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ABSTRACT
Brain-inspired hyperdimensional (HD) computing explores com-
puting with hypervectors for the emulation of cognition as an
alternative to computing with numbers. In HD, input symbols are
mapped to a hypervector and an assoc iative search is performed
for reasoning and classification. An associative memory, which
finds the closest match between a set of learned hypervectors and
a query hypervector, uses simple Hamming distance metric for
similarity check. However, we observe that, in order to provide
acceptable classification accuracy HD needs to store non-binarized
model in associative memory and uses costly similarity metrics
such as cosine to perform a reasoning task. This makes the HD
computationally expensive when it is used for realistic classifica-
tion problems. In this paper, we propose a FPGA-based accelera-
tion of HD (FACH) which significantly improves the computation
efficiency by removing majority of multiplications during the rea-
soning task. FACH identifies representative values in each class
hypervector using clustering algorithm. Then, it creates a new HD
model with hardware-friendly operations, and accordingly propose
an FPGA-based implementation to accelerate such tasks. Our eval-
uations on several classification problems show that FACH can
provide 5.9× energy efficiency improvement and 5.1× speedup as
compared to baseline FPGA-based implementation, while ensuring
the same quality of classification.
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1 INTRODUCTION
Machine learning algorithms have shown promising accuracy in
many tasks including computer vision, voice recognition, natural
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language processing, and health care [1–6]. However, the exist-
ing machine learning algorithms such as deep neural networks
are computationally expensive and require enormous resources
to be executed [7–9]. From other hands, embedded devices are
often constrained in terms of available processing resources and
power budget. Brain-inspired hyperdimensional (HD) computing
is a computational paradigm performing energy-efficient cognitive
computation. HD works based on the patterns of neural activity that
are not readily associated with numbers [10]. Due to the very large
size of brain’s circuits, such neural activity patterns can only be
modeled with vectors in high-dimensional space, called hypervec-
tors. HD computing builds upon a well-defined set of operations
with random HD vectors and it is extremely robust in the pres-
ence of failures. HD offers a complete computational paradigm that
is easily applied to learning problems including: analogy-based
reasoning [11], latent semantic analysis [12], language recogni-
tion [13, 14], prediction from multimodal sensor fusion [15], speech
recognition [16, 17], activity recognition [18], DNA sequencing [19],
and clustering [20].

HD computing is about manipulating and comparing large pat-
terns, stored in memory as hypervectors. In contrast to existing
classification algorithms, such as neural networks, which require
significantly complex and costly computation during training and
inference [21], HD provides a memory-centric, hardware friendly
operations which can be process on light-weight embedded devices.
Figure 1 shows the overview of the HD functionality in training
and inference phases. In HD training, each input is mapped to a hy-
pervector and then hypervectors for multiple inputs are combined
to create class hypervectors. In inference, an associative memory
checks the similarity of the input query hypervector with all pre-
stored class hypervectors. For a simple classification task such as
language or text classification, HD can use binarized class hyper-
vectors (0 and 1) and simple Hamming distance for similarity check.
In this work, we show that in order to achieve acceptable accuracy
on realistic classification problems (i.e., speech, activity, or face
recognition), HD has to use class hypervectors with non-binary
elements, which means that HD needs to use cosine metric to find
the similarity between query and class hypervectors. The cosine
can be calculated using the dot product of an input hypervector
with all stored class hypervectors which involves a large number
of multiplication/addition operations. This makes running HD on
the general purpose processors slow and energy hungry.

In this paper, we propose a FPGA-based ACceleration of HD
(FACH) which significantly reduces the computational cost by re-
moving the majority of the multiplications. FACH employs a cluster-
ing algorithm in order to share the values in each class hypervector
by taking into account the statistical properties of each operand
and output within the HD class. Instead of multiplying all pairs of
the query and a class hypervector, FACH adds all query elements
which are going to multiply with a shared class element and fi-
nally multiplies the result of addition with the corresponding class
value. This significantly accelerates HD computation by reducing
the number of required multiplications. Based on this technique, we
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Figure 1: HD functionality in train and inference phases us-
ing encoding and associative memory modules.

create a new HD model with hardware-friendly operations, and ac-
cordingly propose an FPGA-based acceleration for such tasks. Our
evaluations on several classification problems show that FACH can
provide 5.9× energy efficiency improvement and 5.1× speedup as
compared to baseline FPGA-based implementation while ensuring
the same quality of classification.

