
ar
X

iv
:1

90
1.

01
46

5v
1 

 [
cs

.C
Y

] 
 5

 J
an

 2
01

9

Subgoals, Problem Solving Phases, and Sources of Knowledge
A Complex Mangle

Kevin Lin
University of California, Berkeley

Berkeley, California
kevinlin1@berkeley.edu

David DeLiema
University of California, Berkeley

Berkeley, California
deliema@berkeley.edu

ABSTRACT

Educational researchers have increasingly drawn attention to how

students develop computational thinking (CT) skills, including in

science, math, and literacy contexts. A key component of CT is

the process of abstraction, a particularly challenging concept for

novice programmers, but one vital to problem solving. We pro-

pose a framework based on situated cognition that can be used

to document how instructors and students communicate about ab-

stractions during the problem solving process. We develop this

framework in a multimodal interaction analysis of a 32-minute

long excerpt of a middle school student working in the PixelBots

JavaScript programming environment at a two-week summer pro-

grammingworkshop taught by undergraduate CSmajors. Through

a microgenetic analysis of the process of teaching and learning

about abstraction in this excerpt, we document the extemporane-

ous prioritization of subgoals and the back-and-forth coordination

of problem solving phases. In our case study, we identify that (a)

problem solving phases are nestedwith several instances of context-

switching within a single phase; (b) the introduction of new ideas

and information create bridges or opportunities to move between

different problem solving phases; (c) planning to solve a problem is

a non-linear process; and (d) pedagogical moves such as modeling

and prompting highlight situated resources and advance problem

solving. Future research should address how to help students struc-

ture subgoals and reflect on connections between problem solving

phases, and how to help instructors reflect on their routes to sup-

porting students in the problem solving process.

CCS CONCEPTS

• Social and professional topics → Computing education;

KEYWORDS

Computational Thinking; Education; Situated Cognition; Debug-

ging; Abstraction; Problem Solving

ACM Reference Format:

Kevin Lin andDavidDeLiema. 2019. Subgoals, Problem Solving Phases, and

Sources of Knowledge: A Complex Mangle. In Proceedings of the 50th ACM

Technical Symposium on Computer Science Education (SIGCSE ’19). ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/3287324.3293712

SIGCSE ’19, February 27–March 2, 2019, Minneapolis, MN, USA

© 2019 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19),
https://doi.org/10.1145/3287324.3293712.

1 PROBLEM AND MOTIVATION

Educational researchers have increasingly drawn attention to how

students develop computational thinking (CT) skills [11, 15], in-

cluding in science, math, and literacy contexts [1, 6, 13]. A key

component of CT is the process of abstraction. Indeed, abstraction

is recognized as a threshold concept [14]: a generative idea that

once learned provides “a qualitatively different view of subjectmat-

ter within a discipline.” The process of creating abstractions inter-

leaves multiple problem solving phases: planning, building, and

monitoring. In addition, creating abstractions requires attending

to subgoals. Finally, pathways to learning about abstractions are

structured by complex tools and driven by a variety of sources of

knowledge, including perception, testimony, reasoning, and mem-

ory [2]. Our purpose in this paper is to stitch these elements into

a framework that can be used to document how instructors and

students communicate about computational thinking.

2 BACKGROUND AND RELATED WORK

Our framework integrates constructs from the learning sciences,

computer science educational research, and human computer in-

teraction. Our point of departure is situated cognition, a theoreti-

cal framework that inextricably connects learning to interactions

between tools, cognition, bodies, and communities of practice [7].

