services to native implementations on plain Contiki and implemen-
tations on our previous work, henceforth called Monoglot CerberOS.
Previous benchmark results for Monoglot CerberOS showed that (i)
memory impact is within feasible bounds for IETF Class-1 device
constraints, (ii) execution performance and battery lifetime are fea-
sible for IoT services that do not do compute-heavy tasks and have
sampling rates higher than 10 seconds and (iii) services in bytecode
significantly reduce the amount of needed ROM, giving benefits in
deployment energy cost and time but require more RAM at runtime.
Summarized, Monoglot CerberOS achieved secure multi-tenancy
for Java services on IoT platforms in non-real time embedded IoT
use case scenarios.

Polyglot CerberOS is evaluated on pPnP, a representative IoT
platform [27] running Contiki 3.0 [13] on the ATmega1284P board,
an 8-bit microcontroller with 128KB flash, 16KB RAM and clocked

65

MobiQuitous ’18, November 5-7, 2018, New York, NY, USA

Table 2: Memory cost in ROM and RAM in bytes of Polyglot
CerberOS and the optimised LLJVM runtime compared to
Monoglot CerberOS and the default LLJVM runtime.

ROM RAM AROM ARAM
Monoglot CerberOS 64458 4616 - -
Polyglot CerberOS 80376 8642 +24.7% +87.2%
Default C Runtime >500KB >2000KB - -
Optimised C Runtime = <10KB <2KB RAM - -

at 10MHz. yPnP provides an efficient IP network stack and access
to features such as timers and an I/O API Three core benchmark
services are evaluated:

Sensor The sensor service reads a sensor measurement from
a peripheral, using the 12C bus.

Storage The storage service writes a 50-byte array as a block
to flash memory.

Network The network service sends a 50-byte payload packet
to a gateway.

These services determine how Polyglot CerberOS performs for
typical IoT tasks. Note that the evaluated services are the same in
function and output as the ones from [2], but differ in program-
ming since user services now access device services (e.g., network,
sensors) through a monitored message passing paradigm, as Listing
1 demonstrates.

6.1 Memory Analysis Polyglot CerberOS

Memory Size Firmware. Polyglot CerberOS requires additional
ROM and RAM for supporting interoperability and multilingualism.
At this stage of research, we have not yet focused on optimizing
the firmware size but added the design alongside existing, some-
times deprecated, mechanisms. Optimisation is a target of future
work. The memory size evaluation shows that Polyglot CerberOS
remains reasonable despite the added overhead. Table 2 presents
the analysis. Polyglot CerberOS is designed to integrate with other
platforms and to be modular, where, for instance, runtime support
for guest languages (i.e., the stubs) can be removed or added at
flash time. Since the size of the GLSP in bytecode and native code
stubs varies depending on the language and implementation we do
not consider this separately but compare Polyglot CerberOS with
support for Java and C as guest languages to Monoglot CerberOS.
Unoptimized Polyglot CerberOS requires around 16KB ROM and
4KB RAM for the support of additional guest languages and for the
implementation of the microservice message bus.

Table 2 shows the memory cost of the full C runtime for the
default compilation tool and compares it to an optimized imple-
mentation containing just the essential parts. Since stubs and their
implementation depend on the language and its compiling tool,
they may be implemented at either the bytecode level or at the
native level, with different implications on size. Here, a significant
part of the ROM and RAM savings in the optimised C runtime are
due to stubbing the memory management of an unsafe language at
native code level. Related research [5] shows similar sizes for a VM
and embedded implementations of C libraries.

MobiQuitous *18, November 5-7, 2018, New York, NY, USA

2500

1981

1894

2000

1684

545
429

]

404 focd
Sensor

B C Contiki ELF @C CerberOS ELF

500

Network
B Java CerberOS IR

Storage
C CerberOS IR

Figure 4: Service ROM size in bytes for C as Contiki ELF, Cer-
berOS ELF and CerberOS IR and Java as CerberOS IR.

