
Software Defined Architectures for Data Analytics

Vito Giovanni Castellana, Marco Minutoli, Antonino Tumeo, Marco Lattuada, Pietro
Fezzardi, Fabrizio Ferrandi

Vito Giovanni Castellana, Marco Minutoli, Antonino Tumeo, Marco Lattuada, Pietro Fezzardi, and Fab-
rizio Ferrandi. Software defined architectures for data analytics. In Proceedings of the 24th Asia and
South Pacific Design Automation Conference, ASPDAC ’19, pages 711–718, New York, NY, USA, 2019.
ACM

The final publication is available via http://dx.doi.org/10.1145/3287624.3288754

c©ACM, 2019. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of the 24th Asia
and South Pacific Design Automation Conference http://doi.acm.org/10.1145/3287624.3288754

So�ware Defined Architectures for Data Analytics

Vito Giovanni Castellana
Pacific Northwest National

Laboratory

vitoGiovanni.castellana@pnnl.gov

Marco Minutoli
Pacific Northwest National

Laboratory

marco.minutoli@pnnl.gov

Antonino Tumeo
Pacific Northwest National

Laboratory

antonino.tumeo@pnnl.gov

Marco Lattuada
Politecnico di Milano — DEIB

marco.lattuada@polimi.it

Pietro Fezzardi
Politecnico di Milano — DEIB

pietro.fezzardi@polimi.it

Fabrizio Ferrandi
Politecnico di Milano — DEIB

fabrizio.ferrandi@polimi.it

ABSTRACT

Data analytics applications increasingly are complex workflows

composed of phases with very different program behaviors (e.g.,

graph algorithms and machine learning, algorithms operating on

sparse and dense data structures, etc). To reach the levels of effi-

ciency required to process these workflows in real time, upcoming

architectures will need to leverage even more workload special-

ization. If, at one end, we may find even more heterogenous pro-

cessors composed by a myriad of specialized processing elements,

at the other end we may see novel reconfigurable architectures,

composed of sets of functional units and memories interconnected

with (re)configurable on-chip networks, able to adapt dynamically

to adapt the workload characteristics. Field Programmable Gate

Arrays are more and more used for accelerating various workloads

and, in particular, inferencing inmachine learning, providing higher

efficiency than other solutions. However, their fine-grained nature

still leads to issues for the design software and still makes dynamic

reconfiguration impractical. Future, more coarse-grained architec-

tures could offer the features to execute diverse workloads at high

efficiency while providing better reconfiguration mechanisms for

dynamic adaptability. Nevertheless, we argue that the challenges

for reconfigurable computing remain in the software. In this po-

sition paper, we describe a possible toolchain for reconfigurable

architectures targeted at data analytics.

CCS CONCEPTS

• Computer systems organization → Reconfigurable com-

puting;

KEYWORDS

Reconfigurable Computing, CGRAs, FPGAs, HLS

ACM Reference Format:

Vito Giovanni Castellana, Marco Minutoli, Antonino Tumeo, Marco Lat-

tuada, Pietro Fezzardi, and Fabrizio Ferrandi. 2019. Software Defined Ar-

chitectures for Data Analytics. In ASPDAC ’19: 24th Asia and South Pacific

Design Automation Conference (ASPDAC ’19), January 21–24, 2019, Tokyo,

Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3287624.

3288754

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor, or affiliate of the United States government. As such, the United
States government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for government purposes only.

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00
https://doi.org/10.1145/3287624.3288754

1 INTRODUCTION

Data analytics applications increasingly employ complexworkflows

that couple graph andmachine learningmethods. For example, pre-

dictive logistics pipelines employ associative learning algorithms

to learn spatio-temporal graphs of transport movements then use

the graphs to predict activity in busy zones. A radar imagery clas-

sification pipeline combines common machine learning stages (de-

tection, feature extraction and tracking, classification) with Deep

Belief Networks to learn features in high-dimensional data, and

Hierarchical Bayesian Nonparametric machine learning methods

to learn and recognize known and unknown targets in real time.

While both are data intensive, the graph and machine learning

methods involve algorithms with different behaviors that require

distinct processor architecture trade-offs to achieve high perfor-

mance and low power consumption. Reconfigurable architectures

are attractive platforms for supporting the heterogeneity of mod-

ern analytic workflows and data-dependent optimizations, partic-

ularly for those DoD-related environments that cannot afford the

level of investments and hardware development times for fully cus-

tom Application Specific Integrated Circuits (ASICs). Various solu-

tions exploiting fine-grained (re)configurable devices, such as Field

Programmable Gate Arrays (FPGAs), have been developed. Tools

and approaches to generate hardware description languages syn-

thesizable on FPGAs from specifications in high-level languages

such as C have been explored in research for many years and re-

cently have experienced increased commercial success (e.g., Xilinx

Vivado High-Level Synthesis (HLS), Altera OpenCL HLS, Micron

Convey OpenHT) as application programming interfaces, such as

OpenCL or OpenMP, allow annotating code to simplify the archi-

tecture generation process. In fact, the hints provided by such frame-

works afford additional information, allowing the synthesis tool

to make assumptions on code fragments that would be not eas-

ily analyzable by employing modern compiler analysis and opti-

mization passes. While C-to-H synthesizers represent an increas-

ingly impactful category of tools to accelerate development of cus-

tomized designs, the majority of their optimization focuses on ex-

tracting instruction-level parallelism and generating kernels start-

ing from codes characterized by high-arithmetic intensity, vector-

izable loops, easily partitionable datasets, and high locality. Instead,

data analytics pipelines integrating property graph methods and

machine learning typically present unpredictable, data-dependent,

memory accesses, operations on pointer or linked-list-based data

structures, sparsematrices, high synchronization intensity, and fre-

quent interplay among sparse and dense data types. However, they

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Castellana, Minutoli, Tumeo, La�uada, Fezzardi and Ferrandi

