
ar
X

iv
:1

80
9.

11
06

0v
2

 [
cs

.D
C

]
 6

 J
an

 2
01

9

On the Hardness of the Strongly Dependent Decision Problem

Martin Biely
EPFL

Lausanne, Switzerland
martin@biely.eu

Peter Robinson∗

McMaster University
Hamilton, Canada

peter.robinson@mcmaster.ca

ABSTRACT

Wepresent necessary and sufficient conditions for solving the strongly

dependent decision (SDD) problem in various distributed systems.

Our main contribution is a novel characterization of the SDD prob-

lem based on point-set topology. For partially synchronous sys-

tems, we show that any algorithm that solves the SDD problem

induces a set of executions that is closed with respect to the point-

set topology. We also show that the SDD problem is not solvable

in the asynchronous system augmented with any arbitrarily strong

failure detectors.

ACM Reference Format:

Martin Biely and Peter Robinson. 2019. On the Hardness of the Strongly De-

pendent Decision Problem. In International Conference on Distributed Com-

puting and Networking (ICDCN ’19), January 4–7, 2019, Bangalore, India.

ACM,NewYork, NY, USA, 5 pages. https://doi.org/10.1145/3288599.3288614

1 INTRODUCTION

The Strongly Dependent Decision Problem (SDD) problem was in-

troduced in [4]. Like many classic distributed agreement problems

(cf. [10]), it belongs to the class of decision tasks. In this work, we

study the hardness of the problem from the viewpoint of point-set

topology and also shed some light on the SDD problem with re-

spect to the power of failure detectors. There are several previous

works that have applied algebraic topology and point-set topology

to problems in distributed computing, e.g., see [7, 9, 12, 13] and the

references therein.

ProblemDefinition. Weconsider two processes s andd . Process s

(the source) startswith an input value taken from the set {0, 1}. The

problem is for d (the destination) to eventually output a decision

value from the set {0, 1}, such that the following three conditions

hold:

• Integrity: Process d decides at most once.

• Validity: If s has not initially crashed, d decides s’s initial

value.

• Termination: If d is correct, then d eventually decides.

∗Peter Robinson acknowledges the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’19, January 4–7, 2019, Bangalore, India

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6094-4/19/01. . . $15.00
https://doi.org/10.1145/3288599.3288614

1.1 System Model

Wenow formally define our basic systemmodel.We consider a sys-

tem of 2 processes s and d that communicate via message passing,

usingmessages taken from some (possibly infinite) universe. Every

process executes an instance of a distributed algorithm that is mod-

eled as a deterministic state machine, which has a local state that

initially contains the input value of the SDD problem. A step of a

processp is a state transition of the state machine that is guided by

a transition relation, which atomically takes the current local state

of p, a (possibly empty) subset of messages from p’s current mes-

sage buffer, and, in case of failure detectors, a value from the failure

detector’s domain, and yields a new local state. Moreover, a deter-

ministic message sending function computes a possibly empty set

of messages that are to be sent to the other processes, which are

placed in the respective message buffers. A step can either be a

send step if a message is sent, a receive step if some messages are

received, a send-receive step if both happens, or a local step if no

message is sent or received. In the absence of failure detectors, we

say that a step σ of processp is trivial, if p’s local state (comprising

memory and message buffers) is unchanged due to σ ; otherwise

we call σ non-trivial.

A configuration of the system consists of the vector of local

states and the message buffers of all the processes; in the initial

configuration, all processes are in an initial state and the message

buffers are empty. An execution

ρ = (C0,C1, . . .)

is an infinite sequence of configurations that starts from an initial

configurationC0, and, for i > 0,Ci+1 results from a step of a single

process in configuration Ci . Note that if the i-th step (i > 1) is

trivial, then Ci−1 = Ci .

The above basic model is strengthened by restricting the set of

executions by some admissibility conditions that depend on the

particular system model used. For example, the classic asynchro-

nousmodel (cf. [8]), denoted asMasync, requires that every correct

process takes an infinite number of steps, faulty processes execute

only finitely many steps, and every message sent by a process to

a correct receiver process is eventually received. Similarly to the

asynchronous model of [2], we assume that processes take steps

according to some discrete timebase T, which corresponds to the

non-negative integers. Consider an execution α = (C0, . . .). We

say that k is the decision time of d , if process d has decided in Ck
and has not yet decided in Ck−1, and we call Ck a deciding config-

uration.

http://arxiv.org/abs/1809.11060v2
https://doi.org/10.1145/3288599.3288614
https://doi.org/10.1145/3288599.3288614

ICDCN ’19, January 4–7, 2019, Bangalore, India Martin Biely and Peter Robinson

2 A NECESSARY CONDITION IN PARTIALLY

SYNCHRONOUS SYSTEMS

In this section we consider variants of the partially synchronous

system model (cf. [5, 6]), which strengthen the classic asynchro-

nous model (cf. Section 1.1) by assuming additional guarantees on

process step times and message delivery. In the spirit of [5, 6] and

in contrast to Section 3, here we assume that processes do not have

access to failure detectors.

