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Abstract– Recently Resistive-RAM (RRAM) crossbar has been

used in the design of the accelerator of convolutional neural net-

works (CNNs) to solve the memory wall issue. However, the in-

tensive multiply-accumulate computations (MACs) executed at

the crossbars during the inference phase are still the bottleneck

for the further improvement of energy efficiency and throughput.

In this work, we explore several methods to reduce the compu-

tations for the RRAM-based CNN accelerators. First, the out-

put sparsity resulting from the widely employed Rectified Linear

Unit is exploited, and a significant portion of computations are

bypassed through an early detection of the negative output acti-

vations. Second, an adaptive approximation is proposed to ter-

minate the MAC early when the sum of the partial results of the

remaining computations is considered to be within a certain range

of the intermediate accumulated result and thus has an insignif-

icant contribution to the inference. In order to determine these

redundant computations, a novel runtime estimation on the max-

imum and minimum values of each output activation is developed

and used during the MAC operation. Experimental results show

that around 70% of the computations can be reduced during the

inference with a negligible accuracy loss smaller than 0.2%. As a

result, the energy efficiency and the throughput are improved by

over 2.9 and 2.8 times, respectively, compared with the state-of-

the-art RRAM-based accelerators.

I. INTRODUCTION

Convolutional neural networks (CNNs) have demonstrated impres-

sive performance in various machine learning tasks such as the visual

recognition [11] and visual tracking [16]. At the same time, due to the

nature of the convolutional operation, the inference of CNN usually

involves intensive computations which are energy consuming and be-

come a big deterrent for deploying CNN in embedded systems. Be-

sides the high computation cost, conventional accelerators also face

the memory wall issue where the massive memory accesses for fetch-

ing the weights and activations vastly limit the performance. There-

fore, it is necessary to deliver a more efficient implementation with

fewer computations.

The Rectified Linear Unit (ReLU) [5] has become the most widely

used activation function in neural networks in recent years. Due to the

application of ReLU, a high activation sparsity can be achieved dur-

ing the inference [2]. Since the negative MAC results will be clamped

to zero by ReLU, their actual magnitude values are irrelevant for the

cascading layers. Thus, a large portion of computations correspond-

ing to the negative output activations can be bypassed once the sign

can be determined early. In addition, the inherent resilience of CNN

makes the activation values error-tolerant to some degree, hence mak-

ing it possible to reduce the computations by approximation without

affecting the classification accuracy. To trigger the above computa-

tion bypass, we propose a runtime estimation on the maximum and

minimum values of each output activation. During each MAC, the

contribution of the intermediate accumulated result is evaluated con-

tinually against the estimated values of the remaining partial results.

Once the contribution of the current accumulated result is considered

to be large enough to dictate the final result value, the MAC will

be terminated to improve the energy efficiency and the throughput.

The proposed methods are implemented in a specialized architecture

based on the resistive random access memory (RRAM) crossbar [18]

which utilizes the in-situ computation as an approach to address the

high power density and the memory wall issue of the conventional

CMOS-based design. In summary, the contributions of this work are

as follows:

• A runtime estimation on the maximum and minimum values of

the output activation is proposed and implemented during each

MAC.

• By detecting the negative output activations through the estima-

tion, the corresponding MACs are terminated in advance in the

convolutional layers followed by ReLU. According to the ex-

perimental results, over 99.98% of negative outputs are detected

and over 71.5% of their computations are bypassed without in-

ducing accuracy loss.

• An adaptive approximation is proposed to bypass the remain-

ing computations during the MAC when the estimated values of

the remaining partial results are determined to have a negligible

contribution to the inference.

• A dedicated RRAM-based architecture is proposed for imple-

menting the CNNs with reduced computations. A total compu-

tation reduction of around 70% is achieved for the general 16-

bit fixed-point implementation, and 40% reduction is achieved

for the 8-bit implementation which demonstrates the effective-

ness of the proposed methods under an aggressive quantization

scheme. The induced accuracy loss is smaller than 0.2%. Ex-

perimental results show significant improvement in the energy

efficiency and throughput.