typically have large amounts of task-level parallelism, providing

interesting opportunities to scale performance. Conversely, from

the architectural point of view, fine-grained reconfigurable devices,

such as FPGAs, need a non-trivial amount of architectural design

to build register transfer level templates for functional units, inter-

faces, and control logic (centralized finite state machines or data-

flow-like distributed controllers) that support the tools in the syn-

thesis and architecture generation process. These templates must

support the software toolchain adequately, as well as be special-

ized for the target workloads. The specialization of the templates,

in turn, may then influence the programming model and require

additional types of code conventions to enable the toolchain to ef-

fectively perform analysis and optimizations. Additionally, while

partial dynamic reconfiguration at runtime is possible on these de-

vices, reconfiguration times are typically high due to limited band-

width, the time to modify fine grained bit streams, and placement

of the components. Coarse-grained reconfigurable arrays (CGRAs),

providing sets of functional units with different levels of special-

ization, memory components of various types, modifiable mem-

ory planes, and configurable interconnects, offer the hardware fea-

tures to execute diverse workloads at high efficiency and, at the

same time, the opportunity to provide quick and effective recon-

figuration mechanisms for dynamic adaptation. While current re-

search and commercial approaches seem to distinctly identify re-

configurable (software-defined) architectures as a viable opportu-

nity to increase efficiency when processing data-dependent work-

loads, there still are key gaps in the software stack to enable explo-

ration of the required hardware/software optimizations and data-

aware adaptability without crippling programmer productivity. In

this position paper, we discuss the organization of a toolchain for

Software Defined Architectures for Data Analytics (SO(DA)2). We

discuss the various layers of such a toolchain and provide refer-

ences to some of the seminal work we have done in the C-to-H

synthesis area to better support Data Analytics applications.

2 RELATED WORK

Reconfigurable computing has long been explored. Since the mid-

1980s, FPGAs have been an appealing platform for low-volume

mission-critical systems that could not afford development and

production of Application Specific Integrated Circuits (ASICs). Fa-

vorable performance-per-watt trade-offs with respect to other spe-

cialized accelerators targeting flop-intensive applications (general-

purposeGPUs; manycores with wide vector units such as the Xeon

Phi) have recently reignited significant interest in them [41]. For

example, accelerators for molecular dynamics [47], genomics [2],

and machine learning [13, 37], which do not require full double

floating-point precision for their computation (and, in many cases,

not even single), can greatly benefit from finely customized de-

signs. However, programming abstractions, languages, and com-

pute models have been a key limitation for the broad adoption

of reconfigurable hardware. Hardware design languages (HDLs),

such as VHDL or Verilog, make them only accessible to hardware

designers. As such, research has looked for solutions to raise the

abstraction level. Configurability requires abstractions that, even

if succinct, should allow verification prior to the hardware imple-

mentation, as well as be amenable to efficient compilation to take

advantage of specialization. This is even more critical for FPGAs,

which also require the design tools to perform mapping, placing,

and routing of the design onto the configurable blocks.

High-Level Synthesis (HLS) approaches, able to generate (semi)-

automatically descriptions in HDLs starting from high-level lan-

guages, have always been an important part of the research for

reconfigurable designs [15, 33]. The appearance of new synthe-

sis tools, based on parallel programming interfaces, also has re-

inforced interest regarding FPGAs in HPC environments. Among

them, there are solutions that exploit OpenCL, such as Xilinx Vi-

vado HLS and Altera/Intel SDK for OpenCL, or OpenACC. such as

Oak Ridge’s OpenARC [4]. However, OpenCL, because of its data-

parallel nature, and OpenACC, based on its offload style, expose

too many architectural details, limiting productivity and perfor-

mance portability across different types of reconfigurable devices.

Research has identified OpenMP as a suitable programming inter-

face for HLS. Various works have identified applicable pragmas

and preliminary guidelines [17], and proposed extensions [7], even

translating to C-hardware-oriented languages [26]. Some solutions

target hybrid architectures (general-purpose processors with FP-

GAs) for embedded system design [14], but they only implement of-

fload models without considering hierarchical (nested) parallelism

when tasks are actually synthesized on the FPGA. Moreover, the

approach has limited support for complex external memory mod-

els. In general, while these solutions represent significant progress,

they remain tied to conventional HLS methodologies. They per-

form well with digital signal processing workloads, which mainly

expose instruction-level parallelism, and present highly vectoriz-

able loops that operate on small, easily partitionable, datasets with

high data locality. They do not at all consider requirements to scale

to multiple devices or multiple nodes. We have significantly ex-

tended for OpenMP-like annotation and tasking, introducing tem-

plates based around a distributed controller to efficiently exploit

nested thread level parallelism [30], a memory interface that sup-

ports parallelmemory subsystems and enables implementing atomic

memory operation [11], and dynamic task scheduling approaches

to efficiently execute heavily unbalanced workloads [29].

FPGAs still expose many limitations in the hardware and, cru-

cially, in the software to be effectively employed for productive

acceleration of data analytics applications. They require describ-

ing the finest details of each functional unit (at the bit-level) and

have a number of fixed functional units that while increasing from

one device generation to the other, do not reach the same peak

floating-point performances of other specialized accelerators. FP-

GAs also still have reconfiguration times that are sufficiently long

to adversely impact execution latencies when performing recon-

figuration at runtime. While they are improving, their program-

ming abstractions still require developers to finely tune their code

to generate efficient hardware descriptions. However, as FPGAs

progress towards integrating more specialized units (digital signal

processing blocks, advanced memory interfaces, or complete pro-

cessors), general-purpose processors move towards a more fine-

grained level of configurability, exploiting aspects such as subword

parallelism, narrower or specialized floating-point units, config-

urablememory planes and interfaces, and even reconfigurable logic.

