
PROFILING, PERFORMANCE, and PERFECTION
Robert Bernecky

Research Department
I.P. Sharp Associates Limited

2 First Canadian Place, Suite 1900
Toronto, Ontario M5X lE3

Canada
(416) 364-5361

FAX: (4 16) 364-29 10

INTRODUCTION

A profile is “a set of data often in graphic form portr:ying the significant features of something” [WeSS].
Profiles can help us to quickly understand a person or entity better. In the development of computer-
based applications, profiles are invaluable. They help us to understand the application - how it works,
how well it works, whether it in fact works as we think it does, and whether it is still working the same
way it did last month.

For our purposes, profiling is the analysis of a running computer program in order to determine its actual,
rather than predicted, behavior. Profiling may be performed manually, or automatically, with the aid
of hardware or software. The data collected by a profiling activity depends on the type of analysis to
be performed, but typically will allow determination of instruction mix, storage reference patterns, and
instruction reference patterns.

This tutorial presents several tools for profiling of APL and non-APL languages and discusses their
utility in improving the quality and performance of applications. As well, several case studies are
presented, which are intended to provide some insight into how profiling tools might profitably be used
in your own work.

Per-ion to copy without fee all or part of this material im
granted provided that the copies are not made or diitributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and ita date appear, and notice
ir giren that copying L by pe rmiuion of the Auociation for
Computing Machinery. lb copy otherwle, or to republirb,
X-WUhcm a fee and/or l ~ecific Dermiuion.
@j 1989 ACti - -

31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F328877.328879&domain=pdf&date_stamp=1989-08-01

THE BENEFITS OF PROFILING

Profiling is beneficial to the software developer in a number of ways, including:

- locating performance hot spots
- predicting performance of new applications
- performirig long-term performance monitoring
- as an aid in performing quality assurance.

Let’s look at each of them in turn.

.Locating Performance Hot Spots

One of the most common, and most beneficial, uses of profiling is to determine how an application’s
performance might be significantly improved with relatively little effort. In its crudest form, this might
be done by a fru.strated user who complains to an application designer that the application is “taking a
long time to run. ” The designer interrupts the application and observes that the interruption occurred at
line x of verb y. If the situation recurs, and the interruption is always at line x of verb y, the designer
might get the idea that line x has some characteristic which makes it execute slowly. This may lead to
an examination of that line, and a rewrite of it, intended to produce an improvement in the application’s
performance.

Another industry favorite is the “honcho” or “guru” approach to performance improvements. In this
case, the user aplproaches the application designer (the honcho) with a problem. The honcho makes
an immediate guess as to the cause of the problem, then runs off and rewrites’ some hunk of code,
believing that this will fix everything. Of course, without some research into the problem, the honcho
is working on the basis of guesswork or hunches, and may in fact be working in a totally unproductive
area, Perhaps “huncho” is a better term for this mode of dealing with performance problems.

One problem with both these approaches is that they are not quantitative. In neither case does the
designer have anything concrete to say about performance, other than that complaints have ceased,
There is no assurance that things have not, in fact, gotten worse in some other area. There is also no
quantitative statelment that can be made about the extent of the claimed improvement.

These haphazard approaches can be replaced by one in which the hardware or application is instrumented
to provide information about what the application is doing. In the case where no pre-existing tools can
assist in this instrumentation, the application writer must insert code to collect that information. For
example, each usfar-defined verb might have code added to it which writes a record to a file each time a
specific line of the verb is executed. Assume the record contained the time of day$PU time used thus
far, and the verb name and line number. Once the application was then run to gather this information,
a post-processor could analyze it to determine:

Robert ‘Bernecky
32

- which user-defined verbs were executed
- which lines of each verb were executed
- how many times each line of each verb was executed
- how much CPU time each user-defined verb consumed
- how much CPU time each line of each verb consumed

If this data were to be sorted by CPU time, it would give an ordered list of where the largest gains in
performance might be made. A commonly accepted rule in computing, known variously as Pareto’s
rule or the 80/20 rule, is that 80% of the processing of an application occurs in 20% of the code.
Assuming this rule holds, the list obtained above will become uninteresting after the first few entries -
improvements made to code which is executed rarely or not at all will not make a measurable difference
in performance.

