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Efficient Dispersion of Mobile Robots on Graphs

Ajay D. Kshemkalyani∗ Faizan Ali †

Abstract

The dispersion problem on graphs requires k robots placed arbitrarily at the n nodes
of an anonymous graph, where k ≤ n, to coordinate with each other to reach a final
configuration in which each robot is at a distinct node of the graph. The dispersion
problem is important due to its relationship to graph exploration by mobile robots, scat-
tering on a graph, and load balancing on a graph. In addition, an intrinsic application
of dispersion has been shown to be the relocation of self-driven electric cars (robots) to
recharge stations (nodes). We propose three efficient algorithms to solve dispersion on
graphs. Our algorithms require O(k log∆) bits at each robot, and O(m) steps running
time, where m is the number of edges and ∆ is the degree of the graph. The algorithms
differ in whether they address the synchronous or the asynchronous system model, and
in what, where, and how data structures are maintained.

Keywords: Distributed algorithm, Graph algorithm, Mobile robot, Dispersion, Collective
robot exploration

1 Introduction

1.1 Background and Motivation

The problem of dispersion of mobile robots, which requires the robots to spread out evenly
in a region, has been explored in the literature [15]. The dispersion problem on graphs,
formulated by Augustine and Moses Jr. [2], requires k robots placed arbitrarily at the n

nodes of an anonymous graph, where k ≤ n, to coordinate with each other to reach a final
configuration in which each robot is at a distinct node of the graph. This problem has
various applications; for example, an intrinsic application of dispersion has been shown to be
the relocation of self-driven electric cars (robots) to recharge stations (nodes) [2]. Recharging
is a time-consuming process and it is better to search for a vacant recharge station than to
wait. In general, the problem is applicable whenever we want to minimize the total cost of k
agents sharing n resources, located at various places, subject to the constraint that the cost
of moving an agent to a different resource is much smaller than the cost of multiple agents
sharing a resource.

The dispersion problem is also important due to its relationship to graph exploration by
mobile robots, scattering on a graph, and load balancing on a graph. These are fundamen-
tal problems that have been well-studied over the years by varying the system model and
assumptions. Although some works consider these problems in general graphs, many other
works consider specific graphs like grids, trees, and rings.
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Table 1: Comparison of the proposed algorithms for dispersion on graphs.

Algorithm Model Memory Requirement Time Features
at Each Robot Complexity

Helping-Sync Sync. O(k log ∆) bits O(m) steps need to know m

for termination

Helping-Async Async. O(k log ∆) bits O(m) steps no termination

Independent-Async Async. O(k log ∆) bits O(m) steps no termination

1.2 Our Results

Our results assume that robots have no visibility and can only communicate with other robots
present at the same node as themselves. The robots are deterministic, and are distinguishable.
The undirected graph, with m edges, n nodes, diameter D, and degree ∆, is anonymous, i.e.,
nodes have no labels. Nodes also do not have any memory but the ports (leading to incident
edges) at a node have locally unique labels.

We provide three efficient algorithms to solve dispersion in both the synchronous and
asynchronous system models. Our algorithms require O(k log ∆) bits at each robot, and O(m)
steps running time. We assume that the robots do not know any of the graph parameters n,
m, D, or ∆ in the algorithms. It is sufficient if O(k log ∆) bits are provisioned at each robot.
The following is an overview of our algorithms; the upper bound results are given in Table 1.

1. For the synchronous model, we present algorithm Helping-Sync which needs O(k log ∆)
bits per robot and O(m) steps time complexity; for this synchronous algorithm, we
assume robots know m if termination is to be achieved. In this algorithm, docked
robots, defined as robots that have reached their nodes in the final configuration, help
visiting robots by maintaining data structures on their behalf.

2. Algorithm Helping-Async is the asynchronous version of Helping-Sync and has the same
time complexity O(m) and same space complexity of O(k log∆) bits per robot; however
this algorithm requires each docked robot to remain active and help other visiting
robots.

3. Algorithm Independent-Async has the same complexity (O(m) time steps andO(k log ∆)
bits per robot) and features as Algorithm Helping-Async; it differs in what, how and
where data structures are maintained. Here, each robot maintains its own data struc-
tures, as opposed to Helping-Async where docked robots help visiting robots by main-
taining data structures on their behalf.