Increasingly, other researchers have studied CT teaching and learn-

ing from a situated perspective [3, 4, 9, 10]. Specifically, our frame-

work connects with prior work on how problem solving involves

a balancing act between exploration, building, and monitoring [1,

14]. In addition, we recognize that developing abstractions requires

a gradual process of specifying and prioritizing goals and subgoals,

including refactoring a previous route by developing new subgoals

[1]. The epistemic actions that advance problem solving are stretched

across tools in the environment (e.g., editor, syntax checker, step-

per tool, code reference sheet) and multiple sources of knowledge:

perception, memory, reasoning, and testimony. Each interaction

between a source of knowledge and a tool requires the learner to

cross a gulf of execution, where they try to figure out how to ex-

press their idea to a tool in the environment, and attend to the out-

come by crossing a gulf of evaluation, where they try to figure out

the tool’s response [12]. Recognizing that causes of failure in pro-

gramming emerge from complex connections between proximal

and distal events [8], we assembled the framework above to com-

prehensively integrate multiple constructs and offer a new lens on

the pathways students take to learn foundational computer pro-

gramming concepts.

http://arxiv.org/abs/1901.01465v1
https://doi.org/10.1145/3287324.3293712
https://doi.org/10.1145/3287324.3293712


SIGCSE ’19, February 27–March 2, 2019, Minneapolis, MN, USA Kevin Lin and David DeLiema

3 APPROACH AND UNIQUENESS

There is surprisingly little microgenetic, multimodal qualitative re-

search on how young students program in naturalistic learning

environments. For this paper, we selected a 32-minute long sam-

ple of a middle school student working in the PixelBots JavaScript

programming environment at a two-week summer programming

workshop taught by undergraduate CS majors. Using rich observa-

tional data including several camera angles and screen recordings,

we transcribed the student’s activities, repeatedly watched video,

connected our observations to constructs noted above, and gradu-

ally developed our framework. This methodology blends interac-

tion analysis with the constant comparative method [5, 7]. In this

case study, the student solves the problem of programming the Pix-

elBot to paint three jagged lines, horizontally spaced 3 tiles apart.

Our purpose is to document the details of one student’s problem

solving process, rather than make generalized statements about

learning processes. We hope that this research will allow for more

rigorous experimental studies to come.

4 RESULTS AND CONTRIBUTIONS

We identify the student’s key challenge of coordinating subgoals

and problem solving phases, and then identify how the student

navigates this space by coordinating resources in the environment.

4.1 Coordinating Subgoals and Problem

Solving Phases

The focal student’s programming process involves completing three

subgoals—writing code to paint a jagged line, writing code that

moves to the next line, and orchestrating this code in two functions—

each of which entails navigating three phases of problem solving:

planning, building, and monitoring. The student prioritizes sub-

goals and problem solving phases in response to syntax and logic

bugs, instructor prompting, and focal sources of knowledge.

The student begins by planning the trajectory of the PixelBot

through the jagged line, building using only API movement instruc-

tions. She silently monitors without running the code, and then

deletes it, re-buildingwith painting actions and a loop. The student

then attempts tomonitor the resulting PixelBot action by running

the code, but quickly stops the program before it advances enough

to show the corresponding PixelBot action. The student continues

building but a drag-and-drop attempt leads to an error message in

the text editor. Her subsequentmonitoring and re-building process,

which generates more syntax bugs, involves trying to interpret er-

ror messages and create symmetry between brackets, parentheses,

and quotes.

An instructor walks over and introduces a different monitoring

process: comparing the broken syntax in the editor with correct

syntax on a handout. Over six minutes, the student foregrounds

the subgoal of writing the jagged line code through three additional

subgoals: writing the PixelBot trajectory, adding color, and adding a

loop. New information from the environment motivates the selec-

tion of subgoals. When errors are identified, the student takes im-

mediate action rather than continuing with her current task. The

student transitions rapidly between planning, building, and moni-

toring. In addition, within a single problem solving phase, we see

a range of sources of knowledge deployed. For example, the stu-

dent’s monitoring approach of perceiving error messages and rea-

soning about symmetry contrasts with the instructor’s monitoring

approach of perceiving and reasoning about connections between

the handout and editor. After resolving the syntax bugs, the stu-

dent identifies the subgoal of developing the jagged line function as

complete despite having painted several squares the wrong color.

Not until this logic bug is flagged in the correctness check at the

end of the session does the student re-foreground the subgoal of

monitoring the jagged line function.