Software-based profiling has a number of flaws:

Inaccuracy. The ability to exit from a verb in mid-line, rather than by falling dut of the bottom of the
verb, can cause data to be lost or to be misleading.

Heisenberg eflects. The time required to sample clocks, write data to file, and so on may interfere
substantially with the operation of the application. In the case of real-time applications which must react
to external stimuli at rapid intervals, the measurements may be skewed to the point of meaninglessness.
By the time one event completes, including time spent monitoring it, it is time to deal with the event
again. This is similar to the Uncertainty Principle described by the physicist Heisenberg: it is not
possible to measure something without altering its behavior in some way.

introduction of errors. The act of altering the application in order to instrument it is liable to introduce
errors into the application. The errors may be due to incorrect installation of the monitoring code, or to
assumptions made in the original application, which render it sensitive to certain types of modifications.
Use of absolute line numbers is an obvious form of a poor programming practice which could lead
to failures of this type. The real problem with application alteration is that it constitutes a form of
maintenance. The probability of getting a maintenance change correct on the first try has been measured
at roughly 50% if fewer than 10 lines of code are changed, and much less as the volume of the change
grows [Ma83].

Performance. The overhead of the instrumentation software may be unacceptably high. Lf monitoring a
critical transaction-based system causes the transaction time to rise from .5 seconds to 10 seconds, then
software-based profiling may be unacceptable. This is an extreme form of the Heisenberg effect.

Although these flaws cannot be totally removed, they can be managed by providing hardware or software
assistance. These will be discussed in a later section.

Profiling, Performance, and Perfection
33

Performance Prediction

When designing new applications, it is often important to be able to predict how well they will perform
as the size of the problem or associated databases grow. A profiler can assist in this process. As
an example, consider an application in which news stories from a wire service are archived in a data
base, to be accessed by users who would use full text searching. The user might make the following
query: “Show me all stories containing the phrase ‘cold nuclear fusion’, but not the word ‘palladium’.”
Assuming the database will continually grow in size as more articles are added to it, it is critical that
the time taken to perform such a search grow no worse than linearly with the size of the data base. In
fact, one would attempt to design it so the search time grows sublinearly or not at all.

Assume that the .application exists, ‘and we wish to ensure that we have achieved our goal. To this
end, we make repeated runs of the application under control of a profiler, with a number of growing
databases. We then plot the CPU time used in each line against the database sizes. Any non-linear
growth will be ‘obvious, to be attended to before it reaches crisis proportions. In a related fashion,
changes that improve performance will be quite visible as a reduction in the slope of the lines.

Profilers can also be of use in predicting performance during the course of program development:
Karl Dawson implemented ebar, an array-searching primitive verb, for SHARP APL [Da88], by first
modelling it in AI?L. He then used a SHARP APL profiling facility, Ofm, in conjunction with the APL
model, to predict actual interpreter performance. This methodology allowed him to create complete test
scripts before any actual code had been written, and gave considerable insight into the value of several
proposed special cases for the primitive.

Long-term Performance Monitoring

Performance monitoring of a running application is often abandoned, on the assumption that it’s working
perfectly, until the day when the users come screaming that your application is running so slow that it’s
unusable, and that they are going to:

- take you to court
- not pay their bill
- demand a refund
- go to your most. unfavorite competitor
- all of the above.

On that day, management is likely to suggest that a quick fix of some sort be cobbled together right
now. This will usually result in code changes which end up being too expensive, poorly designed, a
maintenance night:mare, and inadequate except as a temporary circumvention. Significant effort will be
required later, not only to correct the original problem, but to undo the quick fix.

Robert Bernecky
34

An automated monitor in place on such a critical application could tail at&ntion to a mounting problem
long before it reaches crisis proportions. The problem could then be addressed in a cool and collected
fashion, without earning the ire of the users, and without developers developing ulcers from working
29our days.