II. RELATED WORKS

Various techniques have been proposed to reduce the intensive

computations in the CNN accelerators. A natural way for reducing the

memory footprint and the number of multiplications in the CMOS-

based accelerators is to utilize the activation sparsity [1, 2, 19]. Since

a large portion of input activations are zero, the corresponding multi-

plications can be bypassed to save energy and time [2]. A recent work

in [1] focuses on the layers with only non-negative inputs and exploits

the output sparsity by reordering the weights to calculate the sum of

the positive products first. Later calculation of the negative products

will be terminated as soon as the accumulated result becomes smaller

than zero. As a result, 16% energy saving and 28% speedup can be

achieved. In a more aggressive mode, an empirical value is used to

compare with the accumulated result after a specific number of mul-

tiplications. If the accumulated result is smaller, the output activation

is considered likely to be negative. By bypassing the remaining mul-

tiplications, a higher reduction in complexity can be achieved, but

a relatively large accuracy loss (3.0%) is induced. Another work in

[19] exploits the output sparsity by using a low-rank approximation

of the weight matrix to predict the output sparsity and disabling the

actual computation if the predicted output is negative. In this case,
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each MAC needs to be broadcast to all the processing elements to im-

prove the throughput. Such methods, however, are not suitable for the

RRAM-based architecture. Since the computations are executed at

the RRAM crossbars where the weight matrix is programmed into the

memristors before the classification, the multiplication-accumulation

has to be done in a regular pattern. Therefore, it is difficult to ir-

regularly skip the zero inputs, independently reorder the weights of

each kernel, or broadcast different weight matrices to the crossbars

at runtime. A way to reduce the computations in the RRAM-based

architecture is to structurally compress the weights through training

and then exploit the weight sparsity [7]. However, to the best of

our knowledge, the output sparsity hasn’t been efficiently exploited

in the RRAM-based architecture. Due to the resilience of CNN, re-

ducing the quantization bit-width of the weights and activations is

another method for reducing computations [14]. A dynamic quantiza-

tion scheme is proposed in [3] to change the bit-width of the weights

when multiplying with the different bit of the activations to reduce the

computations for the RRAM-based MAC.

III. PRELIMINARIES

A. Convolutional Neural Networks

A convolutional neural network (CNN) [11] is a machine learn-

ing model inspired by the structure of the human brain. It is usually

comprised of a series of cascading layers, including the convolutional

(CONV) layers, pooling layers, and fully-connected (FC) layers. The

CONV and FC layers consist of neurons to extract the features of the

image. Inside each layer, the input activations from the previous layer

are firstly multiplied with the corresponding weights in the current

layer, and then accumulated to generate the output activations for the

next layer. The computation of the CONV layer is shown in Fig.1(a)

and can be expressed as follows:

aout(x, y, z) = f(

c−1∑

l=0

h−1∑

m=0

w−1∑

n=0

ain(x+m,y+n, l)×Kz(m,n, l))

(1)

where aout and ain represent the output and the input activations,

respectively; Kz represents the zth kernel; h, w and c represent the

height, width, and depth of the kernel; (x, y, z), (x + m,y + n, l)
and (m,n, l) represent the positions of the activations and weights in

height, width, and depth. f is a non-linear activation function to avoid

overfitting. The most commonly used activation function is ReLU

given by:

f(x) = max(0, x) (2)

where x is the input to the function. FC layers are similar to the

CONV layers, but have much fewer computations which can be sim-

plified to a single vector-matrix multiplication. Pooling layers usually

follow the CONV layers for down-sampling. In this work we will fo-

cus on the CONV layers since they account for most of the computa-

tions in CNN.

