
Do we have the time for IRM?:
Service denial attacks and SDN-based defences

Ryan Shah and Shishir Nagaraja
University of Strathclyde

{ryan.shah,shishir.nagaraja}@strath.ac.uk

ABSTRACT
Distributed sensor networks such as IoT deployments generate
large quantities of measurement data. Often, the analytics that
runs on this data is available as a web service which can be
purchased for a fee. A major concern in the analytics ecosystem
is ensuring the security of the data. Often, companies offer
Information Rights Management (IRM) as a solution to the
problem of managing usage and access rights of the data that
transits administrative boundaries. IRM enables individuals
and corporations to create restricted IoT data, which can have
its flow from organisation to individual control – disabling copy-
ing, forwarding, and allowing timed expiry. We describe our
investigations into this functionality and uncover a weak-spot
in the architecture – its dependence upon the accurate global
availability of time. We present an amplified denial-of-service
attack which attacks time synchronisation and could prevent all
the users in an organisation from reading any sort of restricted
data until their software has been re-installed and re-configured.
We argue that IRM systems built on current technology will be
too fragile for businesses to risk widespread use. We also present
defences that leverage the capabilities of Software-Defined Net-
works to apply a simple filter-based approach to detect and
isolate attack traffic.

1. INTRODUCTION
Led by the intense desire to sense ubiquitously, measure uni-

versally, and apply data analytics to sensed information in the
hope of adding value, governments, industry, society, and the
individual are hastily adopting the vision of the Internet-of-
everything. In the majority of cases the primary aim is to
collect data, apply analytics and sell the intelligence gathered
further on within the ecosystem. In the case of industrial IoT
systems, organisations hope to adopt a data-driven approach
towards managing, assessing and verifying their business work-
flows. Manufacturing industries are keen to understand how
coarse to very-fine grained measurements about their processes
can add value to their bottom line; service industries are sim-
ilarly interested in obtaining fine-grained measurements with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

ICDCN ’19, January 4–7, 2019, Bangalore, India
c© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. ISBN

978-1-4503-6094-4/19/01. . . $15.00

DOI: https://doi.org/10.1145/3288599.3295582

the view of moving from a periodic maintenance cycle to a pre-
dictive maintenance cycle – i.e by using automated and sensed
data-driven approaches, firms believe they can predict when
components within a system are showing signs of failure. For
instance, a conventional lift requires periodic inspection and
replacement of parts which are most worthy of operation but
that must be replaced in order to achieve a working lift with high
probability until the next maintenance cycle (i.e. high availabil-
ity). However, such conventional models of periodic maintenance
schedules, tend to overestimate component failures resulting in
excess maintenance expenditure and missing failures between
maintenance cycles. On the other hand, a data-driven approach
where the lift is equipped with speed, weight, cable tension, and
shaft sensors, engenders predictive failure models that promise
better results — machine learning techniques applied to the data
streams promise to detect problems as they unfold and prior to
catastrophic component failure. Thus maintenance cycles can
be sparser thus saving money for the maintenance company.

Nice as these ideas are in theory there are some fundamental
challenges with data management that arise in IoT environments.
To generate usable intelligence from hyperconnected networks
of sensors, the defender (network operator) must collect the
information at a centralised location in order to run machine
learning algorithms over their data. A cloud storage option is
a natural choice for such a storage location. However, it isn’t
always possible to run all analytics in a single datacentre. In
order to take advantage of specialist analytics services, typical
workflows require IoT data to be sent across administrative
boundaries. So how does an organisation secure data that is
stored beyond the customer’s datacentre.
Microsoft provides a solution to the problem of managing

information rights over data that transfers across administrative
boundaries such as data centres, cloud providers, and managed
analytics services. Microsoft proposes to accomplish this using
Azure Rights Management (RMS) technology [7]. RMS can be
used to manage IoT data from any network or IoT hub as long
as the data is stored on an Azure cloud.
RMS hopes to make data behave like physical objects. RMS

ensures that the access control metadata placed on IoT data is
enforced on remote files, i.e. even if the data is moved from its
location on the cloud on to a specialist workstation, a different
cloud or data centre, or copied to a data storage that’s not under
the control of an IT organisation. RMS also promises audit
and monitoring support to stored data, for instance, the IoT
network operator is notified when a remotely located datafile
is accessed, processed, or moved to another location where this
information can be accessed by someone else.
While much attention within IoT security has been devoted

