
Infusing Computational Thinking across Disciplines:
Reflections & Lessons Learned

Lori Pollock, Chrystalla Mouza, Kevin R. Guidry, Kathleen Pusecker
University of Delaware
Newark, DE 19716, USA

{pollock, cmouza, krguidry, klp}@udel.edu

ABSTRACT
In this work, we describe our effort to develop, pilot, and evaluate
a model for infusing computational thinking into undergraduate
curricula across a variety of disciplines using multiple methods
that previously have been individually tried and tested, including:
(1) multiple pathways of computational thinking, (2) faculty
professional development, (3) undergraduate peer mentors, and
(4) formative assessment. We present pilot instantiations of
computational thinking integration in three different disciplines
including sociology, mathematics and music. We also present our
professional development approach, which is based on faculty
support rather than a co-teaching model. Further, we discuss
formative assessment during the pilot implementation, including
data focusing on undergraduate students’ understanding and
dispositions towards computational thinking. Finally, we reflect
on what worked, what did not work and why, and identify lessons
learned. Our work is relevant to higher education institutions
across the nation interested in preparing students who can utilize
computational principles to address discipline-specific problems.

Keywords
Undergraduate CS education; computational thinking; CS
principles

ACM Reference format:
YoLori Pollock, Chrystalla Mouza, Kevin R. Guidry, and Kathleen
Pusecker. 2019. Infusing Computational Thinking Across Disciplines:
Reflections & Lessons Learned. In Proceedings of 50th ACM Technical
Symposium on Computer Science Education (SIGCSE ‘19), February 27-Mar. 2,
2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287469

1. INTRODUCTION
As a result of policy efforts seeking to improve science,
technology, engineering and mathematics (STEM) learning as
well as industry initiatives aimed at promoting a more
technology-savvy workforce, the need to help all students acquire
computational thinking (CT) skills has gained increased attention.

CT is a problem-solving methodology implemented with a
computer that can be automated, transferred and applied across
subjects [1]. Jeanette Wing [2] suggested that CT is a fundamental

skill of analytical thinking for everyone, which influences all
aspects of our lives, from protecting our personal privacy and
understanding our legal rights to deciding how to efficiently find
and analyze information. A report on CT by the National Research
Council (NRC) [3] advanced a similar idea indicating that CT is a
cognitive skill that the “average person is expected to possess”
(p.13).

CT includes a broad range of mental concepts and tools from
computer science that help students analyze and develop
solutions to problems within their own disciplines, including:
problem decomposition, abstraction, algorithms, data
representation and analysis, and automation [1, 3]. For example,
business students can use CT to collect, classify, and leverage
social media data for marketing and sales (data representation and
analysis). Exercise science and physical therapy students can use
CT to collect, classify, and learn from fitness and health records
data for customized health regimes for patients (data
representation and analysis). Journalism students can use CT to
decompose articles and identify patterns, determine missing
information to design interviews and surveys, develop sound
logical arguments in their stories, and produce videos (problem
decomposition, abstraction, automation). Music students can use
CT to create and manipulate music through various technologies
using concepts from programming (problem decomposition,
abstraction, data representation, automation). Engineering
students can analyze traffic patterns and algorithms to control
traffic lights (problem decompositions, algorithms, and data
analysis). Finally, art students can use CT to transform
biochemical data into geometric images with meaning and beauty
(abstraction and algorithms).

Although the ability to think computationally is essential to
productive disciplinary engagement, most university curricula are
currently not designed to provide such knowledge to a broad
student population [4]. Even when efforts are made to teach every
student about computing as a general education requirement, the
discussion of CT does not always reach out to the entire university
community [3]. Through support from the National Science
Foundation (NSF), institutions such as DePaul University [5],
Union College [6], and Towson University [4] have pioneered
ways of integrating CT into existing, discipline-specific
undergraduate courses in the sciences, humanities, and social
sciences by creating flavors of introductory computer science
courses for broad audiences. Recognizing the need for these
interventions to be contextual so that students appreciate and use
CT in their own career paths, these institutions advanced
frameworks and models for promoting the development of CT
among a diverse body of undergraduate students. Previous work,
however, did not provide recommendations for establishing such
initiatives university-wide to reach all students within a variety
of majors and disciplines. For instance, some efforts focused on
honors students [4], others only on students in the humanities [5],
and others only on students within STEM fields [7].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
SIGCSE’19, February 27-March 2, 2019, Minneapolis, MN, USA.
© 2019 Association of Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02...$15.00.
DOI: http://dx.doi.org/10.1145/3287324.3287469