This suggests a convergence toward CGRAs. A variety of CGRAs

So�ware Defined Architectures for Data Analytics ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

has been proposed. Generically defined as reconfigurable architec-

tures that dynamically adapt the datapath at runtime to the appli-

cation, CGRAs provide an architecture with computational blocks

at a granularity of the functional unit or higher (but as large or

smaller than a core) that needs to be programmed spatially, i.e.,

where a function is assigned to a specific set of resources for some

amount of time, for example, until the end of the program or when

such a function terminates. Designs range from architectures with

simple general-purpose cores with (software) configurable inter-

connect, such as MIT’s RAW [40], to more proper CGRAs that

tightly integrate a general-purpose corewith an array of functional

units (typically identical arithmetic-logic units), such as GARP [8],

Piperench [22], ADRES [27], Tartan [31], and DySER [23]. The

Plasticine [39] spatially reconfigurable design combines pattern

compute units (PCUs), hierarchically composed of a reconfigurable

pipeline with multiple stages of SIMD functional units, and pat-

tern memory units (PMUs), simplifying mapping of inner loops

and feedback edges to the hardware and enabling execution of ap-

plications expressed as parallel patterns. Ongoing efforts in Path

Forward projects and the DARPA Electronic Resurgence Initiative

(ERI) demonstrate the intense interest around CGRAs.

Along with coarse-grained reconfigurability, architectures also

are progressively integrating more fine-grained types of configura-

bility. For example, a number of accelerators allow for deciding

at runtime if on-chip memories should act as software-managed

scratchpads or caches. When activated through specific hardware

knobs, even dynamic voltage and frequency scaling (DVFS), which

has been broadly explored at all levels of the software stack with

models and approaches working at runtime [25], also can be con-

sidered a fine-grained dynamically reconfigurable element.

3 PROPOSED FLOW

Figure 1 shows a high-level overview of the SO(DA)2 toolchain. Re-

configurable designs provide the opportunity to be spatially pro-

grammed. Thus, any integrated toolchain should be able to effi-

ciently identify task-level parallelism (TLP) beside instruction-level

parallelism (ILP), and, given a limited amount of resources, reason

about the potential trade-offs among the two tomaximize objective

metrics for the implementation, such as performance and power

consumption. An important area of exploration is if extending ex-

isting parallel programming models or domain specific languages

could be sufficient, or if new solutions are needed, with obvious

tradeoffs in enabling quick portability of existing code-bases. The

high-level abstraction, in any case, should enable co-optimization

of hardware and software. In our current toolchain, we are support-

ing GCC [3] as a frontend, thus naturally supporting existing anal-

yses, intermediate representation views (e.g., control and dataflow

graphs, or program dependency graph), and existing compiler op-

timizations. Additionally, as a way to indicate parallelism, we are

exploiting OpenMP annotations.

A core novelty of the proposed approach resides in devising

new synthesis and design explorationmethods to explore software

and hardware configurations simultaneously, both statically and

with dynamic feedbacks. These needs to be integrated in a Design

Space Exploration and Synthesis (DSES) engine that leverages the

information provided by the high-level abstractions and supports

Figure 1: Overview of our proposed SO(DA)2

appropriate representations. The objective is identifying specific

parallel patterns and explore trade-offs among multiple optimiza-

tion objectives (e.g., number of unrolled iterations and number of

concurrent execution flows in loops). Another key aspect is the

support of a hierarchical and parametric machine model, to enable

recognition of opportunities for mapping operations to units sup-

porting different precision/accuracy (for performance and energy

reasons) or specialized units (e.g., tensor cores able to perform ma-

trix multiply-accumulate operations). Partial dynamic reconfigu-

ration also needs to be considered a key dimension for the design

space exploration process. As an application is partitioned in dif-

ferent work units for different phases, these needs be progressively

mapped on the hardware using a subset of the available resources

and replaced as soon as they terminate. A work unit that replaces

another may bemapped on fewer resources than typically possible

given its parallelism, but, because those are actually available, the

application will be able to proceed and execute faster. A compre-

hensive framework will require a runtime manager to schedule the

work units on the hardware substrate and to orchestrate the datap-

ath reconfiguration across multiple devices and nodes for different

application phases. Because the upcoming reconfigurable architec-

tureswill present more complexmemory hierarchies, it will be crit-

ical to place and move data efficiently. As such, it would be natural,

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Castellana, Minutoli, Tumeo, La�uada, Fezzardi and Ferrandi

in toolchain focused at supporting data analytic workflows, to sup-

port data-aware analysis to inform the optimization. Such an an

analysis would probably require intrinsic knowledge of the data

and application domain (thus, benefiting from the high-level ab-

stractions), or runtime information. The architectures also are ex-

pected to provide fine-grained adaptability (bus widths, data fetch

size, cache line size, configurable on-chip memories, precision of

functional units) that the runtime manager, exploiting appropriate

instrumentation mechanisms (e.g., introspection and performance

counters), should be able to change dynamically through provided

hooks (knobs), employing stochastic optimization algorithms and

targeting power and performance metrics. Finally, the same mech-

anisms should provide a way to feedback dynamic information to

the higher layers of the stack for hardware-in-the-loop optimiza-

tion.

3.1 Programming Abstractions

Domain-specific languages provide data structures and language

constructs custom-designed for a domain’s computational meth-

ods. They support the parallel programming model implied by the

method’s parallel operations, control, and data movement. Con-

sequently, domain experts enjoy in a highly productive program-

ming environment that still enables compilers and schedules to

generate efficient code. Unfortunately, modern data analytic work-

flows are a complex composition of methods, data types, and par-

allel models. Pertinent domains are linear and relational algebra,

graphs, machine learning, and statistics. Data types include dense

and sparse matrixes, tensors, tables, (property) graphs, sets, and

trees. Parallel methods span embarrassingly parallel tasks, loosely

coupled tasks, K-step methods, data parallelism, recursive meth-

ods, and speculative computations with and without rollback. A

significant question is thus if a new DSL is required, or perhaps

it would be better to look at opportunities to extend current DSLs.

There is a variety of DSLs that either target graph methods and

machine learning, and no one appears to target them at the same

time.