Although the asynchronous algorithms, technically speaking, do not terminate because the
docked robots need to be awake to relay local information to visiting robots, we state their
time complexity (to be O(m)) because at most O(m) steps are required for each robot to
perform active computations and movements until it docks at a node; after that, a docked
robot merely passively helps visiting robots (until they find a node to dock).
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1.3 Related Work

The dispersion problem on graphs was formulated by Augustine and Moses Jr. [2]. They
showed a lower bound of Ω(D) on the time complexity, and an independent lower bound of
Ω(log n) bits per robot, to solve dispersion. They then gave several dispersion algorithms
for specific types of graphs, assuming the synchronous computation model. Besides giving
dispersion algorithms for paths, rings, trees, rooted trees (a rooted tree has all the robots at
the same node in the initial configuration), and rooted graphs (a rooted graph has all the
robots at the same node in the initial configuration), they gave two algorithms for general
graphs in which the robots can be at arbitrary nodes in the initial configuration. The first
algorithm uses O(log n) bits at each robot and O(∆D) rounds, whereas the second algorithm
uses O(n log n) bits at each robot and O(m) rounds. We claim that, unfortunately, both
these algorithms are incorrect. Both algorithms use variants of Depth First Search (DFS),
but may fail to search the graph completely, backtrack incorrectly, and can get caught in
cycles while backtracking. This also renders their complexity results incorrect. The problems
arise because concurrent searches of the graph by different robots interfere with one another
in these algorithms. Further, the second algorithm executes for an insufficient number of
rounds. Our work considers dispersion in (unrooted) graphs wherein the robots can be at
arbitrary nodes in the initial configuration, for both the synchronous and the asynchronous
computation models. We consider general graphs rather than restricted graphs like grids,
trees, and rings.

The dispersion problem on graphs is closest to the problem of graph exploration by robots.
In the graph exploration problem, the objective is to visit all the nodes of the graph. There
are many results for this problem. Several works assume specific topologies such as trees [1],
[10], [12], [14]. For general graphs, the results depend on the different system models and
assumptions such as the following.

1. what parameters of the graph are known to the robots,

2. whether the graph is anonymous,

3. whether memory is allowed at robots [13],

4. whether memory is allowed at the nodes [7],

5. whether knowledge of the incoming ports through which a robot enters nodes is allowed
[13],

6. whether exploration is by a single robot or cooperating robots [5], [6], [9],

7. if exploration is by multiple robots, whether robots are allowed to communicate under
the local communication model or the global communication model [5], [6], [9],

8. if exploration is by multiple robots, whether robots are colocated or dispersed in the
initial configuration,

9. whether we are designing a solution that is time optimal, or space optimal,

10. whether the bounds on memory are subject to time optimality solutions,
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11. whether termination of the robot is required (and if so, whether at the starting node)
or it is to perpetually traverse the graph

We now review a few of the closest results. Fraigniaud et al. [13] showed that using only
memory at a robot, the robot can explore an anonymous graph using θ(D log∆) bits based on
a (D+1)-depth restricted DFS. They did not analyze the time complexity, which turns out to
be

∑
D

i=1 O(∆i) = O(∆D+1) which is very high. Their algorithm has no mechanism to avoid
getting caught in cycles and the only way out of cycles is the depth-restriction on the DFS.
The robot also requires knowledge of D to terminate. Cohen et al. [7] gave two DFS-based
algorithms with O(1) memory at the nodes. The first algorithm uses O(1) memory at the
robot and 2 bits memory at each node to traverse the graph. The 2 bits memory at each node
is initialized by short labels in a pre-processing phase which takes time O(mD). Thereafter,
each traversal of the graph takes up to 20m time steps. The second algorithm uses O(log∆)
bits at the robot and 1 bit at each node to traverse the graph. The 1 bit memory at each node
is initialized by short labels in a pre-processing phase which takes time O(mD). Thereafter,
each traversal of the graph takes up to O(∆10m) time steps. Dereniowski et al. [9] studied the
trade-off between graph exploration time and number of robots, assuming that (i) nodes have
unique identifiers, (ii) when visiting a node, a list of all its neighbors is also known, (iii) all the
robots are located at one node in the initial configuration, (iv) robots have unique identifiers,
and (v) there is no bound on the memory of robots, which construct a map of the previously
visited subgraph. The authors considered results in both the local communication model, as
well as the global communication model. The main contribution is an exploration strategy for
a polynomial number of robots Dn1+ǫ < n2+ǫ to explore graphs in an asymptotically optimal
number of steps O(D). Using the Rotor-Router algorithm allowing only log∆ bits per node,
an oblivious robot (i.e., robot is not allowed any memory) that also has no knowledge of the
entry port when it enters a node, can explore an anonymous port-labeled graph in 2mD time
steps [3], [21]. Menc et al. [16] proved a lower bound of Ω(mD) on the exploration time steps
for the Rotor-Router algorithm.