Paper Session: Computation Thinking 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

435

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3287324.3287469&domain=pdf&date_stamp=2019-02-22

In this work, we present our effort to develop, pilot, and evaluate
a model for infusing CT into undergraduate curricula across a
variety of disciplines using multiple methods that have been
previously tried and tested individually, including: (1) multiple
pathways of CT, (2) faculty professional development (PD), (3)
undergraduate peer mentors, and (4) formative assessment [4, 6,
8]. Locally, this work is motivated by the recent decision of our
institution to add CT to its education objectives for all
undergraduate students. Nationally, this project is motivated by
the need to identify models and practices that help institutions
across the nation infuse CT across undergraduate curricula in a
variety of disciplines, to ensure that all students acquire
computational competencies required to maintain the economic
competitiveness of the U.S. in a 21st-century workforce [3].

2. MULTIPLE PATHWAYS TO CT
Creating multiple pathways to the development of CT knowledge
and skills is not new. For example, Carroll University [9] replaced
general education mathematics and computer science
requirements with new courses focused specifically on CT for all
Bachelor of Science students at the University (80% of the
population). It also developed interdisciplinary programs in
computational science and trained faculty to teach new courses as
well as integrate CT throughout individual curricula. While this
effort targeted developing distinct CT courses, other prior NSF-
supported efforts focused explicitly on the integration of CT
across a variety of disciplines. For instance, one effort addressed
infusing CT in liberal arts and journalism by having students from
diverse backgrounds work in groups to find technology solutions
to real world problems [10]. Similarly, another effort brought
together faculty leaders inside the CT community to collaborate
with faculty and students from outside the CT community [6]. The
goal was to attract non-traditional students to take introductory
computer science courses as well as encourage faculty outside
computer science to develop discipline-specific courses that built
on the introductory computational course. DePaul University,
collaborated with other Chicago area institutions to work to
incorporate CT across liberal studies [5]. Finally, Towson
University, developed an introductory course for freshmen called
Everyday CT as well as offered a discipline-specific CT seminar
[4].

Collectively, these efforts provided a set of curricular examples
and syllabi that illustrate ways in which CT can be infused into a
variety of disciplines. Most of these efforts, however, were
primarily "bottom up" and did not lead to sustainable change. Our
approach differs in that our institution has already mandated that
CT be incorporated across undergraduate curricula across
disciplines as a General Education objective for all students.
Therefore, we are tasked with the objective of identifying
implementation strategies that respond to this new mandate. In
this work, we present pilot instantiations of CT integration in
three different disciplines: sociology, mathematics, and music. We
also present our faculty support model and discuss formative
assessment during the pilot implementations. There are two
unique elements in our approach compared to prior efforts. First,
rather than developing new courses, our faculty integrated CT
into existing courses in their discipline. Second, none of the
faculty had a background in computer science. Rather, they were
disciplinary experts with interests in identifying strategies for CT
integration that were relevant to courses in their own field.

3. FACULTY PROFESSIONAL
DEVELOPMENT
PD is key to facilitating ongoing course preparation and
implementation particularly for faculty with minimal CT
background. One-shot workshops, however, are rarely effective
[11]. Rather, effective PD that leads to improved student outcomes
is ongoing and is connected to content and specific teacher needs
[11]. Earlier faculty PD models on CT consisted of short-term
workshops [4] or co-teaching approaches where CS faculty were
paired with faculty in a specific discipline to ensure accurate
content instruction. While there are a number of benefits to co-
teaching, it makes scaling up challenging.