Memory Size of Services. The memory required to run a guest
language service depends on two factors: (i) how the guest language
is represented in the IR, which depends on the compiler, and (ii) the
additional memory required for resource management per service
(i.e., the resource contract and buckets).

We compare four different service formats: a C service with
a native Contiki implementation in the ELF module format, a C
service in a Polyglot CerberOS implementation in the ELF module
format, a C service as an exemplary language compiled to the IR
and a Java service as an example of efficient compilation to the IR
(bytecode). Note that the Contiki implementation differs in coding
paradigm; all other services are implemented through message
passing, whereas the Contiki service sends native messages.

Figure 4 shows the compiled ROM sizes for the three services.
The secured languages are smaller in the case of Java while the
relative sizes of other services varies. The CerberOS services show
the benefit of the message passing model when compared to a
Contiki implementation which blows up the size due to its process
system. Comparing C CerberOS ELF to C CerberOS IR shows the
inefficiency of the compilation tool for some services, where ver-
bose calls add to the overall size. This is particularly acute for the
Storage service, where array construction in the service requires
many redundant calls. Verbose calls can be improved by an opti-
mized compiler or in post-processing of the IR. Overall, this analysis
reveals Polyglot CerberOS can obtain significant size reductions
for services, with the biggest gains apparent for Java services. The
static RAM consumption of services is similar to Monoglot Cer-
berOS, where a service is a thread with a minimal cost of 218 bytes
for its stack. Each service also requires a non-fixed RAM cost for
the contract and buckets. In practice, a service costs between 400
to 900 bytes of RAM, depending on its contract and data structures,
and more for C services due to the redundant stack space require-
ments introduced by the compilation tool. In comparison, a simple
example application in Contiki [13] required 200 bytes of RAM.

Sven Akkermans, Bruno Crispo, Wouter Joosen, and Danny Hughes

66

Time (ms)
0.00 50.00 100.00 150.00 200.00
. 4 79.28
cr (T T 272,00
18.54
76.30
sava IR [[1[TTTITTTTTUCTTCTETTUTTTTAIIN - 269.70
15.32
Bl Sensing [0 Storage Network
Poly/Mono Java Ratio 1.072 1.000 0.971
@/Java IR Ratio 1.039 1.0141 1.210

Figure 5: Execution time in ms of C and Java services and
ratios of Monoglot and Polyglot and C and Java services.

6.2 Polyglot CerberOS Execution Performance

Execution performance of services depends on three factors: (i) the
representation of the service in IR, which depends on the language
and compilation tool, (ii) the overhead of resource management
and (iii) the time overhead of the message passing paradigm.

Figure 5 shows the execution times of interpreted C and Java
services on Polyglot CerberOS graphically and includes a table
showing their ratio as well as the ratio of Java services on Monoglot
CerberOS compared to Polyglot CerberOS. The Polyglot/Monoglot
Java ratio reveals the effect of the message passing paradigm on
execution times for Java services, directly comparing the perfor-
mance of Polyglot and Monoglot CerberOS for the same type of
services. The performance impact is minimal and varies according
to how the Java service is programmed in Polyglot and Monoglot
CerberOS. The ratio of the performance for C in IR to Java for the
benchmark services compares the efficiency of the LLJVM com-
piler to the ideal case Java compiler in representing services in IR.
For regular board access and standard operations (sending mes-
sages, giving commands, getting results), C services are between 1%
and 20% less performant. A similar analysis for computation-heavy
services shows significantly increased overhead (up to a factor 25)
due to many verbose calls caused by the agnostic compiler tool, as
discussed for the memory size of the service.

Overhead Message Passing Paradigm. Interoperability across
platform and language barriers is done by passing standards-based
messages locally or remotely, which requires serialisation of data
and incurs overhead. We measure two types of overhead for the
message passing model: (i) the time required to pass 60 bytes of
data (e.g., an address and command string) to the bus using the
supporting library by a C service and a Java service and (ii) the
time required to encode this 60-byte data array to the CBOR format.
This allows to clearly determine the execution impact.