to the analysis of security and privacy protocols for inter-device
and device-hub communication [9], much less attention has been
paid to Rights Management services used by organisations to
manage the huge amounts of data that IoT deployments are
expected to generate. Naturally, the security of these rights
management services is of crucial importance. If the rights
management can be compromised, then at best the IoT network
operator will lose control of their data. Worse still, an attacker
might deny access to the IoT network operator itself, resulting
in service-denial attacks on the IoT infrastructure. This can
have serious consequences beyond the mere loss of data.
IoT based telemetry and monitoring drive modern safety

regimes where predictive analytics drives (reduced) maintenance
frequency and replace traditional maintenance cycles. Without
measurement data, the safety of the appliance or system is at risk.
Therefore, a denial of service attack on IoT data can directly
lead to a safety compromise. In other words, a security attack
translates into a safety problem. In safety-critical applications,
such as elevators, medical device operation, or drug manufactur-
ing, the absence of maintenance information might require the
appliance to be shut down for safety reasons, with the possibility
of cascading failures further down the dependency chain.
With RMS, an attacker won’t need to find individual device

vulnerabilities to exploit. Instead, if the network operators
rights to their data can somehow be revoked or suspended, then
service denial attacks again RMS can be generalised across IoT
networks without attackers being required to know, understand
or exploit the devices and their vulnerabilities within a target
network. In this paper, we propose service denial attacks on an
IoT deployment using the Azure Rights Management Service.

2. INFORMATION RIGHTS MANAGEMENT
We introduce Digital Rights Management (DRM) as a precur-

sor to Information Rights Management, which is derived from
DRM, and discuss the successes and limitations of both types
of rights management.
DRM is a collection of technologies developed for restricting

the use of hardware and copyrighted work. This includes the
control of access, modification and distribution of content, and
the systems that enforce these policies [15]. It has allowed
for the prevention of unauthorised distribution of copyrighted
digital media, and DRM technologies have been used in a va-
riety of technologies including, but not limited to: documents,
film and music. DRM has also been used in conjunction with
other technologies, such as using steganography to provide DRM
control information over insecure communication channels [16].
DRM can be generalised into four components - digital rights to
manage, encryption, license management and a DRM-enabled
client [12]. A packaging server is used to distribute license data,
domain certificates and packaged content to other servers which
manage the different aspects of a DRM system. License data
is sent to a license server which is used to request and issue
licenses to DRM-enabled clients. Domain certificates are regis-
tered with and issued by a domain controller to the clients, and
finally a distribution server (or multiple) request and deliver the
protected content to the clients.
Typically, DRM uses encryption which is applied to the con-

tent to be protected, such that it can only be “unlocked”with
the correct key. Key exchange is a critical part of DRM and
requires a root of trust [13]. This involves the distributor only
providing the keys to software, services or devices it trusts. The
distribution of the keys can vary on many factors including the
device, the content and security levels required. It can range

from merely providing keys to devices which share a correct
token, to secret keys embedded in the device used for pairing
with advanced levels of encryption. The primary advantage of
DRM is that its existence provides a level of assurance to the
owner when allowing the electronic distribution of their content.

IRM is derived from DRM and involves technologies that pro-
tect sensitive information from unauthorised access. It started
as a feature that allowed users to control the flow of email and of-
fice documents such as word-processed files or spreadsheets and
was expanded to include many other types of data after 2010.
While DRM is primarily used to protect intellectual property
from patent infringement and piracy, IRM focuses on protecting
sensitive data — especially data that is exchanged with exter-
nal entities outside of its originating organisation. The main
difference between IRM and DRM is that a true IRM system
separates the information from its control such that either can
be accessed, manipulated and distributed separately [3].

IRM encrypts data and applies IRM rules which enforce access
policies to allow or deny specific activities, such as the data being
read-only or blocking any data from being copied from a docu-
ment. A client who is entitled to access the sensitive data must
first be registered with the IRM server. After the user is authen-
ticated, the server will download some code to the client device.
Every time the user requests a new document from the server or
accesses the existing document(s) on their device, the code on the
device must reauthenticate on the IRM server. This allows for a
key to be downloaded which in turn, decrypts the document and
determines the access policies the client is entitled to. Some IRM
services allow for time-limited offline access privileges, for exam-
ple to those who want to peruse documents in places with limited
access to the Internet. The benefit to IRM is that these enforced
policies persist even when data is sent externally, such that IRM
sealed documents can remain secure no matter where they are
accessed. With this said, IRM solutions require a client user to
have specialised IRM software installed on their device in order
to access data with IRM protection. For this reason, many organ-
isations limit the use of IRM protection to data that requires it.

