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ABSTRACT
Knowledge of cell tower locations enables multiple applications
including identifying unserved or poorly served regions. We con-
sider the problem of estimating the locations of cell towers using
crowdsourced measurements, which is challenging due to the un-
controlled nature of the sample collection process. Using large-scale
crowdsourced datasets from OpenCelliD with ground-truth cell
tower locations, we find that none of the several commonly used
localization algorithms (e.g., Weighted Centroid) nor the state of
the art Filtered Weighted Centroid (FWC) approach that filters out
less predictive measurements manage to deliver robust localization
performance. We propose a novel supervised machine learning
based approach termed as Adaptive Algorithm Selection (AAS)
that adaptively selects the localization algorithm likely to provide
the most accurate localization performance for a given cell and its
crowdsourced samples. We show that AAS not only significantly
outperforms the state-of-the-art FWC approach, with median error
improvement over 65%, but also achieves localization performance
within 20% of an idealized Oracle solution. We validate the appli-
cability of AAS in new and different settings (including WLAN
AP localization) before presenting case studies in three different
African countries that demonstrate the use of AAS based cell tower
localization to reliably infer mobile infrastructure in developing
countries.
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1 INTRODUCTION
Understanding the deployment patterns of communication infras-
tructure in general offers several benefits, including improving
competition and quality/cost of services in the telecommunication
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markets to the benefit of consumers. However network operators
usually treat their infrastructure related information as sensitive
from their market position standpoint and generally do not dis-
close it, except to regulators and policy makers and that too with
a non-disclosure agreement. Same can be said about mobile com-
munications network infrastructure, in particular the locations of
cell towers. Even though the knowledge of cell tower locations
allows external validation of operator provided mobile coverage
maps and more crucially enable identification of unserved or poorly
served regions by correlating with population data [19], it is rarely
available in the public domain. So measuring from the outside (say,
from user devices) and making inferences about the infrastructure
is therefore the only means to estimate this information.

In view of the above, our focus in this paper is on estimating
the cell tower locations from user-side measurements, especially
crowdsourced samples. The above outlined uses clearly indicate
the value of such estimation for developing country settings, which
we highlight in this paper. However, generally speaking, know-
ing cell tower locations has several other use cases. Device lo-
calization via trilateration from multiple nearby cell towers is a
popular application, offering an alternative to GPS when it is un-
available or for energy-efficiency reasons, as is evident from the
cell tower location databases maintained by various location ser-
vice providers [3, 5, 8]. Estimating cell footprint, reliably mapping
coverage and finding/tracking density of cellular infrastructure are
some other applications. There are benefits even for mobile network
operators such as locating the transmitters from rogue networks
operated using software-defined radio (SDR) platforms and getting
insight on where to grow their infrastructure depending on the
infrastructure owned by other operators.

While relying on measurements contributed by users is a cost-
effective means for measurement-based cell tower localization, ac-
curacy and robustness become challenging due to the lack of control
over the measurement process on the device side. As elaborated
in the next section, a number of algorithms are available in the
literature for measurement based cell tower localization [2, 6, 7,
12, 13, 15, 20, 22, 23, 25], most of them emanated from the Wi-Fi
access point (AP) localization context. Our analysis using a large-
scale crowdsourced measurement dataset with ground-truth cell
tower locations from OpenCelliD [3] reveals that none of these
algorithms provide consistently good accuracy performance when
used with crowdsourced measurements. Moreover we find that
even the state-of-the-art cell tower localization approach, which we
call as Filtered Weighted Centroid (FWC) [10], that filters out less
predictive measurements from an accurate localization perspective
is far from the best achievable localization outcome as it is limited
by relying on a specific localization algorithm underneath.

Keeping in mind the above mentioned observations, we propose
in this paper a novel approach called Adaptive Algorithm Selection
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(AAS) to select the localization algorithm, from a suite of algorithms,
that is expected to provide the most accurate cell tower localization
for a given cell and an associated set of crowdsourced measure-
ments. AAS employs a framework based on supervised machine
learning for this purpose. Through an extensive measurement based
evaluation, again using the OpenCelliD dataset, we show that our
AAS approach significantly outperforms FWC [10] by more than
65% in median error and reduces the mean error by more than half.
At the same time, AAS achieves median error under 20% of the
Oracle scheme that always picks the best performing algorithm. In
addition, we show that AAS provides similar improvements even
when applied for Wi-Fi AP localization. Even more crucially, we ex-
amine the applicability of AAS model trained in one setting to other
new settings for which there may not be ground-truth cell tower
location information to retrain the model and obtain promising
results.

In summary, this paper makes the following contributions:
• (Section 3)We examine the impact of crowdsourced measure-
ment characteristics on cell tower localization using multiple
datasets, and show that none of the commonly used algo-
rithms nor the state of the art approach to filtering out less
predictive measurements deliver robust localization perfor-
mance.