Our PD model consists of participation in a multiday institute
during the summer and bi-weekly meetings throughout the
academic year with the faculty teaching the course(s) and a CT
integration team. The team includes a faculty from computer
science who brings CT-related expertise, a learning scientist, and
professionals from our university’s Center for Teaching &
Assessment of Learning. The institute provides an introduction to
CT and CT classroom activity ideas while the CT integration
teams and undergraduate students with computer science
background provide assistance and resources during the planning
and implementation of the courses.

3.1. Summer Institute
Every year at the end of the spring semester, our university
provides a Faculty Institute that focuses on teaching, learning, and
assessment. To infuse CT across undergraduate curricula for all
majors, the Center for Teaching & Assessment of Learning at our
institution in concert with faculty in computer science and
education established a CT-related PD track within the Summer
Institute. This track focused specifically on helping faculty learn
about CT, including approaches and strategies for integrating CT
in their specific disciplines. The Summer Institute provided hands-
on opportunities for faculty to learn more about CT and how to
create classroom activities and assessments that promote CT-
related skills among students. We began by introducing CT with
a “CS Unplugged” activity - an activity that introduces a CT
concept without technology. We then shared our draft rubric
focusing on assessing artifacts that integrate CT with disciplinary
content. The rubric, modeled after the Association American of
Colleges and Universities VALUE rubrics, draws heavily on the
literature on CT and has been vetted by CT experts (see Appendix
A). Faculty participants used the rubric as a scaffold for
developing CT related activities within their discipline. Faculty
with whom we have worked to infuse CT into their courses also
shared specific examples and activities from their courses. In
addition to these sessions at the summer institute, we also piloted
with one faculty an alternative PD model that consisted of a 3-day
intensive workshop focused on course design rooted in backward
design principles. Both of these models are adaptations of existing
faculty support programs at our institution and models that are
commonly used at many U.S. colleges and universities.

3.2. Year-Long Support
To ensure that participating faculty were supported in their
efforts to integrate CT in their respective disciplines, we provided
year-long support in bi-weekly meetings that included both time
for collaborative discussions and sharing of practices as well as
one-to-one consultation. As noted, the team meetings included
the disciplinary expert professors, a learning scientist, a computer

Paper Session: Computation Thinking 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

436

science professor, and two professionals from the Center for
Teaching Assessment & Learning. Our discussion topics focused
on identifying opportunities for CT integration into existing
course modules, developing new modules that integrate CT in the
specific discipline, providing feedback on module development, as
well as developing instruments (e.g., surveys and rubrics) for
assessing student CT knowledge and skills. We used the criteria
in the draft rubric to guide many of our discussions and keep them
focused on specific CT constructs that may be more fruitful in
each discipline.

3.3. Undergraduate CT Fellows
Our work is uniquely characterized by the role of undergraduate
peer mentors, called CT Fellows, who are responsible for ongoing
faculty support. Specifically, CT-knowledgeable undergraduates
not only assist participating faculty in the design and
implementation of instructional activities that integrate CT with
specific disciplinary content, but they also serve as peer mentors
during the course. Our institution has a rich tradition of utilizing
peer mentors in a variety of disciplines and contexts. This model
is effective because the mentors are close enough to their peers to
recognize confusion and perspectives that they themselves
experienced while acquiring new knowledge. This “near peer”
closeness helps mentors build rapport with students, encourage
and provide emotional support, and set expectations with
nondirective enabling [12].

To prepare CT Fellows, we draw on a model developed to prepare
undergraduate students to assist K-12 teachers in teaching
computing [13]. In this model, students interested in becoming
Fellows participate in a university course called Field Experiences
in Teaching Computing. The course, which is open to students
who have completed at least one prior computer science course,
is based on prior NSF-supported service-learning models and
fulfills requirements for a computer science major, computer
science minor, and discovery learning experience (a graduation
requirement for undergraduate students at our institution). It has
been offered continuously since spring 2013. Participants meet for
75-minutes on-campus once a week to identify and implement CT
related teaching resources targeted toward specific disciplines,
model classroom lessons that build on research-driven strategies,
discuss teaching pedagogy, prepare and analyze lesson plans, and
reflect on their experiences.

4. DESCRIPTION OF CT-INFUSED
COURSES
In this section, we describe efforts to integrate CT across
disciplines including sociology, mathematics, and music.