The time for passing a 60-byte message by the C IR is 0.1675ms,
while for Java this is 0.0909ms. The time required for encoding a
60-byte data array to the CBOR format is 0.1872ms. Compared to
the results of Figure 5, the timing overhead of message passing and
encoding is at least two orders of magnitude lower than overall

Polyglot CerberOS

execution time. This result is on-par with other research [17] and
reveals that performing service operations through message passing
and serialisation is feasible for constrained devices.

6.3 Energy Analysis of Services

Feasibility of software techniques for battery-powered IoT devices
is often determined by the impact on the energy consumption.
Resource security, multilingualism and interoperability are only
interesting in so far that the device can maintain sufficiently long
battery lifetimes. We evaluate this explicitly by repeating the device
energy consumption analysis from [2].

Figure 6 presents the battery lifetime in years for node sampling
rates in seconds for the three benchmark services in native Contiki
C, Cin IR and Java in IR for both Monoglot and Polyglot CerberOS.
The figures shows that the impact on battery lifetime for the new
services on Polyglot CerberOS is reasonable for both C and Java
for sampling rates exceeding 10s. In addition, the difference in bat-
tery lifetime impact between native, monoglot or polyglot services
is small and decreases with the sampling rate as well. The same
exercise for computation-heavy services gives a feasible impact
for sampling rates of up to several hours which is reasonable for
constrained battery-powered devices doing periodic heavy compu-
tations. This result establishes that the main conclusion of [2] still
holds: battery lifetime for IoT services on Polyglot CerberOS are
feasible for services that rarely do compute-heavy tasks and have
sampling rates higher than 10 seconds.

6.4 Discussion

Evaluation shows that implementing an OS based on the design
outlined in Section 4 with multi-tenancy, resource-security, multilin-
gualism and interoperability can be done within the capabilities of
constrained IoT devices. Specifically, Polyglot CerberOS is feasible
for IETF Class-1 devices in terms of memory, both in firmware and
service sizes, and execution performance is reasonable given typical
non-real time IoT use cases with common sample rates of minutes.
The overhead added by Polyglot CerberOS beyond interpretation
is in two areas: (i) the cost of interpretation worsens depending on
how efficiently the service can be represented in the IR due to ver-
bose calls introduced by the compilation tool and (ii) the message
passing paradigm needed for interoperability introduces additional
overhead since data needs to be serialised.

The cost is mainly determined by the first factor and this is di-
rectly influenced by the compilation tool and the IR. Since the used
third-party tool for C-to-bytecode compilation is not optimized
for CerberOS or embedded devices, significant improvements are
possible. The evaluation should therefore be considered to demon-
strate worst-case scenarios. Mainstream computing research such
as Truffle/GraalVM [14] has shown that specific tools suited to their
environment can obtain performance approaching that of native
implementations.

7 CONCLUSIONS AND FUTURE WORK

This paper presented Polyglot CerberOS, the first resource-secure
multilingual OS supporting interoperable heterogeneous services
and multi-tenancy for IETF Class-1 IoT devices. Polyglot CerberOS
facilitates multi-tenant IoT platforms by enabling services to be

67

MobiQuitous ’18, November 5-7, 2018, New York, NY, USA

implemented in multiple languages while providing transparency
for developers, secure interactions and resource control. IoT deploy-
ments can be safely and transparently shared between different
parties since whatever programming language is used, the service
can securely communicate with others and has contractual guaran-
tees on the provision and use of key resources such as computation,
storage, sensors, actuators and energy. For instance; developers can
program services in C and share the same platform as developers
programming in Java while obtaining the same benefits in language
properties (e.g., memory safety), remaining interoperable and being
assured of its contractual resource access and security.