• (Section 4) We propose a novel supervised machine learning
based Adaptive Algorithm Selection (AAS) approach for
robust cell tower localization with crowdsourced measure-
ments. Using large-scale crowdsourced cellular and WLAN
measurement datasets, we show that AAS not only signif-
icantly outperforms existing alternatives but also achieves
localization performance within 20% of an idealized Oracle
solution.

• (Section 5) Last but not least, we present three case studies
in three different countries in Africa showing the use of
AAS based cell tower localization to reliably infer mobile
infrastructure in developing countries. This builds on the
validation exercise we conduct examining the applicability
of pre-trained AAS model for one setting in new settings
(differing in operators and countries) where ground-truth
cell tower location information is available for the latter.

The next section describes our datasets and metrics, and reviews
the related work.

2 PRELIMINARIES
2.1 Datasets
We use four different types of datasets as listed in Table 1 with
nearly 12 million measurement samples spanning over 15000 cells.
Majority of our measurement data is from OpenCelliD [3], a com-
munity project aimed at building a database of cell towers around
the world based on crowdsourced signal measurements. The re-
ported cell tower locations are either ground-truth or aggregated
from crowdsourced measurements. From this database we have
used sub-datasets from Germany, Poland, Zambia, South Africa
and Morocco. In most of these cases, each cell has at least 50 mea-
surement samples; each sample corresponds to mobile network
signal strength from a user device stamped with location, time, cell
id (CID), radio access technology (RAT), etc. For the OpenCelliD

datasets, we use measurements for various 2G variants (GSM, GPRS
and EDGE) as they are the largest in number. Ground truth cell
tower locations are only available for Germany and Poland. The
other datasets are used for specific purposes towards motivation
or demonstrating the generality of the proposed approach; as such,
they are referred to in the respective sections of the paper.

2.2 Metrics
We mainly use two metrics to characterize the accuracy & robust-
ness of cell tower localization approaches including our proposal:
(1) Mean absolute prediction error (MAPE), defined as the average
Euclidean distance between estimated and ground truth locations
of cell towers (or Wi-Fi APs), across all towers (APs); (2)Median ab-
solute prediction error, defined similarly but focusing instead on the
median of the errors. We also make use of box plots, bar charts and
CDFs of localization errors in some cases to draw attention to the
distribution of localization errors produced by different approaches.

2.3 Localization Algorithms
A number of algorithms have been used in the literature for estima-
tion locations of cell towers from measurements, several of them
have been originally proposed for Wi-Fi AP localization. Broadly
speaking, these algorithms can be placed in four categories: angle-
of-arrival, geometry, received signal strength (RSS) and propaga-
tion path loss based schemes. We consider a representative set of
algorithms outlined in Table 2. Note that the choice of these par-
ticular set of algorithms is driven by their suitability of use with
uncontrolled crowdsourced measurements collected by commodity
devices [10, 14]. For this general reason, we do not consider angle-
of-arrival/directionality based approaches such as DrivebyLoc [20]
and Borealis [25]; coarse-grained approaches that give zip code
level estimates for transmitter location such as in [15]; as well as
approaches that require meticulous orchestration of measurement
collection as in CrowdWiFi [22]. Among the seven algorithms in
Table 2, we find that MEC and GPR generally result in relatively
high localization errors as shown in Fig. 1. So in the rest of the
paper, we limit our focus to the remaining five algorithms along
with recent work in [10] and our proposed approach.

3 MOTIVATION
3.1 Impact of Crowdsourced Measurement

Characteristics
Crowdsourced measurements are uncontrolled as they are reported
from random locations at diverse environmental situations, times
and devices. Here we state some of the characteristics of crowd-
sourced measurements that either favor or hurt cell tower local-
ization accuracy of a given algorithm, motivating the need for our
proposed adaptive algorithm selection approach.

Inaccuracy in measurement location.We use the RF Signal
Tracker dataset to assess the impact of measurement location inac-
curacy on a transmitter’s predicted position. This dataset consists
two sets of measurements for same route but one collected with
GPS and other with network-based location information. The inac-
curacy for GPS-based measurement locations ranges from 8m-16m
with median value of 12m while for network based locations it
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Table 1: Summary of datasets.

Dataset Description # Cells #Samples

OpenCelliD

MCC 262 (Germany), MNC 01 (T-mobile) 2002 1,579,120
MCC 262 (Germany), MNC 02 (Vodafone D2) 4200 3,378,117
MCC 260 (Poland), MNC 01 (Polkomtel) 2000 1,164,741
MCC 645 (Zambia), MNC 01 (Airtel) 2000 2,453,827
MCC 655 (South Africa) MNC 07(Cell C) 5379 2,766,26
MCC 604 (Morocco) MNC 01 (IAM) 1676 80,213

RF Signal Tracker dataset Collectedwith SamsungGalaxy S3 during 18-20 April 2017 in Edinburgh
city center.