Our preliminary work has focused on DSLs for graph meth-

ods. We implemented a SPARQL compiler (a query language for

datasets in the Resource Description Framework) [10] that gener-

ates graph pattern matching routines in C, and defined GraQL [12]

an extension of SQL to support graph walks when tables are com-

bined to provide a graph view of the data. Reconfigurable hard-

ware must be programmed spatially. Thus, the toolchain should

be able to efficiently identify task-level parallelism (TLP) beside

instruction-level parallelism (ILP), and, given a limited amount of

resources, reason about the potential trade-offs among the two

to maximize the objective metrics. Annotations that explicitly ex-

press concurrency can provide compilers and synthesizers with

ways to better identify parallel patterns. The area of C-to-Hardware

compilers long focused on the extraction of ILP (a classical example

is loop unrolling), which is abundant in the typical digital signal

processing applications (DSP) that have been originally targeted.

With the advent of larger devices and new classes of data-analytics

applications, methods exploiting CUDA [34], OpenCL [42], and

OpenACC [35] to express higher levels of parallelism than ILP have

been explored for hardware synthesis. However, they are narrow

in scope: OpenACC is focused only to offloadmodels, while CUDA

or OpenCL massively threaded architectures, embed in their syn-

tax low level assumptions on the target architecture and adapts

well mainly to fine-grained data-parallel algorithms which mostly

operate in a SIMD fashion. Crucially, they do not work well with

nested and irregular parallelism, which are instead significant in

data analytics applications. Our current C-to-RTL synthesis tool

for FPGA, optimized for Data Analytics, supports, in fact, OpenMP

annotated code. Nevertheless, with novel CGRAs, it will be neces-

sary to explore even more the trade-offs between TLP and ILP, de-

pending on number and type of computation resources available.

Thus, annotations need sufficient expressivity to let the tool reason

about the best trade-off. The opportunity to reconfigure at runtime

also makes it possible to further trade off TLP and ILP to cope with

actual data behaviors.

3.2 Frontend and Intermediate
Representations

Our current synthesis infrastructure employs GCC as its frontend

and, through the OpenMP annotations, provides a hierarchical task

graph (HTG) view of the program. Our envisioned SO(DA)2 ap-

proach for novel reconfigurable designs will also take advantage

of a conventional compiler frontend, exploiting typical compiler

analysis (dataflow graph, control flow graph, program dependency

graph) and optimizations (inlining, unrolling, vectorization, loop

transformations, polyhedral transformation). SO(DA)2will also sup-

port a refined version of HTGs [20, 38]. HTGs can be directly as-

sumed from the actual application code. HTGs are an especially

versatile and efficient way to capture program characteristics, in-

cluding dataflow and parallelism information. Intuitively, nodes in

an HTG represent tasks, and edges represent data/control depen-

dencies among tasks. However, HTG nodes can be expanded as

tasks may comprise lower-level HTGs or, at the finest granularity,

individual operations. Using HTGsmakes it is possible to analyze a

program at different granularities. SO(DA)2 optimizations also will

be data aware, driven by dynamic information fed back from the ar-

chitecture (profile-driven optimization). Dynamic information can

be related to performance (e.g., operations and performance coun-

ters), as well as to energy, depending on the introspection mech-

anisms provided by the architecture. However, given the applica-

tion’s data-dependent behavior, the optimization process may re-

quire targeting for average cases with predefined datasets and ap-

plications and could possibly use machine learning approaches,

where the parameters are learned frommultiple profiling runswith

training datasets.

3.3 Design Space Exploration and Synthesis
(DSES) Engine

Machine model. SO(DA)2 will employ machine models, comprising

a resource library and the set of constraints imposed by the target

architecture. The resource library will provide methods to describe

the components of the target architecture at different levels of de-

tail. Components that need to be described range from general-

purpose cores with different features (e.g., different instruction set

architectures, vector units, floating-point units) to specialized cores

So�ware Defined Architectures for Data Analytics ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

!

"

#

$

%

&

'

"

(

&

)*+,-,./*.-012-3415,-6/71-891:-341;-66*8<1=81

,+3=>,.+3

?+3=>,.+1@*A,-,B71-8918>;A+,

=C1,+3=>,.+31D.=83:,-*8:E

F>1" F>1&

F>1$

F>1G

F>1H

Figure 2: Example ofHTGwithResource Library. Nodes and

resources are colored as Work Units (WUs) are assigned to

resources

(digital signal processing and vector processors) to memory ele-

ments (caches, on-chip memories, different types of volatile and

non-volatile memories) to functional units (for CGRAs that may

provide arithmetic logic units with different functionalities and

specialized operators, such as tensor units) and to interconnect

mechanisms (point-to-point connections, buses, switched matri-

ces). The machine model format must describe component param-

eters that may be set during offline synthesis and changed as differ-

ent phases of the program are executed and the configuration vec-

tors are loaded onto the target device (e.g., precision for floating-

point units that allow variable precision to reduce power consump-

tion), as well as fine-grained reconfigurable parameters that a run-

time layer should be able to tune during device operations. The ma-

chine model must include device constraints, such as the number

of available functional units and the size of the memory compo-

nents. It also will include overall target metrics, for example, max-

imum power or aggregate external memory bandwidth. The ma-

chine model must also include cost metrics for each component,

depending on their type.

Synthesis. Given the HTG representation and machine model,

the SO(DA)2 synthesis engine will be able to associate work units

(task and HTG nodes) to architectural resources (resource alloca-

tion), determine the scheduling of the work units, and bind the

work units to the functional units. Depending on the specific archi-

tecture characteristics, the scheduling may only represent order-

ing of operations with their dependences. Partial or pure dataflow

hardware substrates could provide mechanisms to actually start

the work unit as soon as dependences are satisfied. The synthesis

engine also will be able to generate the glue code for the runtime

layer if the scheduling operations need to be managed through

a general-purpose core. The HTG representation provides a sim-

ple abstraction to match a high-hierarchy node with a specialized

functional unit (e.g., a vector or tensor unit) or, if a matching is

not possible, to recursively expand nodes until a match with sim-

pler functional units is found. The approach adapts well to proper

CGRAs and mixed (heterogeneous) designs. If the target architec-

ture also provides general-purpose cores, the mapping may result

in optimized compilation of the operations described in the HTG

node with the opportunity to optimize the data movement opera-

tions identified by data and control dependences.

