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ABSTRACT 
In this work, we describe our effort to develop, pilot, and evaluate 
a model for infusing computational thinking into undergraduate 
curricula across a variety of disciplines using multiple methods 
that previously have been individually tried and tested, including: 
(1) multiple pathways of computational thinking, (2) faculty 
professional development, (3) undergraduate peer mentors, and 
(4) formative assessment. We present pilot instantiations of 
computational thinking integration in three different disciplines 
including sociology, mathematics and music. We also present our 
professional development approach, which is based on faculty 
support rather than a co-teaching model. Further, we discuss 
formative assessment during the pilot implementation, including 
data focusing on undergraduate students’ understanding and 
dispositions towards computational thinking. Finally, we reflect 
on what worked, what did not work and why, and identify lessons 
learned. Our work is relevant to higher education institutions 
across the nation interested in preparing students who can utilize 
computational principles to address discipline-specific problems.  
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1. INTRODUCTION  
As a result of policy efforts seeking to improve science, 
technology, engineering and mathematics (STEM) learning as 
well as industry initiatives aimed at promoting a more 
technology-savvy workforce, the need to help all students acquire 
computational thinking (CT) skills has gained increased attention.  

CT is a problem-solving methodology implemented with a 
computer that can be automated, transferred and applied across 
subjects [1]. Jeanette Wing [2] suggested that CT is a fundamental 

skill of analytical thinking for everyone, which influences all 
aspects of our lives, from protecting our personal privacy and 
understanding our legal rights to deciding how to efficiently find 
and analyze information. A report on CT by the National Research 
Council (NRC) [3] advanced a similar idea indicating that CT is a 
cognitive skill that the “average person is expected to possess” 
(p.13). 

CT includes a broad range of mental concepts and tools from 
computer science that help students analyze and develop 
solutions to problems within their own disciplines, including: 
problem decomposition, abstraction, algorithms, data 
representation and analysis, and automation [1, 3]. For example, 
business students can use CT to collect, classify, and leverage 
social media data for marketing and sales (data representation and 
analysis). Exercise science and physical therapy students can use 
CT to collect, classify, and learn from fitness and health records 
data for customized health regimes for patients (data 
representation and analysis). Journalism students can use CT to 
decompose articles and identify patterns, determine missing 
information to design interviews and surveys, develop sound 
logical arguments in their stories, and produce videos (problem 
decomposition, abstraction, automation). Music students can use 
CT to create and manipulate music through various technologies 
using concepts from programming (problem decomposition, 
abstraction, data representation, automation). Engineering 
students can analyze traffic patterns and algorithms to control 
traffic lights (problem decompositions, algorithms, and data 
analysis). Finally, art students can use CT to transform 
biochemical data into geometric images with meaning and beauty 
(abstraction and algorithms). 

Although the ability to think computationally is essential to 
productive disciplinary engagement, most university curricula are 
currently not designed to provide such knowledge to a broad 
student population [4]. Even when efforts are made to teach every 
student about computing as a general education requirement, the 
discussion of CT does not always reach out to the entire university 
community [3]. Through support from the National Science 
Foundation (NSF), institutions such as DePaul University [5], 
Union College [6], and Towson University [4] have pioneered 
ways of integrating CT into existing, discipline-specific 
undergraduate courses in the sciences, humanities, and social 
sciences by creating flavors of introductory computer science 
courses for broad audiences. Recognizing the need for these 
interventions to be contextual so that students appreciate and use 
CT in their own career paths, these institutions advanced 
frameworks and models for promoting the development of CT 
among a diverse body of undergraduate students. Previous work, 
however, did not provide recommendations for establishing such 
initiatives university-wide to reach all students within a variety 
of majors and disciplines. For instance, some efforts focused on 
honors students [4], others only on students in the humanities [5], 
and others only on students within STEM fields [7].  
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In this work, we present our effort to develop, pilot, and evaluate 
a model for infusing CT into undergraduate curricula across a 
variety of disciplines using multiple methods that have been 
previously tried and tested individually, including: (1) multiple 
pathways of CT, (2) faculty professional development (PD), (3) 
undergraduate peer mentors, and (4) formative assessment [4, 6, 
8]. Locally, this work is motivated by the recent decision of our 
institution to add CT to its education objectives for all 
undergraduate students. Nationally, this project is motivated by 
the need to identify models and practices that help institutions 
across the nation infuse CT across undergraduate curricula in a 
variety of disciplines, to ensure that all students acquire 
computational competencies required to maintain the economic 
competitiveness of the U.S. in a 21st-century workforce [3]. 