B. RRAM Crossbar and In-Situ Computation

The RRAM crossbar has aroused great research interest due to its

high-density, non-volatility, and the potential for parallel in-situ ana-

log computation [17, 18, 6]. While the CMOS-based accelerators

face the difficulty of scaling down and the issue of memory wall, the

RRAM-based computation provides a promising approach to achieve

substantial improvement in the energy efficiency and throughput. For

instance, the RRAM-based accelerator in [18] demonstrates 22 times

energy saving compared with the CMOS-based counterpart. A hi-

erarchical RRAM-based architecture proposed in [17] improves the
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Fig. 1. (a) Computation of the CONV Layer; (b) In-Situ Computation

based on the RRAM Crossbar.

energy efficiency and throughput by 5.5 and 14.8 times, respectively,

compared with the state-of-the-art CMOS-based DaDianNao archi-

tecture [4]. The RRAM crossbar for the vector-matrix multiplication

is shown in Fig.1(b). The elements of the weight matrix are stored

as the conductance values of the memristors at the crosspoints con-

necting the horizontal wordlines and the vertical bitlines. When the

computation starts, the input activation vector is applied on the word-

lines as voltages. The current flowing through each memristor is equal

to the product of the memristor conductance and the wordline volt-

age. Currents on the same bitline will be accumulated and output

as the computation result. Since the computation is done in analog,

digital-to-analog convertors (DACs) are needed at the wordlines to

convert the input activations to voltages, and analog-to-digital conver-

tors (ADCs) are needed at the bitlines to convert the results back to

digital values. These interfacing circuits are the most energy consum-

ing part during the computation [17, 3]. Since hundreds of products

are accumulated vertically, the resolution requirement of ADC can

easily go beyond the acceptable range and induce a huge energy over-

head. As a common solution, the multi-bit multiplication, e.g. 16-bit

multiplication, is broken into a series of low bit-width multiplications

to limit the ADC resolution within a reasonable range [6, 17, 3]. For

example, for a crossbar with 128 wordlines, the resolution of each

crosspoint should be no more than 2-bit to keep the ADC resolution

less than 10-bit. Thus, each weight takes multiple memristors to store.

At the same time, since the multi-bit DAC is expensive to implement

and hundreds of DAC operations are needed for one MAC, it is more

efficient and preferable to use the single-bit DAC to minimize the

overhead [17, 3]. Thus, each bit of the input activation is sent into

the crossbar sequentially to finish the MAC. The whole MAC oper-

ation will take multiple iterations. At each iteration, a partial result

corresponding to the current 1-bit input vector is generated, and then

accumulated with the existing results of previous iterations. This bit-

level slicing of activations creates a special scheduling for MAC and

we will utilize this characteristic to reduce the computations.

IV. RRAM-BASED COMPUTATION REDUCED

ACCELERATOR DESIGN

A. Algorithms for Computation Reduction

In the CMOS-based accelerators, the MAC is usually done by ac-

cumulating the corresponding activation-weight products. However,

since the activations are sliced into bit-level in the RRAM-based ar-

chitecture, only a partial result is obtained at each iteration by ac-

cumulating the input bit-weight products. As the MAC sequentially

proceeds from the most-significant bit (MSB) to the least-significant

bit (LSB) of the input activations, the generated partial results also

become less and less significant. Each new generated partial result

will be accumulated with the sum of the partial results of previous

iterations. An example is given in Fig.2 to illustrate this computa-

tion process, where the inner product of the activations [4, 12, 10] and

the weights [4,−8,−5] is computed in 4 iterations. The interme-

diate accumulated result is updated at each iteration, represented as

Accu [−104,−120,−130,−130] in Fig.2. Such bit-level process-

ing makes it possible to terminate the MAC in advance once the re-
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maining iterations are considered to be redundant based on the possi-

ble values of their partial results estimated beforehand. Specifically,

two schemes are exploited to identify the redundant iterations, as de-

scribed below.

1) ReLU-based Computation Bypass: For an early identification

of the negative outputs followed by ReLU, the maximum value of

the sum of the partial results for the remaining iterations is estimated

beforehand and represented as Max in Fig.2. (The method for esti-

mating Max will be elaborated later.) If at any iteration, the sum of

Accu and Max is not larger than zero (Accu +Max ≤ 0), the final

output is considered to be non-positive and hence the MAC can be

terminated in advance. Otherwise, the MAC will continue. For in-

stance, the MAC in Fig.2 will be terminated after the second iteration

since −120 + 51 ≤ 0. It will be shown in the experimental results

that the negative outputs of the CONV layers account for 57.5% of the

total computations in the CifarQuick Model [8] on Cifar-10 [10], and

71.5% of their computations can be bypassed based on the estimation.