!"#$

% $

!"##&

% '

!"#'

% $

!"#(

% $ % $

)*+,

-*./

01+/#&

234*5/ 678/

01+/#$ 01+/#'

!"#9

Figure 3: Chromosome encoding for combined exploration

of resource allocation, register memory allocation, schedul-

ing, and interconnect allocation

The scheduling and resource binding processes will play a vi-

tal role in identifying opportunities for reconfiguration. In fact, if

the hardware substrate requires a complete reconfiguration, the

DSES engine could cut the HTG appropriately in the most conve-

nient sections, exploiting the annotation information on program

phases and work units but also analyzing similarities and reuse in

the execution path. If the hardware substrate supports partial dy-

namic reconfiguration and/or dataflow-like processing, the DSES

will be able to explore other aspects, such as granularity of the

tasks, and, in collaboration with the runtime manager, opportuni-

ties to fit work units on resources that dynamically become avail-

able. The DSES could also identify opportunities for reusing the

same sets of resources previously allocated for work units of simi-

lar types in different phases of the program, pipeline the execution

of work units on these resources (if allowed by the target architec-

ture), or allocate a new set of resources altogether to exploit higher

parallelism [28]. For example, Figure 2 describes resource mapping

as a coloring problem over an HTG. A feasible mapping is found

when all of the HTG nodes have been colored. Given an applica-

tion and system configuration, several mappings are feasible. Each

of them has an overall associated weight, obtained through the

cost metrics related to each individual operation/resource binding.

Thus, the synthesis engine can build additional intermediate repre-

sentations, such as a weighted compatibility graph (WCG). In the

WCG, edges indicate tasks/operations that can be mapped on the

same resource, and the associated weights represent profitability

as a result of sharing. Weights account for performance, as well as

costs, associated with reconfiguration. Once a properWCG is built,

the mapping can be solved as weighted clique covering.

Multi-objective Design Space Exploration. Finding the best map-

pings of the application to the target architecture is a complex

problem because of the large amount of variables involved. These

include the mappings’ granularity, available resources, the units’

customization, costs, and performance benefits of reconfiguration.

In addition, a multitude of factors, such as code transformations

(e.g. coalescing and unrolling), scores of assignment policies, and

even the algorithm choice for individual synthesis processes, may

affect complexity and the final quality of results.

As a result, the design space is extremely wide. Our envisioned

SO(DA)2 approach should allow the exploration of a variety of

mapping and scheduling techniques, including heuristic approaches

and evolutionary and bio-inspired algorithms. The latter, in par-

ticular, provide an opportunity to deal simultaneously with mul-

tiple phases of the synthesis process (allocation, scheduling, bind-

ing), each one potentially an NP-complete problem, using a sin-

gle encoding and algorithm formulation. Hence, they allow for

considering the full design space and identifying solutions that

may not be achievable if greedy heuristics are used to solve each

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Castellana, Minutoli, Tumeo, La�uada, Fezzardi and Ferrandi

�✁

✂✄ �

☎ � ☎ ✆ ☎ ✝

✂✄ ✆

☎ � ☎ ✆ ☎ ✝

✆✁

✂✄ �

☎ � ☎ ✆

✝✁

✂✄ ✝

☎ �

✂✄ ✞

☎ �

✞✁

✂✄ ✞

☎ �

✂✄ ✆

☎ ✝

✂✄ ✆

☎ ✝

✂✄ ✆

☎ ✆

✂✄ �

☎ ✝

✂✄ ✆

☎ ✆

✂✄ � ✂✄ ✝

☎ �

☎ ✝

✂✄ ✆

☎ ✆

✂✄ � ✂✄ ✝

☎ �

✂✄ ✞

☎ �

Figure 4: First four ACO steps for combined mapping and

scheduling of the HTG in Figure 2 on the provided resource

library

phase separately. GAs [21] allow for exploring non-convex design

spaces through mutation (introducing local variations), crossover

(to jump in across different areas of the space and exit from local

minima or maxima), and selection (to lead the search along the

most promising area of the space). GAs enable searches across a

wide, complex design space in reduced time. Figure 3 depicts an

example of a chromosome encoding for the combined problem

of allocating and binding resources, allocating memories/buffers,

scheduling, and allocating interconnect components [1]. Consider-

ing only the first hierarchy of the HTG in Figure 2, the genes in the

first part of the chromosome identify work units and their potential

assignments (e.g., there are three instances of resource B. Wu 1 is

assigned to B1, and Wu 2 is assigned to B3). The remaining genes

represent the algorithms chosen for memory allocation, schedul-

ing, and interconnect allocation as the engine could provide dif-

ferent solutions for each one. For genes that represent work units,

mutation will change assignments to compatible units. For genes

representing algorithms, mutation will select another algorithm.

Crossover simply recombines parts of different chromosomes, thus

always admitting a feasible solution (if there is only one resource

for two different work units, the scheduling algorithm may have

to define the priority of execution). The objective (fitness function)

may be performance, as well as power, or a combination of the

two metrics. Performance and energy results of the solutions are

obtained by either running the resulting selected chromosomes on

the target architecture and feeding back the results through intro-

spection to the DSES or by integrating estimation mechanisms in

the DSES itself.

ACO [16] is a swarm intelligence optimization technique that

combines probabilistic local decision with global information pro-

vided by cooperating agents. Figure 4 shows the first steps of an

ACO formulation that combines scheduling and resource selection

for the HTG in Figure 2 [19, 46]. To simplify the example, com-

munication mapping is not considered, which can be realized by

extending the approach to also assign arcs to communication com-

ponents with different costs and constraints [18]. A set of ants sep-

arately performs the exploration. At the first step, an ant can select

the assignment of Wu 1 and 2 to all three resources of type B. Ran-

domly, Wu 2 on B3 is selected. The next allowable choices, given

the HTG dependences, and current use of B3, are only for Wu 1.