Rights management and IoT:.
Bauer et al. stress the importance of data provenance through-

out the life-cycles of IoT devices to create a trusted and secure
IoT environment [4]. They suggest the use of DRM technolo-
gies to control and validate sensitive meta information such as
provenance data. Matthieu and Ramleth propose an alternate
the use of IRM for managing security and access rights within
an IoT context [14]. They propose a cross-domain messaging
architecture for IoT devices, where a remote analytics service
performs computations over data supplied by IoT deployments
spanning administrative and organisation boundaries, whilst
restricting the use of the supplied data for the stated purpose.
Huckle et al. [10] identify how IoT and blockchain technologies
can use digital rights management to enable applications that
enforce usage rights in the physical world, such as managing
access rights to resources among tenants in a shared home or
within a holiday home.

2.1 Limitations
A disadvantage of DRM is that it does not guarantee enforce-

ment in any fundamental way – once an approve device has
access to the data, a large number of side-channel attacks can
be mounted. Further, the restrictions can result in a significant
insult rate as the rights management system tries to distinguish
between legitimate and illegitimate users [13]. While consumers

may feel insulted at treated as a potential pirate user, in a
majority of cases, DRM does not prevent data exfiltration and
in turn, demonstrates a lot of inconvenience to the consumers
while attempting to provide a theoretical level of protection
to content distributors. As well as this, the extra costs of the
development and maintenance of DRM systems has sometimes
meant that paying customers had to spend more money to ul-
timately receive a worse functioning product than a copy of the
same product that doesn’t use DRM. Although DRM covers the
protection of proprietary data; it does not effectively protect the
needs of an industrial (or enterprise) IoT deployment. Therefore,
an IoT deployment would need more appropriate technology
when it comes to protecting and sharing its sensitive data. IRM
concentrates on these needs and uses end-to-end encryption to
manage individual permissions and usage rights. To this end,
Furlong and Cookson proposed methods for managing rights
access in a transparent manner [6], with a balance between the
fraud rate and the insult rate.

Like its predecessor, IRM also has limitations. It was designed
to not only manage access rights to data but also control the
interactions of the consumers of the data to enforce some of these
rights. However, IRM cannot prevent side-channel attacks. For
instance, anyone capturing a photograph of the data once it has
been accessed and displayed on a device. IRM also disallows the
use of built-in snapshot features to prevent digital capture from
the same device, but with the constant advance in technology,
however, it is practically impossible for IRM systems to prevent
third-party software from capturing snapshots. Further, IRM
does not prevent data-exfiltration attacks by malware. If an
attacker has stolen the credentials of someone who has legitimate
access to IRM-protected data, an IRM system has no ability
to prevent the data being accessed by the attacker. Aside from
attackers, IRM cannot prevent domain administrators from
accessing the data - which suggests that on an internal level
within an organisation using IRM protection for its data, there
must be a higher level of assurance with technical staff.

2.2 Availability Attacks on DRM Systems
Previous work has noted the need for scalability and resilience

of online DRM service components. Federrath [5] and Arnab et
al. [2] note that DRM systems require authentication with an
online rights management server and highlight the need for scal-
able server-side DRM components [11, 8]. If this server suffers
from an outage then legitimate consumers of the DRM system
will be unable to access the data protected by the DRM system.
Much more recently, Zhang conducted a survey[17] report that
the use of DRM in particular Ubisoft applications resulted in
legitimate users being denied access due to a severe outage
to the Ubisoft DRM. All these works point to the need for a
scalable or global-scale architectures for DRM deployment that
can withstand the challenges of servicing DRM clients. With
the advent of IoT, the challenge becomes even more start —
Can digital rights management technology offer the super-scaled
architectures required by upcoming IoT deployments?

3. ARCHITECTURE
Azure Rights Management (RMS) is a cloud-based service

which can be used to control the flow of data from devices to
the cloud, such that authorised IoT devices and related services
can send, receive and manipulate the data, while others are
denied access. Before data is sent to the cloud, it is encrypted on
the device at the application level, with a policy which defines
authorised use of the data. Some IoT devices may already have

several policies pre-packaged with the device, dependant on the
nature of its use. The policy is typically used to restrict the read-
ability of the data, and restrict copying and editing only to other
devices, organisations and services stated in the policy. When
the protected data is accessed by a legitimate user, organisation
or an authorised service, the data is decrypted, and the policy
attached to the data enforce the rights for that authorised entity.

