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Abstract

Small and marginal farmers, who account for over 80% of India’s agri-
cultural population, often sell their harvest at low, unfavorable prices
before spoilage. These farmers often lack access to either cold storage or
market forecasts. In particular, by having access to cold storage, farmers
can store their produce for longer and thus have more flexibility as to
when they should sell their harvest by. Meanwhile, by having access to
market forecasts, farmers can more easily identify which markets to sell
at and when. While affordable cold storage solutions have become more
widely available, there has been less work on produce price forecasting.
A key challenge is that in many regions of India, predominantly in rural
and remote areas, we have either very limited or no produce pricing data
available from public online sources.

In this paper, we present a produce price forecasting system that pulls
data from the Indian Ministry of Agriculture and Farmers Welfare’s web-
site Agmarknet, trains a model of prices using over a thousand markets,
and displays interpretable price forecasts in a web application viewable
from a mobile phone. Due to the pricing data being extremely sparse,
our method first imputes missing entries using collaborative filtering to
obtain a dense dataset. Using this imputed dense dataset, we then train
a decision-tree-based classifier to predict produce prices at different mar-
kets. In terms of interpretability, we display the most relevant historical
pricing data that drive each forecasted price, where we take advantage of
the fact that a wide family of decision-tree-based ensemble learning meth-
ods are adaptive nearest neighbor methods. We show how to construct
heuristic price uncertainty intervals based on nearest neighbors. We vali-
date forecast accuracy on data from Agmarknet and a small field survey
of a few markets in Odisha.
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1 Introduction
Agriculture accounts for 14% of India’s GDP and is the principal source of
income for roughly 50% of the Indian population (Jha et al., 2015). Small and
marginal farmers, who have a field size of less than 2 hectares, make up over
80% of India’s agricultural population (Agriculture Census Division, 2014).1
Many of these farmers’ incomes are heavily tied to profits from selling their
produce. To increase profits, these farmers could try to sell their produce at
higher prices. However, the issue is that if they set the produce prices too high,
then they run the risk of having a lot of leftover unsold produce. This unsold
produce can then spoil and become unfit for consumption. To avoid having
unsold produce, farmers often sell their produce at low, unfavorable prices. To
make matters worse, smallholder farmers often devote a large portion of their
fields to traditional food crops while using only a small fraction of their fields for
cash crops (van den Berg, 2001). Two key problems are that small and marginal
farmers often lack access to cold storage or to market information and forecasts.

Cold storage can keep produce fresh for longer before they spoil. Within
the last decade, enormous progress has been made in increasing cold storage
capacity and improving cold storage infrastructure in India (National Centre
for Cold-chain Development, 2015). For example, circa 2007, there were no cold
storage facilities in Odisha or Uttar Pradesh (Umali-Deininger and Sur, 2007).
By 2014, Odisha had 111 cold storage facilities with a capacity of 326,639 metric
tons, and Uttar Pradesh had 2,176 cold storage facilities with a capacity of
13.6 million metric tons (National Centre for Cold-chain Development, 2015,
Annexure VI). The Indian government’s Ministry of Agriculture and Farmers
Welfare and Ministry of Food Processing Industries have both emphasized cold
chain development, which includes cold storage. A lot of initial efforts focused
on facilities tailored for a select few cross-seasonal crops such as potatoes. Small
and marginal farmers often instead grow crops that have dramatically shorter
storage times such as tomatoes. Moreover, these farmers might not be close
to an existing cold storage facility and even if they are close to one, some of
these facilities can have high costs. To provide affordable cold storage to such
farmers, many companies are now producing relatively small cold storage units
each with a capacity of a few metric tons that can be shared by a few dozen
farmers. For example, there is the Ecofrost cold room by ecoZen2, the Modular
Cold Room by Unitech Engineering Solutions3, and the ColdShed by SolerCool
HighTech Solutions4. This list is far from exhaustive.

With small and marginal farmers increasingly having access to cold storage,
a general problem becomes how to optimally use cold storage. Numerous re-
lated questions arise. How much should farmers store of which produce in cold

1In India, a “marginal” farmer cultivates agrictultrual land up to 1 hectare, and a “small”
farmer cultivates land from 1 to 2 hectares (Agriculture Census Division, 2014). An overview
of challenges and opportunities for small farmers in India is provided by Mahendra Dev (2014).

2http://www.ecozensolutions.com/innovation/micro-cold-storage
3https://www.indiamart.com/unitechengineeringsolutions/
4http://www.solercoolhightech.com/
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storage? Where and when should they sell specific produce? How should the
space be divvied up among the farmers sharing a cold storage unit? These sorts
of questions could influence which cold storage solution farmers choose in the
first place. Meanwhile, the actual process of selling produce can be lengthy and
can involve a farmer driving out to a potentially far away market and staying at
the market for a while to sell produce. Visiting multiple markets in one trip may
make sense as well. How should farmers plan these routes and decide on how
long they stay at each market? Do they need an additional cold storage unit on
the vehicle? Farmers can better answer the above operations-related questions
if they have reliable market information and forecasts. At least for soybeans,
there is evidence that giving farmers direct access to market information enables
them to sell soy at higher prices and improves their welfare (Goyal, 2010).