The dispersion problem is similar to the problem of scattering or uniform deployment of
k robots on a n node graph. The scattering problem was examined on rings [11], [18], and
on grids [4], under different system assumptions than those that we make for the dispersion
problem.

The dispersion problem is also similar to the load balancing problem, wherein a given
load has to be (re-)distributed among several processors. In this analogy, the robots are the
load, and it is these active loads rather than the passive nodes that make decisions about
movements in the graph. Load balancing in graphs has been studied extensively. Load
balancing algorithms use either a diffusion-based approach [8], [17], [19], which is somewhat
similar to our algorithms, or a dimension-exchange approach [20] wherein a node can balance
with either a single neighbor in a round, or concurrently with all its neighbors in a round.

2 System Model

We are given an undirected graph G with n nodes, m edges, and diameter D. The maximum
degree of any node is ∆. The graph is anonymous, i.e., nodes do not have unique identifiers.
At any node, its incident edges are uniquely identified by a label in the range [0, δ−1], where
δ is the degree of that node. We refer to this label of an edge at a node as the port number

4



at that node. We assume no correlation between the two port numbers of an edge. There is
no memory at the nodes.

In our algorithms, we consider both the synchronous model and the asynchronous model.
In the synchronous model, there is a global clock that coordinates the processing of the robots
in rounds. In any round, a robot stationed at a node does some computation, perhaps after
communication with local robots, and then optionally does a move along one of the incident
edges to an adjacent node. Multiple robots can move along an edge in a round. However,
we assume that each edge is a single-lane edge, in the sense that robots can move along the
edge sequentially. As a result, if multiple robots make a move along an edge, they will enter
the node in sequential order which can be captured by a real-time synchronized clock. In the
asynchronous model, there is no global mechanism that coordinates the round numbers of
the robots. Thus, each robot executes its rounds/iterations at an independent pace. When a
robot determines that it will occupy a particular node in the final configuration, it docks at
that node (by entering state = settled).

The k robots are distinguished from each other by a unique ⌈log k⌉-bit label from the
range [1, k]. The robots are also endowed with a real-time synchronized clock. A robot can
only communicate with other robots that are present at the same node as itself. No robot
initially has knowledge of the graph or its parameters n, m, D, and ∆. We assume each
robot knows k, which is upper-bounded by n. In our synchronous algorithms (Helping-Sync,
and the synchronous version of algorithm Independent-Async presented for the asynchronous
model), we assume a robot has knowledge of the parameter m if we want to achieve local
termination of the code after a robot has docked at a node in the final configuration. For
the asynchronous algorithms, the main for-loop counting up to 4m − 2(n − 1) could be
replaced by a while-true loop. This is because even after a robot docks at a node, it needs
to communicate its label (and some additional information in Algorithm Helping-Async) to
visiting robots, to enable them to navigate the graph.

When multiple robots at a node contend to dock at that node, they invoke a MU-
TEX(node) call that guarantees that only one robot succeeds in docking. The MUTEX
may be implemented in various ways. For example, the earliest robot (among the contending
robots) that arrived at the node can win the MUTEX; if there is a tie in case of multiple
robots arriving simultaneously along different ports, then the tie is broken by choosing the
robot arriving along the lowest numbered port as the winner. Or, in the synchronous model,
the robots can compare their labels and the robot with the smallest label wins the MU-
TEX. Or the MUTEX can be implemented by a hardware device to which the winner robot
physically connects when it docks.
Problem Description: We are given an initial configuration of k robots, where k ≤ n,
distributed arbitrarily at nodes in the graph. The robots need to move around to reach a
final configuration in which there is at most one robot at any node in the graph.