3.1 Protecting Data on an IoT Device
An RMS client on the IoT device will initially connect to

the Azure RMS service which authenticates the device using
an Azure Active Directory account. When connected, the au-
thentication is automatic, and the device is not prompted for
credentials. After authentication, the connection is then redi-
rected to the organisation’s Azure Information Protection tenant.
This issues certificates to let the device authenticate to the RMS
service, allowing it to protect content offline. The certificates
are valid for 31 days provided that the device account is still
enabled in the Azure Active Directory.
When protecting data, the RMS client on the device creates

a random content key and encrypts the data using the key with
AES encryption. The encryption is used for generic protection
and native protection when the file is a protected pdf, text or
image file (.ppdf, .ptxt and .pjpg respectively). The client then
creates a certificate which includes a policy which defines the
rights and restrictions of the data, such as an expiration date.
The RMS client on the device uses the organisation’s key, which
was obtained during the initialisation period for the device, to
encrypt the policy and the content key. During this time, the
RMS client also signs the policy with the certificate already on
the device from initialisation. Finally, the client embeds the pol-
icy within the encrypted data, allowing the data to be stored and
shared anywhere through any means of storage and transmission.

Figure 1: Azure RMS IoT Architecture Diagram [1]

3.2 Accessing RMS-Protected Data
When an authorised entity, such as those performing pre-

dictive analysis, wants to access the time-expiring data, the

RMS client attached to the service sends the encrypted policy
and certificates to the Azure Rights Management Service. The
service decrypts and evaluates the policy such that a list of
rights is obtained specific to the service. The content key is
extracted from the decrypted policy and is then encrypted with
the RMS client’s public RSA key obtained with the request.
The content key is then embedded into a use license with the
user rights and is returned to the RMS client. Finally, the RMS
client attached to the predictive analysis service receives the
encrypted use license and decrypts it using its private key, which
also, in turn, decrypts the rights list which is enforced when
the data is accessed. The predictive analysis service can use the
data in many ways, such as running machine and deep learning
on the data to learn and make relevant intelligent decisions.

4. DENIAL-OF-SERVICE ATTACKS
During initial experiments with Azure’s IRM system (i.e.

RMS) it was discovered that changing the clock on the RMS
client resulted in it experiencing stability problems. In particular,
when the time on the client was moved forward by 2 hours the
RMS client system crashed and no applications could view or
create IRM protected documents. The only workable way to
recover was to re-install the RMS system on the client and reboot.
We hypothesise that the reason the RMS crashed was related
to the behaviour of such protection measures, and some form
of time-shifting protection would continue to be necessary in
future versions of the Azure RMS client software. To confirm the
hypothesis, we repeated the exercise 25 times. The client crashed
on all 25 repetitions giving us confidence that the RMS client
crash has a causal link to the time shift. To confirm with 100%
confidence we would ideally require access to the client source
code, however it is closed source at the time of writing this paper.
This observation caused us to investigate the reliance of the

RMS client system on synchronized, stable and secure time. It
is reasonable to expect that future versions of client could stop
changes in system time resulting in client becoming unusable.
However, since RMS permits time-limited data, it was clear that
there may be more fundamental dependencies on system time.

The (Azure) RMS client does not need to be connected to the
RMS server in order to read RMS protected data, since the client
caches keys locally and uses these when the server cannot be con-
tacted. If, once granted, the right to read a document cannot be
revoked then this local caching would not be a problem, however
in the case of time-limited documents the client must be respon-
sible for correctly expiring keys and re-requesting them from the
server. An obvious way of bypassing the RMS time-limitation
restrictions is for a client to initially open a document within the
time period that they are permitted to have access, so as to ob-
tain a key. Then by manipulating the local clock, we prevented
this key from expiring and so continuing to have access of the doc-
ument, even after the time their access should have been revoked.

In general, these kind of abuses are well known in relation to
time-limited demos of software, and there are a number of ways
of making attacks more difficult. Since a computing device has
no inherent way of maintaining secure time outside of periodic
insecure updates from an external NTP service, these techniques
primarily rely on software watching for unexpected behaviour of
the system clock. If this is detected then access to the protected
content is prevented, although it may be regained if the correct
time can then be confirmed remotely.
Software to detect time-shifting within the OS is typically

protected by code obfuscation and related techniques that apply
a graceful return to a correct clock. While these may be theo-

retically bypassed, good techniques exist which would make this
task difficult. Our focus was not so much the myriad ways of
continuing to read content after the associated RMS policy de-
nies this access. Instead we considered denial-of-service attacks
which use the RMS protection which would prevent users from
getting access to protected content, even if the RMS system
should allow them.