To help provide farmers with market information, many web and mobile
apps have been recently developed as news and information content platforms.
The Indian government’s Ministry of Agriculture and Farmers Welfare provides
a website with an accompanying mobile app called Agmarknet5 that provides
produce pricing and volume data spanning over a decade for over a thousand
markets. Meanwhile, farmers can buy and sell agriculture-related products and
services on Agribuzz, and FarmBee provides real-time produce prices, weather,
and market news. In addition to market information, plant protection and agri-
culture advisories can be obtained using an app called Kisan Suvidha. Despite
there being many apps that provide farmers with market information, we are
unaware of any existing apps that focus on interpretable produce price forecasts
for farmers.

As produce price forecasting somewhat resembles stock price forecasting,
some studies view produce as special stocks with high volatility, low frequency,
and low trading volume (Brandt and Bessler, 1983; Kumar, 2004; Chen et al.,
2017). However, produce markets differ from stock markets in a few key aspects:

• Produce markets are located all over the country (see Figure 1), while stocks
are traded at a centralized location through the internet. Produce markets in
disparate geographical locations may have prices that are quite different for
the same produce. Sales at markets can be by a loud outcry auction bidding
(Goyal, 2010).

• Pricing and volume data for a produce at a market can be missing if the
market is closed for the day, the produce is unavailable for the day, or the data
simply does not get recorded despite the produce being sold at the market.
Note that data is manually entered at each government-regulated market.

• Produce prices contain unexpected noise and outliers as a result of both price
negotiations and a more error-prone manual data entry process.

• As previously discussed, “executing a trade” (i.e., a farmer selling produce) is
more time and labor intensive than stock trading.
5http://agmarknet.gov.in/
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Figure 1: Location of markets from Agmarknet (grey dots) and the field survey
(red diamonds).

Overall, the distributed nature of produce markets and how data are collected
and entered per market lead to produce pricing and volume data being noisy and
extremely sparse. We provide more details on data scraped from Agmarknet as
well as data manually collected through a field survey in Section 2.

In this paper, we develop a system for forecasting produce price trends
while providing evidence for forecasts. Our system uses collaborative filter-
ing to impute missing data and adaptive nearest neighbor methods to obtain
interpretable forecasts (Section 3). For interpretability, we show which histor-
ical pricing information (which markets and which calendar dates) drive any
particular forecasted price change, and we also construct heuristic uncertainty
intervals for forecasted prices (Section 3.4). We use the proposed forecasting
system to predict price changes at 1352 markets in India for six produce (Sec-
tion 4). We also present a web app that updates and displays price forecasts on
a daily basis (Section 5). This web app has already been deployed at a pilot site
in Odisha. We are actively working with farmers on making the web application
more useful.

Related work To the best of our knowledge, only a few studies work on
produce markets. Brandt and Bessler (1983) explored time series models and
expert models to predict produce prices for the next quarter, and Chen et al.
(2017) predicted the price trend in the near future with a number of machine
learning methods. Chakraborty et al. (2016) predict food prices using both
Agmarknet data and news events with the idea that some news events (e.g.,
worker strikes, festivals) can help predict price shocks. None of the above studies
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Figure 2: Prices of six produce at three markets.

predict produce prices for multiple time periods and multiple markets, and their
prediction results are not presented in a fashion that is easy to interpret and
explore by farmers. The closest work to this paper is that of Chen et al. (2017),
which benchmarks a few machine learning algorithms forecasting price change
for the next day looking at 14 markets and one specific produce.

2 Market Data Characteristics
We collect produce pricing data from two sources: Agmarknet and a field sur-
vey. Agmarknet is run by the Indian government’s Ministry of Agriculture and
Farmers Welfare and contains price and volume data at 1352 markets across
India for over twelve years. For the field survey, we hired an individual in India
to collect price and volume data of six produce (brinjal, cauliflower, green chilli,
mango, pointed gourd, tomato) at six markets in Odisha from November 26,
2017 to June 24, 2018. The data collection is conducted through phone calls
and in-person communication with local retailers. Markets in Agmarknet are
located all over India, whereas the field survey only covers markets near Cuttack
in Odisha. The market locations from Agmarknet and the field survey are shown
in Figure 1. Note that only three markets (Bahadajholla, Banki, Kendupatna)
appear in both Agmarknet and the field survey. Our experiments later will
focus on the six produce that appear in the field survey data and occasionally
will also focus only on the three overlapping markets.

The two data sources contain a lot of missing entries, i.e., a specific produce
at a specific market can have no recorded price or volume information across
a large number of days. This missingness in data is caused by a market being
closed, a produce not being sold on a particular day at a market, or the price or
volume data for a produce at a market simply not being recorded even though
the produce was indeed being sold and the market was open. We show the

5



prices of the six produce over time at the three overlapping markets for the two
data sources in Figure 2. For Agmarknet data in Figure 2, the range of dates
for which pricing data are available is different among different produce, and
the prices of some produce (e.g., pointed gourd) are missing over the entire time
period. The field survey data has better coverage for the six produce recorded
than Agmarknet data at the Sunakhela market; however, brinjal, cauliflower,
and tomato prices are still missing before January 1st, 2018. Agmarknet rarely
has green chilli and mango prices at the three markets while prices are still
available in the field survey data.