68 6,000

Synthetic dataset Generated using Okumara-Hata model [11] with range 35Km, carrier
frequency 1700 MHz, antenna of height 200m and end-device at 3m
depicting a cell in small and medium-size cities.

1 maximum
32,000

Dartmouth WLAN dataset [9] Collected at Dartmouth campus using Place Lab software during 12–14
Sept 2005. We used warwalk dataset with at least 20 samples per AP.

280 APs 31,312

Table 2: Existing cell tower localization algorithms suitable
for crowdsourced measurements.

Algorithm Brief Description
Geometric schemes

Centroid (C) [6,
12]

Mean of all measurement locations.

Weighted
Centroid
(WC) [6, 12, 23]

Weighted average of measurement locations
using signal strengths at each location as a
weight.

Minimum En-
closing Circle
(MEC) [12]

Center of the circle with minimum radius that
encloses all measurements.

Received Signal Strength (RSS) based schemes
Strongest RSS
(SRSS) [23]

Picks the location with the strongest RSS mea-
surement sample for a cell.

Grid Likelihood
(GL) [12, 13]

It imposes a grid structure on the region cov-
ered by a base station and picks the center
of the grid cell with the highest likelihood of
receiving maximum RSS as the estimated cell
tower location.

Gaussian Process
Regression (GPR)
[2]

Here the signal propagation from the base
station is modeled via Gaussian process re-
gression with the peak signal strength loca-
tion from the model used as the estimated cell
tower location.

Propagation Path Loss (PPL) based schemes
Monte Carlo Path
Loss (MCPL) [7]

It uses a grid structure, like in [2], with path
loss coefficient estimated for each grid cell
using the available signal strength measure-
ments. The (center of) grid cell that results
in the least squared error between estimated
and actual signal strength measurements is
estimated as the cell tower location.

ranges from 20m-40m with median of 22m. With these two sub-
datasets, we observe in Table 3 that inaccuracy in measurement
locations adversely affects all types of localization algorithms but
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Figure 1: Error performance of different localization algo-
rithms using OpenCelliD datasets with ground truth cell
tower locations (Table 1).

to different degrees. RSS and PPL based schemes seem to be much
more impacted compared to geometric algorithms. This is because
geometric schemes take into account overall spread of measure-
ments and are not sensitive to location errors unless center changes.
Localization accuracy with MCPL, on the other hand, degrades the
most because of non-alignment of samples’ distances from probable
cell tower location and their path loss values.

Layout of measurement samples. Crowdsourced measure-
ments come in different layouts. For example, samples generated
by pedestrians and passengers are along streets and roads while
those at hotspots, homes and work places may have more random
locations. These layouts are highly dependent upon deployment
location of a cell, surrounding landscape, crowd population density,
their moving patterns in the cell, and a cell’s footprint.

Fig. 2 shows some of these layouts generated with the synthetic
dataset mentioned in Table 1. The well spread case shown in Fig. 2
(a) is a good layout for each of the localization categories and it also
exhibits high negative correlation between samples’ distances to
cell site and their corresponding RSSs. When the layout is skewed as
shown in Fig. 2 (b), localization errors for schemes in the geometric
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Figure 2: Different spatial layout of measurements.

Table 3: Effect of crowdsourced measurement characteris-
tics on prediction error (in meters).

Characteristic Geometric RSS PPL
Schemes C WC SRSS GL MCPL
Location inaccuracy impact with RF Signal
Tracker dataset
GPS locations 261 263 238 238 227
Network-based 265 266 264 277 291
% degradation 1.5 1.1 10.8 16.3 28
Impact of measurement layouts with Synthetic
dataset
Well spread 352 356 754 707 388
Skewed 22K 22K 754 1K 1K
Out-of-boundary cell 16K 16K 5K 5K 5K
High RSS samples sepa-
rated

352 360 18K 707 668

Impact due to Cor(RSS, distance to cell tower)
with Synthetic dataset
Poor correlation 352 434 2K 2K 1K
% degradation 0 21 144 182 222

category are high (Table 3) as they incline towards the center of the
sampled region. Directional tower up on a hill, restricted building
or like features make measurements to be reported away from
the cell tower location leading to out of the boundary (Fig. 2 (c))
layout. Such a layout is poor for all localization algorithms though
to different degrees as each algorithm estimates cell location to be
lying somewhere inside the measurement boundary. Being a worse
layout for all localization approaches J. Yang et. al [23] introduced
“Boundary Filtering" technique that filters out such measurement
scenarios to be not included in cell localization process. A favorable
layout for RSS based approaches is when there is a single RSS
peak while the opposite is true when there are multiple separated
peaks shown in Fig. 2 (d). Such a Separate High RSS samples layout
makes the tower location prediction erroneous especially for SRSS
as indicated by results in Table 3.