2.1 Bounds and their Analysis

A lower bound of Ω(D) on the running time was shown in [2]. (Note that this prior work [2]
required k = n whereas we allow k ≤ n.) We present a different lower bound.

Theorem 2.1 The dispersion problem on graphs requires Ω(k) steps as its running time.

5



Proof Consider a line graph and all k robots colocated at one end node in the initial con-
figuration. In order for the robots to dock at distinct nodes, some robot must travel k − 1
hops.

For dispersion on general unrooted graphs, the best running time in [2] was O(m). We
consider designing space efficient algorithms, subject to a O(m) running time. Observe that
DFS based algorithms can run in O(m) time.

A lower bound of Ω(log n) bits on the memory of robots was shown in [2]. For our
algorithms, we analyze the memory bounds of robots assuming that a O(m) time algorithm,
based on DFS, is to be used. There are two challenges:

1. To determine whether a node has been visited before. Note that nodes have no memory
in our system model. Although there are n nodes, we observe that a node has been
visited before if and only if there is a robot docked at the node and there is a record of
having encountered that robot before. As there are k(≤ n) robots, it suffices to track
whether or not each of the k robots has been encountered before. This imposes a bound
of O(k) bits.

2. If it is determined that a node has been visited before, backtracking is in order to meet
the O(m) time bound. During the backtracking phase, to determine which port to use
for backtracking requires identifying the parent node from which that robot first entered
a particular node. Such a parent node can be identified by the local port number of
the edge leading to the parent node. A port at a node can be encoded in log ∆ bits.
Further, we need to track ports at at most k − 1 nodes because only a node with a
docked robot requires other visiting robots to backtrack, and up to k− 1 nodes may be
occupied by docked robots. This imposes a bound of O(k log∆) bits.

Thus, the overall bound on memory at a robot is O(k log∆) bits.

3 Dispersion Using Helping in the Synchronous Model

To achieve dispersion, each robot begins a DFS-variant traversal of the graph, seeking to
identify a node where no other robot has docked. If multiple robots arrive at a node at
which no other robot is docked in a particular round, they use the MUTEX(node) function,
explained in Section 2, to uniquely determine which of those robots can dock at the node.
The other robots continue their search for a free node. During this search, a robot needs to
determine if the node it visits has been visited before by it. (This is needed to determine
whether to backtrack to avoid getting caught in cycles, or continue its forward exploration
of the graph.) A node has been visited before if and only if the robot docked there has
encountered the visiting robot after it docked. A robot that docks at a node helps other
robots to determine whether they have visited this node before. A robot that docks initializes
and maintains a boolean array visited[1, k]. It sets visited[r] to true if and only if it has
encountered robot r after docking. It helps a visiting robot r by communicating to it the
value visited[r].

In order for a robot to determine whether to backtrack from a (already visited) node or
resume forward exploration, it needs to know the port leading to the DFS-parent node of
the current node. It is helped in determining this as follows. A robot that docks initializes
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and maintains an array entry port[1, k]. Subsequently, when a robot r first visits the node,
determined using visited[r] = 0 of the docked node, the entry port[r] entry of the docked
robot is set to the entry port used by the visiting robot. The docked robot also communicates
entry port[r] (in addition to visited[r]) to a visiting robot r to help it determine whether to
backtrack further or resume forward exploration.

A robot uses the following variables:

• port entered and parent ptr of type port can take values from {−1, 0, 1, . . . , log δ − 1}
(⌈log(∆+1)⌉ bits each); port entered indicates the port through which the robot entered
the current node on the latest visit whereas parent ptr is used to track the port through
which the robot entered the current node on the first visit;

• state (2 bits) can take values from {explore, backtrack, and settled}; and

• seen (1 bit) is a boolean to track whether the current node has been seen/visited before.

• round is used as a round counter (log m = O(log n) bits).

In addition, a robot initializes the following two arrays once it docks at a node and enters
state settled:

• visited[1, k] of type boolean (k bits), and

• entry port[1, k] of type port (k⌈log(∆ + 1)⌉ bits).