Although prices from Agmarknet and the field survey usually follow similar
trends, they still have some differences. For both data sources, data are collected
via surveying farmers and prices are manually recorded. The two data sources
survey different sets of farmers, so the prices collected between the two data
sources are not expected to match. We remark that the prices we consider for
both data sources are the modal price per produce for each day (when pricing
data are actually available for that particular day). Meanwhile, we do not know
what the rate of error is in verbal communication of prices or in data entry.

Lastly, we mention two characteristics observed in Agmarknet data that in-
form how we set up our forecasting system in the next section. We remark
that the pricing information shown in Figure 2 (corresponding to November 26,
2017 to June 24, 2018) is actually the test data in our numerical experiments
(Section 4). As we do not have field survey data prior to November 26, 2017,
we only use Agmarknet data up to November 25, 2017 for training forecasting
models. Specifically in examining this training Agmarknet data for the six pro-
duce of interest, we find that the prices of these different produce tend to trend
differently and spike at different times. As a result, we train separate forecast-
ing models for different produce. Furthermore, as prices vary between markets,
each forecasting model is specific to a particular market. However, we observe
in the training Agmarknet data that prices of markets in close geographic prox-
imity tend to have similar prices. Thus, when we train a forecasting model for
a specific market, the training data we use will come from that market as well
as nearby markets.

3 Forecasting Method
In this section, we present our approach to forecasting produce prices. For sim-
plicity, we train a different model per produce, so throughout this section, we
assume that there is a single produce of interest. As input, we take pricing infor-
mation (of the single produce of interest) from all Indian markets up to present
time. As output, we forecast the direction of price change (up, down, or stay
the same) per market at the next “time step”. What constitutes a “time step” is
based on how time is quantized. We present results later where one time step
corresponds to 1 day, 1 week, 2 weeks, or 4 weeks. Our forecasting approach
can easily be modified to predict exact prices at the next time step (regression)
rather than just the direction of price changes (classification). However, we
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emphasize that predicting exact prices is a much harder problem than predict-
ing the direction of price changes. For clarity of exposition, we introduce our
method in the classification context. We defer discussing the regression context
to Section 3.5.

Our forecasting method consists of three steps. First, we impute missing
data using a standard collaborative filtering method; at this point, we use the
finest level of granularity for time in the raw input data. In the second step, we
quantize time. Lastly, using the dense imputed data that have been quantized
in time, we train a model using an adaptive nearest neighbor method such as
random forests or boosting methods that use decision trees as base predictors.
A pictorial overview of these three steps is shown in Figure 3. We explain these
three steps in detail in the next three subsections.

We remark that for the third step, we intentionally use adaptive nearest
neighbor methods because they can readily provide “evidence” for forecasts
(Chen and Shah, 2018, Section 7.1). In our problem context, this means that
for any predicted price change direction, an adaptive nearest neighbor method
can provide historical dates and prices that are directly used in making the
prediction; these historical dates and prices can be supplied to the farmer as
forecast evidence and, as we discuss in Section 3.4, can also be used to construct
a heuristic “uncertainty interval”. This uncertainty interval can be thought of as
a range of plausible prices associated with a forecasted price change direction.
Instead of adaptive nearest neighbor methods, other machine learning classifiers
could be used instead although providing forecast evidence and some notion of
a price uncertainty interval may be difficult depending on the method used.

3.1 Data imputation
We denote M as the number of markets and T as the number of consecutive
calendar days in the training data. Recall that we are considering a single
produce. We define P to be theM -by-T price matrix for the produce of interest,
where Pm,t denotes the produce price at market m ∈ {1, 2, . . . ,M} on day
t ∈ {1, 2, . . . , T}; if this price is missing in the training data, then Pm,t = “NaN”.
Using onion as an example, the price matrix P is visualized as a heat map in
Figure 4(a). We see that onion pricing data are dense after 2015 and sparse
before 2007. Onion prices tend to increase over the years, likely due to inflation.
Meanwhile, onion prices exhibit seasonality structure, reaching a local maximum
around October every year.

Standard collaborative filtering methods can be used to fill in the missing
entries of matrix P , and we use the SVD-based SoftImpute algorithm by
Hastie et al. (2015) in this paper. We denote the dense, imputed price matrix
as P̃ , which now has no “NaN” entries. An example of imputed onion prices is
shown in Figure 4(b).
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Market 1
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Market 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Market 1

Market 2

Market 3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Data imputation
(collaborative filtering)

Market 1

Market 2

Market 3

Time step 1

Time quantization
(q = 2q = 2)

Time step 2 Time step 3

Market 1

Market 2

Market 3

Time step 1

Classification/regression
(adaptive nearest neighbors)

Time step 2 Time step 3 Time step 4

Raw input data

Forecasted outcomes

Figure 3: Overview of forecasting system (white boxes represent pricing data,
shaded boxes represent missing data, and green boxes represent predicted out-
comes).
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(a) Raw

(b) Imputed

Figure 4: Onion prices for all Agmarknet markets (Rs/100 kg). In each heat
map, while all markets are shown, only the names of 20 markets are displayed
on the left side.