Throughout this process, the participants extemporaneously struc-

ture how to navigate the problem space, selectively managing sub-

goals. Their pathway is neither linear nor premeditated: planning

arises throughout, contingent on syntax bugs that arise, logic bugs

not yet noticed, moments of refactoring, and moments of recalibra-

tion after subgoals are judged complete.

4.2 Coordinating Resources

How does the work of pursuing subgoals across problem solving

phases unfold? This section describes a lower-level, moment-to-

moment coordination of media across people and tasks.

The student utilizes multiple sources of knowledge to coordi-

nate resources in the environment. For example, while monitor-

ing the jagged line code, the instructor foregrounds a process for

syntax verification by comparing the code token-by-token with an

example from a handout: “Look at this [code reference sheet] and

then compare every sort of word like ‘function’, ‘function’, [. . . ]”

The student looks back-and-forth between the screen and the hand-

out, perceiving and reasoning about similarities between the two.

These sources of knowledge thus bridge two resources in the en-

vironment: the handout and editor. This process is repeated as the

student debugs amissing paint instructionwhile working onmov-

ing to the next line. As the student steps line-by-line through the

code, her gazemoves right and left between the code editor and the

corresponding PixelBot action. Attention to different parts is vari-

able: she steps quickly through parts she has already thoroughly

vetted, and slows down, even stopping, when she arrives at code

that corresponds with the dispreferred PixelBot action. The stu-

dent again perceives and reasons about two resources (editor and

PixelBot actions).

While monitoring the jagged line code using the instructor’s

token-by-token syntax verification strategy, the student runs into

a repeat loop which is not documented. The instructor provides

expert testimony and suggests clicking the button to insert the

repeat template. The student coordinates the two snippets of repeat

code in the editor: one serving as the template, and one serving as

the target to be fixed, but applies the same process of token-by-

token comparison as she did earlier with the code reference sheet.

Later, while monitoring the code to move to the next line, the stu-

dent draws on hermemory and uses the same strategy of inserting

the repeat template to check the syntax of the program. The stu-

dent calls upon this strategy in two different instances to help cross

the gulf of evaluation and propose a fix for each syntax bug.

The coordination of resources in the learning environment helps

the student cross the gulf of evaluation and execution. Before the

instructor foregrounds the syntax verification strategy, the student’s



Subgoals, Problem Solving Phases, and Sources of Knowledge SIGCSE ’19, February 27–March 2, 2019, Minneapolis, MN, USA

method for resolving each syntax bug was to read the error mes-

sage, interpret the problem, and propose a fix. This process presents

a wide gulf of evaluation as the student needs to operationalize the

error message by converting a description of the problem into an

applicable fix based on prior knowledge of program syntax. The in-

structor’smethod for syntax verification relies on the same sources

of knowledge, perception and reasoning, but uses the handout to

present a more accessible affordance to cross the gulf of evalua-

tion.

4.3 Conclusion

Through a microgenetic analysis of the process of teaching and

learning about abstraction, we document the extemporaneous pri-

oritization of subgoals and the back-and-forth coordination of prob-

lem solving phases. Participants navigate these tasks using multi-

ple resources and sources of knowledge to cross gulfs of execu-

tion and evaluation. Future research should address how to help

students structure subgoals, reflect on problem solving techniques,

and recruit productive sources of knowledge as an ensemble pro-

cess.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-

ence Foundation under theGrant No. 1607742, 1612770, and 1612660.

Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not nec-

essarily reflect the views of the National Science Foundation.

REFERENCES
[1] Satabdi Basu, Gautam Biswas, and John S. Kinnebrew. 2017. Learner modeling

for adaptive scaffolding in a Computational Thinking-based science learning
environment. User Modeling and User-Adapted Interaction 27, 1 (jan 2017), 5–53.
https://doi.org/10.1007/s11257-017-9187-0

[2] Clark A. Chinn, Luke A. Buckland, and Ala Samarapungavan. 2011. Ex-
panding the Dimensions of Epistemic Cognition: Arguments From Philos-
ophy and Psychology. Educational Psychologist 46, 3 (jul 2011), 141–167.
https://doi.org/10.1080/00461520.2011.587722

[3] Virginia J. Flood, David DeLiema, and Dor Abrahamson. 2018. Bringing static
code to life: The instructional work of animating computer programs with the
body. In Rethinking learning in the digital age: Making the Learning Sciences count,
Proceedings of the 13th International Conference of the Learning Sciences, J. Kay
and R. Luckin (Eds.), Vol. 2. London: International Society of the Learning Sci-
ences, 1085–1088.