Correlation of RSS to distance from cell tower. With free-
space path-loss, signal strength is inversely proportional to the
square of the distance from the transmitter. This ideal relation does
not always hold because of effects (reflection, etc.) from the ground
and objects in the path. Algorithms highly dependent upon samples’

signal strengths are impacted adversely as the correlation between
samples’ signal strength and distance to cell tower weakens. Using
the synthetic dataset visualized in Fig. 2 (e) we observe from results
in Table 3 that, when compared towell spread layout, the percentage
degradation in accuracy is substantial for the algorithms relying on
signal quality of the sampled locations. In contrast, accuracy with
the Centroid algorithm remains unaffected. WC also observes a dip
in accuracy as it takes RSS as a weight for cell tower locations.

Other than above features, the localization algorithms are im-
pacted by different degrees with the outliers in measurement loca-
tions due to cell dragging and cell-on wheels [16] and un-reliability
in signal values due to diverse user devices. Note that we do not
explicitly handle the issue of diversity among user devices con-
tributing measurements and instead refer the reader to our other
paper [4] that specifically studies the impact of device diversity.

Is there a clear winner among the commonly used mea-
surement based cell tower localization algorithms? We now
examine the overall error performance of five commonly used cell
tower / AP localization algorithms (i.e., the ones in Table 2 except
MEC and GPR) over three real-world crowdsourced measurement
datasets: OpenCelliD datasets for Germany MNC01 and Poland
MNC01; and Dartmouth WLAN dataset (Table 1). For this analysis
and henceforth, a measurement scenario is a set of measurements
(equivalently, samples) available for a cell tower (AP). For each mea-
surement scenario in each of the three above mentioned datasets,
we apply each of the five algorithms and calculate the percentage of
measurement scenarios in a dataset when each algorithm provides
the least localization error. If there was a clear winner among the
algorithms, then that algorithm would have a percentage of 100 at
the expense of other algorithms. Fig. 3 shows the results in the form
of pie charts. While SRSS is the best performing one for majority
of measurement scenarios in all three datasets, it performs really
poorly when it is not the best. Specifically, SRSS has a long tail with
some extremely high errors (for example as Fig. 4 (c) displays an
error above 10Km) that lead to higher mean and standard devia-
tion of errors (above 1.5Km and 5.5Km, respectively). In summary,
we conclude that there is no single consistently best performing
algorithm from among the commonly used localization algorithms.
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Figure 3: Percentage of measurement scenarios in (a) Open-
CelliD Germany MNC 01; (b) OpenCelliD Poland MNC 01;
and (c) DarmouthWLAN datasets for which each of the five
commonly used localization algorithms performs best.

3.2 Limitations of Existing Localization
Approaches to Deal with Crowdsourced
Measurement Characteristics

As the peculiar characteristics, noise and outliers in crowdsourced
measurements can negatively impact the accuracy of any given
wireless infrastructure localization algorithm, some research studies
employ pre-processing of measurements before application of a lo-
calization algorithm. For example to improve localization accuracy
of SRSS and WC, J. Yang et. al [24] introduced three pre-processing
steps, namely RSS Thresholding, Boundary Filtering, and Tower-based
Regrouping. Concerning rationale behind the first step, the authors
in [24] argue that once the strongest observed RSS drops below -60
dBm, the localization error of the SRSS algorithm increases signif-
icantly due to drop in correlation between the strongest RSS and
the distance to the cell tower. Secondly if such a sample lies at the
boundary of measurement layout, they suggest to exclude such
samples. However we observe in our datasets that for 50%of the
cases where maximum RSS is below -60 dBm, SRSS localizes cells
within 500m error, which is not a very high error for cell tower
localization. Moreover, rather than exclusion we believe that coarse
estimation is better than no estimation as it provides a rough idea
of probable deployment area of a network’s infrastructure. For the
third step, authors in [24] claim that merging measurements of cell
sectors with same cell tower improves WC results as it removes the
ill-effect of skewed measurements. Merging cell sectors is, however,
beneficial only when one knows naming pattern of CID’s associated
to sectors of same cell tower. In an other study, to have a reliable
analysis out of crowdsourced data, F. Ricciato et al. [16] presented a
few solutions to some crowdsourced measurement issues including
identification of erroneous cell-IDs, unrealistic cell sizes, effect of
antenna dragging and outliers.