2 HD COMPUTING ALGORITHM

2.1 FACH Overview
HD provides a general model of computing which can apply to
different type of learning problems. Classification is one of the most
important supervised learning algorithm. To perform classification,
HD uses two main modules: encoding and associative memory.
Figure 1 shows the overall structure of the HD classification in
both training and inference phases. Encoding module maps input
data to a vector in high dimensional space, called hypervector.
Training performs on hypervectors, by adding all hypervectors
corresponding to a particular class together. In a similar way, HD
creates a single hypervector for each existing class. These class
hypervectors store in an associative memory. In inference, HD uses
the same encoding scheme to map a query data to high-dimensional
space. Finally, the associative memory performs the reasoning task
by looking for a class hypervector which has the highest similarity
to input hypervector. In the following, we briefly explain how each
module works.

2.2 Encoding Module
The first step in HD computing is to encode input data to high-
dimensional vectors. The main goal of encoding module is to map
input data to hypervector with D dimensions (e.g. D = 10, 000),
while keeping all information of a data point in the original space,
e.g., the feature values and their indexes for feature vector. Input
data can have different representations, thus there are different
encoding modules to map data to high dimensional space. For ex-
ample, work in [16, 22] proposed encoding methods to map feature
vectors to high dimensional space. Work in [23] encodes text-like
data using the idea of random indexing.

2.3 HD Model Training
HD performs the training procedure on the encoded hypervectors.
For all data corresponding to a particular class, HD adds all hyper-
vectors element-wise to create a class hypervector. For example,
assume Qi = {qi1,q

i
2, . . . ,q

i
D
} is a hypervector belongs to a class

ith . The HD model can be generated by adding all hypervectors
with the same tag as Ci =

∑
j Q

i
j , where C

i = {wi
1,w

i
2, . . . ,w

i
D
}.
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Figure 2: (a) FACH supporting Framework consisting of HD
training to create initial class hypervectors.

Each element of the class hypervector can have non-binarized value

(w ∈ ND ). This significantly increases the inference cost, as the
rest of reasoning task, i.e., similarity check, needs to perform using
integer rather than binary values.

To reduce the computational cost, several prior works tried to
binarize the class elements after training by applying a majority
function on each dimension [23, 24]. However, this reduces the
amount of information stored in each class hypervector. Later in
this section, we discuss the accuracy-efficiency trade off when using
binarized or non-binarzied class hypervectors for classification.

2.4 Associative Memory Module
After training, all class hypervectors are stored in an associative
memory (shown in Figure 1). In inference, an input data encodes
a query hypervector using the same encoding module used for
training. The associative memory is responsible for comparing
the similarity of the input query hypervector with all stored class
hypervectors and selecting a class with the highest similarity. For
all classification problems, HD uses the same associative search
to perform the reasoning task, regardless of the encoding module.
Associative memory can use different similarity metrics to find a
class which has the most similarity to a query hypervector. For
class hypervectors with binarized elements, Hamming distance is a
inexpensive and suitable similarity metric, while class hypervectors
with non-binarized elements need to use cosine for similarity check.
Most existing HD computing techniques are using binarized class
hypervectors in order to eliminate the costly cosine metric [17, 24].
However, we observed that HD with binary model provides sig-
nificantly low classification accuracy as compared to non-binary
model. For example, for face recognition, HD using non-binarized
class elements provides 57.8% higher accuracy than HD using bina-
rized hypervectors. From other hand, HD with non-binary model
involves large amount of multiplications. For example, an appli-
cation with k class hypervector and D dimensions involve k × D
multiplications.