Polyglot CerberOS builds upon our previous work, a resource-
secure OS for sharing IoT devices between Java services, to support
additional languages, interoperability and developer transparency.
Multiple services in different programming languages run on the
same device while maintaining resource security through an ad-
vanced automatic toolchain and standards-based paradigm. Services
are compiled and executed in an IR on the device through a generic
system of monitored virtual message signatures that are subject to
access control and monitoring and mapped to an efficient native
implementation through a virtual machine. Service interoperability
is achieved by generalising device service access through a com-
mon data serialisation format and addressing scheme on top of a
microservice message bus. Evaluation shows the implementation is
efficient even on IETF Class-1 devices, still supporting multi-year
battery lifetimes, without requiring special hardware or software
modules. The contributions of Polyglot CerberOS are (i) ensur-
ing isolation, resource security and secure interactions between
diverse services, peripherals and platforms across multiple program-
ming languages and (ii) secure interoperability and transparency
between these entities across multiple programming languages. In
summary, Polyglot CerberOS provides strong multilingual security
guarantees and transparency to service developers for interoperable
multi-tenant commodity IoT devices.

Since Polyglot CerberOS is a fully fledged OS, plenty of research
challenges remain. Future work on Polyglot CerberOS can be di-
vided into three categories: compilation, interpretation and inter-
operability. A target for improvement is tailoring the compilation
tools of the supported languages so that the compiled version of the
language in the IR is better optimized to the runtime environment
of CerberOS. A dedicated compilation tool or post-processing of
the compiled services can reduce the amount of stubs and avoid
verbose calls. Interpretation and the IR are interesting targets for
improvement since Polyglot CerberOS now uses standard Java
bytecode with minor optimisations. A dedicated IR designed for
embedded devices can unlock the benefits of Polyglot CerberOS
more efficiently as long as it is interpreted. Finally, another op-
portunity is the interoperability mechanism, which for now only
offers point-to-point message passing. Interesting possibilities are
implementing subscription modules such as multicast/anycast on
the message bus and (soft) real-time message guarantees.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU Leuven
and the FWO D3-CPS project.

MobiQuitous *18, November 5-7, 2018, New York, NY, USA

Sensor Service

Sven Akkermans, Bruno Crispo, Wouter Joosen, and Danny Hughes

Storage Service

Network Service

7
6
mn
5 &
o
=
o
-
=
o
3 3
e
; 2
—#&— C Native Sensor —4— C Native Storage —aA— C Native Network 2 5
o
—4+— Java Monoglot Sensor —+— Java Monoglot Storage —+— Java Monoglot Network
C IR Sensor CIR Storage C IR Network !
—— Java Polyglot Sensor —¢— Java Polyglot Storage —— Java Polyglot Network
1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000
~16 min ~3 hours . ~16min ~3hours ~16min ~3hours
Sampling Rate (s)
Figure 6: Battery lifetime in years for node sampling rates in seconds on a log scale for the benchmark services.
REFERENCES and future directions. Future Generation Computer Systems 29, 7 (Sept. 2013),

[1] Anthony A. Aaby. 1996. Introduction to Programming Languages. (1996), 1495.
[2] Sven Akkermans, Wilfried Daniels, Gowri Sankar R., Bruno Crispo, and Danny

=
0

[10

]

[11]

[12]

[13]

[14

[15

Hughes. 2017. CerberOS: A Resource-Secure OS for Sharing IoT Devices. In
Proceedings of the 2017 International Conference on Embedded Wireless Systems
and Networks (EWSN ’:17). Junction Publishing, USA, 96-107. http://dl.
acm.org/citation.cfm?id=3108009.3108023

Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. 2015. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Communications Surveys & Tutorials 17, 4
(2015), 2347-2376. https://doi.org/10.1109/COMST.2015.2444095

Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and Thomas
Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things. IEEE, 79-80.
https://doi.org/10.1109/INFCOMW.2013.6970748