A partially synchronous model M corresponds to a (sub)set of

executions inMasync, which are exactly the executions that satisfy

the modeling assumptions ofM . By a slight abuse of notation, we

useM to refer to the admissible executions and the model itself. In

our analysis, we utilize the framework based on point-set topology

that was first introduced in [1].

Let α and β be executions (i.e. sequences of configurations, cf.

Section 1.1) inMasync. We define a function d : M ×M → R as

d(α , β) := 2−N

where N is the first index where the configurations of α and β

differ, and d(α , β) := 0 if α = β .

Lemma 1. Function d is a metric on Masync .

Proof. By definition, d is nonnegative and ∀α , β ∈ Masync we

haved(α , β) = d(β ,α). Forα , β ,γ ∈ Masync, the triangle-inequality

d(α , β) 6 d(α ,γ) + d(γ , β)

trivially holds if γ = α or γ = β . Now consider the case that

d(α ,γ) > d(γ , β) > 0.

This means that, for some indices n1 6 n2, it holds that

d(α ,γ) = 2−n1 ,

d(γ , β) = 2−n2 .

Since γ shares a common prefix of length n2 − 1 with β but only a

prefix of length n1−1 with α , it follows that α and β differ at index

n1, and thus

d(α , β) = d(α ,γ)

and the triangle-inequality follows. The case where 0 < d(α ,γ) <

d(γ , β) follows analogously. �

It iswell known that ametric induces a topology (e.g., [11, page 119])

where the ε-balls defined as

Bϵ (α) = {β ∈ Masync | d(α , β) < ϵ}

are the basic open sets. We first recall some basic definitions from

point-set topology that we use below; we refer the reader to [11]

for details. A set is defined to be closed if and only if its complement

is open. Moreover, a subset X of the topological space Masync is

called dense (in Masync) if every execution α ∈ Masync either be-

longs to X or is a limit point of X ; in other words, for any ϵ > 0,

Bϵ (α) ∩ X , ∅.

Proposition 1 (e.g., [11]). The union of any (possibly infinite)

collection of open sets is open. The finite intersection of a collection

of closed sets is closed.

We will now argue why safety properties correspond to closed

sets and liveness properties correspond to dense sets. We empha-

size that the following correspondences were also mentioned by

Alpern and Schneider [1]. However, in contrast to [1], we consider

these properties in the metric space induced by d .

Lemma 2. Consider the metric topology on the set of executions

Masync. A safety property defines a closed set, whereas a liveness

property corresponds to a dense set.

Proof. We first show the result for safety properties. If an exe-

cution α does not satisfy a safety property S ⊆ Masync, i.e. α < S ,

then there is an index N where all executions β that share a prefix

longer than N with α are not in S . (This closely matches intuition,

since once a safety property is violated in a prefix of an execution,

it makes no difference how this prefix is extended.) Formally speak-

ing, suppose that α < S . There exists an N > 0 such that, if some

β ∈ M has

d(α , β) < 2−N ,

i.e., α and β share a prefix of length > N , then β < S . It follows

that, for each α < S , there is an ϵ > 0 such that the ϵ-ball Bϵ (α)

does not intersect with S . The union of the ϵ-balls of all α < S pre-

cisely contains all executions in Masync \ S and, by Proposition 1,

is an open set. Thus, the set of executions S is a closed set since its

complement is open.