3.2 Time quantization

After imputation, we now have a dense price matrix P̃ ∈ RM×T . At this point,
we quantize time as follows. Let positive integer q be the number of days we want
to consider as a single time step. Then for every non-overlapping consecutive
block of q days, we average the produce prices within each block of q days to
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obtain a time-quantized version of dense price matrix P̃ ∈ RM×T ; if q does not
divide T , then we ignore the last block that is shorter than q days. We denote the
resulting time-quantized dense price matrix as Q ∈ RM×bT/qc, where b·c is the
floor function. In particular, for m ∈ {1, 2, . . . ,M} and s ∈ {1, 2, . . . , bT/qc},

Qm,s =
1

q

(s+1)q−1∑
t=sq

P̃m,t.

3.3 Classification
Now that we have quantized time so that a single time step corresponds to
an average of q prices, we set up a classification problem for predicting each
market’s price change direction at the next time step. To do so, we specify
the feature vectors and corresponding labels that we train a classifier with. We
begin by explaining how we obtain the classification labels.

We define the relative price change ∆m,s at time step s at market m as

∆m,s =

{
0 if s = 1,
Qm,s−Qm,s−1

Qm,s−1
otherwise.

Then the price change direction ym,s ∈ {−1, 0, 1} at time step s at market m is
defined as

ym,s =


−1 if ∆m,s < 0,

0 if ∆m,s = 0,

1 if ∆m,s > 0.

(1)

These price change directions are precisely the labels that we use for classifi-
cation. We have not yet described what their corresponding feature vectors
are.

We construct feature vectors as follows. The basic idea is that we want to
predict ym,s using information at time steps prior to time step s. We look at
information in the last τ time steps, where τ > 0 is a user-specified parameter;
using a larger value of τ means that we incorporate information from further
back in time in making predictions. A simple approach would be to simply use
the relative price changes at these τ most recent time steps, i.e., ∆m,s−τ−1, . . . ,
∆m,s−1. We find that incorporating volume information (i.e., how much of the
produce is being sold) from the most recent τ time steps is also helpful. Let
Vm,s denote the volume of the produce of interest being sold at market m at
time step s (as with pricing information, we can impute missing volume data via
collaborative filtering and then discretize time). Then for label ym,s, we define
its corresponding feature vector of length 2τ to be

xm,s = (∆m,s−τ−1, . . . ,∆m,s−1, Vm,s−τ−1, . . . , Vm,s−1).

Lastly, since markets that are close by geographically tend to have similar price
trends, we further pull information from nearby markets. Specifically, for any
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marketm, letMk(m) denote the k markets closest in geographic proximity (Eu-
clidean distance) to market m (including market m). Then we train a classifier
using feature vector/label pairs (xm′,s, ym′,s) for s ∈ {τ + 1, . . . , bT/qc} and for
every market m′ ∈ Mk(m). Parameter k is chosen later via cross validation.
As mentioned previously, we favor using classifiers that are adaptive nearest
neighbor methods as they readily provide forecast “evidence” and also yield a
heuristic method for producing price uncertainty intervals.

At test time, to forecast a price change direction, we assume that we have
access to the last τ time steps of pricing and volume information. From these
most recent τ time steps, we construct a test feature vector xtest in the same
manner in which we construct training feature vectors. We denote the classifier
learned as ŷm, which takes a feature vector as input and outputs a price direction
in {−1, 0, 1} (note that the classifier is specific to both the market m as well as a
produce of interest; as a reminder, throughout this section we focus on a single
produce of interest). Thus, ŷm(xtest) is the predicted price change direction for
feature vector xtest.

3.4 Forecast evidence and price uncertainty intervals via
adaptive nearest neighbors

Training an adaptive nearest neighbor model corresponds to learning a similar-
ity function K such that for any two feature vectors x and x′ (constructed as
in Section 3.3), K(x, x′) ∈ [0, 1] is an estimated similarity between x and x′.
Explicit formulas for this learned similarity function K for decision trees and
their bagging and boosting ensemble variants (such as random forests, gradient
tree boosting, and AdaBoost with tree base predictors) are given by Chen et
al (Chen and Shah, 2018, Section 7.1). When an adaptive nearest neighbor
method makes a prediction for a test feature vector xtest, the prediction is com-
puted using standard weighted nearest neighbors, where weights are given by
the learned similarity function K. To be precise, for our classification setup in
Section 3.3 and for any given test feature vector xtest, the estimated probability
that xtest has price change direction d ∈ {−1, 0, 1} is

η̂m(d|xtest) =

∑
m′∈Mk(m)

∑bT/qc
s=τ+1 K(xm′,s, xtest)1{ym′,s = d}∑

m′∈Mk(m)

∑bT/qc
s=τ+1 K(xm′,s, xtest)

, (2)

where 1{·} is the indicator function that is 1 when its argument is true and
0 otherwise; in fact the denominator is equal to 1. Then the adaptive nearest
neighbor method’s predicted price change direction for test feature vector xtest
is given by

ŷm(xtest) = argmax
d∈{−1,0,1}

η̂m(d|xtest). (3)

Importantly, in computing this predicted price change for xtest, only training
feature vector/label pairs (xm′,s, ym′,s) with nonzero weight K(xm′,s, xtest) con-
tribute to the prediction. Concretely, we define the following set of “nearest

11



neighbors” of xtest:

N (xtest) =
{

(m′, s) : m′ ∈Mk(m) and s ∈ {1, 2, . . . , bT/qc}
s.t. K(xm′,s, xtest) > 0

}
.