Thomas W. Barr, Rebecca Smith, and Scott Rixner. 2012. Design and Implementa-
tion of an Embedded Python Run-time System. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference (USENIX ATC’12). USENIX Association,
Berkeley, CA, USA, 27-27. http://dl.acm.org/citation.cfm?id=2342821.2342848
Philip A. Bernstein. 1996. Middleware: a model for distributed system services.
Commun. ACM 39, 2 (Feb. 1996), 86-98. https://doi.org/10.1145/230798.230809
C. Bormann, M. Ersue, and A. Keranen. 2014. Terminology for Constrained-Node
Networks. RFC 7228. RFC Editor. http://www.rfc-editor.org/rfc/rfc7228.txt

C. Bormann and P. Hoffman. 2013. Concise Binary Object Representation (CBOR).
Technical Report RFC7049. RFC Editor. https://doi.org/10.17487/rfc7049
Thorsten Brunklaus and Leif Kornstaedt. 2002. A Virtual Machine for Multi-
Language Execution. Technical Report. Programming Systems Lab, Universitat
des Saarlandes, Saarbrucken, Germany. 10 pages.

A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and I. Romanov.
2009. Mote Runner: A Multi-language Virtual Machine for Small Embedded
Devices. IEEE, 117-125. https://doi.org/10.1109/SENSORCOMM.2009.27
Henry Chesbrough. 2017. The Future of Open Innovation: The future of open
innovation is more extensive, more collaborative, and more engaged with a wider
variety of participants. Research-Technology Management 60, 1 (Jan. 2017), 35-38.
https://doi.org/10.1080/08956308.2017.1255054

Wilfried Daniels, Danny Hughes, Mahmoud Ammar, Bruno Crispo, Nelson
Matthys, and Wouter Joosen. 2017. SV - the security microvisor: a virtualisation-
based security middleware for the internet of things. ACM Press, 36-42. https:
//doi.org/10.1145/3154448.3154454

A. Dunkels, B. Gronvall, and T. Voigt. 2004. Contiki - a lightweight and flexible
operating system for tiny networked sensors. IEEE (Comput. Soc.), 455-462.
https://doi.org/10.1109/LCN.2004.38

Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wurthinger, and
Hanspeter Mossenbock. 2015. High-performance cross-language interoperability
in a multi-language runtime. ACM Press, 78-90. https://doi.org/10.1145/2816707.
2816714

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements,

68

[16

(17

[18

=
)

[20

[21]

[22

I
&

[24

[25

[26]

1645-1660. https://doi.org/10.1016/j.future.2013.01.010

Danny Hughes, Klaas Thoelen, Wouter Horr'e, Nelson Matthys, Javier Del Cid,
Sam Michiels, Christophe Huygens, and Wouter Joosen. 2009. LooCI: a loosely-
coupled component infrastructure for networked embedded systems. ACM Press,
195. https://doi.org/10.1145/1821748.1821787

Pavel Kalvoda. 2014. Implementation and evaluation of the CBOR protocol. ,
116 pages.

Niklas Kolbe, Jérémy Robert, Sylvain Kubler, and Yves Le Traon. 2017. PROFI-
CIENT: Productivity Tool for Semantic Interoperability in an Open IoT Ecosystem.
In Proceedings of the 14th International Conference on Mobile and Ubiquitous Sys-
tems: Computing, Networking and Services. 10.

In Lee and Kyoochun Lee. 2015. The Internet of Things (IoT): Applications,
investments, and challenges for enterprises. Business Horizons 58, 4 (July 2015),
431-440. https://doi.org/10.1016/j.bushor.2015.03.008

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J.
Hill, M. Welsh, E. Brewer, and D. Culler. 2005. TinyOS: An Operating System
for Sensor Networks. In Ambient Intelligence, Werner Weber, Jan M. Rabaey,
and Emile Aarts (Eds.). Springer-Verlag, Berlin/Heidelberg, 115-148. https:
//doi.org/10.1007/3-540-27139-2_7

Anne H. H. Ngu, Mario Gutierrez, Vangelis Metsis, Surya Nepal, and Michael Z.
Sheng. 2016. IoT Middleware: A Survey on Issues and Enabling technologies. IEEE
Internet of Things Journal (2016), 1-1. https://doi.org/10.1109/JI0T.2016.2615180
Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. 1994. The Information
Bus: an architecture for extensible distributed systems. In ACM SIGOPS Operating
Systems Review, Vol. 27. ACM, 58-68.