2) Adaptive Approximation: For the activations not supported by

the ReLU-based bypass, adaptive approximation is proposed for the

early termination of MAC. In general, the resilience of network al-

lows the activations to deviate from their actual values within a cer-

tain range without affecting the classification result. Based on this,

an adaptive approximation scheme is proposed as shown in Fig.2. If

the magnitude of Max and Min (Min: minimum value of the sum of

the remaining partial results) is not larger than a certain threshold (T)

of the magnitude of Accu (|Max|, |Min| ≤ |Accu| × T ), which re-

flects the allowable deviation from the actual result, the MAC can be

terminated. For instance, the last two iterations can be bypassed if T

is set as 0.5 in Fig.2. The allowable deviation for triggering the bypass

varies adaptively with |Accu|. The larger the |Accu|, the larger the

allowable deviation is. T is an empirical tunable parameter to balance

the accuracy and the complexity saving. A larger amount of computa-

tion reduction can be achieved by increasing T, but the accuracy loss

will also increase at the same time. To obtain the ideal performance,

i.e. the upper bound of complexity saving of the adaptive approxi-

mation, we assume we know the exact value of the output activation

beforehand and so the actual partial result at each iteration is used

instead of the estimated values. Based on this, we can exactly know

which iterations will not be needed and the ideal maximum amount of

bypass can be obtained. This ideal performance and the upper bound

of saving at different T values for the general 16-bit fixed-point imple-
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Fig. 4. (a) An Example for Extracting the Probabilities from the Dis-

tribution of the 4-bit Input Activations; (b) Average Probabilities and

the Spans Extracted for the 16-bit implementation of CifarQuick.

mentation of CifarQuick is shown in Fig.3. A sweet spot is observed

where 80.9% computations can be reduced with an accuracy loss of

1% for an optimum threshold value. Similarly, for the 8-bit fixed-

point implementation, ideally a computation reduction of 60.5% can

be achieved by the adaptive approximation at the same threshold as

shown in Fig.3. The savings shown in Fig.3 assume a perfect knowl-

edge of the partial result at each iteration. However in real situation,

the actual partial results will not be known beforehand. Therefore we

propose a method to get an accurate estimation on the maximum and

minimum values of the partial result at each iteration.

B. Making a Runtime Estimation on the Output Activation

Considering the MAC operation for an output activation, the worst-

case maximum value of each partial result can be estimated by assum-

ing all the input bit-weight products to be accumulated are as large as

possible. In this case, for the layers with both positive and negative

inputs, the maximum value of the partial result is equal to
∑

|w|× 2i

where w represents the weight in the kernel and i is the position of the

input bit from bit-width−1 to 0. Similarly, the worst-case minimum

value of each partial result is equal to −
∑

|w| × 2i. For the hidden

layers following ReLU, since there is no negative input, the maxi-

mum and minimum values of the partial result become
∑

w+ × 2i

and
∑

w
−

× 2i, where w+ and w
−

represent the positive and the

negative weights, respectively. The computation bypass based on this

loose bound of estimation ensures no accuracy loss, but the amount

of the complexity reduction is small since the worst-case estimated

values usually have much larger magnitude than the actual result due

to several reasons. First, since the multi-bit input activation has been

broken into multiple iterations, it is highly likely to have some in-

put bits equal to zero even when the activation is positive. Thus, a

considerable portion of input bit-weight products are actually zero.

Moreover, in the worst case, all the input bit-weight products to be

accumulated are assumed to have the same sign. However, in prac-

tice each non-zero product can either have positive impact or negative

impact on the partial result.