We next consider liveness properties. If L is a liveness property

then, for any execution α ∈ Masync and any finite prefix ρ of α , it

is possible to extend ρ yielding an execution β ∈ L. In other words,

any given prefix is “live”. To show that a liveness property L is a

dense set in our metric topology, we need to show that, for any

ε > 0 and any α ∈ Masync, the basic open set Bε (α) intersects L,

i.e., there is an execution β ∈ L such that d(α , β) < ε . For a fixed

α and ε > 0, let n be the smallest integer such that 2−n 6 ε . Since

L is a liveness property, there exists a β ∈ L that shares a prefix of

length > n + 1 with α , which shows that

d(α , β) < 2−n 6 ε

as required. �

We now consider some of the classic partially synchronousmod-

els in this context: First, note that the synchronous model is en-

tirely determined by safety properties and hence the executions

of any algorithm in this model form a closed set. Note that in the

partial synchrony classification of [5], the synchronous model cor-

responds to parameters c = 1 (synchronous communication) and

p = 1 (synchronous processes). Now, consider the partially syn-

chronous model MGST of [6] where every execution has a global

stabilization timeGST , i.e., before timeGST the system can be com-

pletely asynchronous but from time GST on, communication and

computation become synchronous. The executions of the consen-

sus algorithm A of [6] are not closed because the adversary deter-

minesGST . In more detail, it is possible to construct a converging

sequence (αi)i>0 of executions of A in this model, such that GST

is strictly increasing over this sequence. The limit of this sequence

α = limi→∞ αi is the case where GST = ∞. Since α violates the

assumption of having a finiteGST , execution α is not in the set of

executions of A in MGST (but rather inMasync \MGST). In other

On the Hardness of the Strongly Dependent Decision Problem ICDCN ’19, January 4–7, 2019, Bangalore, India

words, the set of executions ofA inMGST does not contain all limit

points and hence is not closed.

In order to solve the SDD problem, an algorithm needs to satisfy

Integrity, Validity, and Termination (cf. Sec. 1). These properties

correspond to sets of executions inMasync; we denote these sets by

I ,V , andT respectively. Clearly I ,V are closed (w.r.t. to the metric

space on Masync), whereas T is a liveness property. We consider

SDD-algorithms that obey the following condition:

(C1) Process d decides at the latest upon receiving a message

from s and takes no non-trivial steps (cf. Section 1.1) after-

wards. Moreover, process s takes no non-trivial steps after

sending a message to d and sends a message to d in its first

step.

Any algorithm that solves the SDD problem in the partially syn-

chronous framework of [5, 6] can be transformed into an algo-

rithm satisfying (C1), by initially sending a message m from s to

d , omitting all other non-trivial steps at s , and omitting all non-

trivial steps at d that occur after the reception ofm by d .

In terms of the topological framework, we say that an algorithm

A solves the SDD problem in a model, if the set of executions M of

A in this model satisfies

M ⊆ I ∩V ∩T ,

i.e., every execution ofA in the model satisfies the three properties

of the SDD problem.

Lemma 3. Let A be an algorithm that adheres to (C1) and solves

the SDD problem in some model and let M ⊆ Masync be the (cor-

responding) set of executions of A. Suppose that M is not closed. If

process s is initially alive, then there is no upper bound on the de-

cision time of process d , independently of whether s starts with 0 or

1.

Proof. Assume thatM is not closed. Then,M does not contain

at least one of its limit points, i.e., there is a converging sequence

of executions (αk)k ∈N such that

∀ k ∈ N : αk ∈ M

and

lim
k→∞

αk <M .

Note that if a sequence (βk)k ∈N is converging, this implies that

there exists an index r ′ such that s has the same input value in all

executions βn (n > r ′). W.l.o.g., we can assume that r ′ = 0 for

sequence (αk)k ∈N . Suppose that process s starts with input value

v in execution α0 (and also in all other executions in the sequence).

For the sake of a contradiction, assume that there exists an upper

bound until reaching a deciding configuration and let N be the

least upper bound. By assumption, s is initially alive in every αk ,

and thus, according to (C1), process s sendsm to d in its first step.

For each αk , we define Nk to be the number of steps taken by s

and d until d receivesm. Clearly, Nk is exactly the number of steps

taken before a deciding configuration is reached in αk since, by

(C1), d must decide (at the latest) upon receivingm. By assumption,

N is an upper bound on Nk for all k > 0. Consider execution

αℓ = (C0, . . . ,CN ,CN+1, . . .),

where Nℓ = N . In other words, CN is a deciding configuration.

Note that (C1) implies that neither s nord take any non-trivial steps

(cf. Section 1.1) after d has decided. Thus, for all j > N , it holds that

Cj = CN , which means that

∀j > N : αj = αℓ .

Hence,

lim
k→∞

αk = αℓ ,

and since αℓ ∈ M , this yields a contradiction for the case where s

starts with input value v .

Now consider the case where s starts withv ′
= 1−v . We need to

argue that there exists a sequence (α ′
k
)k ∈N in M such that there

is no upper bound on the decision time. We now show how to

construct α ′
k
, given αk . To this end, we will show by induction

that we can define the step schedule of α ′
k
to be similar as in αk ,

for any k ∈ N, in the sense that a send (resp. receive) step occurs

at time t at process p in αk , for any choice of p ∈ {s,d}, if and

only if a send (resp. receive) step occurs at time t at process p in

α ′
k
. This will imply that there is no upper bound on the decision

time in the sequence (α ′
k
)k ∈N . Note that the actual configurations

of executions αk and α ′
k
, however, are not necessarily the same.