3 FACH FRAMEWORK

3.1 Overview
In this section, we propose a FPGA-based acceleration of HD (FACH),
which exploits the statistical characteristic of the hyperdimensional
computing in order to reduce the HD computational complexity.
Figure 2a shows the overview of the FACH framework consisting of
three main steps: training, model refinement, and inference. As we
explained in Section 2.3, HD encodes all data points to hypervectors



FACH: FPGA-based Acceleration of Hyperdimensional Computing ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

(a)

w1 w2 w3 w4 w5 w6

q1 q2 q3 q4 q5 q6

Class Vector

C.Q = w1×q1 + w2×q2 + w3×q3 + w4×q4 
+ w5×q5 + w6×q6

c1 c1 c2 c1 c2 c2

c1 c2

+

++

+ +

C.Q = c1 × (q1+q2+q4) + c2 × (q3+q5+q6)

q1 q2 q3 q4 q5 q6

Clustered Class Vector

(b)
s1 s2

s1 s2

Figure 3: An example of dot product between the class and
query vectors with six dimensions (a) using conventional
method, (b) when the elements of the class vector clustered.

and trains the HD model by combining data points corresponding
to each class (•1 ). HD refinement clusters the values that elements
in each class hypervector can take by applying non-linear cluster-
ing on the trained class hypervectors (•2 ). This method reduces
the possible values that the elements of each class hypervector can
take. Next, FACH estimates the accuracy of the new HD model
on the validation data (validation is part of training data). If the
error rate is larger than a pre-defined ϵ value, FACH adjusts the
model and again clusters all values exist in each newly trained class
hypervector. This clustering gives us new centroids which better
represent the distribution of the values in each class hypervector.
This process continues iteratively until the convergence condition
(ΔE < ϵ) is satisfied, or the algorithm has run for a pre-defined num-
ber of iterations (•3 ). When the convergence condition satisfied,
FACH framework sends a new HD model with the clustered class
elements to inference in order to perform the rest of classification
task (•4 ). Finally, FACH uses the modified HDmodel with clustered
class elements for inference (•5 ). In this following, we explain the
details of the FACH framework functionality.

3.2 Reduction in Multiplication Domain
Performing cosine similarity between two vectors involves calcu-
lating the dot product of vectors divided by the size of each vector.
Since HD trains the model offline, the normalization of the class
hypervectors can be performed offline. On other hand, input data
is common between all class hypervectors, thus it does not need
to be normalized. Therefore, cosine similarity between a query

Q = {q1,q2, . . . ,qD } and ith class hypervector, Ci = {wi
1,w

i
2,

. . . ,wi
D
}, requires calculating their dot product which involves D

additions and D multiplications, where D is the dimension of the
hypervectors.

In this work, model refinement in FACH reduces the class span
by carefully selecting a subset from the input spaces, called “best
representatives”. FACH limits the number of values that each class
element can take (i.e., {w1, . . . ,wD } ∈ {c1, . . . , ck } and k << D)).
This enables us to remove the majority of cosine multiplications by
factorization. In other words, instead of multiplying the D elements
of query and class hypervector, we add the input data for all dimen-
sions for which class hypervector has the same element. Finally,
the result of addition is multiplied by the value of that particular
class.

Here we explain how FACH can limit the number of each class
elements with no or minor impact of classification accuracy. To find
representative class elements, the clustering algorithm is applied on
the the pre-trained class hypervectors. For each class hypervector,
our design identifies a specified number of clusters, say k , based on
clustering algorithm. The centroids of clusters are selected as the
representative weights and stored into the weight table. Assuming
that the actual numerical values belong to a set θ , the objective
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Figure 4: a) The classification accuracy of applications dur-
ing retraining iterations. b) Impact of number of class ele-
ments on the quality loss of different applications.

of the clustering algorithm is to find a set of k cluster centroids
{c1, c2, . . . , ck } that can best represent the class values (c ∈ N ).

{wi
1,w

i
2, . . . ,w

i
D } ∈ {ci1, c

i
2, . . . , c

i
k
}

Formally, the objective is to reduce the Within Cluster Sum of
Squares (WCSS):

min
c1, c2, ...,ck

(WCSS =
k∑

j=1

∑

θi ∈c j

| |θi − c j | |
2) (1)

where θi is the i
th sample drawn from θ and k is the number of

clusters.
We use the k-means clustering algorithm to solve the minimiza-

tion objective for each HD class hypervector separately, as the
distribution of values can vary across different classes. The calcu-
lation of dot product between query, Q , and a class hypervector,
Ci , can be simplified by adding all query elements which belong
to the same cluster in class hypervector. For example, for class
dimensions with ck elements, our design adds all corresponding
query elements together (sk =

∑
j
= qj wherew j = ck ). In a similar

way, our design calculates the accumulative query elements on all
k cluster centroids: {s1, s2, . . . , sk } and s ∈ N . Finally, these values
multiply with each corresponding cluster values and accumulate
together to generate a dot product between Q andCi hypervectors.