To have a more practical estimation, a tighter bound based on the

actual input activation statistics is proposed. Before the classification,

the empirical activation statistics of each layer are obtained from the

training images, and the probabilities of the input bit at each itera-

tion to be +1 and −1 are calculated accordingly. As an example,

Fig.4(a) illustrates how to extract the corresponding probabilities for

the MSB and LSB from the distribution of the 4-bit input activations



in a CONV layer of CifarQuick. Specifically, the probability of MSB

to be +1 is equal to the occurrence probability of the activation that

has a value larger than 8. It can be easily extended to the implemen-

tations with different bit-widths. For a larger bit-width such as 16-bit,

the activations will be partitioned into smaller bins. The average value

and the span of the probability of each input bit to be +1 extracted for

the 16-bit implementation of CifarQuick are shown in Fig.4(b). For

the hidden layers, the probability of the MSB to be +1 is small since

most of the activations have small values. For the LSB, the probabil-

ity is within the range from 25% to 40% since a large portion of input

activations are zero. The probability of having a −1 input is zero for

the layers following ReLU. CONV1 is different from others due to

the mean subtraction for image pre-processing. It is worth noting that

the activation distribution normally doesn’t change much for different

images in the dataset, and thus the empirical probabilities can be gen-

erally utilized for the estimation. The maximum and minimum values

of the partial result estimated at a specific iteration i (i=0 for LSB)

are given by:

max = (max+ +max
−
)× 2i,min = (min+ +min

−
)× 2i

max+ =
∑

w+ × Prob+1,max +
∑

|w
−
| × Prob

−1,max

max
−
=

∑
−w+ × Prob

−1,min +
∑

w
−
× Prob+1,min

min+ =
∑

w+ × Prob+1,min +
∑

|w
−
| × Prob

−1,min

min
−
=

∑
−w+ × Prob

−1,max +
∑

w
−
× Prob+1,max

(3)

where max and min represent the estimated maximum and mini-

mum values of the partial result, respectively. To estimate max, the

input bit-weight products with different signs need to be separately

considered. We first consider the case where the input bits and the

corresponding weights have the same signs to estimate the sum of the

positive products (max+).
∑

w+ and
∑

w
−

represent the sums of

the positive weights and the negative weights in the kernel, respec-

tively. For a better accuracy, a conservative bound should be used

for the estimation, and thus we use Prob+1,max and Prob
−1,max to

estimate max+ where Prob+1,max and Prob
−1,max represent the

maximum probabilities of the input bit to be +1 and −1, respectively.

Also we need to estimate the sum of the negative products (max
−

)

when the input bits and weights are of opposite signs. Again to have a

conservative bound we use Prob+1,min and Prob
−1,min which rep-

resent the minimum probabilities of the input bit to be +1 and −1,

respectively. The minimum value of the partial result (min) can be

estimated in a similar way. This statistics-based estimation is more

precise than the worst-case estimation.

C. Hardware Architecture

The analog computation is done inside the in-situ processing units

(IPUs) similar as Fig.1(b). Each IPU contains a group of 1-bit DACs

at the input of the wordlines, a pair of differential RRAM crossbars

to store the positive and negative weights, respectively, the sample-

hold units to hold the bitline currents, a single ADC which is time-

shared by the bitlines, and a shift-add unit to aggregate the partial

results after ADC for the MAC operation. In order to make a com-

parison with the state-of-the-art RRAM-based accelerator, we adopt

a hierarchical architecture similar to ISAAC presented in [17] as

the baseline, and compare the proposed CompRRAE with ISAAC

in terms of the energy efficiency, throughput, and area cost. Simi-

lar to ISAAC, each accelerator contains multiple tiles connected with

a concentrated-mesh at the top level. The architecture inside a tile

is shown in Fig.5(a). Each tile contains multiple in-situ multiply-

accumulate modules (IMAs) sharing the same centralized memories
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Fig. 5. (a) Hardware Architecture inside a Tile; (b) The Pipeline of

CompRRAE.

and digital processing units which are used to execute digital opera-

tions such as shift-add, ReLU and pooling. Inside the tile, the IMAs

are connected through a shared bus. Inside each IMA, there are mul-

tiple IPUs sharing a local input buffer and a local output buffer which

hold the input and output activations, respectively, during the MAC.