The semantics of these two arrays was explained above.
In Algorithm 1, lines (3-7): a docked robot i helps visiting robot j by sending it visited[j]

and entry port[j], and updating the locally maintained visited[j] and entry port[j] if this is
the first visit of the robot j.

When robot i visits a node where some robot j is already docked, it receives visited[i]
and entry port[i] from j (line 13). If i has state = explore and the node is already visited,
i backtracks through port entered (lines 16, 17). Whereas if the node is not already visited
(lines 14, 15), i sends port entered to j which records it in entry port[i] (line 7). Robot i

contends for the MUTEX (line 19) if there is no robot docked at the node. If i wins the
MUTEX and docks, it initializes the data structures visited[1, k] and port entered[i, k] and
for other robots j concurrently at this node in this round, it fills in their entries in the newly
created data structures (lines 19-24). Whereas if i loses the MUTEX contention, it sends
port entered to the winner of MUTEX (lines 25, 26). If i has not backtracked and not docked,
state = explore. In this case (line 27), i increases port entered in a modulo fashion (mod
degree of node) and moves forward to the next node, but switches state to backtrack if the
port to move forward (new value of port entered) is the same as the entry port (in line 15,
parent ptr was set to the old value of port entered, which was set to entry port in line 10)
(lines 28-31).

If i has state = backtrack when it visits a node (line 32), it implies some robot j is
already docked, and i receives visited[i] and entry port[i] from j (line 33). Robot i increases
port entered in a modulo fashion (mod degree of node) and moves forwards to the next node
while switching state to explore, unless the port to move along (new value of port entered)
is the parent pointer port (set to entry port[i]), in which case i keeps state as backtrack and
backtracks instead of moving forward (lines 34-37).
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Algorithm 1 Helping-Sync, synchronous execution, code at robot i

1: Initialize: port entered← −1; state← explore; parent ptr ← −1; seen← 0
2: for round = 0, 4m− 2(n − 1) do
3: if state = settled then

4: for all other robot j on the node do

5: send visited[j] and entry port[j] to j

6: if visited[j] = 0 then

7: visited[j]← 1; entry port[j]← receive port entered from j

8: else

9: if round > 0 then

10: port entered, parent ptr← entry port; seen← 0

11: if state = explore then

12: if node has a robot j docked in an earlier round then

13: seen, parent ptr← receive visited[i], entry port[i] from j

14: if seen = 0 then

15: parent ptr← port entered; send port entered to j

16: if seen = 1 then

17: state← backtrack; move through port entered

18: else

19: if i = (r ←)winner(MUTEX(node)) then
20: i docks at node; state← settled

21: Initialize visited[1, k] ← 0; entry port[1, k]← −1
22: for all robot j on the node do

23: entry port[j]← receive port entered from j

24: visited[j] ← 1

25: else

26: send port entered to r

27: if state = explore then

28: port entered← (port entered+ 1) mod degree of node
29: if port entered = parent ptr then

30: state← backtrack

31: move through port entered

32: else if state = backtrack then

33: seen, parent ptr ← receive visited[i], entry port[i] from docked robot j
34: port entered← (port entered+ 1) mod degree of node
35: if port entered 6= parent ptr then

36: state← explore

37: move through port entered

Theorem 3.1 Algorithm 1 (Helping-Sync) achieves dispersion in a synchronous system in
O(m) rounds with O(k log ∆) bits at each robot.

Proof Observe that each robot executes a variant of a DFS in the search for a free node.
Each robot may need to traverse each edge of the DFS tree two times (once forward, once
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backward), and each non-tree edge four times (once for exploration in each direction, and
once for backtracking in each direction). So for a total of 4(m−(n−1))+2(n−1) = 4m−2n+2
times. The robot executes for these many rounds, so the running time is O(m).

From the description and analysis of the variables above, it follows that the memory of
each robot is bounded by O(k log ∆) bits.

To show that dispersion is achieved in 4m− 2n+ 2 rounds, observe that the k robots do
a collective search of the graph, using individual DFS variants. Within 4m− 2n+ 2 rounds,
if a robot is not yet docked, it will visit each node at least once, and since k ≤ n, each robot
will find a free node and dock there.