2. MULTIPLE PATHWAYS TO CT 
Creating multiple pathways to the development of CT knowledge 
and skills is not new. For example, Carroll University [9] replaced 
general education mathematics and computer science 
requirements with new courses focused specifically on CT for all 
Bachelor of Science students at the University (80% of the 
population). It also developed interdisciplinary programs in 
computational science and trained faculty to teach new courses as 
well as integrate CT throughout individual curricula. While this 
effort targeted developing distinct CT courses, other prior NSF-
supported efforts focused explicitly on the integration of CT 
across a variety of disciplines. For instance, one effort addressed 
infusing CT in liberal arts and journalism by having students from 
diverse backgrounds work in groups to find technology solutions 
to real world problems [10]. Similarly, another effort brought 
together faculty leaders inside the CT community to collaborate 
with faculty and students from outside the CT community [6]. The 
goal was to attract non-traditional students to take introductory 
computer science courses as well as encourage faculty outside 
computer science to develop discipline-specific courses that built 
on the introductory computational course. DePaul University, 
collaborated with other Chicago area institutions to work to 
incorporate CT across liberal studies [5]. Finally, Towson 
University, developed an introductory course for freshmen called 
Everyday CT as well as offered a discipline-specific CT seminar 
[4].  

Collectively, these efforts provided a set of curricular examples 
and syllabi that illustrate ways in which CT can be infused into a 
variety of disciplines. Most of these efforts, however, were 
primarily "bottom up" and did not lead to sustainable change. Our 
approach differs in that our institution has already mandated that 
CT be incorporated across undergraduate curricula across 
disciplines as a General Education objective for all students. 
Therefore, we are tasked with the objective of identifying 
implementation strategies that respond to this new mandate. In 
this work, we present pilot instantiations of CT integration in 
three different disciplines: sociology, mathematics, and music. We 
also present our faculty support model and discuss formative 
assessment during the pilot implementations. There are two 
unique elements in our approach compared to prior efforts. First, 
rather than developing new courses, our faculty integrated CT 
into existing courses in their discipline. Second, none of the 
faculty had a background in computer science. Rather, they were 
disciplinary experts with interests in identifying strategies for CT 
integration that were relevant to courses in their own field.  

3. FACULTY PROFESSIONAL 
DEVELOPMENT 
PD is key to facilitating ongoing course preparation and 
implementation particularly for faculty with minimal CT 
background. One-shot workshops, however, are rarely effective 
[11]. Rather, effective PD that leads to improved student outcomes 
is ongoing and is connected to content and specific teacher needs 
[11]. Earlier faculty PD models on CT consisted of short-term 
workshops [4] or co-teaching approaches where CS faculty were 
paired with faculty in a specific discipline to ensure accurate 
content instruction. While there are a number of benefits to co-
teaching, it makes scaling up challenging.  

Our PD model consists of participation in a multiday institute 
during the summer and bi-weekly meetings throughout the 
academic year with the faculty teaching the course(s) and a CT 
integration team. The team includes a faculty from computer 
science who brings CT-related expertise, a learning scientist, and 
professionals from our university’s Center for Teaching & 
Assessment of Learning. The institute provides an introduction to 
CT and CT classroom activity ideas while the CT integration 
teams and undergraduate students with computer science 
background provide assistance and resources during the planning 
and implementation of the courses. 