Wu 1 on B2 is selected, so now Wu 3 and Wu 4 are schedulable on

the only resource A available. This will allow for scheduling Wu 4

only after Wu 3. The ants proceed until all nodes have been visited

and resources assigned. Local choices for each step can employ a

problem-dependent weight (e.g., favor mapping on resources with

high availability). At the end of a traversal, the ant will "reinforce"

the path it has followed ("pheromone trail") proportionally to the

quality of the result (total execution time, total energy, etc.). This

reinforcement will influence the probability at each decision step

for ants in subsequent runs.

3.4 Runtime Manager

Objective of the DSES is to produce configuration vectors, bitcode

for each work unit, and related control glue code, identifying as-

signments of functional units to work units, actual placements of

the functional units for each work unit, data dependencies, syn-

chronization points, and timings. We envision that a full toolchain

for reconfigurable architectures needs a runtime manager to ef-

fectively provide the interface between the target architecture it-

self and the DSES, orchestrating the execution of work units and

setting configurations. On proper CGRAs composed of functional

units and memories and reconfigurable interconnects, the runtime

will dynamically load configuration vectors and set functional units

to trigger execution of the work units. For solutions composed of

cores (at higher granularity of functional units) and configurable

interconnects, the runtime will effectively trigger work unit execu-

tion following scheduling, assignment, and placing provided by the

DSES but also enable dynamic adaptation and rescheduling. The

runtime will dynamically determine the available functional units

and map the ready work units to the functional units given current

available concurrency, the amount of concurrency the work unit

will uncover (based on the dependence graph), available memory

bandwidth, available resources, and locality of the data bound to

the work unit.

Introspection and hardware knobs. Provided the availability of

counters and actionable knobs, the runtime manager should be

able to control any fine-grained tunable parameters that architec-

tures expose for memory components, cores, interconnect, and/or

functional units. Ideally, the implementation of our proposed flow

will require the definition of specific (perhaps novel) counters and

knobs with the objective of optimizing performance and energy

through system introspection (dynamic monitoring and modifica-

tions). For proper CGRAs, appropriate counters may for example

monitor interconnect traffic; utilization of the functional units; mem-

ory accesses; and knobs may enable tuning interconnect bit widths,

data fetch size, memory components behavior (scratchpads or caches

and size of the cache lines), frequencies, and voltages of the vari-

ous components. For general-purpose cores with configurable in-

terconnects and malleable data planes, instead, counters may mon-

itor aspects such as stall reasons, caching inefficiencies, and power

consumption.

Optimizer and DSES feedback. In the envisioned approach, the

runtime layer should be able to share optimization algorithmswith

the DSES . However, because the runtime manager needs to per-

form fine tuning of parameters as dynamic feedback is provided,

gradient descent and stochastic (regressive) optimization approaches

likely will be more effective [24]. The runtime should be able to

monitormemory components and interconnect behaviors and change

So�ware Defined Architectures for Data Analytics ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

their modes (i.e., load size, coherent/non-coherent caches, scratch-

pad, prefetch modes). For power optimizations, the envisioned run-

time could use the roofline models and its extensions for mem-

ory hierarchies [6, 48] to determine bottlenecks and reduce power

through DVFA [32, 36], clock-gating, power-gating, and modify-

ing the number of data lanes used. In other instances, for arith-

metic operations, the runtime couldmonitor integer/floating-point

error exceptions and modify code to trade off precision with arith-

metic logic unit operations/cycle (i.e., four 32-bit adds instead of

eight 16-bit adds per cycle). Integrating the runtime layer andDSES

optimization algorithms, however, will enable the exploration of

other heuristic approaches. For example, an online ACO formula-

tion with identical parallel work units running in iterations may

consider each work unit as an independent agent and employ pro-

filed results and previous reinforcements to select parameters for

the following iteration. A strict integration between runtime layer

and DSES engine is also required to enable sharing of collected in-

trospection information to enable collection of dynamic statistics

and dynamic profiling, and enable profile-driven optimizations by

feeding back the collected data to the DSES. Finally, the runtime

layer could enable, for certain target platforms, the use of bitcode

(or code in a virtual instruction set) at a higher abstraction level

than the final target architecture binary code that will could be

just-in-time compiled before actual execution. This could allow the

runtime manager itself to dynamically introduce modifications to

the bitcode and providing extended functionalities with respect to

hardware knobs (for example, modifying size of loads or precision

of floating-point operations at runtime).

4 PROOFS OF CONCEPT

While we envision SO(DA)2 to target CGRAs to take full advantage

of quick reconfiguration, and many research prototypes have ap-

peared, actual commercial devices still are upcoming (E.g., Xilinx’s

Adaptable Computing Acceleration Platform - ACAP). Thus envi-

sion that the various toolchain components could be tested and val-

idated by targeting modern FPGAs, proving that abstractions, de-

sign space exploration, synthesis techniques, and reconfiguration

mechanisms will work [43–45]. In seminal work, we have extended

HLS methodologies to extract TLP and ILP from OpenMP-like an-

notated code [9, 29, 30] and implemented them in an open-source

toolchain [5]. These include a refined memorymodel that supports

multiple memory channels, multiple memory banks, and atomic

memory operations [11]. These methodologies can be adapted and

integrated in the SO(DA)2 toolchain. Thus, the SO(DA)2 hierarchi-

cal machine model could include FPGA-synthesizable components

that closely mimics the resources that will be available on CGRAs.

SO(DA)2 will be able to employ general-purpose cores embedded

in modern FPGAs or as part of hybrid architectures both as execu-

tors of the runtime layer and targets for applications’ work units.