Krassimira Antonova Paskaleva. 2011. The smart city: A nexus for open in-
novation? Intelligent Buildings International 3, 3 (July 2011), 153-171. https:
//doi.org/10.1080/17508975.2011.586672

Manuel Rigger, Roland Schatz, Matthias Grimmer, and Hanspeter Mossenbock.
2017. Lenient Execution of C on a Java Virtual Machine: or: How I Learned to
Stop Worrying and Run the Code. ACM Press, 35-47. https://doi.org/10.1145/
3132190.3132204

Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol
(CoAP). Technical Report RFC7252. RFC Editor. https://doi.org/10.17487/rfc7252
M. U.Farooq, Muhammad Waseem, Anjum Khairi, and Sadia Mazhar. 2015. A
Critical Analysis on the Security Concerns of Internet of Things (IoT). In-
ternational Journal of Computer Applications 111, 7 (Feb. 2015), 1-6. https:
//doi.org/10.5120/19547-1280

Fan Yang, Nelson Matthys, Rafael Bachiller, Sam Michiels, Wouter Joosen, and
Danny Hughes. 2015. yPnP: plug and play peripherals for the internet of things.
ACM Press, 1-14. https://doi.org/10.1145/2741948.2741980

Ibrar Yaqoob, Ejaz Ahmed, Ibrahim Abaker Targio Hashem, Abdelmuttlib
Ibrahim Abdalla Ahmed, Abdullah Gani, Muhammad Imran, and Mohsen Guizani.
2017. Internet of Things Architecture: Recent Advances, Taxonomy, Require-
ments, and Open Challenges. IEEE Wireless Communications 24, 3 (June 2017),
10-16. https://doi.org/10.1109/MWC.2017.1600421

http://dl.acm.org/citation.cfm?id=3108009.3108023
http://dl.acm.org/citation.cfm?id=3108009.3108023
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/INFCOMW.2013.6970748
http://dl.acm.org/citation.cfm?id=2342821.2342848
https://doi.org/10.1145/230798.230809
http://www.rfc-editor.org/rfc/rfc7228.txt
https://doi.org/10.17487/rfc7049
https://doi.org/10.1109/SENSORCOMM.2009.27
https://doi.org/10.1080/08956308.2017.1255054
https://doi.org/10.1145/3154448.3154454
https://doi.org/10.1145/3154448.3154454
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1145/1821748.1821787
https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1109/JIOT.2016.2615180
https://doi.org/10.1080/17508975.2011.586672
https://doi.org/10.1080/17508975.2011.586672
https://doi.org/10.1145/3132190.3132204
https://doi.org/10.1145/3132190.3132204
https://doi.org/10.17487/rfc7252
https://doi.org/10.5120/19547-1280
https://doi.org/10.5120/19547-1280
https://doi.org/10.1145/2741948.2741980
https://doi.org/10.1109/MWC.2017.1600421

	Abstract
	1 Introduction
	2 Secure Multi-Tenant IoT Platforms
	3 Related Work
	4 Design
	4.1 Securing Heterogeneous Interoperating Services
	4.2 Multilingual Platform Architecture
	4.3 Microservice Message Bus

	5 Implementation
	6 Evaluation
	6.1 Memory Analysis Polyglot CerberOS
	6.2 Polyglot CerberOS Execution Performance
	6.3 Energy Analysis of Services
	6.4 Discussion

	7 Conclusions and future work
	Acknowledgments
	References