3.1. Summer Institute 
Every year at the end of the spring semester, our university 
provides a Faculty Institute that focuses on teaching, learning, and 
assessment. To infuse CT across undergraduate curricula for all 
majors, the Center for Teaching & Assessment of Learning at our 
institution in concert with faculty in computer science and 
education established a CT-related PD track within the Summer 
Institute. This track focused specifically on helping faculty learn 
about CT, including approaches and strategies for integrating CT 
in their specific disciplines. The Summer Institute provided hands-
on opportunities for faculty to learn more about CT and how to 
create classroom activities and assessments that promote CT-
related skills among students. We began by introducing CT with 
a “CS Unplugged” activity - an activity that introduces a CT 
concept without technology. We then shared our draft rubric 
focusing on assessing artifacts that integrate CT with disciplinary 
content. The rubric, modeled after the Association American of 
Colleges and Universities VALUE rubrics, draws heavily on the 
literature on CT and has been vetted by CT experts (see Appendix 
A). Faculty participants used the rubric as a scaffold for 
developing CT related activities within their discipline. Faculty 
with whom we have worked to infuse CT into their courses also 
shared specific examples and activities from their courses. In 
addition to these sessions at the summer institute, we also piloted 
with one faculty an alternative PD model that consisted of a 3-day 
intensive workshop focused on course design rooted in backward 
design principles. Both of these models are adaptations of existing 
faculty support programs at our institution and models that are 
commonly used at many U.S. colleges and universities. 

3.2. Year-Long Support 
To ensure that participating faculty were supported in their 
efforts to integrate CT in their respective disciplines, we provided 
year-long support in bi-weekly meetings that included both time 
for collaborative discussions and sharing of practices as well as 
one-to-one consultation. As noted, the team meetings included 
the disciplinary expert professors, a learning scientist, a computer 
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science professor, and two professionals from the Center for 
Teaching Assessment & Learning. Our discussion topics focused 
on identifying opportunities for CT integration into existing 
course modules, developing new modules that integrate CT in the 
specific discipline, providing feedback on module development, as 
well as developing instruments (e.g., surveys and rubrics) for 
assessing student CT knowledge and skills. We used the criteria 
in the draft rubric to guide many of our discussions and keep them 
focused on specific CT constructs that may be more fruitful in 
each discipline.  

3.3. Undergraduate CT Fellows 
Our work is uniquely characterized by the role of undergraduate 
peer mentors, called CT Fellows, who are responsible for ongoing 
faculty support. Specifically, CT-knowledgeable undergraduates 
not only assist participating faculty in the design and 
implementation of instructional activities that integrate CT with 
specific disciplinary content, but they also serve as peer mentors 
during the course. Our institution has a rich tradition of utilizing 
peer mentors in a variety of disciplines and contexts. This model 
is effective because the mentors are close enough to their peers to 
recognize confusion and perspectives that they themselves 
experienced while acquiring new knowledge. This “near peer” 
closeness helps mentors build rapport with students, encourage 
and provide emotional support, and set expectations with 
nondirective enabling [12].  

To prepare CT Fellows, we draw on a model developed to prepare 
undergraduate students to assist K-12 teachers in teaching 
computing [13]. In this model, students interested in becoming 
Fellows participate in a university course called Field Experiences 
in Teaching Computing. The course, which is open to students 
who have completed at least one prior computer science course, 
is based on prior NSF-supported service-learning models and 
fulfills requirements for a computer science major, computer 
science minor, and discovery learning experience (a graduation 
requirement for undergraduate students at our institution). It has 
been offered continuously since spring 2013. Participants meet for 
75-minutes on-campus once a week to identify and implement CT 
related teaching resources targeted toward specific disciplines, 
model classroom lessons that build on research-driven strategies, 
discuss teaching pedagogy, prepare and analyze lesson plans, and 
reflect on their experiences.  

4. DESCRIPTION OF CT-INFUSED 
COURSES 
In this section, we describe efforts to integrate CT across 
disciplines including sociology, mathematics, and music.  

4.1. Sociology 
In sociology, a faculty member infused CT into the Introduction to 
Sociology course for honors students in their freshman year. In 
this course, the instructor met with the CT Fellow and decided to 
focus primarily on the use of algorithms in relation to gender in 
children’s products. Specifically, working in small groups, 
students researched and selected websites aimed at promoting and 
selling toys to children. Their task was to identify patterns such 
as slogans, colors, music, and activities associated with gender. 
Subsequently, their task was to develop algorithms, which is a key 
component of our rubric (see Appendix A), using terms such as 
AND, OR and NOT that helped a search engine identify gender on 
children’s websites by specifying the salient patterns found in 

their analysis. Students were free to create an algorithm in a 
variety of formats (that did not include programming). For 
instance, some students provided lists of items while others wrote 
programs using pseudo-code. 