Note that although a robot may dock at a node, it needs to be active for the rest of the
4m−2n+2 rounds of the algorithm in order to help other robots which might visit this node.

4 Dispersion Using Helping in the Asynchronous Model

Algorithm Helping-Async (Algorithm 2) adapts Algorithm Helping-Sync to an asynchronous
system but uses the same variables. When a robot arrives at a node, either another robot is
docked or not docked at that node; in the latter case, if multiple robots arrive at about the
same time, then function MUTEX(node) selects one of them to dock. Another implication
of an asynchronous system is that a docked robot needs to loop forever, waiting to help any
other robot that might arrive at the node later.

Theorem 4.1 Algorithm 2 (Helping-Async) achieves dispersion (without termination) in an
asynchronous system in O(m) steps with O(k log∆) bits at each robot.

Proof The proof is similar to that of Theorem 3.1. The difference is that due to the nature
of the asynchronous system, a docked robot needs to loop forever, waiting to help any other
robot that might arrive at the node later. Thus, termination is not possible.

As noted in Section 1.2, although the asynchronous algorithm, technically speaking, does
not terminate because the docked robots need to be awake to relay local information to
visiting robots, we state its time complexity (to be O(m)) because at most O(m) steps are
required for each robot to perform active computations and movements until it docks at a
node; after that, a docked robot merely passively helps visiting robots (until they find a node
to dock).

5 Independent Dispersion in the Asynchronous Model

In Algorithm 3 (Independent-Async) for the asynchronous model, the traversal of the graph
by each robot is the same as in the previous two algorithms. However, there is no helping
of undocked robots by docked robots. In addition to port entered and state, an undocked
robot maintains the data following additional data structures:

• array of boolean visited[1, k] to determine by checking visited[r] whether it has visited
the node where robot r is docked, and
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Algorithm 2 Helping-Async, asynchronous execution, code at robot i

1: Initialize: port entered← −1; state← explore; parent ptr ← −1; seen← 0
2: for round = 0, 4m− 2(n − 1) do
3: if round > 0 then

4: port entered, parent ptr← entry port; seen← 0

5: if state = explore then

6: if node has a robot j docked then

7: seen, parent ptr← receive visited[i], entry port[i] from j

8: if seen = 0 then

9: parent ptr← port entered; send port entered to j

10: if seen = 1 then

11: state← backtrack; move through port entered

12: else

13: if i = (r ←)winner(MUTEX(node)) then
14: i docks at node; state← settled

15: Initialize visited[1, k] ← 0; entry port[1, k]← −1; break()
16: else

17: seen, parent ptr← receive visited[i], entry port[i] from r

18: if seen = 0 then

19: parent ptr ← port entered; send port entered to r

20: port entered← (port entered+ 1) mod degree of node
21: if port entered = parent ptr then

22: state← backtrack

23: move through port entered

24: else if state = backtrack then

25: seen, parent ptr ← receive visited[i], entry port[i] from docked robot j
26: port entered← (port entered+ 1) mod degree of node
27: if port entered 6= parent ptr then

28: state← explore

29: move through port entered

30: repeat ⊲ state = settled

31: for all other robot j that is/arrives at the node do

32: send visited[j] and entry port[j] to j

33: if visited[j] = 0 then

34: visited[j]← 1; entry port[j]← receive port entered from j

35: until true

• stack of type port number, to determine the parent pointer of the nodes it has visited.
Specifically, the port numbers in the stack (from top to bottom) help the robot to
backtrack from the current node all the way to its origin node in the initial configuration.
When a robot explores the graph in a step, the entry port number into the current node
get pushed onto the stack, and as a robot backtracks in a step, the port number gets
popped from the stack. In addition, the top of the stack entry is used for determining
whether a robot should switch from backtracking state to explore state, or switch from
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Algorithm 3 Independent-Async, asynchronous execution, code at robot i

1: Initialize: port entered← −1; state← explore; visited[1, k] ← 0; stack ←⊥
2: for round = 0, 4m− 2(n − 1) do
3: if round > 0 then

4: port entered← entry port

5: if state = explore then

6: if robot j is docked at node AND visited[j] = 1 then

7: state← backtrack; move through port entered

8: else if robot j is docked at node AND visited[j] = 0 then

9: visited[j]← 1
10: push(stack, port entered)
11: port entered← (port entered+ 1) mod degree of node
12: if port entered = top(stack) then
13: state← backtrack; pop(stack)