In order to implement the proposed runtime estimation, first, the

probabilities are extracted offline. Based on Eq.(3), the estimated

maximum and minimum values of the partial result at each iteration

are computed independently for each output channel. Then, the corre-

sponding estimated partial results are summed up to get the Max and

Min for each iteration. Same as the example shown in Fig.2, there

are totally N-1 Max and Min values for each output channel, where

N is the number of iterations, i.e. the bit-width of the activation−1.

This process is done offline and the estimated Max and Min values

are stored in a look-up table (LUT) in the tile. During runtime, at each

iteration, the estimated value of the output activation is the sum of the

actual accumulated result and the estimated value for the remaining

iterations read from the LUT. The evaluation logics to compute the

formulas in Fig.2 for deciding whether to skip the remaining itera-

tions include an adder for the ReLU-based bypass and a multiplier

and comparator for the approximation-based bypass. The size of the

tile is normally large enough for mapping a complete kernel of the

CONV layers. However, each kernel may occupy multiple IMAs and

thus the local results in the IMAs are required to be sent out through

the shared bus and aggregated in the tile. To minimize the overhead of

data transfer, each kernel is preferred to fully occupy the IPUs in one

IMA first before occupying others when mapping the network, and

the calculated results are firstly aggregated locally inside the IMAs

before sent out through the shared bus.

We use the same configuration as that in ISAAC where each mem-

ristor has 2-bit precision in the 128×128 RRAM crossbar. Since each

16-bit weight takes 8 memristors to store, there are 16 output channels

mapped to one IPU. The pipeline schedule of CompRRAE is shown

in Fig.5(b). After finishing each crossbar computation, the bitline re-

sults are firstly latched in the sample-hold circuits. In the next stage,

a 1.28GHz ADC sequentially converts the 8 bitline currents for an

output activation in 6.25ns in the IPU. The 8 bitline results are pro-

cessed by the shift-add to generate a local partial result in the IPU

in the next 6.25ns. Then, in the next stage, the local partial results

of different IMAs are aggregated in the tile and update the interme-

diate accumulated result of the MAC. This result together with the

estimated values stored in the LUT will be sent to the evaluation log-

ics to decide whether the computation can be terminated earlier based

on the algorithms presented in Section IV, and the control signals will

be generated and sent back to the IMAs. All these operations will be



finished in the 6.25ns time frame. At the beginning of the MAC oper-

ation, i.e. the first iteration, it takes 16×6.25ns to finish the iteration

for the 16 output activations in the IPU. As the computation goes on,

some of the output activations may be bypassed and the time for each

iteration in the IPU may become shorter. After all the IPUs finish the

computation, the results will be sent to the next layer, and the next

MAC operation of the current layer will start. Since the iterations

may take less time in CompRRAE due to the computation bypass,

the bandwidth of the input memories to provide the necessary input

activations to the IPUs have to be increased. If we need to maintain

the input memory bandwidth the same as that in ISAAC, the number

of IPUs in each tile needs to be reduced to make sure the memory

bandwidth can support the IPUs which are now running faster. At the

same time, since less IPUs are used in each tile, more tiles are needed

for mapping the same network and this will cause area overhead.

Compared with ISAAC, the energy overhead mainly comes from

the evaluation logics, the additional data transfers through the shared

bus, and the extra memory accesses of the LUT and the centralized

output buffer. Extra area overhead will be required for the evaluation

logics and the LUT. The detailed analysis will be discussed in the next

section.

V. EXPERIMENTAL RESULT

A. Models of Energy, Area, and Throughput

The operation parameters and the corresponding energy and area

data for the major components of CompRRAE are summarized in Ta-

ble I. All the memories and the shared buses are modeled at 32nm in

CACTI6.5 [15]. The centralized input memory is implemented us-

ing eDRAM. The local buffers, the centralized output memory and

the LUT are implemented using SRAM. The conductance range and

the area of RRAM are taken from the Stanford-PKU RRAM model

[9], and the corresponding power is simulated using a device-level

simulator implemented in C++. The parameters of the 1-bit DAC

are obtained through a real design implemented in Cadence at TSMC

65nm and scaled shown to 32nm process. Same as ISAAC, an 8-bit

SAR ADC is adopted, and the power and area are taken from [12].