To get the most out of a crowdsourced measurement dataset, the
work of Zhijing Li et al. [10] can be regarded as the most recent
work. It assesses the predictive value of a subset of measurement
samples and finds that samples with high RSS standard deviation (>
100k) and low RSS-weighted dispersion mean (< 0.5km) correlate
to high localization accuracy for WC. Based on this observation,
they devised a variant of WC which we call as Filtered WC (FWC);
it relies on measurements that meet either or both of the above
two criteria. To see if FWC offers a satisfactory alternative to the
five algorithms studied in Fig. 3 above, Fig. 4 (a) shows a measure-
ment scenario where FWC chooses a smaller subset of samples as
predictive with RSS-weighted dispersion mean of 635m and stan-
dard deviation of RSS double to that of the whole measurement set.

While filtering measurements can be useful sometimes, there are
also pitfalls underlying the FWC approach:

• One has to iteratively collect more measurement samples
until RSS-weighted dispersion mean threshold and high stan-
dard deviation of RSS samples are met, which may not be
practical if given a dataset that does not meet both of these
criteria.

• If a measurement subset meets either of the two criteria used
in FWC, it is not always true that the left out measurement
samples perform poorer with traditional WC approach.

• Finally FWC bases its localization on a single algorithm
(i.e. WC). As we saw in Fig. 3, none of the algorithms is
clearly superior over others. This can be further verified with
localization errors in Fig. 4 (b), where another algorithm,
SRSS, exploits the available measurement samples better
than the FWC algorithm.

4 TOWARDS ROBUST CELL TOWER
LOCALIZATION

Results and discussion from the previous section show that relying
on a particular localization algorithm or filtering out measurement
samples both limit localization accuracy that can be achieved for
a given measurement scenario. So in this section we propose an
alternative novel paradigm which is to use all available measure-
ments and choosing between different localization algorithms (for
example, the ones studied in Fig. 3). This paradigm is in sharp con-
trast to the approach taken in FWC [10] where the algorithm to be
used is fixed first (WC) and then the measurements are filtered to
retain only those that are likely to help in achieving high localiza-
tion accuracy. Note that we do not filter out any samples with the
rationale that the algorithm if carefully chosen can exploit all the
available measurement samples.

4.1 Probabilistic Algorithm Selection
We first examine a naive instantiation of this new paradigm to
choose between different algorithms. Based on available measure-
ment data for a set of cells (measurement scenarios) and corre-
sponding ground-truth cell tower location information that can
be viewed as training data, we estimate the relative percentage of
scenarios in which each algorithm yields the best localization result
as in Fig. 3. Such a pie chart is used for all subsequent cell tower
location estimations for probabilistically choosing an algorithm;
essentially, percentages (divided by 100) in the pie chart serve as
prior probabilities for picking different algorithms. We refer to this
approach as Probabilistic Algorithm Selection (PAS).

Using 10-fold cross-validation [17] on the three OpenCelliD
datasets from Germany and Poland, we see that PAS outperforms
FWC by 46 to 65% in the different datasets as shown in Fig. 7. It
is however off from the “Oracle” results by more than 57% both in
mean and median errors. By Oracle results, we refer to the best
estimated cell tower locations, among that estimated by the five
individual algorithms, for each cell (measurement scenario). The
results in Fig. 7 also show that PAS performs poorly compared
to SRSS, the algorithm that yields the lowest localization error
in majority of the scenarios. Moreover, median Oracle results for
the three datasets are 422 m, 300 m and 558 m better than that of
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Figure 4: Example measurement scenarios that show (a) FWC outperforming WC with fewer carefully chosen samples; (b)
SRSS yielding a significantly better localization accuracy than FWC, and (c) SRSS producing a very high error.

PAS by a large margin, indicating that localization accuracy can
significantly improve if correct localization algorithm is chosen.

4.2 Adaptive Algorithm Selection
The results from the previous subsection suggest that while the
simple-minded PAS (reflecting the approach to choose between
algorithms) is already better than FWC (that is based on a spe-
cific algorithm – WC) it leaves room for substantial improvement
compared to Oracle and SRSS.

In light of the above, we propose a more sophisticated variant
called Adaptive Algorithm Selection (AAS). AAS views the prob-
lem of choosing a localization algorithm from among the suite of
different algorithms as a classification problem in machine learning
– different algorithms make up different classes for the classifier.
Unlike PASwhich somewhat randomly selects an algorithmwith no
regard to the specific characteristics of the measurement scenario
for which cell tower needs to be localized, AAS classifier model con-
siders a variety of features (outlined next) that aid in distinguishing
between different measurement scenarios and algorithms.