5 CONCLUSIONS

Novel reconfigurable architectures may provide the adaptability

required to address the complex data analytics workflows that in-

tegrate graph algorithms, machine learning, and operate on a va-

riety of data structures (dense and sparse matrices, tables, graphs,

trees, grids). However, we argue that there remain challenges for

the software stack, that needs to jointly explore the space of soft-

ware optimizations and hardware parameters/configurations with-

out hindering programmer productivity. Current fine-grained FP-

GAs have already demonstrated success in accelerating machine

learning, and memory-intensive workloads, including graph algo-

rithms. In this position paper we describe a full toolchain to en-

able design space and exploration to map complex data analytics

workflows on reconfigurable architectures. We describe the com-

ponents of the stack, discuss challenges and opportunities, and

highlight research that needs to be performed.We also propose ref-

erences to previous works, focused on high-level synthesis from C

for parallel specifications of graph algorithms, that provide proofs

of concept for some layers of the stack of the described toolchain.

REFERENCES
[1] 2008. Improving evolutionary exploration to area-time optimization of FPGA

designs. Journal of Systems Architecture 54, 11 (2008), 1046 – 1057. Embedded
Systems: Architectures, Modeling and Simulation.

[2] 2018. BlueBee High Performance Genomics. Available at
http://www.bluebee.com/news. [Online; accessed 19-March-2018].

[3] 2018. GCC, the GNU Compiler Collection. https://gcc.gnu.org. Online; accessed
22-March-2018].

[4] 2018. OpenARC: Open Accelerator Research Compiler. Available at:
https://ft.ornl.gov/research/openarc. Online; accessed 21-March-2018].

[5] 2018. PandA: on Open Source Framework for Hardware-Software Codesign.
Available at https://panda.dei.polimi.it. Online; accessed 22-March-2018].

[6] V. C. Cabezas and M. Püschel. 2014. Extending the roofline model: Bottleneck
analysis with microarchitectural constraints. In 2014 IEEE International Sympo-
sium on Workload Characterization (IISWC). 222–231.

[7] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-Gonzalez.
2009. OpenMP extensions for FPGA accelerators. In SAMOS IX: International
Symposium on Systems, Architectures, Modeling, and Simulation. 17–24.

[8] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. 2000. The Garp architecture and
C compiler. Computer 33, 4 (Apr 2000), 62–69.

[9] Vito Giovanni Castellana,MarcoMinutoli, AlessandroMorari, Antonino Tumeo,
Marco Lattuada, and Fabrizio Ferrandi. 2015. High Level Synthesis of RDF
Queries for Graph Analytics. In Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design, ICCAD 2015, Austin, TX, USA, November 2-6,
2015. 323–330.

[10] V. G. Castellana, A. Morari, J. Weaver, A. Tumeo, D. Haglin, O. Villa, and J. Feo.
2015. In-Memory Graph Databases for Web-Scale Data. Computer 48, 3 (Mar
2015), 24–35.

[11] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. 2014. An
adaptive Memory Interface Controller for improving bandwidth utilization of
hybrid and reconfigurable systems. In Design, Automation & Test in Europe Con-
ference & Exhibition, DATE 2014, Dresden, Germany, March 24-28, 2014. 1–4.

[12] D. Chavarr/’a-Miranda, V. G. Castellana, A. Morari, D. Haglin, and J. Feo. 2016.
GraQL: A Query Language for High-Performance Attributed Graph Databases.
In 2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW). 1453–1462.

[13] Eric S. Chung, Jeremy Fowers, Kalin Ovtcharov,Michael Papamichael, AdrianM.
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, Maleen Abeydeera, Logan Adams, Hari Angepat, Christian Boehn, Derek
Chiou, Oren Firestein, Alessandro Forin, Kang SuGatlin, Mahdi Ghandi, Stephen
Heil, Kyle Holohan, Ahmad El Husseini, Tamás Juhász, Kara Kagi, Ratna Kovvuri,
Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon
Perez, Amanda Rapsang, Steven K. Reinhardt, Bita Rouhani, Adam Sapek, Raja
Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip Yi
Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger. 2018. Serving DNNs in Real
Time at Datacenter Scale with Project Brainwave. IEEE Micro 38, 2 (2018), 8–20.

[14] Alessandro Cilardo, Luca Gallo, Antonino Mazzeo, and Nicola Mazzocca. 2013.
Efficient and scalable OpenMP-based system-level design. InDesign, Automation
Test in Europe Conference Exhibition (DATE), 2013. 988–991.

[15] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. 2011. High-
Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 30, 4 (April 2011),
473–491.

[16] M. Dorigo, M. Birattari, and T. Stutzle. 2006. Ant colony optimization. IEEE
Computational Intelligence Magazine 1, 4 (Nov 2006), 28–39.

[17] P. Dziurzanski and V. Beletskyy. 2004. Defining Synthesizable OpenMP Direc-
tives and Clauses. In ICCS 2004: 4th International Conference on Computational
Science. 398–407.

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Castellana, Minutoli, Tumeo, La�uada, Fezzardi and Ferrandi

[18] Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Donatella Sciuto, and An-
tonino Tumeo. 2010. Ant Colony Heuristic for Mapping and Scheduling Tasks
and Communications on Heterogeneous Embedded Systems. IEEE Trans. on
CAD of Integrated Circuits and Systems 29, 6 (2010), 911–924.

[19] Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Donatella Sciuto, and An-
tonino Tumeo. 2013. Ant Colony Optimization for mapping, scheduling and
placing in reconfigurable systems. In 2013 NASA/ESA Conference on Adaptive
Hardware and Systems, AHS 2013, Torino, Italy, June 24-27, 2013. 47–54.

[20] Milind Girkar and Constantine D. Polychronopoulos. 1994. The hierarchical
task graph as a universal intermediate representation. International Journal of
Parallel Programming 22, 5 (01 Oct 1994), 519–551.

[21] DavidE. Goldberg. 1989. Genetic Algorithms in Search, Optimization andMachine
Learning (1st ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[22] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and R.
Laufer. 1999. PipeRench: a coprocessor for streaming multimedia acceleration.
In Proceedings of the 26th International Symposium on Computer Architecture (Cat.
No.99CB36367). 28–39.

[23] V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim. 2012. DySER: Unifying Functionality and Parallelism Specialization
for Energy-Efficient Computing. IEEE Micro 32, 5 (Sept 2012), 38–51.