These attacks centered on the fact that the computing devices
on which Azure runs uses SNTP (Simple Network Time Pro-
tocol) to synchronise clients to the master clock. Windows used
this to synchronize systems to their domain controller, since
secure synchronised time over a network was required for the use
of Kerberos within Active Directory as an authentication proto-
col. Windows 8 and Windows 10 extended this to all machines,
by setting systems to synchronize with time.windows.com if no
domain controller is set.
We observed network traffic between a RMS client and the

time synchronisation server. We found that the optional digital
signature of time update packets from the server was not used.
This decision is understandable since the current standard for
authenticated NTP uses symmetric cryptography and so would
allow any machine able to authenticate time updates to also
spoof them. This situation would be acceptable where all clients
trust every other client and the server, but not the network,
however this is not the case with all Windows devices.
As expected, by spoofing DNS and directing requests for

time.windows.com to a machine with a SNTP server under our
control allowed us to change the clock on the client machine.
However since the RMS client checks time on a weekly basis
it would be necessary to take control of the DNS server for a
long period of time to change the clock on a significant number
of machines. This would be a difficult task to do on a large
scale since eventually any attempt to manipulate clocks would
be noticed, particularly if it resulting in IRM stopping working.
In order to amplify this attack we investigated ways for this

attack to be performed either on a shorter scale by forcing clients
to update, or without requiring DNS to be taken over. Our
initial attempt was to flood the network with broadcast NTP
packets. This did not succeed in changing the time on the clients,
we believe for two reasons. Firstly it seems that a RMS machine
only listens for time updates for a short period after it sends out
an update request. This only occurs every 7 days by default,
so machines are only accepting updates for a tiny proportion
of the time. Secondly while there is no nonce in NTP packets,
the request and reply both include the current time of the client
to millisecond precision. The Windows implementation of the
NTP client only seems to accept NTP replies with the same
client time as it included in the request and since the lower
order bits of this are sufficiently unpredictable, a flood approach
unlikely to succeed.
The case of where a RMS machine is part of a domain is

slightly different. According to the Windows Time Service doc-
umentation a MAC key will be negotiated between the domain
controller and the client, and this will be used to sign NTP
update packets. In our tests, we saw NTP packets sent without
MACs however it is not clear whether this is due to a peculiarity
of our domain controller. Additionally we noted that when the
RMS client could not contact the domain controller for NTP
updates, it contacted the DNS server. Both these observations
point to the fact that the RMS client implementation is not
based on the design principle of secure-by-default.

Since in the domain case, time requests are sent to a machine
which then gets updates from time.windows.com, one oppor-

tunity for amplification is to put all resources into causing the
domain controller to have the incorrect time. We found that
this propagates to clients, and so causes the problems with IRM
already mentioned. Furthermore, the Windows Time service
documentation states that if a client detects it is out of sync
with the domain controller then it will update automatically.
We found that by changing the domain controller time, the time
on all clients will be changed in a short time period by the next
update cycle. To automate this part of the attack, we generated
spoofed packets in response to NTP packets sent out by the
domain controller purporting to come from the Windows Time
Service (the destination IP being copied from the UDP request
packet). Each spoofed packet carried an offset of four minutes
which was accepted by controller. The default pollrate set on
the domain controller is 4096 seconds, thus requiring just over
a day to induce significant drift.

Defences.
The above DoS attacks depend on the attacker being able to

send spoofed SNTP packets to the RMS client. Software-Defined
Networks (SDN) can help mitigate the attack by implementing
a simple threshold-based approach – reject any NTP response
packets reporting a time offset approaching the Kerberos ticket
expiration time. Unlike conventional switches, an SDN switches
can be programmed using an SDN controller that manages the
control plane while the switch focuses on fast packet-forwarding.
The controller runs on a server or a desktop computing device.
SDN developers can write programs that secure and automate
routing logic at the core of the network instead of pushing this
work to firewalls installed at the edge of the network. We experi-
mented with a programmable PICA8 3290 hardware switch that
acted as the gateway to an RMS client (version 2.1) installed
on a desktop device running Windows 10. We programmed the
switch using a Ryu controller to buffer all NTP packets and
redirect them to a switch NTP proxy-server process listening
on port 2100. PICA 3290 is a Linux-based switch hence it is
capable of running Linux binaries, hence exhibiting intelligence
as opposed to a conventional SDN model where all the intelli-
gence resides on the controller. We wrote socket code on the
switch to drop any NTP packets where the combined values
of NTP offset and NTP delay is more than four minutes. Five
minutes is the threshold beyond which Kerberos rejects client
authentication requests as the tickets expire.
To test the proposed defense, we generated spoofed NTP