4.2.1 Feature Set. In Table 3, we illustrate some of the features
with varying degree of impact upon the localization algorithms.
For an in-depth understanding of the combination of features that
can serve as a guide for assessing the suitability of a localization
algorithm for a given measurement scenario, we extract four types
of features as listed below:

• Measurement Spread Features: These include size (num-
ber of measurement samples); radius (spatial spread of the
samples as determined by the radius of the minimum en-
closing circle); DistTl (mean distance of all samples to the
“trend” line of the samples); DispCenter statistics (i.e., mean,
median, standard deviation and index of dispersion of the
samples from central location of minimum enclosing circle);
and Density (mean number of samples per sq. km for a cell).

• Signal Strength Features: These consist of RSS statistics as
well as highest RSS statistics. For the latter, we use number
of highest RSS samples; minimum, maximum, mean and
standard deviation of distances among highest RSS sample
locations.

• Weighted Measurement Spread Features: These include
DispRSS statistics (i.e. mean, median, standard deviation and

index of RSS-weighted dispersion from central location) and
Autocorrelation among samples.

• Features based on Estimated Locations: These extract
correlation between signal quality of measurements and
their distances to estimated locations of the five algorithms
in Fig. 3; distance between each pair of estimated locations
and distance of each estimated location to the center of the
trend line.

4.2.2 AAS Model Generation. We take a supervised machine learn-
ing approach to the classification problem stated above. To generate
the AAS classifier model, for a subset of measurement scenarios with
ground-truth cell tower location information, we train the model as
follows. For each of these measurement scenarios (cells), we create
tuples with features computed as in the previous subsection and the
algorithm among the five in Fig. 3 that yields the least localization
error as the class label.

Another key question to realize the classification model is the
selection of a classification technique that yields the most accurate
classification.We empirically address this question and compare the
accuracy with seven well-known and commonly used classification
techniques: K Nearest Neighbors (KNN), Naive Bayes (NB), Deci-
sion Tree (DT), Multinomial Regression (MNReg), Neural Networks
(NNET), Support Vector Machine (SVM) and Random Forest (RF).
Results shown in Fig. 5 indicate RF to be the best technique with ac-
curacy ranging between 56 and 73% for different datasets, so we use
RF as the classification technique in AAS. From deeper examination,
we find that there are two main reasons for the somewhat low level
of classifier accuracy: (1) imbalance between the different classes,
indicated earlier by Fig. 3; and (2) confusion between subsets of
algorithms (classes) having similar localization inaccuracy within
few tens of meters of each other. Even so, as we will see later in
this section, the AAS performs significantly better than the state of
the art and the simple-minded PAS.

Significant Features. As for the significant features, AASmodel
is highly impacted by features showing mutual distance gap be-
tween the estimated cell tower locations of different localization
algorithms. Table 4 shows the importance of the top impacting
features in the form of Mean Decrease in Accuracy (MDA). The
more the accuracy of an RF-based classifier decreases due to the
exclusion (or permutation) of a particular feature, more important
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Figure 5: Comparison of accuracy between various classifi-
cation techniques that can be used to generate AAS model.

that feature is deemed, and therefore features with a large MDA
are more important for the purpose of classification.

Figure 6: A training set size of around 1200 is sufficient for
AAS to deliver low localization error.

4.2.3 AAS Evaluation. We now evaluate the localization perfor-
mance obtained with AAS in comparison with Oracle and the other
alternatives discussed before. Our evaluations are based on two
methods: (1) 10-fold cross validation (CV); and (2) using a training
set of around 1200 scenarios and test set of 200 scenarios. The se-
lection of training and test sets is random with results an average
of ten runs. We choose training set size to be 1200 scenarios as
the learning curve given in Fig. 6 suggests this training set size is
sufficient to train an AAS model.

Due to space restrictions, we only present the results from 10-fold
CV in Fig. 7 (a). Because of its more reliable choice of a localization
algorithm, AAS reduces the median localization error by 42.4%, 28%
and 25.7% respectively for the three datasets, compared to PAS. For
the same reason, themedian localization accuracywith AAS is within
20% of the Oracle performance in all three crowdsourced datasets.

4.2.4 AAS Applicability toWLANAP Localization. Given that many
of the algorithms employed for cell tower localization have origi-
nally been proposed for localizing the Wi-Fi APs (e.g., [2, 6, 7]), it is
natural to wonder if an approach like AAS that is seen to be effective
for cell tower localization is also effective for the AP localization
setting. To address this question, we use the Dartmouth WLAN
dataset and compare the different schemes.

Table 4: Features for AAS model in decreasing order of im-
portance with RF as the classification technique and as per
MDA.