Using the construct of algorithms in this context provided a means 
for gender socialization. Participants learned that websites selling 
toys to children could easily be analyzed using an algorithm and 
that these algorithms represent society’s understanding of 
socially salient elements that help identify and recognize gender. 
In the process, students had an opportunity to recognize how rigid 
gender differences must be for an algorithm to identify gender. 
Thus, in this course, algorithms highlighted the process of 
socializing children into differences that are meaningful and how 
to identify and embody those differences. In essence, this 
assignment helped highlight the connections among CT and 
disciplinary content related to gender socialization.  

4.2. Mathematics 
In mathematics, CT was integrated into a course for non-majors 
titled Contemporary Mathematics. Specifically, the instructor 
consulted with the CT fellow and the PIs and integrated CT into 
an exercise related to data analysis which is a key component of 
CT and our rubric (see Appendix A). For example, the instructor 
asked students to identify a dataset from an online portal 
(https://www.statcrunch.com/). Subsequently, students were 
asked to identify a question that could be answered based on the 
dataset, analyze the data, display the findings using graphs, and 
write an interpretation of the findings.  

Working in groups of 2-3, participants selected a variety of 
datasets from cereal (e.g., where cereal is stored in a supermarket, 
nutritional information, etc.) to social media to sports (e.g., NFL 
statistics) to music to presidential ratings. In the process, students 
learned about the data they were using and realized the value of 
using automation in the analysis as the data sets were too large to 
identify patterns manually. Further, students realized that 
meaningful representation of data was frequently dependent on 
the size of the dataset, which in turn influenced their choice of 
graphs and their interpretation of the findings. 

4.3. Music 
In music, a faculty member developed and taught a course called 
Computational Thinking in Music. This was the only instance 
where a new course was created as opposed to integrating CT into 
existing materials. This course was developed in collaboration 
with a music faculty who had previously integrated CT into a 
music appreciation course for non-majors. Although the course 
was successful, both faculty wanted to take a deeper dive into the 
connections among music and CT and thus established a pilot 
course focusing explicitly at the intersection of CT and music. 
Specifically, a key component of the course was the integration of 
programming in music and the use of online data (e.g., 
HookTheory.com) and Python code to explore music released by 
a popular artist and algorithmically write a portion of a song in 
the style of that artist.  

The course was open to all students independent of prior 
background in music. As a result, there was variability in students’ 
understanding of music from those with no background at all to 
amateur musicians. The first four weeks of the course were 
devoted to helping students fill in the gaps in terms of their 
understanding of music vocabulary and terminology. In Week 5, 
students downloaded pre-existing transcriptions of artists’ music 
to form a corpus. Subsequently, they created harmonic 
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progressions for a verse (chords and rhythms) based on a 
computer-based analysis of corpus data; this analysis was 
performed using Python programs developed by the CT Fellow 
assigned to support this course. Following the development of the 
progression, participants created melody for verse (pitches and 
rhythms) again using Python code. The basic string of pitches and 
layout for segmentations was suggested by computer analysis of 
their specific corpus that created a Markov model. Finally, 
participants repeated the harmonic progression and melody tasks 
for the chorus and revised as needed. To conclude the course, the 
instructor brought in a band of musicians who gave a live 
performance of students’ work. 

5. METHODS 
In this paper, we report on formative evaluation of our approach 
to CT integration across the disciplines of sociology, mathematics, 
and music. Relatedly, we answer the question: How does 
participation in a CT-infused discipline specific course influence 
undergraduate students’ understanding and attitudes towards CT?  

Data were collected from all undergraduates enrolled in one of the 
pilot courses in sociology (N=22), mathematics (N=35), and music 
(N=10) through a tested pre-and-post course survey [14] that was 
slightly modified for our work. In addition to other questions, the 
survey included one open-ended question of interest to our work: 
What do you think the term computational thinking means? This 
question tested students’ understanding of CT. The survey also 
used 20 Likert-type items (see Table 1) to assess student 

understanding and attitudes in four categories: definition (e.g., see 
items 1-4), comfort (see items 5-10), interest (see items 11-14), 
career/future use (see items 15-20). Likert-type responses were 
scored on a scale of 1- 4 where 1=Strongly Disagree and 4=Strongly 
Agree. Subsequently scores were entered into a spreadsheet and 
means were calculated. The pre and post open-ended survey 
response was analyzed qualitatively using the constant 
comparative method [15]. This approach helped identify common 
themes that cut across participants’ responses. 