4.1. Sociology
In sociology, a faculty member infused CT into the Introduction to
Sociology course for honors students in their freshman year. In
this course, the instructor met with the CT Fellow and decided to
focus primarily on the use of algorithms in relation to gender in
children’s products. Specifically, working in small groups,
students researched and selected websites aimed at promoting and
selling toys to children. Their task was to identify patterns such
as slogans, colors, music, and activities associated with gender.
Subsequently, their task was to develop algorithms, which is a key
component of our rubric (see Appendix A), using terms such as
AND, OR and NOT that helped a search engine identify gender on
children’s websites by specifying the salient patterns found in

their analysis. Students were free to create an algorithm in a
variety of formats (that did not include programming). For
instance, some students provided lists of items while others wrote
programs using pseudo-code.

Using the construct of algorithms in this context provided a means
for gender socialization. Participants learned that websites selling
toys to children could easily be analyzed using an algorithm and
that these algorithms represent society’s understanding of
socially salient elements that help identify and recognize gender.
In the process, students had an opportunity to recognize how rigid
gender differences must be for an algorithm to identify gender.
Thus, in this course, algorithms highlighted the process of
socializing children into differences that are meaningful and how
to identify and embody those differences. In essence, this
assignment helped highlight the connections among CT and
disciplinary content related to gender socialization.

4.2. Mathematics
In mathematics, CT was integrated into a course for non-majors
titled Contemporary Mathematics. Specifically, the instructor
consulted with the CT fellow and the PIs and integrated CT into
an exercise related to data analysis which is a key component of
CT and our rubric (see Appendix A). For example, the instructor
asked students to identify a dataset from an online portal
(https://www.statcrunch.com/). Subsequently, students were
asked to identify a question that could be answered based on the
dataset, analyze the data, display the findings using graphs, and
write an interpretation of the findings.

Working in groups of 2-3, participants selected a variety of
datasets from cereal (e.g., where cereal is stored in a supermarket,
nutritional information, etc.) to social media to sports (e.g., NFL
statistics) to music to presidential ratings. In the process, students
learned about the data they were using and realized the value of
using automation in the analysis as the data sets were too large to
identify patterns manually. Further, students realized that
meaningful representation of data was frequently dependent on
the size of the dataset, which in turn influenced their choice of
graphs and their interpretation of the findings.

4.3. Music
In music, a faculty member developed and taught a course called
Computational Thinking in Music. This was the only instance
where a new course was created as opposed to integrating CT into
existing materials. This course was developed in collaboration
with a music faculty who had previously integrated CT into a
music appreciation course for non-majors. Although the course
was successful, both faculty wanted to take a deeper dive into the
connections among music and CT and thus established a pilot
course focusing explicitly at the intersection of CT and music.
Specifically, a key component of the course was the integration of
programming in music and the use of online data (e.g.,
HookTheory.com) and Python code to explore music released by
a popular artist and algorithmically write a portion of a song in
the style of that artist.

The course was open to all students independent of prior
background in music. As a result, there was variability in students’
understanding of music from those with no background at all to
amateur musicians. The first four weeks of the course were
devoted to helping students fill in the gaps in terms of their
understanding of music vocabulary and terminology. In Week 5,
students downloaded pre-existing transcriptions of artists’ music
to form a corpus. Subsequently, they created harmonic

Paper Session: Computation Thinking 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

437

progressions for a verse (chords and rhythms) based on a
computer-based analysis of corpus data; this analysis was
performed using Python programs developed by the CT Fellow
assigned to support this course. Following the development of the
progression, participants created melody for verse (pitches and
rhythms) again using Python code. The basic string of pitches and
layout for segmentations was suggested by computer analysis of
their specific corpus that created a Markov model. Finally,
participants repeated the harmonic progression and melody tasks
for the chorus and revised as needed. To conclude the course, the
instructor brought in a band of musicians who gave a live
performance of students’ work.

5. METHODS
In this paper, we report on formative evaluation of our approach
to CT integration across the disciplines of sociology, mathematics,
and music. Relatedly, we answer the question: How does
participation in a CT-infused discipline specific course influence
undergraduate students’ understanding and attitudes towards CT?