For example, if (5, 42) is in N (xtest), then it means that market 5’s τ time
steps immediately before time step 42 have information that contributes to the
prediction for xtest and this information has relative importance given by the
weight K(x5,42, xtest). Note that we can figure out exactly which qτ calendar
dates these τ time steps immediately before time step 42 correspond to. Thus,
for any test feature vector xtest, we can determine precisely the historical pric-
ing information (which markets and which calendar dates) that contributes to
predicting the price change for xtest; the relative importance weights give a
sense of which price windows matter more than others. These historical price
trends and importance weights form the forecast evidence specific to test feature
vector xtest.

Heuristic price uncertainty intervals Test feature vector xtest corresponds
to some time step stest that we aim to predict a price change direction for. We
can also construct a heuristic uncertainty interval for what the exact produce
price will be at time step stest using the training feature vectors with nonzero
similarity to xtest (the nearest neighbors of xtest). Such an interval is heuristic
in that we are unaware of any statistical guarantees on these intervals.

The idea is simple: each nearest neighbor (m′, s) ∈ N (xtest) of xtest corre-
sponds to a time window (the τ time steps before time step s for market m′)
that has been deemed by the classifier to be “close” to the τ time steps corre-
sponding to the test feature vector xtest. Hopefully the historical price Qm′,s is
also close to the test feature vector’s exact price at time step stest. In particular,
we can think of Qm′,s as a guess for the price at test time step stest, where this
guess has an associated weight K(xm′,s, xtest).

At this point, there are various ways in which we can construct a heuris-
tic interval of plausible produce prices at time step stest. For example, we
could choose all predicted prices which have a weight that is at least some user-
specified threshold ω > 0, and then take the uncertainty interval to go from
the minimum to the maximum of these predicted prices, i.e., we construct the
interval [L(xtest), U(xtest)], where

L(xtest) = min
(m′,s)∈N (xtest) s.t. K(xm′,s,xtest)≥ω

Qm′,s,

U(xtest) = max
(m′,s)∈N (xtest) s.t. K(xm′,s,xtest)≥ω

Qm′,s.

Smaller values of ω correspond to wider uncertainty intervals. Alternatively,
we can use this same idea except where we only consider all predicted prices
corresponding to the largest ` weights for some user-specified integer `. Higher
choices of ` correspond to wider uncertainty intervals. In both cases, ω and `
could, for instance, be chosen so that in training data, for some desired fraction
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of the time α, the price at the test time step stest lands in the uncertainty
interval with frequency at least α.

3.5 Forecasting exact prices instead of price change direc-
tions

We now describe how our forecasting approach can easily be modified to forecast
exact prices (regression) instead of price change directions (classification). We
replace the discrete classification labels ym,s ∈ {−1, 0, 1} given by equation (1)
with continuous exact prices as labels, namely yregress

m,s = Qm,s ∈ R. Instead of
training a classifier, we train an adaptive nearest neighbor regression method
(decision trees and their bagging and boosting ensemble variants can readily be
used for regression instead of classification and are still adaptive nearest neighbor
methods). After doing this training, we have a learned similarity function K and
instead of equations (2) and (3), the forecasted price for a test feature vector
xtest is given by a single equation:

ŷ regress
m (xtest) =

∑
m′∈Mk(m)

∑bT/qc
s=τ+1 K(xm′,s, xtest)y

regress
m′,s∑

m′∈Mk(m)

∑bT/qc
s=τ+1 K(xm′,s, xtest)

. (4)

Price uncertainty intervals can be constructed in the same manner as before.

4 Experimental Results
In this section, we validate our forecasting framework using Agmarknet and field
survey data. For both data sources, we use six months of pricing and volume
information as test data, from November 26, 2017 to June 24, 2018. We train
forecasting models only using Agmarknet data before November 26, 2017 (the
training also involves hyperparameter tuning via cross validation). Note that
we do not have any field survey data available before November 26, 2017. Thus,
we use the field survey data strictly for testing.