6. RESULTS 
Overall, results indicated positive improvements from the pre to 
the post administration of the survey in some categories but not 
others. Specifically, participants reported better understanding 
(items 1-4) and comfort (items 5-10) with CT. However, 
participants did not express greater interest in CT after their 
participation in the course (items 11-14). Further, there was some 
ambivalence regarding the importance and value of CT in 
participants’ future careers, specifically within their discipline 
(items 15-20). The exception was item 20, where participants 
clearly indicated improvements in their understanding of tools 
that can be used in their discipline. It is important to note, 
however, that given the small sample size and the fact that not all 
students responded to each question we were not able to conduct 
a statistical analysis to test for the significance of the gain score 
from the pre to the post administration of the survey.

Table 1. Pre/Post Scores on Understanding and Attitudes Toward CT 

 Sociology* 
(N=22) 

Mathematics* 
(N=35) 

Music* 
(N=10) 

 Pre Post Pre Post Pre Post 
1. CT focuses solely on understanding how computers work. 3.7 3.7 3.0 3.7 2.7 2.8 
2. CT involves thinking logically to solve problems. 3.6 3.4 3.9 3.6 3.8 3.7 
3. CT requires using computers to solve problems. 2.9 3.6 2.9 3.1 1.9 2.4 
4. CT involves abstracting general principles and applying them to other situations. 3.3 3.4 3.5 3.5 3.6 3.9 
5. It is possible to apply CT skills to solve problems in my major. 3.6 3.9 3.1 3.2 3.6 3.3 
6. I am comfortable with CT concepts. 2.1 3.5 2.7 3.0 2.4 3.3 
7. I can achieve good grades in courses that require CT. 3.1 3.7 3.2 3.1 2.8 3.4 
8. I can learn to understand CT concepts. 3.7 3.6 3.6 3.5 3.4 3.8 
9. I use CT skills in my daily life. 3.2 3.3 3.0 3.1 3.0 3.2 
10. I can solve problems by using CT skills. 3.4 3.0 3.3 3.3 3.2 3.3 
11. I think using CT skills is boring**. 1.7 1.7 2.4 2.2 2.1 2.1 
12. The challenge of solving problems using CT appeals to me. 3.1 2.7 2.7 2.7 3.0 3.2 
13. I am interested in using CT skills. 3.3 3.0 2.8 2.7 3.1 3.2 
14. I will voluntarily take courses that use CT if I am given the opportunity. 3.2 3.2 2.3 2.4 3.0 3.1 
15. Knowledge of CT skills will help me secure a better job. 3.4 3.7 3.1 3.1 3.6 3.4 
16. My career goals require that I learn CT skills. 3.2 3.8 2.6 2.9 2.9 2.9 
17. I expect that learning CT skills will help me to achieve my career goals. 3.4 3.4 2.8 2.9 3.3 3.3 
18. I hope that my future career will require the use of CT skills. 2.9 3.0 2.6 2.5 2.8 3.2 
19. Having background knowledge and understanding of CT skills is valuable in and 
of itself. 

3.5 3.1 3.1 3.2 3.6 3.7 

20. I know what CT tools are available to solve problems in my major. 2.2 3.1 2.7 2.9 2.6 3.3 
* Not all participants responded to all items on the pre/post survey 
** This item is a reverse statement and thus the lower score indicates disagreement that CT is boring. 
 
Findings from the open-ended question also noted improvements 
in participants’ understanding of CT related concepts before and 
after participation in a CT infused course. When asked to respond 
to the question “What do you think the term CT means?” initial 
responses focused primarily on the following: 

 Logical thinking: “Using logic and common sense when 
thinking”, “Using logic and structured thinking to organize 
given information”, “Using common sense and logic in daily 
activities.” 

 Non-creative thinking: “Thinking in a math-oriented kind of 
way, thinking in a strict way/not creatively.” 
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 Thinking like a computer: “Thinking through tasks like an AI 
computer program to find the fastest and most efficient option”.  