Data were collected from all undergraduates enrolled in one of the
pilot courses in sociology (N=22), mathematics (N=35), and music
(N=10) through a tested pre-and-post course survey [14] that was
slightly modified for our work. In addition to other questions, the
survey included one open-ended question of interest to our work:
What do you think the term computational thinking means? This
question tested students’ understanding of CT. The survey also
used 20 Likert-type items (see Table 1) to assess student

understanding and attitudes in four categories: definition (e.g., see
items 1-4), comfort (see items 5-10), interest (see items 11-14),
career/future use (see items 15-20). Likert-type responses were
scored on a scale of 1- 4 where 1=Strongly Disagree and 4=Strongly
Agree. Subsequently scores were entered into a spreadsheet and
means were calculated. The pre and post open-ended survey
response was analyzed qualitatively using the constant
comparative method [15]. This approach helped identify common
themes that cut across participants’ responses.

6. RESULTS
Overall, results indicated positive improvements from the pre to
the post administration of the survey in some categories but not
others. Specifically, participants reported better understanding
(items 1-4) and comfort (items 5-10) with CT. However,
participants did not express greater interest in CT after their
participation in the course (items 11-14). Further, there was some
ambivalence regarding the importance and value of CT in
participants’ future careers, specifically within their discipline
(items 15-20). The exception was item 20, where participants
clearly indicated improvements in their understanding of tools
that can be used in their discipline. It is important to note,
however, that given the small sample size and the fact that not all
students responded to each question we were not able to conduct
a statistical analysis to test for the significance of the gain score
from the pre to the post administration of the survey.

Table 1. Pre/Post Scores on Understanding and Attitudes Toward CT

 Sociology*
(N=22)

Mathematics*
(N=35)

Music*
(N=10)

 Pre Post Pre Post Pre Post
1. CT focuses solely on understanding how computers work. 3.7 3.7 3.0 3.7 2.7 2.8
2. CT involves thinking logically to solve problems. 3.6 3.4 3.9 3.6 3.8 3.7
3. CT requires using computers to solve problems. 2.9 3.6 2.9 3.1 1.9 2.4
4. CT involves abstracting general principles and applying them to other situations. 3.3 3.4 3.5 3.5 3.6 3.9
5. It is possible to apply CT skills to solve problems in my major. 3.6 3.9 3.1 3.2 3.6 3.3
6. I am comfortable with CT concepts. 2.1 3.5 2.7 3.0 2.4 3.3
7. I can achieve good grades in courses that require CT. 3.1 3.7 3.2 3.1 2.8 3.4
8. I can learn to understand CT concepts. 3.7 3.6 3.6 3.5 3.4 3.8
9. I use CT skills in my daily life. 3.2 3.3 3.0 3.1 3.0 3.2
10. I can solve problems by using CT skills. 3.4 3.0 3.3 3.3 3.2 3.3
11. I think using CT skills is boring**. 1.7 1.7 2.4 2.2 2.1 2.1
12. The challenge of solving problems using CT appeals to me. 3.1 2.7 2.7 2.7 3.0 3.2
13. I am interested in using CT skills. 3.3 3.0 2.8 2.7 3.1 3.2
14. I will voluntarily take courses that use CT if I am given the opportunity. 3.2 3.2 2.3 2.4 3.0 3.1
15. Knowledge of CT skills will help me secure a better job. 3.4 3.7 3.1 3.1 3.6 3.4
16. My career goals require that I learn CT skills. 3.2 3.8 2.6 2.9 2.9 2.9
17. I expect that learning CT skills will help me to achieve my career goals. 3.4 3.4 2.8 2.9 3.3 3.3
18. I hope that my future career will require the use of CT skills. 2.9 3.0 2.6 2.5 2.8 3.2
19. Having background knowledge and understanding of CT skills is valuable in and
of itself.

3.5 3.1 3.1 3.2 3.6 3.7

20. I know what CT tools are available to solve problems in my major. 2.2 3.1 2.7 2.9 2.6 3.3
* Not all participants responded to all items on the pre/post survey
** This item is a reverse statement and thus the lower score indicates disagreement that CT is boring.