Our forecasting framework can be used with any classifier although we can
only provide forecast evidence for adaptive nearest neighbor classifiers. We show
the prediction accuracy on test data using one baseline classifier (multinomial lo-
gistic regression (Cox, 1958)), which is not an adaptive nearest neighbor method,
and three adaptive nearest neighbor classifiers (random forests (Breiman, 2001),
gradient tree boosting (Friedman, 2001), and AdaBoost with tree base predic-
tors (Freund and Schapire, 1997)) in Section 4.1. We find random forests to
be the most accurate among the four classifiers tested. We then show the
accuracy of heuristic price uncertainty intervals (based on random forests) in
Section 4.2. Lastly, we forecast the exact price using the proposed heuristic
regression method of Section 3.5 and compare its accuracy with four standard
regression models. In the following sections, all the models are tested on six
produce (brinjal, cauliflower, green chilli, mango, pointed gourd, tomato) and
we set τ = 10.
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4.1 Classifying price change direction
We apply our forecasting framework using four different classifiers: multinomial
logistic regression, random forests, gradient tree boosting, and AdaBoost with
tree base predictors. In the tables to follow, we abbreviate these four classifiers
as “LR”, “RF”, “GB”, and “AB”, respectively. We use two accuracy measures:
(1) the raw accuracy, which is calculated as the fraction of ym,s that is correctly
classified, and (2) the “balanced” accuracy (Chen et al., 2017), which is calcu-
lated as the average of the raw accuracies in classifying each of the three price
change directions ym,s ∈ {1, 0,−1} (i.e., we calculate the raw accuracy confined
to each of the three price change directions and then we average these three
fractions).

We treat the pricing and volume information before November 26, 2017
as training data. Hyperparameters of the four classifiers are tuned via cross-
validation for time series. In particular, the cross validation score for a specific
classifier and choice of hyperparameters is computed as follows. First, we specify
a beginning date T1 and an end date T2 for which we compute validation scores
(in our experiments, we set T1 to be Jan 1, 2017 and T2 to be November 25,
2017). For each date t ranging from T1 to T2, we train the classifier using the
information before t and compute its raw and balanced accuracies on date t. The
validation score is taken to be the sum of the raw and balanced accuracies. Then
the cross-validation score for the current classifier and choice of hyperparameters
is calculated as the average validation score across all dates t between T1 and
T2. We sweep over the following parameters in the cross-validation: maximum
rank for SoftImpute, number of closest markets k to gather training data from
per market (defined at the end of Section 3.3), inverse of regularization strength
for logistic regression, number of trees for random forests, and learning rates for
both gradient tree boosting and AdaBoost.

After running the above cross-validation procedure, we then train each clas-
sifier using all training data and using the best hyperparameters found from
cross-validation. We then use these four classifiers to predict price change di-
rections in the test data for Agmarknet and the field survey data. For both
data sources, the test data are from November 26, 2017 to June 24, 2018. For
different choices of time step sizes q = 1, 7, 14, 28, we report raw and balanced
accuracies on the Agmarknet test data in Table 1, and on the field survey test
data in Table 2. For Agmarknet data, each accuracy is the average over six
produce and over 1352 markets across India. For the field survey data, each
accuracy is the average over six produce and over three markets (Bahadajholla,
Banki, Kendupatna). Note that the field survey data cover only a range of six
months and are quite sparse, resulting in not enough data to use a time step size
of q = 28 days. For both datasets, random forests tend to outperform the other
three classifiers in terms of both raw and balanced accuracy. Logistic regression
consistently has the worst raw and balanced accuracies across the four classifiers
tested. While gradient tree boosting and AdaBoost with tree base predictors
can have performance competitive with and occasionally better than random
forests, they do not consistently perform as well as random forests.
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Raw Accuracy Balanced Accuracy

Methods 1 7 14 28 1 7 14 28

LR 0.65 0.60 0.57 0.64 0.39 0.36 0.41 0.49
RF 0.71 0.63 0.63 0.68 0.57 0.50 0.53 0.57
GB 0.69 0.63 0.61 0.68 0.55 0.49 0.52 0.56
AB 0.71 0.63 0.61 0.65 0.51 0.46 0.51 0.54

Table 1: Agmarknet test data raw and balanced accuracy for time step sizes
q = 1, 7, 14, 28. For each column, in bold are the best performer(s) among the
four classifiers tested.

Raw Accuracy Balanced Accuracy

Methods 1 7 14 28 1 7 14 28

LR 0.56 0.35 0.30 N/A 0.52 0.35 0.30 N/A
RF 0.76 0.44 0.67 N/A 0.60 0.42 0.67 N/A
GB 0.74 0.46 0.60 N/A 0.55 0.48 0.60 N/A
AB 0.76 0.41 0.50 N/A 0.59 0.40 0.50 N/A

Table 2: Field survey test data raw and balanced accuracy for time step sizes
q = 1, 7, 14. For each column, in bold are the best performer(s) among the four
classifiers tested.

Because random forests tend to perform better than the other three clas-
sifiers for both Agmarknet and survey data, in the subsequent sections, when
we produce forecast evidence and price uncertainty intervals, we only present
results for random forests. Moreover, in the web application that we developed,
we also only provide forecasts to farmers based on random forests.

4.2 Calibrating price uncertainty intervals
We now present experiments for constructing price uncertainty intervals and
evaluating their accuracy, i.e., how often do our heuristic price uncertainty
intervals actually contain the true price. We use random forests trained in
Section 4.1 and extract the nearest neighbors N (xtest) for the test Agmarknet
data. The price uncertainty intervals are constructed based on the most similar
` adaptive nearest neighbors as presented in Section 3.4. We vary ` and for
each choice of `, we compute the percentage of price uncertainty intervals that
contain the true prices that they are aiming to bound. For simplicity, in this
section, these percentages are averaged over the same six produce that we have
focused on throughout the paper and also over the three markets that are in
both Agmarknet and the field survey data. The results are shown in Figure 5.
Specifically for mangoes in the market Banki, we show the price uncertainty
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Figure 5: Percentage of test data in the uncertainty interval.

interval over time (upper and lower bounds) vs the true price for two choices of
` in Figure 6.