By (C1), process s sendsm in its first step, regardlessly of having

input valuev or 1−v . Let Tk be the time when this happens in αk .

Observe that process d has the same view in every execution until

it receives a message from s . Thus we can schedule the same type

of step (send, receive, or local step) to happen initially in α ′
k
as in

αk . This shows the induction base.

For the induction step, assume that we have defined similar

schedules up to time τ . If Tk > τ , i.e., s has not taken any steps

yet, we can argue the same way as in the induction base. Now as-

sume that Tk < τ , i.e., process s has sent a message m′ to d in

some previous step. By (C1), process s only takes trivial steps af-

ter Tk and, in particular, does not send any other messages to d

later on. Thus we can schedule either s or d to take a step in α ′
k
,

accordingly to αk , as required. Moreover, we schedule processd to

receive messagem′ in this step of α ′
k
if and only if d receivesm in

αk .

Since we have shown that there exists no upper bound on the

decision time in (αk)k ∈N when s starts with valuev , it follows that

the same is true for the sequence (α ′
k
)k ∈N when s starts with value

1 −v . �

Theorem 1. LetA be an algorithm that solves the SDD problem in

a model and let M ⊆ Masync be the corresponding set of executions

of A in this model. ThenM is closed.

Proof. If A solves the SDD problem in modelM , then

M ⊆ I ∩V ∩T

That is, it must be that

M = I ∩V ∩T ∩M,

since, otherwise, M would contain an execution

γ ∈ Masync \ (I ∩V ∩T) ,

contradicting the correctness of A. Recalling from Property 1 that

(finite) intersections of closed sets are closed and since I andV are

ICDCN ’19, January 4–7, 2019, Bangalore, India Martin Biely and Peter Robinson

both safety properties, it follows that I ∩V is closed too. Thus, we

are done if we can show that T ∩M =M is closed too.

Now assume in contradiction thatM is not closed. Consider an

execution α0 where s has an input value of 0 and crashes initially.

Since A solves the SDD problem, d eventually decides in α0 after

some time k . By Lemma 3 there is an execution α0
′ where s has an

input value of 0, is initially alive and, since there is no upper bound

on the decision time of d , we can assume that process d decides at

some time k ′ > k . By (C1), it follows that d has not received any

message in α ′
0 from s before k ′ and thus process d has the same

view in α0
′ as in α0 up to time k ; by validity, d must decide on 0 in

both executions.

Now consider the execution α1 where s has an input value of 1

but initially crashes and d decides at some time k . Again, by using

Lemma 3, there is an execution α1
′, where s is initially alive and d

receives m at some time k ′ > k . By the same reasoning as above,

d must decide on 1 in α1 and α1
′. For process d , execution α1 is

indistinguishible from α0 up to time k , so d decides on the same

value in α1 and α0, which is a contradiction. �

3 SOLVABILITY WITH FAILURE DETECTORS

Failure detectors have been studied extensively in the quest to un-

derstand the impact of asynchrony and faults on the solvability

power of distributed systems, e.g., see [2, 3].

In [4], it was shown that the SDD problem cannot be solved in

the asynchronous system Masync equipped with the perfect fail-

ure detector P (cf. [2]). This result stands in stark contrast to the

fact that, in a synchronous system, which is strong enough to im-

plement P , the SDD problem can be solved! So far, the question

whether there is any failure detector that is strong enough to solve

the SDD problem, and if yes, what is the weakest one to do so, re-

mained open. In this section we will close this gap in literature.

Failure Detectors. In the context of failure detectors one impor-

tant notion is that of a failure pattern, which we now introduce.

For t ∈ T, the failure pattern F (t) denotes the set of processes that

have crashed up to and including time t . It is important to remem-

ber that if p is in F (t) but was not in F (t ′) (t ′ < t) then this does

not mean that p takes a step between t ′ and t . Turning to the spe-

cific problem at hand, we recall that for the Validity property, it is

important whether the source s crashes initially or not. One way

to understand “initial crash of s” in the context of failure detectors

is that there is no point in time where s is not faulty, i.e.,

∀t ∈ T : s ∈ F (t). (1)

Another interpretation is that if s crashes initially, then it takes

no steps. Given the above timebase we can define Tp ⊆ T to be

those points in time where p takes a step. Then the second inter-

pretation becomes:

Ts = ∅. (2)

While Definition (1) is based purely on the failure pattern and is

therefore well suited for FDs, definition (2) captures the intuitive

notion that when a process crashes before doing a single step (and

is therefore unable to leave its initial state) it should be considered

initially crashed. In the following we will show that for both def-

initions above there is no algorithm that solves the SDD problem

in the asynchronous model augmented with a failure detector. In

order to do so, we assume there is an algorithm A solving the SDD

problem in the asynchronous model augmented with some FD D.