Findings from the open-ended question also noted improvements
in participants’ understanding of CT related concepts before and
after participation in a CT infused course. When asked to respond
to the question “What do you think the term CT means?” initial
responses focused primarily on the following:

 Logical thinking: “Using logic and common sense when
thinking”, “Using logic and structured thinking to organize
given information”, “Using common sense and logic in daily
activities.”

 Non-creative thinking: “Thinking in a math-oriented kind of
way, thinking in a strict way/not creatively.”

Paper Session: Computation Thinking 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

438

 Thinking like a computer: “Thinking through tasks like an AI
computer program to find the fastest and most efficient option”.

Further some participants simply noted that CT is about “using a
computer”, “computer knowledge” or “completing mathematical
calculations”. Only a small number of students recognized CT as
a problem-solving methodology that can be implemented with a
computer. One participant, for instance, explained: “CT is defining
a problem and trying to find a solution to it using a computer or
machine”.

In contrast, post-survey data demonstrated an improved
understanding of CT through more detailed and conveying
responses. Most participants recognized CT as a problem-solving
methodology, while others used specific CT concepts as they
defined CT, including “decomposition” and “abstraction”. One
participant explained, “CT is a thought process in which tasks are
broken down into easier, more manageable steps. CT uses problem
decomposition, algorithms, abstraction, and data.” Similarly,
another student noted: “CT involves considering a problem and
breaking it down through decomposition in order to better carry out
the task or solve the problem.” Further, participants recognized that
CT is not a mechanistic approach to thinking but rather involves
creativity and problem solving through multiple perspectives.
One student explained, “CT involves thinking abstractly and being
able to decompose an issue at hand in order to see all possible
solutions” while another student noted that “CT is being able to
look at things or issues from multiple perspectives or lenses and come
up with various solutions or answers”. Finally, more participants
understood the relationship between CT and computers. One
student explained, “CT is being able to think or put ideas in terms
that a computer could follow”. Overall, in the post-survey, a greater
number of participants were able to articulate the relationship
between CT, problem-solving, and computers.

7. DISCUSSION AND LESSONS LEARNED
In this section, we identify lessons learned from the pilot
implementations in sociology, mathematics, and music.

 Faculty development is critical in learning about CT and
honing an understanding of discipline-specific approaches to
CT. Further, regular discussions between a CT integration
team that includes both CT and disciplinary experts as well
as experts on teaching and assessment are critical in
developing course objectives and instructional activities that
indeed provide a path to the design and implementation of
CT into disciplinary courses without the need for co-
teaching. The draft VALUE-style rubric that presents a
succinct definition of CT with measurable criteria was
tremendously helpful in not only facilitating discussions, but
also in helping faculty modify their courses, creating
assignments, and assessing students’ work.

 Peer mentors in the form of CT knowledgeable
undergraduates can support the faculty in a way that
increases faculty confidence in the classroom as they enact

CT activities. However, the role of CT Fellows varied among
participants. For example, the music faculty required
substantial technical support from a CT Fellow who wrote
computer code and helped the faculty and students adapt and
run that code on their computers. In sociology and
mathematics, however, the CT Fellow served primarily as a
brainstorming partner for the faculty members in developing
and polishing course assignments that integrated CT with
disciplinary content. As faculty gain confidence they are
more likely to continue to build on their successes with
additional CT-related activities and modules. The peer
mentor for a given course may not require more than four
hours a week including class time, thus the same CT Fellow
may be able to support more than one faculty in a given year.
This helps with scaling the model to support more faculty in
CT integration each year. However, the logistics of
coordinating, supervising, and supporting these students
who also have many other responsibilities – their own
coursework, enrollment in the CT fieldwork course, and
attending some classes with their CT faculty member – can
be formidable and cannot be underestimated. These
challenges make it likely that we will make significant
changes to this aspect of our support model as we continue
infusing CT into additional courses at our institution.