[24] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and
Anant Agarwal. 2010. Application Heartbeats: A Generic Interface for Specify-
ing Program Performance and Goals in Autonomous Computing Environments.
In Proceedings of the 7th International Conference onAutonomic Computing (ICAC
’10). 79–88.

[25] Melanie Kambadur and Martha A. Kim. 2014. An Experimental Survey of En-
ergyManagement Across the Stack. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA ’14). 329–344.

[26] Y. Y. Leow, C. Y. Ng, and W.F. Wong. 2006. Generating Hardware from OpenMP
Programs. In FPT 2006: IEEE International Conference on Field ProgrammableTech-
nology. 73–80.

[27] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. 2003. ADRES: An Architecture with Tightly Coupled VLIW Processor
and Coarse-Grained Reconfigurable Matrix. In Field Programmable Logic and
Application, Peter Y. K. Cheung and George A. Constantinides (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 61–70.

[28] M. Minutoli, V. G. Castellana, A. Tumeo, and F. Ferrandi. 2015. Inter-procedural
resource sharing in High Level Synthesis through function proxies. In 2015 25th
International Conference on Field Programmable Logic and Applications (FPL). 1–
8.

[29] Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, Marco Lattuada,
and Fabrizio Ferrandi. 2016. Efficient synthesis of graph methods: a dynami-
cally scheduled architecture. In Proceedings of the 35th International Conference
on Computer-Aided Design, ICCAD 2016, Austin, TX, USA, November 7-10, 2016.
128.

[30] Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, Marco Lattuada,
and Fabrizio Ferrandi. 2016. Enabling the high level synthesis of data analytics
accelerators. In Proceedings of the Eleventh IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis, CODES 2016, Pitts-
burgh, Pennsylvania, USA, October 1-7, 2016. 15:1–15:3.

[31] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani,
Seth C. Goldstein, and Mihai Budiu. 2006. Tartan: Evaluating Spatial Compu-
tation for Whole Program Execution. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XII). 163–174.

[32] Sparsh Mittal. 2014. A Survey of Techniques For Improving Energy Efficiency
in Embedded Computing Systems. CoRR abs/1401.0765 (2014).

[33] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S.
Brown, F. Ferrandi, J. Anderson, and K. Bertels. 2016. A Survey and Evaluation of
FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35, 10 (Oct 2016), 1591–1604.

[34] NVIDIA. 2018. About CUDA. Available at https://developer.nvidia.com/about-
cuda. Online; accessed 22-March-2018].

[35] OpenACC-standard.org. 2018. OpenACC More Science Less Programming.
Available at https://www.openacc.org/. Online; accessed 22-March-2018].

[36] Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. 2014. A
Survey on Techniques for Improving the Energy Efficiency of Large-scale Dis-
tributed Systems. ACM Comput. Surv. 46, 4, Article 47 (March 2014), 31 pages.

[37] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song Jiang. 2014.
SDA: Software-defined accelerator for large-scale DNN systems. In 2014 IEEE
Hot Chips 26 Symposium (HCS). 1–23.

[38] Constantine D. Polychronopoulos. 1991. The Hierarchical Task Graph and Its
Use in Auto-scheduling. In Proceedings of the 5th International Conference on
Supercomputing (ICS ’91). 252–263.

[39] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun. 2017. Plasticine: A reconfigurable architecture

for parallel patterns. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). 389–402.

[40] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat,
Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Al-
bert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt
Frank, SamanAmarasinghe, andAnant Agarwal. 2002. The RawMicroprocessor:
A Computational Fabric for Software Circuits and General-Purpose Programs.
IEEE Micro 22, 2 (March 2002), 25–35.

[41] R. Tessier, K. Pocek, and A. DeHon. 2015. Reconfigurable Computing Architec-
tures. Proc. IEEE 103, 3 (March 2015), 332–354.

[42] The Khronos Group. 2018. OpenCL Overview. Available at:
https://www.khronos.org/opencl/. Online; accessed 22-March-2018].

[43] Antonino Tumeo, Simone Borgio, Davide Bosisio, Matteo Monchiero, Gianluca
Palermo, Fabrizio Ferrandi, and Donatella Sciuto. [n. d.]. A multiprocessor self-
reconfigurable JPEG2000 encoder. In RAW’09: Reconfigurable ArchitecturesWork-
shop, in 23rd IEEE International Symposium on Parallel and Distributed Processing,
IPDPS.

[44] Antonino Tumeo, Marco Branca, Lorenzo Camerini, Marco Ceriani, Matteo
Monchiero, Gianluca Palermo, Fabrizio Ferrandi, and Donatella Sciuto. 2008. A
Dual-Priority Real-TimeMultiprocessor System on FPGA for Automotive Appli-
cations. In Design, Automation and Test in Europe, DATE 2008, Munich, Germany,
March 10-14, 2008. 1039–1044.

[45] Antonino Tumeo, Marco Branca, Lorenzo Camerini, Marco Ceriani, Matteo
Monchiero, Gianluca Palermo, Fabrizio Ferrandi, andDonatella Sciuto. 2009. Pro-
totyping pipelined applications on a heterogeneous FPGA multiprocessor vir-
tual platform. In Proceedings of the 14th Asia South Pacific Design Automation
Conference, ASP-DAC 2009, Yokohama, Japan, January 19-22, 2009. 317–322.

[46] Antonino Tumeo, Christian Pilato, Fabrizio Ferrandi, Donatella Sciuto, and
Pier Luca Lanzi. 2008. Ant colony optimization for mapping and scheduling in
heterogeneous multiprocessor systems. In Proceedings of the 2008 International
Conference on Embedded Computer Systems: Architectures, Modeling and Simula-
tion (IC-SAMOS 2008), Samos, Greece, July 21-24, 2008. 142–149.

[47] H. M. Waidyasooriya, M. Hariyama, and K. Kasahara. 2016. Architecture of
an FPGA accelerator for molecular dynamics simulation using OpenCL. In 2016
IEEE/ACIS 15th International Conference on Computer and Information Science
(ICIS). 1–5.

[48] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun.
ACM 52, 4 (April 2009), 65–76.