Features MDA
Distance between estimated locations of the algorithms 30
Maximum RSS value 24
Distance between estimated locations of algorithms and
trend line

23.6

Mean RSS value 23.3
Autocorrelation of samples’ locations and their RSS
values

22

Mean dispersion of samples from central location 21.7
RSS standard deviation 20.9
Standard deviation of RSS weighted dispersion of sam-
ples

20.6

Mean distance of samples to trend line 20.2
Size of measurement samples 20
Median of RSS weighted dispersion of samples from
central location

19

Correlation of samples’ distances and RSS values to
Geometric locations

18.5

Median of dispersion of samples from central location 18
0

2
4

6
8

(a)

P
re

di
ct

io
n 

E
rr

or
 (

K
m

)

Germany MNC 01 Germany MNC 02 Poland MNC 01

Oracle AAS SRSS PAS FWC

Germany MNC 01 Germany MNC 02 Poland MNC 01

Oracle
AAS
SRSS
PAS
FWC

(b)

M
A

P
E

 (
K

m
)

0
1

2
3

4

Figure 7: (a) Distribution of localization errors and (b) mean
absolute prediction error (MAPE) with different schemes us-
ing OpenCelliD datasets.

Results in Fig. 8 (a) indicate similar relative performance as before.
However, different from the cell tower localization setting, the ratio
of improvement in this setting is lower for AAS. We find that the
dataset used is the key reason behind these observations. Dartmouth
dataset is not composed of crowdsourced measurements; instead it
is collected via war-driving and war-walking restricting to roads.
Moreover, this dataset is relatively smaller in size compared to
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previously used OpenCelliD dataset, both in terms of the number
of measurements and scenarios (280 APs vs. 2000-4200 cell sites).
Nevertheless, these results do clearly demonstrate the robustness of
the AAS approach across different wireless infrastructure localization
settings.
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Figure 8: (a) Distribution of localization errors and (b)MAPE
with AAS in comparison to other schemes using WLAN
dataset.

5 AAS APPLICABILITY IN NEW AND
DIVERSE SETTINGS

As stated at the outset, a key motivation behind our study into
localizing cell towers with measurements is to have a means to gain
insight into the reach of mobile infrastructure in developing coun-
try settings. To this end, we initially validate AAS model in new
settings before demonstrating its applicability in developing coun-
try settings under the typical and realistic assumption that in such
cases ground-truth cell tower location information is unavailable.

5.1 AAS Validation in New Settings with
Ground Truth

Here we first examine if AASmodel trained with data from a particu-
lar operator and country can be used in a different setting (different
country and operator) assuming ground truth cell tower location
information is available for the latter.

This investigation is aimed at testing the applicability of the AAS
model in new and previously unseen settings. For this purpose, we
use Germany’s MNC 01 dataset to train our AAS model and test it
over Germany’s MNC 02 and Poland’s MNC 01 datasets; we refer to
this variant of AAS as AAS (Diff.). For comparison, we also include
AAS variant which is trained and tested on different parts of the
same dataset (e.g., Germany’s MNC 02) as well as Oracle and FWC.

Table 5 and Fig. 9 show the results. The focus is on the difference
in error performance between the twoAAS variants, AAS (Same) and
AAS (Diff.), former indicating the best case result achievable with
AAS in a new setting. Results indicate that the difference between
these variants is marginal with both test datasets and close to the
Oracle performance, and that AAS (Diff.) is significantly better
than FWC or SRSS.

Moreover one should look at the distribution of features’ values
that provide guidance about the extent an AAS model trained on dif-
ferent dataset is trustable. For example for the case of Poland MNC
01, we observe its measurement scenarios’ radii, mean dispersion of
samples from center, autocorrelation and distances of algorithms’
results (from each other, to trend line, and to center) are compara-
tively smaller while minimum and median RSS values are higher.
All of these attributes are significant features effecting decision of
AAS model where some of these distributions are shown in Fig. 10.
In other words, smaller the difference in distribution of features’
values, from training dataset, higher is the overall localization ac-
curacy achieved by AAS (Diff.). Other than visual inspections one
can use Chi-square homogeneity [21] type of tests to investigate if
difference between two set of distributions is non-significant.

Due to difference of the distribution we initially obtained a dif-
ference of 6% in the median error between AAS (Diff.) and AAS

(Same) for the Poland’s dataset. By dropping some of the drifting
variables [18] that cause highest covariate shift and using instances
from training set similar in distribution to that of test set, the error
dropped by 2%. Features with covariate-shift are the ones having
very different distribution for both the test and the train sets. While
dropping these features care should be taken not to remove the
highly significant ones. Secondly while generating the model, accu-
racy can be improved by either assigning higher weight or retaining
the instances from training set that are similar to those in the test
dataset.

Figure 9: Localization errors with AAS (Diff.) that is trained
on Germany MNC 01 dataset and tested on (a) Germany
MNC 02 and (b) Poland MNC 01 datasets, relative to other
schemes.