 Students sometimes do not appreciate why they are learning
CT within a disciplinary-specific course. This suggests that
faculty need to begin the course and its advertising with
strong motivation for integrating CT transparent learning
objectives into the course, and reiterating the importance of
those learning objectives throughout the course. This can be
done by providing examples of how the CT-related activities
are relevant to their discipline and the real world outside the
classroom; in fact, situating CT within students’ and faculty
members’ selected disciplines is why we have elected to
infuse CT into many different courses instead of assigning
this responsibility to computer science faculty or creating
CT-specific courses co-taught by computer scientists.

 Formative assessment needs to account for the fact that
artifacts created for assessment are different across
disciplines. Thus, a common rubric for assessing CT
knowledge and skills may need to be adapted when
implemented on various kinds of student artifacts.

In conclusion, our findings indicate that a model for CT
integration that applies multiple proven methods together holds
promise for successfully meeting university goals of CT for all,
without a co-teaching model or separate discipline-oriented
computer science courses. In addition, the model provides service
learning opportunities for CT knowledgeable undergraduates and
creation of a network of faculty who can share their ideas,
challenges, and experiences in integrating CT within their
discipline. Our next challenge is scaling up the model to reach a
greater number of faculty and students

Paper Session: Computation Thinking 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

439

Appendix 1. Draft Computational Thinking Rubric adapted from [1]. See also: http://www.udel.edu/005415

Capstone Milestones Benchmark

4 3 2 1

Decomposition

Breaks a problem into
its constituent
subproblems

Creates a problem
decomposition that
breaks a complex
problem into clearly
described, well-defined,
and distinct-but-related
subproblems that are
easier to solve than the
original problem but
when combined
efficiently solves the
original problem.

Creates a problem
decomposition that
breaks a complex
problem into clearly
described subproblems
that are distinct-but-
related but lack
efficiency, although they
solve the original
problem.

Creates a problem
decomposition that
breaks a complex
problem into
subproblems that lack
efficiency, fail to have
sufficient descriptions,
and overlap, although
they solve the original
problem.

Creates a problem
decomposition that
breaks a complex
problem into
subproblems that are
inefficient, described
poorly, overlap or
closely related, and fail
to completely solve the
original problem.

Data

Analyze (or create) a
data set that facilitates
discovery of patterns
and relationships

Analyzes1 a data set to
ensure it is sufficiently
comprehensive,
efficiently organized,
meaningfully labeled,
and thoroughly
described so that it can
be analyzed to discover
meaningful patterns and
relationships.

Analyzes a data set to
ensure it is sufficiently
comprehensive,
meaningfully labeled,
and thoroughly
described but fail to
ensure that it is
efficiently organized.

Analyzes a data set to
ensure it is sufficiently
comprehensive and
meaningfully labeled but
fail to ensure that it is
thoroughly described
and efficiently
organized.

Analyzes a data set but
fail to ensure that it is
sufficiently
comprehensive,
efficiently organized,
meaningfully labelled,
and thoroughly
described so patterns
and relationships are
obscured.

Algorithms

Creates a series of
ordered steps to solve a
problem or achieve a
goal

Creates an accurate,
logical, efficient, and
well-described sequence
of steps or instructions
to solve a problem or
achieve a goal.

Creates accurate steps
that are logical and well-
described and solve a
problem or achieve a
goal but the steps are
inefficient e.g., not in an
optimal sequence,
overlapping or
duplicative.

Creates logical steps that
solve a problem or
achieve a goal but the
steps are poorly
described.

Creates a sequence of
steps that do not solve
a problem or achieve a
goal. The steps lack
efficiency, sufficient
descriptions, and are
not described or
documented.

Abstraction

Reduces complexity to
create a general
representation of a
process or group of
objects so it is not only
appropriate for the
immediate purpose or
goal but can also be
used in different
contexts

Creates an accurate-but-
simplified representation
of a process or group of
objects to solve the
problem or meet the
goal. Selects essential
characteristics by
filtering out unnecessary
information. Can be used
to solve other problems
or goals.

Creates an accurate-but-
simplified representation
of a process or group of
objects to solve the
problem or meet the
goal. Selects essential
characteristics by
filtering out unnecessary
information. Cannot be
used to solve other
problems or goals.