Increasing ` means that we use more adaptive nearest neighbors to construct
each price uncertainty interval. As a result, the intervals become wider and
thus more easily contain the true price being predicted. Of course, a wider
uncertainty interval is less useful to the farmer as it suggests that we are less
certain in the prediction. For a large time step size of q = 28 days, changes
in price end up being small; consequently, prices becomes easier to predict and
using a small choice for ` already results in price uncertainty intervals that
easily contain the true price. Depending on how accurate we want the price
uncertainty intervals, we could use a plot like Figure 5 to decide on a choice
for `.

4.3 Forecasting exact produce prices
To forecast exact produce prices rather than only price change directions, we can
use the regression method presented in Section 3.5, where the similarity func-
tion is computed based on the random forest classifier learned in Section 4.1.
In the table to follow, we denote this method as “RFNN”. Note that this regres-
sion method is different from standard random forest regression. RFNN and
standard random forest regression are both adaptive nearest neighbor methods
and can be written in the form of equation (4). The key difference is that when
growing the decision trees, RFNN uses a classification objective to decide on
splits whereas standard random forest regression uses a regression objective.
We compare RFNN with four standard regression methods: linear regression
(abbreviated as “LiR”), random forest regression (“RFR”), gradient tree boost-
ing regression (“GBR”), and AdaBoost with decision trees that do regression as
base predictors (“ABR”). The four regression methods are tuned and trained
using the same cross-validation procedure described in Section 4.1, and the
only difference is that we change the prediction output from price change di-
rections to exact prices. In comparing these four methods with RFNN, we use
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Figure 6: Examples of the uncertainty intervals for mango price with step size
q = 1 (left: ` = 2, right: ` = 28).

RMSE (Rs/kg)

Methods 1 7 14 28

RFNN 7.81 14.81 6.57 2.12
LiR 12.07 14.91 6.58 2.02
RFR 7.50 14.82 6.53 2.18
GBR 7.80 14.81 6.52 2.13
ABR 10.03 14.27 6.47 4.78

Table 3: Agmarknet test data RMSE for time step sizes q = 1, 7, 14, 28.

root-mean-squared-error (RMSE) to measure the distance between true and
predicted prices. The results are presented in Table 3. Note that each value in
Table 3 is the average over the six produce used throughout the paper and the
three markets in both Agmarknet and the field survey data.

RFNN, random forest regression, and gradient tree boosting regression achieve
similar accuracies for all time step sizes. Compared to these three methods,
linear regression performs poorly for time step size q = 1 but has better perfor-
mance for q = 28, when prediction is a much easier problem. AdaBoost has low
error for q = 7 and q = 14 but does quite a bit worse than all the other methods
for q = 1 and q = 28. This table suggests that different prediction methods
could be used depending on which time step size q we care about. However,
if one wants to use the same method regardless of time step size, then RFNN,
random forest regression, and gradient tree boosting regression appear the most
promising; all three of these are adaptive nearest neighbor methods for which
we can provide forecast evidence.
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Front End Back End

JavaScript CSS Server Database Database ORM

jQuery Semantic UI Tornado MySQL peewee

Table 4: Technical specifications of the web application.

5 Web application
We now present a web application that acquires prices and updates price fore-
casts at 1352 markets in India. The prediction results are updated daily and
displayed on a web page. A screenshot of the web page is shown in Figure 7. The
web application runs on an Amazon Web Services (AWS) server and includes a
front end to display prediction results as well as a back end that routinely pulls
data from Agmarknet, re-trains prediction models, produces forecasts, and sends
various reports to server administrators. The technical specifications are listed
in Table 4.

The back end runs the following sequential tasks daily at 8:00 PM Indian
Standard Time:

1) Acquire data: download the current day’s pricing data from Agmarknet.

2) Clean: remove outliers.

3) Predict: predict price change directions for the next day using our system
described in Section 3.

4) Archive data: store the raw and imputed pricing data along with prediction
results in the database.

5) Check and update: check if the above processes are complete. If yes, up-
date displayed results on the front end; otherwise, report issues to server
managers.

6) Report: send a report to server managers about the server status, quantity
of acquired data, and prediction status.

The whole process takes 3 to 4 hours to run over all produce and markets, and
the updated forecasting results will be available at the beginning of the next
day. In addition to the main forecasting process, a separate process is running
periodically that re-trains and updates the prediction model per produce and
per market with newly archived data.

For the front end, when users select the market and crop they want to query,
the forecasting results for different time periods are displayed in a table. We also
display the top most similar historical price change patterns (these are the near-
est neighbors as described in Section 3.4). The web page is responsive in that it
adapts to different screen sizes including most mobile phone screens. Since the
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Figure 7: Screenshot of web application.
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vast majority of farmers involved in our pilot project do not read English but
can read Hindi, we made sure to both incorporate manual translations for some
price change directions and also incorporate a Google Translate add-on in the
web page. We checked with our local partners to make sure that the translated
pages are readable and understandable.