Further some participants simply noted that CT is about “using a 
computer”, “computer knowledge” or “completing mathematical 
calculations”. Only a small number of students recognized CT as 
a problem-solving methodology that can be implemented with a 
computer. One participant, for instance, explained: “CT is defining 
a problem and trying to find a solution to it using a computer or 
machine”.  

In contrast, post-survey data demonstrated an improved 
understanding of CT through more detailed and conveying 
responses. Most participants recognized CT as a problem-solving 
methodology, while others used specific CT concepts as they 
defined CT, including “decomposition” and “abstraction”. One 
participant explained, “CT is a thought process in which tasks are 
broken down into easier, more manageable steps. CT uses problem 
decomposition, algorithms, abstraction, and data.” Similarly, 
another student noted: “CT involves considering a problem and 
breaking it down through decomposition in order to better carry out 
the task or solve the problem.” Further, participants recognized that 
CT is not a mechanistic approach to thinking but rather involves 
creativity and problem solving through multiple perspectives. 
One student explained, “CT involves thinking abstractly and being 
able to decompose an issue at hand in order to see all possible 
solutions” while another student noted that “CT is being able to 
look at things or issues from multiple perspectives or lenses and come 
up with various solutions or answers”. Finally, more participants 
understood the relationship between CT and computers. One 
student explained, “CT is being able to think or put ideas in terms 
that a computer could follow”. Overall, in the post-survey, a greater 
number of participants were able to articulate the relationship 
between CT, problem-solving, and computers. 

7. DISCUSSION AND LESSONS LEARNED 
In this section, we identify lessons learned from the pilot 
implementations in sociology, mathematics, and music.  

 Faculty development is critical in learning about CT and 
honing an understanding of discipline-specific approaches to 
CT. Further, regular discussions between a CT integration 
team that includes both CT and disciplinary experts as well 
as experts on teaching and assessment are critical in 
developing course objectives and instructional activities that 
indeed provide a path to the design and implementation of 
CT into disciplinary courses without the need for co-
teaching. The draft VALUE-style rubric that presents a 
succinct definition of CT with measurable criteria was 
tremendously helpful in not only facilitating discussions, but 
also in helping faculty modify their courses, creating 
assignments, and assessing students’ work. 

 Peer mentors in the form of CT knowledgeable 
undergraduates can support the faculty in a way that 
increases faculty confidence in the classroom as they enact 

CT activities. However, the role of CT Fellows varied among 
participants. For example, the music faculty required 
substantial technical support from a CT Fellow who wrote 
computer code and helped the faculty and students adapt and 
run that code on their computers. In sociology and 
mathematics, however, the CT Fellow served primarily as a 
brainstorming partner for the faculty members in developing 
and polishing course assignments that integrated CT with 
disciplinary content. As faculty gain confidence they are 
more likely to continue to build on their successes with 
additional CT-related activities and modules. The peer 
mentor for a given course may not require more than four 
hours a week including class time, thus the same CT Fellow 
may be able to support more than one faculty in a given year. 
This helps with scaling the model to support more faculty in 
CT integration each year. However, the logistics of 
coordinating, supervising, and supporting these students 
who also have many other responsibilities – their own 
coursework, enrollment in the CT fieldwork course, and 
attending some classes with their CT faculty member – can 
be formidable and cannot be underestimated. These 
challenges make it likely that we will make significant 
changes to this aspect of our support model as we continue 
infusing CT into additional courses at our institution. 

 Students sometimes do not appreciate why they are learning 
CT within a disciplinary-specific course. This suggests that 
faculty need to begin the course and its advertising with 
strong motivation for integrating CT transparent learning 
objectives into the course, and reiterating the importance of 
those learning objectives throughout the course. This can be 
done by providing examples of how the CT-related activities 
are relevant to their discipline and the real world outside the 
classroom; in fact, situating CT within students’ and faculty 
members’ selected disciplines is why we have elected to 
infuse CT into many different courses instead of assigning 
this responsibility to computer science faculty or creating 
CT-specific courses co-taught by computer scientists. 

 Formative assessment needs to account for the fact that 
artifacts created for assessment are different across 
disciplines. Thus, a common rubric for assessing CT 
knowledge and skills may need to be adapted when 
implemented on various kinds of student artifacts. 