Creates an accurate-but-
simplified representation
of a process or group of
objects to solve the
problem or meet the
goal. Fails to select all
essential characteristics
by filtering out
unnecessary
information. Cannot be
used to solve other
problems or goals.

Creates an
representation of a
process or group of
objects that is not
accurate, not
sufficiently simplified,
or fails to solve the
problem or meet the
goal.

1 Advanced courses or disciplines with a strong focus on CT may instead require students to create a data set instead of analyzing an existing
one.

Paper Session: Computation Thinking 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

440

8. ACKNOWLEDGMENTS
This work is supported by a grant from the National Science
Foundation (Award # 1611959). All opinions are the authors and
do not necessarily represent those of the funding agency.

9. REFERENCES

[1] Barr, V., & Stephenson, C. 2011. Bringing computational
thinking to K-12: What is involved and what is the role of the
computer science education community? ACM Inroads, 2(1):
48-54.

[2] Wing, J. 2006. Computational thinking. Communications of
the ACM, 49(3). 33-35.

[3] National Research Council. 2010. Report of a Workshop on the
Scope and Nature of Computational Thinking. Washington,
DC: National Academy of Sciences.

[4] Dierbach, C., Hochheiser, H., Collins, S., Jerome, G., Ariza, C.,
Kelleher, T., Kleinsasser, W., Dehlinger, J., & Kaza, S. 2011. A
model for piloting pathways for computational thinking in a
general education curriculum. In Proceedings of the 42nd ACM
Technical Symposium on Computer science education, 257-262.
doi: 10.1145/1953163.1953243.

[5] Perković, L., Settle, A., Hwang, S., & Jones, J. 2010. A
framework for computational thinking across the
curriculum. In Proceedings of the 15th annual conference on
Innovation and technology in computer science education, 123-
127. doi: 10.1145/1822090.1822126.

[6] Barr, V., Motahar, E., Liew, C. W., & Stewart-Gambling, H.
2009. Building a campus wide computation initiative: Panel
discussion. Journal of Computing Sciences in Colleges, 24(3),
109-110.

[7] Alvarado, C., Dodds, Z., Kuenning, G., Hadas, R., & Shelton,
C. 2010. Modular CS1 from the inside out: Computational
thinking for all STEM students. CPATH PI Meeting, March 25-
26, Arlington, VA.

[8] Pollock, L., Mouza, C., Atlas, J., & Harvey, T. 2015. Field
experiences in teaching computer science: Course
organization and reflections. Proceedings of the 47th ACM
technical symposium on Computer science education, 374-379.

[9] Kuster, C., & Hu, C. 2012. CAPTH-1: Developing
computational thinking skills across the Undergraduate
curriculum. Retrieved from:
http://grantome.com/grant/NSF/CNS-0939032.

[10] Pulimood, S. M., Pearson, K., & Bates, D. C. 2014. CABECT:
collaborating across boundaries to engage undergraduates in
computational thinking (Workshop – abstract only). In
Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, Atlanta, Georgia, USA, March 05
– 08, 2014.

[11] Zepeda, S.J. 2011. Professional development: What works
(2nd ed.). Larchmont, NY: Eye on Education, Inc.

[12] Harrington, K., O’Neill, P., & Bakhshi, S. 2008. Making time
and space for writing: Student writing mentors and the writing
centre. Presentation at Writing Development in Higher
Education Conference, University of Strathclyde, Glasgow,
Scotland.

[13] Pollock, L., Mouza, C., Atlas, J., & Harvey, T. 2015. Field
experience in teaching computer science: Course
organization and reflections. In Proceedings of Special
Interest Group in Computer Science Education, March 4-7,
Kansas City, MO.

[14] Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J.
T. 2014. Computational thinking in elementary and
secondary teacher education. ACM Trans. Comput. Educ. 14,
1, Article 5 (March 2014), 16 pages.
DOI:http://dx.doi.org/10.1145/2576872

[15] Hatch, J. A.(2002. Doing qualitative research in education
settings . New York, NY: Suny University Press.

Paper Session: Computation Thinking 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

441