Q .Ci = s1 × c1 + s2 × c2,+ . . . sk × ck
This method reduces the number of multiplications involved

in dot product from D to k , where k can be about three order of
magnitudes smaller than D. Figure 3 shows an example of the dot
product between a class and a query vector using conventional
method and clustered model. Since in conventional method the
class elements can take any value, the dot product involve six mul-
tiplications (Figure 3a). FACH exploits the advantage of clustered
class values in order to first add the query elements corresponding
to the same centroid and then multiply the result with the centroid
values (Figure 3b). This reduces the number of multiplications to
two.

Error Estimation Sharing the elements of input and class hyper-
vectors reduces the HD classification accuracy. After the training,
our design replaces the elements of the class hypervectors with the
closest representative values (cluster centroids). We estimate the
error rate of the new model by cross-validating the cluster HD on a
validation data, which is a part of the training data. The quality loss,
ΔE is defined as the error rate difference between the HD using
original and modified models (ΔE = Eclustered − Eor iдinal ).

Model Adjustment If the error rate does not satisfy the tol-
erance ΔE < ϵ , FACH adjusts the new model by retraining the
network over the same training dataset. In retraining process, HD
composer looks at the similarity of each input hypervector to all
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stored class hypervectors; (i) if an input data correctly matches with
the corresponding class in associative memory, our design does not
change the mode. (ii) if an input hypervector, Q , wrongly matches

with the ith class hypervector (Ci ) while it actually belongs to jth

class (C j ), our retraining procedure subtracts the input hypervector

from the ith class and add it to jth class (Ci = Ci −Q &C j = C j +Q).
After adjusting the model over the training data, HD refinement
again clusters the data in each class hypervector and estimate the
classification error rate. We expect the model retrained under the
modified condition to better fit with the clustered values. If an error
criterion is not satisfied, we follow the same procedure until an
error rate, ϵ , is satisfied or we reach to a pre-specified number of
iterations. After the iterations, the new model, which is compatible
with the proposed accelerator, is used for real-time inference.

Figure 4a shows the classification accuracy of applications during
different retraining iterations when the class elements are clustered
to 32 values. Our evaluation shows that HD refinement can compen-
sate the quality loss due to clustering by using less than 50 iterations.
All pre-processing operations in the HD refinement module are
performed offline and their overhead is amortized among all future
executions of FACH accelerator. Figure 4b shows the final quality
loss, ΔE, when FACH clusters the class hypervector to different
different number of centroids. We consider the cluster sizes of 4,
8, 16 and 32. The results show that different applications can pro-
vide ΔE = 0% while using different number of class clusters. For
example, face recognition can achieve ΔE = 0% when the class
elements are clustered to 16 centroids, while human activity recog-
nition (UCIHAR) achieves ΔE = 0% using 32 cluster centroids. In
Section 5, we will explain the accuracy-efficiency trade-off in FACH
using different clusters.

4 HD HARDWARE ACCELERATION
In this work, we implement baseline HD and FACH on a FPGA. In
the following, we explain how each design can be accelerated on
FPGA.

4.1 Baseline HD Acceleration
We use FPGA to accelerate HD computing inference. Figure 5A
shows that the FPGA-based implementation of the baseline HD
requires D parallel multiplications to calculate the dot product
between the query and class hypervectors. Then, the results of
all D multiplications accumulate in a tree-based adder. However,

when D is large, FPGA does not have enough resources to perform
multiplications in all dimensions in parallel (•A ). The number of
input dimensionswhich FPGA reads at a time depend on the number
of classes, and the number of available Digital Signal Processors
(DSPs) in FPGA. We implement HD on the Kintex-7 FPGA KC705
Evaluation Kit with 840 DSPs. In this case, our design sequentially
reads the first d elements of the query vector and multiply it to
corresponding class elements (d < D). Then, the computation on
the rest of query elements are performed sequentially.