Pilot deployment and feedback from farmers We initiated a pilot project
in Odisha with about 100 farmers at a single village. The pilot project can be
potentially generalized to any area covered by Agmarknet, while the model
localization and customization have to rely on the market data collected in each
specific area. The pilot project is still ongoing.

The first round of feedback indicates that farmers want accurate exact price
forecasts rather than price movement directions, and they want more produce
listed on the web page (carrot, papaya, and pumpkin). Forecasting exact prices
is more challenging than forecasting price movement directions. For forecasting
exact prices, we prefer to provide some measure of uncertainty, which we can
get with our price uncertainty intervals. As we discussed in Section 4.2, provid-
ing more accurate price uncertainty intervals means making the intervals wider,
which also makes them less useful to farmers. We discuss some ideas for im-
proving forecast accuracy in the next section. Meanwhile, we are changing the
system to let the farmer customize what produce are shown. Most farmers have
no issue accessing the webpage and most of them access it through a mobile
phone. We are actively working with farmers to gather more user experience
feedback.

6 Discussion
We have presented a fairly general forecasting framework. For the class of
adaptive nearest neighbor methods, which includes a wide variety of existing
classification and regression approaches, we further explain how to provide fore-
cast evidence and construct heuristic price uncertainty intervals. However, we
suspect that there are many ways to improve forecast accuracy and to also make
the web app more useful to farmers. We discuss a number of future directions.

6.1 Improving forecasts
Additional features/datasets Our framework can easily incorporate more
information than price and volume. We have obtained more datasets in India
such as the Consumer Price Index (CPI), Producer Price Index (PPI), weather,
and agricultural commodity prices from different data sources. This additional
data could potentially increase the forecasting accuracy. Chakraborty et al.
(2016) have also already demonstrated that using news data improves forecast
accuracy of produce prices. A generalized data retrieval framework would need
to be implemented to scrape the numerous additional datasets live and combine
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them into vector-valued time series data. Aside from this, model training and
prediction remain the same.

Advances in prediction models For data imputation, we also tested a novel
imputation method called blind regression (Song et al., 2016). From preliminary
experiments that we have run, replacing SoftImpute with blind regression
results in improved prediction performance. However, it takes over one hour to
complete the imputation for each produce. Due to computational constraints,
we do not use blind regression in the web app. We are working on speeding
up blind regression. Beyond the imputation step, advances in learning nearest
neighbor representations could improve the overall prediction performance as
well, for instance using differentiable boundary sets (Adikari and Draper, 2018).

Handling markets not on Agmarknet For the field survey data, four mar-
kets in it are not covered by Agmarknet. The reason we collected data on them
was that they are important to the farmers we are working with. However,
we are unaware of any automated way to collect data from these four markets
not on Agmarknet. More generally, many markets are not on Agmarknet and
currently we do not know what is the best way to produce forecasts for these
markets, unless of course there is some alternative online source that readily
provides pricing and volume information for these markets.

A straightforward approach to handling these markets would be to task an
individual or multiple people to manually collect pricing and volume informa-
tion at these markets not easily accessible online. Then by looking at some
initial collection of pricing and volume data, we figure out which markets on
Agmarknet are most similar to these markets and use these similar Agmarknet
markets to help forecast prices. What is unclear is how much data we need to
manually collect before we can stop the manual collection at these markets. For
some of these markets, we could potentially have to determine an automated
way to keep collecting data.

6.2 Improving usability of the web app
Forecast interpretability Presenting the forecasts in as user-friendly of a
manner as possible remains a challenge. Right now, the way our forecast evi-
dence is presented is still quite complex (the middle plot in Figure 7) and takes
some time and explanation to parse. We are still figuring out how to improve
the user interface and experience for farmers.

Web app accessibility The Internet is not always available for some rural
areas in India, and cellular data is also costly. Most of the commercial cold
storage systems include digital boards. We are now working with a provider
of cold storage systems to incorporate the forecasting system on their digital
boards.
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6.3 Improving operations using forecasts
Prediction reliability For stock price prediction, investors can make money
by the law of large numbers if predictions are correct “on average”. However,
farmers sell produce at a low frequency, and thus the price prediction needs
to be more reliable. In addition to improving prediction accuracy, a matching
and compensation mechanism can be developed to group farmers together and
increase their ability to manage risks as a whole.

Decision making with predicted prices Given the predicted price move-
ments (or predicted prices/price intervals) and the cost of cold storage, optimal
decisions can be made to maximize farmers’ profits. To correctly formulate the
optimization problem, we need to understand the constraints such as the maxi-
mum storage time and space requirements per produce. Most of the constraints
come from farmers’ experiences and preferences, so their input is extremely im-
portant in setting up an appropriate optimization problem to solve. This task
can be challenging especially if farmers want to change their constraints and
preferences over time.

Farmers’ needs We are also actively working with local farmers to under-
stand their actual needs from the market data. For example, they may want
to know the arrival volume of each produce such that they can decide which
produce to sell. Some information such as when markets open and when during
the day most sales happen might also be useful for farmers.
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