14: move through port entered

15: else if node is free then

16: if i = (r ←)winner(MUTEX(node)) then
17: i docks at node; state← settled; break()
18: else

19: visited[r]← 1
20: push(stack, port entered)
21: port entered← (port entered+ 1) mod degree of node
22: if port entered = top(stack) then
23: state← backtrack; pop(stack)

24: move through port entered

25: else if state = backtrack then

26: port entered← (port entered+ 1) mod degree of node
27: if port entered 6= top(stack) then
28: state← explore

29: else

30: pop(stack)

31: move through port entered

explore state to backtracking state.

Thus, undocked robots are largely independent of docked robots. However, even in this
algorithm, a docked robot cannot terminate; it needs to stay up so that it can relay its label r
to a visiting undocked robot, which can then look up visited[r], and if necessary, manipulate
its stack, in order to take further actions for exploring the graph. This action of docked
robots (once they enter settled state) is not explicitly shown in the Algorithm 3 pseudo-code.

In addition to the port entered (⌈log(∆+1)⌉ bits) and state (two bits) variables used by
the previous algorithms, the boolean visited[1, k] array takes O(k) bits and the stack takes
O(k log∆) bits, because the maximum depth of the stack is k − 1, the maximum number of
nodes at which there is a docked robot encountered.
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In Algorithm 3, when robot i visits a node and state = explore (line 5):

1. (lines 6, 7): if a robot is docked and the node has been visited before, robot i backtracks.

2. (lines 8-14): if robot j is docked at the node but the node has not been visited before,
robot i marks visited[j] as true and increments port entered in a modulo fashion (mod
degree of node). If the new value of port entered equals its old value, i changes state to
backtrack and moves through port entered; else the old value of port entered is pushed
onto the stack and i moves through port entered to continue the forward exploration
of the graph.

3. (lines 15-24): if the node is free, i contends for the MUTEX to dock. If i wins, it docks.
If i loses but robot r won, robot i marks visited[r] as true and increments port entered
in a modulo fashion (mod degree of node). If the new value of port entered equals its
old value, i changes state to backtrack and moves through port entered; else the old
value of port entered is pushed onto the stack and i moves through port entered to
continue the forward exploration of the graph.

When robot i visits a node and state = backtrack (line 25), robot i increments port entered
in a modulo fashion (mod degree of node) and moves forward to the next node while switching
state to explore, unless the port it is going to move along is the parent pointer port (the top
of the stack), in which case i keeps state as backtrack and pops the top of the stack before
moving along (lines 26-31).

Theorem 5.1 Algorithm 3 (Independent-Async) achieves dispersion (without termination)
in an asynchronous system in O(m) steps with O(k log ∆) bits at each robot.

Proof The proof that the running time is O(m), or more specifically 4m − 2n + 2 steps, is
similar to that of Theorem 3.1. From the description and analysis of the variables above, it
follows that the memory of each robot is bounded by O(k log ∆) bits.

Note that due to the nature of the asynchronous system, a docked robot (i.e., once it
enters state = settled) needs to loop forever, waiting to relay its label to any other robot
that might arrive at the node later. (This action is not explicitly shown in Algorithm 3.)
Thus, termination is not possible.

As noted in Section 1.2, although the asynchronous algorithm, technically speaking, does not
terminate because the docked robots need to be awake to relay local information to visiting
robots, we state its time complexity (to be O(m)) because at most O(m) steps are required
for each robot to perform active computations and movements until it docks at a node; after
that, a docked robot merely passively helps visiting robots (until they find a node to dock).

It is a straightforward exercise to transform the algorithm into its synchronous version,
Independent-Sync. In the synchronous algorithm, a robot can terminate after 4m− 2(n− 1)
rounds, as it is guaranteed that every other robot would have found a free node by then.

6 Conclusions

For the dispersion problem of mobile robots on general graphs, we proposed three algorithms
for the synchronous and the asynchronous system models. The algorithms require a memory
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of O(k log ∆) bits at each robot, and a running time of O(m) steps. It is a challenge to design
more space and time efficient algorithms for dispersion.
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