5.2 AAS Application to Developing Country
Settings

Now we come to our key motivating use case of estimating cell
tower locations in new settings where there is no ground-truth
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Table 5: Key localization error statistics with AAS (Diff.) that
is trained on one dataset (Germany MNC 01) and tested on
different datasets, compared to others schemes and with re-
spect to Oracle.

Test Set Germany MNC 02 Poland MNC 01
Scheme Median

APE
Mean
APE

Median
APE

Mean
APE

Oracle 309m 431m 547m 1.62km
AAS(Same) 11.6% 18.5% 18% 17%
AAS(Diff.) 12.6% 27% 22% 19%
SRSS 14% 148% 32% 38%
FWC 335% 386% 241% 136%
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Figure 10: Differences in the distributions of some features
used by AAS across different datasets that can impact accu-
racy of AAS (Diff.).

information available, keeping developing countries in mind. Re-
sults from the preceding subsection suggest that a pre-trained AAS
model when used in an entirely different setting still gives loca-
tion estimations within around 20% of the Oracle approach, which
makes it reasonably trustworthy and that too by a big margin com-
pared to the alternative schemes from the literature. We can do
even better by taking into account the specific characteristics of
measurement features for the target setting and accordingly choos-
ing a model trained for a similar setting. As demonstrated in Fig. 10,
different settings differ in their measurement characteristics. We
exploit this observation in our case studies below.

To demonstrate the usefulness of AAS in inferring mobile infras-
tructure in developing countries via measurements, we consider
three representative countries from Africa – Zambia, South Africa
and Morocco – as case studies. We selected these countries keeping
in mind availability of crowdsourced measurements in the Open-
CelliD dataset and side information in the form of some publicly

available coverage maps to visually inspect and assess the correct-
ness of cell tower location estimations made by AAS.

Considering our first case study of Zambia, we focus on cell
tower infrastructure for Airtel (MNC 01), which is one of the three
largest operators in the country but does not even provide coverage
map on its official website [1] let alone revealing its infrastructure
siting information. For crowdsourced measurements for this op-
erator, we rely on OpenCelliD’s sub-dataset for Zambia. To apply
AAS in this new setting, we train it on Poland MNC 01 dataset (in
view of its similarity in distribution of features to that seen in Zam-
bia). Resulting cell tower location estimations indicate the probable
infrastructure layout of this operator (Fig. 11 (a)), which shows
good alignment with the crowdsourced measurement based cover-
age map information available for this operator from OpenSignal
(Fig. 11 (b)).

(a)

(b)

Figure 11: (a) AASmodel trained on OpenCelliD Poland MNC
01 dataset and tested overmeasurement data for AirtelMNC
01 in Zambia from OpenCelliD; (b) Publicly available cover-
age status for Airtel, Zambia from OpenSignal.

We repeated a similar process of estimating cell tower locations
for CellC (MNC 07) 2G mobile network in South Africa and IAM
(MNC 01) network in Morocco. For both cases, we trained the AAS
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model on Germany MNC 01 dataset in view of its feature similarity
to the above test networks, like above. Resulting map with inferred
cell tower locations for both these networks in different countries
along with corresponding but independent coverage maps from
public sources adding confidence to these inferences are shown in
Figs. 12 and 13, respectively. These case studies clearly demonstrate
the value of AAS approach for robust measurement based cell
tower localization to map/track mobile infrastructure in developing
countries.

(a)

(b)

Figure 12: (a) Infrastructure layout of South Africa’s CellC
2G network as identified by AAS (Diff.) with measurement
samples obtained fromOpenCelliD and (b) Coveragemap of
South Africa’s CellC 2G network from its official website.

6 CONCLUSIONS
In this paper, we have considered cell tower localization using
crowdsourced signal strength measurements. Using a large-scale
crowdsourced dataset with ground-truth cell tower locations, we
first showed that each of the commonly used localization algorithms
is susceptible given the wide variations in features across different

(a)

(b)

Figure 13: (a) AAS (Diff.) identifies infrastructure layout of
GSM cells of Morocco’s IAM network using measurement
dataset fromOpenCelliD and (b) Infrastructure layout of the
same network as shown by cellmapper.com.

measurement scenarios. Even the recent FWC approach [10] to
avoid using less predictive measurements in conjunction with a
specific algorithm is found to be similarly vulnerable, making it
produce high localization errors. Motivated by these observations,
we proposed AAS, a novel localization approach based on super-
vised machine learning, aiming to adaptively select the localization
algorithm that is expected to yield a most accurate localization
performance for a given measurement scenario. AAS not only signif-
icantly outperforms the commonly used algorithms and the FWC
approach but is also shown to be robust across new and differ-
ent settings including WLAN AP localization. More crucially, we
present case studies highlighting the use of AAS based cell tower
localization in three different African countries to demonstrates its
use for infering mobile infrastructure in developing countries.
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