4.2 FACH Acceleration
Figure 5 illustrates the FACH architecture which supports dot prod-
uct between a query and a single class hypervector. The class hyper-
vector has k clustered values, i.e., the class elements can take one
of the k cluster centroids, {c1, c2, . . . , ck }. To accelerate FACH, our
design creates k index buffers, where each buffer represents one of
the cluster centroids (•B ). Each buffer stores the indices of the class
elements which have clustered to the same value. For example, the
first index buffer, shown in Figure 5B, stores all class indices which
have the value as c1. Since each class has D dimensions, we require
loд2D bits to store each index.

Due to resource limitation in FPGA, we can only read d dimen-
sions of the query hypervector at a time and process the remaining
dimensions in sequential windows. However, sequentially accessing
the query elements increases the number of resource requirements,
since all d elements in a read window might belong to any of the
clusters. In this case, each index buffer requires a tree-based adder
with d inputs in order to take care of the worse case scenario, when
all d query dimensions correspond to a single cluster. Instead, in
this work, each read window accesses to b = d/k indices from
each index buffer. This method ensures that the number of required
resources to add the element of each index buffer is less than b. We
define this b window size as the batch size. In order to speedup the
computation, FACH stores the index buffers, which are actually a
compressed/trained HD model, inside the FPGA. These buffers are
implemented using distributed memory using LookUp Table (LUT)
and Flip-Flop (FF) blocks.

Each element of the index buffer points to one dimension of the
query hypervector. In order to maximize the FPGA resource uti-
lization, for all elements of index buffer in a batch windows, FACH
pre-fetches the query elements and store them in query buffers
(•C ). Next to each query buffer, a tree-based adder accumulates all
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Figure 6: Execution time and average resource utilization of FPGA running FACH with different number of shared elements.

d/k indices corresponding to a particular centroid (•D ). The results
of these additions are stored in registers. Next, FPGA processes
the next batch sequentially. FACH is implemented in a pipeline,
where the pre-fetching of the elements to query buffer performs
simultaneously with the addition of the query elements which have
been pre-fetched to query buffers in last iteration. This pipeline
can perform very efficiently since these two tasks require different
types of FPGA resources. The indexing and pre-fetching are mem-
ory intensive tasks and mostly utilize BRAM, LUTs and FFs, while
the addition of query elements mostly utilizes DSPs.

After every iteration, the values corresponding to the registers
are accumulated. Once FACH has processed all D dimensions of the
hypervector, each register has the accumulated query elements in all
the dimensions for which class hypervector has the same clustered
value. For each index buffer, our design multiplies the value of
the register with the corresponding cluster value. The results of
multiplication for all cluster centroids are then accumulated in order
to generate the final dot product (•E ). Regardless of the method
used for calculating dot product, our design needs to compare the
dot products for all existing classes and select the class which has
the maximum similarity with the input vector.

5 RESULTS

5.1 Experimental Setup
The proposed FACH has been implemented with software and
hardware modules. For software support, we exploit Scikit-learn
library [25] for clustering and C++ software implementation for the
HD model training and verification. For hardware support, we use
FPGA to accelerate HD computation. We fully implemented FACH
inference functionality using Verilog. We verified the functionality
of the design using both synthesis and real implementation of the
FACH on Xilinx Vivado Design Suite [26]. The synthesis code was
implemented on the Kintex-7 FPGA KC705 Evaluation Kit.

5.2 Workloads
We evaluate the efficiency of the proposed FACH on four popular
classification applications, as listed below:
Speech Recognition (ISOLET): The goal is to recognize voice
audio of the 26 letters of the English alphabet. The training and
testing datasets are taken from Isolet dataset [27]. Face Recogni-
tion (FACE):We exploit Caltech dataset of 10,000 web faces [28].
Negative training images, i.e., non-face images, are selected from
CIFAR-100 and Pascal VOS 2012 datasets [29]. Activity Recogni-
tion (UCIHAR) [30]: The dataset includes signals collected from
motion sensors for 8 subjects performing 19 different activities. The
objective is to recognize the class of human activities.
Physical Activity Monitoring (PAMPA) [31]: This dataset in-
cludes logs of 8 users and three 3D accelerometers positioned on
arm, chest and ankle. They were collected over different human
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Figure 7: Performance per utilization of FPGA running ap-
plications with different number of shared class elements.

activities such as lying, walking and, ascending stairs, and each of
them was corresponded to an activity ID. The goal is to recognize
12 different activities.