In conclusion, our findings indicate that a model for CT 
integration that applies multiple proven methods together holds 
promise for successfully meeting university goals of CT for all, 
without a co-teaching model or separate discipline-oriented 
computer science courses. In addition, the model provides service 
learning opportunities for CT knowledgeable undergraduates and 
creation of a network of faculty who can share their ideas, 
challenges, and experiences in integrating CT within their 
discipline. Our next challenge is scaling up the model to reach a 
greater number of faculty and students
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Appendix 1. Draft Computational Thinking Rubric adapted from [1]. See also: http://www.udel.edu/005415 
 

Capstone Milestones Benchmark 

 
4 3 2 1 

Decomposition 

Breaks a problem into 
its constituent 
subproblems 

Creates a problem 
decomposition that 
breaks a complex 
problem into clearly 
described, well-defined, 
and distinct-but-related 
subproblems that are 
easier to solve than the 
original problem but 
when combined 
efficiently solves the 
original problem. 

Creates a problem 
decomposition that 
breaks a complex 
problem into clearly 
described subproblems 
that are distinct-but-
related but lack 
efficiency, although they 
solve the original 
problem. 

Creates a problem 
decomposition that 
breaks a complex 
problem into 
subproblems that lack 
efficiency, fail to have 
sufficient descriptions, 
and overlap, although 
they solve the original 
problem. 

Creates a problem 
decomposition that 
breaks a complex 
problem into 
subproblems that are 
inefficient, described 
poorly, overlap or 
closely related, and fail 
to completely solve the 
original problem. 

 

Data 

Analyze (or create) a 
data set that facilitates 
discovery of patterns 
and relationships 

Analyzes1 a data set to 
ensure it is sufficiently 
comprehensive, 
efficiently organized, 
meaningfully labeled, 
and thoroughly 
described so that it can 
be analyzed to discover 
meaningful patterns and 
relationships. 

Analyzes a data set to 
ensure it is sufficiently 
comprehensive, 
meaningfully labeled, 
and thoroughly 
described but fail to 
ensure that it is 
efficiently organized. 

Analyzes a data set to 
ensure it is sufficiently 
comprehensive and 
meaningfully labeled but 
fail to ensure that it is 
thoroughly described 
and efficiently 
organized. 

Analyzes a data set but 
fail to ensure that it is 
sufficiently 
comprehensive, 
efficiently organized, 
meaningfully labelled, 
and thoroughly 
described so patterns 
and relationships are 
obscured. 

Algorithms 

Creates a series of 
ordered steps to solve a 
problem or achieve a 
goal 

Creates an accurate, 
logical, efficient, and 
well-described sequence 
of steps or instructions 
to solve a problem or 
achieve a goal. 

Creates accurate steps 
that are logical and well-
described and solve a 
problem or achieve a 
goal but the steps are 
inefficient e.g., not in an 
optimal sequence, 
overlapping or 
duplicative. 

Creates logical steps that 
solve a problem or 
achieve a goal but the 
steps are poorly 
described. 

Creates a sequence of 
steps that do not solve 
a problem or achieve a 
goal. The steps lack 
efficiency, sufficient 
descriptions, and are 
not described or 
documented. 

Abstraction 

Reduces complexity to 
create a general 
representation of a 
process or group of 
objects so it is not only 
appropriate for the 
immediate purpose or 
goal but can also be 
used in different 
contexts 

Creates an accurate-but-
simplified representation 
of a process or group of 
objects to solve the 
problem or meet the 
goal. Selects essential 
characteristics by 
filtering out unnecessary 
information. Can be used 
to solve other problems 
or goals. 

Creates an accurate-but-
simplified representation 
of a process or group of 
objects to solve the 
problem or meet the 
goal. Selects essential 
characteristics by 
filtering out unnecessary 
information. Cannot be 
used to solve other 
problems or goals. 

Creates an accurate-but-
simplified representation 
of a process or group of 
objects to solve the 
problem or meet the 
goal. Fails to select all 
essential characteristics 
by filtering out 
unnecessary 
information. Cannot be 
used to solve other 
problems or goals. 

Creates an 
representation of a 
process or group of 
objects that is not 
accurate, not 
sufficiently simplified, 
or fails to solve the 
problem or meet the 
goal. 

                                                                 
1 Advanced courses or disciplines with a strong focus on CT may instead require students to create a data set instead of analyzing an existing 
one. 
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