[4] Virginia J. Flood, David DeLiema, Benedikt Harrer, and Dor Abrahamson. 2018.
Enskilment in the digital age: The interactional work of learning to debug. In
Rethinking learning in the digital age: Making the Learning Sciences count, Pro-
ceedings of the 13th International Conference of the Learning Sciences, J. Kay and
R. Luckin (Eds.), Vol. 3. London: International Society of the Learning Sciences,
1405–1406.

[5] Barney G. Glaser. 1965. The Constant ComparativeMethod of Qualitative Anal-
ysis. Social Problems 12, 4 (apr 1965), 436–445. https://doi.org/10.2307/798843

[6] Sharin Rawhiya Jacob and Mark Warschauer. 2018. Computational Think-
ing and Literacy. Journal of Computer Science Integration 1, 1 (aug 2018).
https://doi.org/10.26716/jcsi.2018.01.1.1

[7] Brigitte Jordan and Austin Henderson. 1995. Interaction Analysis: Founda-
tions and Practice. The Journal of the Learning Sciences 4, 1 (1995), 39–103.
https://doi.org/10.2307/1466849

[8] Andrew J. Ko and Brad A. Myers. 2005. A framework and method-
ology for studying the causes of software errors in programming sys-
tems. Journal of Visual Languages & Computing 16, 1-2 (feb 2005), 41–84.
https://doi.org/10.1016/j.jvlc.2004.08.003

[9] Colleen M. Lewis. 2012. The importance of students' attention to
program state. In Proceedings of the ninth annual international confer-
ence on International computing education research - ICER '12. ACM Press.
https://doi.org/10.1145/2361276.2361301

[10] Colleen M. Lewis and Niral Shah. 2015. How Equity and Inequity Can Emerge
in Pair Programming. In Proceedings of the eleventh annual International Con-
ference on International Computing Education Research - ICER '15. ACM Press.
https://doi.org/10.1145/2787622.2787716

[11] Sze Yee Lye and Joyce Hwee Ling Koh. 2014. Review on teaching
and learning of computational thinking through programming: What is
next for K-12? Computers in Human Behavior 41 (dec 2014), 51–61.
https://doi.org/10.1016/j.chb.2014.09.012

[12] Donald A. Norman. 2002. The Design of Everyday Things. Basic Books, Inc., New
York, NY, USA.

[13] Arnulfo Pérez. 2018. A Framework for Computational Thinking Dispositions
in Mathematics Education. Journal for Research in Mathematics Education 49, 4
(2018), 424. https://doi.org/10.5951/jresematheduc.49.4.0424

[14] Janet Rountree, Anthony Robins, and Nathan Rountree. 2013. Elaborating
on threshold concepts. Computer Science Education 23, 3 (sep 2013), 265–289.
https://doi.org/10.1080/08993408.2013.834748

[15] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2015. Defining Computational Thinking for Mathe-
matics and Science Classrooms. Journal of Science Education and Technology 25,
1 (oct 2015), 127–147. https://doi.org/10.1007/s10956-015-9581-5

https://doi.org/10.1007/s11257-017-9187-0
https://doi.org/10.1080/00461520.2011.587722
https://doi.org/10.2307/798843
https://doi.org/10.26716/jcsi.2018.01.1.1
https://doi.org/10.2307/1466849
https://doi.org/10.1016/j.jvlc.2004.08.003
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.5951/jresematheduc.49.4.0424
https://doi.org/10.1080/08993408.2013.834748
https://doi.org/10.1007/s10956-015-9581-5

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	4 Results and Contributions
	4.1 Coordinating Subgoals and Problem Solving Phases
	4.2 Coordinating Resources
	4.3 Conclusion

	Acknowledgments
	References