packets using the SCAPY tool, purporting to come from the
Windows Time Service. We tested with a range of server offsets
between 30 and 600 seconds. The defense-enabled SDN switch
was able to blackhole NTP packets whose combined offset and
delay values were over four minutes with zero false-positives. Our
experiments demonstrate that it is possible to mitigate attacks
using SDN approaches. However, an attacker can successfully
counter our defense by lowering the threshold of change — by
slowly increasing the NTP offset say at the rate of 30 seconds
at each polling interval. Better statistical approaches might
address this weakness. This will be the subject of future work.

5. CONCLUSIONS
In this work, we have highlighted the importance of maintain-

ing secure control of IoT data as it transcends administrative
boundaries. We have examined a popular approach for achieving
this, namely via a cloud-based rights management service from
a prominent software company. We detail several successful
service denial attacks via tampering the time service on which

the digital rights management depends. We report that the
attacks are successful on every attempt without exception. It
is particularly noteworthy that even if IRM system deployed
by RMS is made fully scalable, Denial-of-Service attacks can be
mounted by local adversaries with very little resources. This is a
result that has important implications — when system safety is
a function of availability, then a DoS attack on data availability,
can escalate into a safety failure, forcing the operator to engage
in an emergency shutdown procedure.

6. ACKNOWLEDGEMENTS
The authors gratefully acknowledge funding from EPSRC,

UK.

7. REFERENCES
[1] Microsoft Azure RMS documentation. https://

docs.microsoft.com/en-us/azure/information-protection/
what-is-azure-rms. Accessed: 24/11/2018.

[2] A. Arnab and A. Hutchison. Security considerations
for an idealised drm framework. In Proceedings
of the South African Telecomunication Networks and
Applications (SATNAC) Conference, volume 2004, 2004.

[3] W. S.
Bartlett, N. Z. Stahl, and R. S. Brooks. Information rights
management, Dec. 24 2009. US Patent App. 12/487,353.

[4] S. Bauer and
D. Schreckling. Data provenance in the internet of things.
In EU Project COMPOSE, Conference Seminar, 2013.

[5] H. Federrath. Scientific evaluation of drm systems. 2002.

[6] J. Furlong and R. Cookson.
Digital rights management for media streaming
systems, Oct. 19 2006. US Patent App. 11/107,957.

[7] M. Grothe,
C. Mainka, P. Rösler, and J. Schwenk. How to break
microsoft rights management services. In WOOT, 2016.

[8] T. Hauser and C. Wenz.
Drm under attack: weaknesses in existing systems. In
Digital Rights Management, pages 206–223. Springer, 2003.

[9] M. M. Hossain, M. Fotouhi, and R. Hasan. Towards an
analysis of security issues, challenges, and open problems
in the internet of things. In Services (SERVICES),
2015 IEEE World Congress on, pages 21–28. IEEE, 2015.

[10] S. Huckle, R. Bhattacharya, M. White, and N. Beloff.
Internet of things, blockchain and shared economy
applications. Procedia computer science, 98:461–466, 2016.

[11] P. Koster, F. Kamperman,
P. Lenoir, and K. Vrielink. Identity-based drm: personal
entertainment domain. In Transactions on Data Hiding
and Multimedia Security I, pages 104–122. Springer, 2006.

[12] W. Ku and C.-H. Chi. Survey on the technological aspects
of digital rights management. In International Conference
on Information Security, pages 391–403. Springer, 2004.

[13] D. T. Ltd. Secure implementation of
content protection schemes on consumer electronic devices.

[14] C. Matthieu and G. Ramleth.
Security and rights management in a machine-to-machine
messaging system, July 28 2015. US Patent 9,094,407.

[15] W. Rosenblatt,
S. Mooney, and W. Trippe. Digital rights management:
business and technology. John Wiley & Sons, Inc., 2001.

[16] D. M. VanWie and R. P.Weber. Steganographic techniques
for securely delivering electronic digital rights management
control information over insecure communication
channels, Sept. 10 2002. US Patent 6,449,367.

[17] X. Zhang. A survey of digital rights management
technologies. last modified: Nov, 28:1–10, 2011.