5.3 Accuracy-Efficiency Trade-off
Figure 6 shows the execution time and average resource utilization
of FPGA while running four applications. The resource utilization
shows the average utilization of LUT, FF and DSP in the FPGA. The
x-axis shows the number of shared elements (centroids) in each
class hypervector. Comparing the results of baseline HD with the
FACH show that FACH can significantly improve the efficiency
of the HD computing by reducing the number of multiplications.
FACH performance depends on the number of shared class ele-
ments. FACH with more number of centroids requires more FPGA
resources and thus consumes higher power. However, it improves
the performance of FACH by increasing the parallelism. For exam-
ple, increasing the number of centroids from 4 to 32 improves the
FACH performance by 2.12× while utilizes on average 2.08× more
resources.FPGA performance does not improve linearly for a model
with larger than 16 shared class elements. This is because larger
FACH models, for example a model with 32 shared elements, does
not fit on FPGA, therefore FPGA processes the FACH sequentially.

As we discussed in section 3.1, FACH accuracy depends on the
number of shared class elements. The more is the number of shared
elements, the higher the accuracy FACH can provide. Our evalua-
tions show that FACH on average can achieve 5.9× better energy
efficiency and 5.1× faster execution as compared to the baseline
FPGA-based HD implementation while providing the same quality
of classification. Similarly, accepting less than 1% quality loss, FACH
can provide 6.5× energy efficiency improvement and 4.9× speedup
as compared to baseline FPGA-based implementation of HD.

Figure 7 shows the performance per average utilization for FPGA
while running applications with different number of clustered cen-
troids. Using this metric, we observe that although FACH with a
larger number of cluster centroids has higher performance, per-
formance per resource utilization is higher for FACH using less
number of centroids. In other words, the FPGA can better utilize
the resources while running FACHwith a smaller number of shared
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Figure 8: Resource utilization of FPGA running the baseline
HD and proposed FACH with 8 shared class elements.
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Figure 9: The breakdown of dynamic power consumption
of the FPGA implementing baseline HD and FACH with 8
shared class elements.

class elements. Thus, we can maximize the FPGA efficiency by us-
ing the minimum number of cluster centroids which provide the
acceptable quality of loss.

5.4 Utilization/Power Breakdown
Figure 8 shows the breakdown of the FPGA resources while im-
plementing the baseline HD and FACH for UCIHAR with 8 cluster
centroids. For the baseline HD, FPGA uses several multiplications
to measure the similarity of a query and class hypervector. This
increases the DSP utilization to 94.4% while LUT and BRAM have
only 14.7% and 13.1% utilization. In fact, in this implementation the
computation performance is limited by the number of DSPs avail-
able on the chip. In contrast, FACH with shared class elements can
better utilize the FPGA resources by significantly reducing the num-
ber of required multiplications. FACH implementation uses DSPs
in order to add the query elements which have been pre-fetched
to query buffer. Although this increases the BRAM utilization, it
allows FPGA to access the query values at a much faster rate in
order to fully utilize the DSPs. In addition, FACH exploits the dis-
tributed memories, designed by LUT and FF in order to store the
index buffer. This increases the utilization of LUT and FF to 51.4%
and 6.9% respectively.

Figure 9 also shows the power breakdown of FPGA while imple-
menting baseline HD and proposed FACH. The results show that
for baseline HD implementation, DSP takes 45.4% of total power
consumption, while BRAM and logic together take around 18.1%
of the power. In contrast, FACH implementation requires higher
BRAM utilization which increases the contribution of BRAM to to-
tal power to 31.4%. Moreover, in FACH implementation, clock takes
38.0% of total power, mostly to implement distributed memory to
store index buffer and perform pre-fetching.

6 CONCLUSION
Wepropose a novel hyperdimensional computing framework, called
FACH, which significantly reduces the cost of classification. The
framework extracts representative operands of a trained HD model
using clustering algorithm. At runtime, instead of multiplying all
inputs and class elements, our design adds all the inputs belonging
to the same class cluster centroid, and multiplies the result once in
the end. Our evaluation over a wide range of applications shows

that FACH can provide 5.1× faster execution and 5.9× higher energy
efficiency as compared to the baseline HD.
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