We consider (1) first and assume executions αv v ∈ {0, 1}, with

a unique tc > 0 such that process s crashes at tc and does not take

a step before tc . The two executions are assumed to be identical

(step times, failure pattern, and FD history), except that in αv s has

initial value v . Due to Termination, d has to decide on some value

v ∈ {0, 1} at some time. Since the failure detector history can—by

definition—only depend on the failure pattern, and d queries D

at the same times in both, it follows that process d cannot distin-

guish the two execution and thus decides at the same time td and

the same value w in both executions. Now assume another execu-

tionα ′ in which s actually performs a step before tc , any message it

sends is delayed until after td and that is otherwise (step times, fail-

ure pattern, FD history and initial value) the same as α1−w . Clearly

in α ′ s does not crash initially, sod has to decide on 1−w . But since

up to tc the execution is indistinguishable from α ′ and α , d once

again decides onw , thereby violating Validity.

Now consider case (2): We start by considering executions βv
(for v ∈ {0, 1}) in which s has initial value v , process s does not

take any steps, and that have a common failure pattern such that

∃tc > 0 : ∀t < tc : s < F (t).

Moreover, assume that the step times of d are equivalent in β0 and

β1. Clearly, in both executions the system’s behavior is such that s

does not crash initially, according to case (2). Since both executions

share the same failure pattern, we can assume they also share the

same failure detector history, thus process d cannot distinguish

between the two executions. Since due to Termination, d has to

decide eventually, it must decide the same way in both executions,

thus violating Validity and leading to a contradiction to Validity

for case (2) as well. Note that our argument holds for any failure

detector, i.e., we have shown the following result:

Theorem 2. There is no algorithm that solves the Strongly Depen-

dent Decision Problem in the asynchronous model augmented with

any failure detector D.

4 CONCLUSION

We have analyzed the strongly dependent decision problem from a

topological angle, which allowed us to succinctly capture the nec-

essary properties of message passing models where the problem

is solvable. We believe that a similar approach can be useful for

characterizing the properties of system models for other problems

in the context of fault-tolerant distributed system.

REFERENCES
[1] Bowen Alpern and Fred B. Schneider, Defining liveness, Information Processing

Letters 21 (1985), no. 4, 181–185.
[2] Tushar Deepak Chandra and Sam Toueg, Unreliable failure detectors for reliable

distributed systems, Journal of the ACM 43 (1996), no. 2, 225–267.
[3] Tushar Deepak Chandra, Vassos Hadzilacos and Sam Toueg, The Weakest Failure

Detector for Solving Consensus, Journal of the ACM, 43 (1996), no 4, 685–722.
[4] Bernadette Charron-Bost, Rachid Guerraoui, and André Schiper, Synchronous sys-

tem and perfect failure detector: solvability and efficiency issues, Proceedings of the
International Conference on Dependable System and Networks (DSN’00), 2000.

[5] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer, On the minimal synchro-
nism needed for distributed consensus, Journal of the ACM 34 (1987), no. 1, 77–97.

[6] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer, Consensus in the presence
of partial synchrony, Journal of the ACM 35 (1988), no. 2, 288–323.

On the Hardness of the Strongly Dependent Decision Problem ICDCN ’19, January 4–7, 2019, Bangalore, India

[7] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Mar-
tin Raussen, Directed Algebraic Topology and Concurrency, Springer, 2016.

[8] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson, Impossibility of distributed
consensus with one faulty process, Journal of the ACM 32 (1985), no. 2, 374–382.

[9] Maurice Herlihy, Dmitry N. Kozlov, Sergio Rajsbaum, Distributed Computing
Through Combinatorial Topology, Morgan Kaufmann, 2013.

[10] Nancy A. Lynch, Distributed algorithms, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[11] James Munkres, Topology (2nd edition), Pearson, 2000.
[12] Thomas Nowak, Topology in Distributed Computing, Master’s thesis, Vienna Uni-

versity of Technology, 2010.
[13] Peter Robinson, Ulrich Schmid, The Asynchronous Bounded-Cycle model, Theor.

Comput. Sci. 412(40): 5580-5601 (2011).

	Abstract
	1 Introduction
	1.1 System Model

	2 A Necessary Condition in Partially Synchronous Systems
	3 Solvability with Failure Detectors
	4 Conclusion
	References