The evaluation logics are designed and implemented in Verilog and

synthesized using TSMC 65nm. The power and area are obtained and

scaled down to 32nm process. The parameters of other digital pro-

cessing units such as the shift-add and the sample-hold are adapted

from ISAAC [17]. The time for the IPUs to finish the MAC operation

for each layer is used to model the execution time, and a simulation-

based throughput model is built in SystemC. We also calculate the

corresponding energy, throughput, and area of ISAAC as a baseline

to compare with.

B. Benchmarks

We use two benchmarks to compare CompRRAE with ISAAC. The

first benchmark is the LeNet-5 [13] which has two CONV layers and

two FC layers trained on the handwritten digit dataset MNIST. The

second benchmark is the medium-sized CifarQuick model [8] with

three CONV layers and two FC layers trained on the color image

dataset Cifar-10 [10]. The proposed schemes are firstly tested for a

16-bit quantization for comparison with ISAAC, and then tested for

an 8-bit quantization to demonstrate the effectiveness of CompRRAE

under an aggressive quantization scheme. The accuracy of the fixed-

point implementations are summarized in Table II.

C. Results of the ReLU-based Computation Reduction

The negative output activations in the CONV layers of CifarQuick

account for 57.5% of the total computations during the inference. On

average, over 99.9% of the negative outputs are detected based on the

Table I. Power and Area Estimation

Centralized Memories and Buses

Component Spec Energy(nJ) Area(um2)

Input Memory size: 64KB 0.0188
46000

(eDRAM) bus width: 256bit (0.38mW leakage)

Output Memory size: 1KB 0.0008
3900

(SRAM) bus width: 128bit (0.13mW leakage)

Estimation LUT size: 5KB 0.0035
9600

(SRAM) bus width: 160bit (0.002mW leakage)

Bus of num: 256
0.0042 80000

Input Path delay: 0.44ns

Bus of num: 128
0.0020 39100

Output Path delay: 0.43ns

Local Memories (Shared among 8 IPUs)

Component Spec R/W Energy(nJ) Area(um2)

Input Buffer
size: 2KB 0.0019

7400
bus width: 256bit (0.42mW leakage)

Output Buffer
size: 256B 0.0005

2600
bus width: 128bit (0.05mW leakage)

IPU Parameters at 1.28GHz (80 MACs per Tile)

Component Spec Power(mW ) Area(um2)

DAC
resolution: 1 bit

0.25 668
num: 256

ADC
resolution: 8 bit

3.1 1500
num: 1

Memristor resolution: 2 bit Cifar-10: 1.5
264

Crossbar num: 2 MNIST: 0.7

Sample-Hold num: 128 0.001 5

Shift-Add num: 1 0.05 60

Other Tile Parameters at 1.28GHz

Component Spec Power(mW ) Area(um2)

Evaluation Logic num: 8 0.79 320

Shift-Add num: 8 0.4 480

Table II. Accuracy of the Fixed-Point Implementations

Benchmarks 16-bit Representation 8-bit Representation

CifarQuick 75.57% 75.15%

LeNet-5 99.13% 99.09%

runtime estimation and over 71.5% of the computations correspond-

ing to these negative outputs are reduced for the 16-bit implementa-

tion. For the 8-bit implementation, over 98.3% of the negative outputs

are detected and 44.1% of their computations are reduced. Thus, the

overall ReLU-based computation reduction for a complete inference

are 40.2% and 23.8% for the 16-bit and 8-bit implementations, respec-

tively. No accuracy has been compromised for both implementations.

Since the CONV layers of LeNet-5 are not followed by ReLU, the

computation will only be reduced by the adaptive approximation. The

performance of the ReLU-based computation bypass in CifarQuick is

summarized in Table III.

D. Results of the Adaptive Approximation

The results of the computation bypass based on the adaptive ap-

proximation are shown in Fig.6. To maximize the amount of com-

putation reduction while maintaining a high accuracy, the optimal

threshold for the approximation is empirically found as 0.8 for the

16-bit implementation of CifarQuick, where 67.4% of computations

Table III. Results of the ReLU-based Computation Reduction in Cifar-

Quick

Computation Reduction
16-bit

Implementation

8-bit

Implementation

For the Negative Outputs
71.5% 44.1%

followed by ReLU

For a Complete Inference 40.2% 23.8%



Table IV. The Overall Computation Reduction, Energy Efficiency, Throughput, and Area Efficiency

Performance
16-bit CifarQuick 8-bit CifarQuick 16-bit LeNet-5 8-bit LeNet-5

Baseline CompRRAE Baseline CompRRAE Baseline CompRRAE Baseline CompRRAE

Accuracy 75.57% 75.44% 75.15% 75.00% 99.13% 98.97% 99.09% 98.90%

Computation Reduction for a Complete Inference - 69.4% - 39.1% - 78.5% - 45.4%

Energy Consumption (mJ/frame) 5.80e-2 2.00e-2 1.41e-2 1.00e-2 1.71e-2 5.65e-3 4.31e-3 2.61e-3

Energy Efficiency (frames/J) 1.72e+4 5.00e+4 7.10e+4 1.00e+5 5.83e+4 1.77e+5 2.32e+5 3.83e+5

Throughput (frames/s) 603.0 1715.6 1205.2 1978.3 1082.0 4897.1 2158.0 4163.1

Area (mm2) 0.5125 0.5816 0.3022 0.3468 1.5375 1.7252 0.8204 0.9243

Area Efficiency (frames/s/mm2) 1176.8 2949.8 3988.1 5704.4 703.7 2838.5 2630.4 4504.0
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Fig. 6. Results of the Adaptive Approximation

can be reduced for the inference with an accuracy loss as small as

0.13%. For the 8-bit implementation of CifarQuick, 35.8% computa-

tion reduction is achieved at the same threshold for the inference with

only 0.16% accuracy loss. Similar trend has been observed in LeNet-

5, where 78.5% and 45.4% computation reductions are obtained for

the 16-bit and 8-bit implementations, respectively. The accuracy loss

is smaller than 0.19%.

E. Overall Performance and Overhead Analysis

The overall computation reduction, energy efficiency improve-

ment, and throughput improvement after combining the two proposed

schemes are summarized in Table IV. The overall computation reduc-

tion achieved for the 16-bit implementation of CifarQuick is 69.4%

with 0.13% induced accuracy loss. Therefore, the energy efficiency

and throughput are improved by 2.9 times and 2.8 times, respectively.

The energy overhead caused by the runtime estimation (i.e. the eval-

uation logics, the extra data transfers through the shared bus, and the

extra memory accesses) accounts for 3.4% of the overall energy con-

sumption. Compared with ISAAC, there is a 13.5% area overhead

due to the estimation logics, the LUT, and the extra tiles occupied.

However, due to the improvement of throughput, the area efficiency

is improved by 2.5 times. For the 8-bit implementation of CifarQuick,

39.1% of computations are reduced. Thus the energy efficiency and

throughput are improved by 1.4 times and 1.6 times, respectively, at

a cost of 0.15% accuracy loss and 14.8% area overhead. Similar re-

sults have been observed for LeNet-5. The improvements in energy

efficiency and throughput are 3.0 times and 4.5 times for the 16-bit

implementation. For the 8-bit implementation, the corresponding im-

provements are 1.6 and 1.9 times, respectively. Around 12% area

overhead is induced for the implementations of LeNet-5.

VI. CONCLUSIONS

In this paper, a RRAM-based CNN accelerator is proposed to re-

duce the computations during the inference. The computations are

reduced by exploiting the output sparsity and the adaptive approxi-

mation based on the runtime estimation on the maximum and min-

imum values of the output activation. It is implemented under dif-

ferent quantization schemes, and the corresponding energy efficiency

and throughput are significantly improved.
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