An automated monitor could execute typical transactions at regular intervals under the control of a
profiler, recording the profiler results for each transaction. Another task would periodically analyze
the profiler information and send an electronic mailbox message or other alarm to appropriate parties
if elapsed or CPU times began to edge up t; unacceptable ievels. It’s advisable to both log and plot
profiles, for at least two reasons. First of all, the visual nature of a plot will make performance trends
stand out clearly. Second, if for some reason the profiler, logger, or plotter ceases to work, you’ll find
out about it sooner. There is nothing more frustrating than going to a log file to look for historical data
that will pinpoint a problem, and discovering that no data has been collected for six months because
the log file was full.

A profiler should allow information to be collected easily without altering the application. This encour-
ages its use in conjunction with the actual production code, rather than with a modified version that may
not reflect reality. In addition, developers are more IikeIy to make use of profilers if they are extremely
easy and convenient to use, than if they require tedious planning and effort to use.

Data collection at the line by line level allows edrly detection of potential bottlenecks before they are
visible in the aggregate of total CPU or elapsed time. For example, iti a transaction which takes ten
seconds, the time required to hold a file to prevent concurrent updates might only take a tenth of a
second. Normal variations in aggregate execution time might be more than a second. If the time to
perform the hold started to grow exponentially, it might have to increase by almost a second before a
human would notice, at which time it might be too late to take thoughtful corrective action. Analysis
of detailed information of this sort can provide valuable early wbrnings which make everyone’s life
easier. The idea is to be able to predict changes in usage patterns, and changes in load patterns before
they become crises, by watching for non-linear growth trends.

Profiling activities shouldn’t be restricted to observations of processor time only. Elapsed time variations
can be very enlightening. By showing where real-time system delays are occurring, they can highlight
problems in such areas as file system I/O queueing, shared variable processor or other communication
bottlenecks, and locking delays on files or other serialized resources.

Finally, if a real problem surfaces, and no historical information is available to support analysis, the
power of profiling tools as dynamically alterable instrumentation can help to pinpoint the hot spot
quickly and precisely.

Profiling, Performance, and perfection
35

Quality Assurance Tools

There is no practical way to prove that a computer program will function correctly. The best we can
do today is to employ the best designers and programmers we can find, prototype our designs, ensure
that designs and code are meticulously vetted by independent, objective judges, and perform quality
assurance tests as a verification step, to further support our belief that the application works correctly.

In the past, courts have been rather lenient on the computing industry as a whole, probably because
of the infancy of the profession. However, as the industry matures, it will have to accept a larger
measure of responsibility for errors caused by computer-based applications. If a bridge collapses, the
engineers who designed it are probably in very hot water. Similarly, if a fault in a computer program
causes death, injury, or significant financial loss, and the vendors of that program cannot show that they
took all reasonable efforts to ensure the correctness of that program, then the vendors, and perhaps the
designers themsel,ves, are in line for civil and perhaps criminal action.

Performing qualit,y assurance procedures on computer programs pays handsome divdends. It is well
known that the coast of repairing a fault in a program increases by orders of magnitude as the implemen-
tati.on proceeds. An error discovered in the design phase is relatively inexpensive to remedy. An error
discovered during development costs perhaps ten .$mes that much to correct (Bo76, er741. An error
found after product shipment is extremely expensive - customers get upset, and yt copies of software,
rather than one, h,ave to be repaired. This of course offers opportunities for new problems to creep in
- fix not applied, fix applied incorrectly, and so on.

Given these changing times, it behooves software vendors to take whatever steps are required to ensure
that their products are as predictable as possible. Profiling can help. this process in two ways: It serves
as a mechanism to support claims about product reliability, and it ensures that performance claims will
be met now and in the future.

Test Suites

Test suites are scripts written by software developers to support their claims that their programs in fact
operate as designed. However, software developers are Panglossian by nature, and rarely exhibit an
appropriate degree of skepticism about the reliability of their products. Casually designed test suites,
therefore, may in fact deal with only those areas of R program about which the developer was concerned,
and ignore large areas which “couldn’t possibly have bugs in them.”

A profiler can be a valuable tool in assisting software developers to remove the blinders from their
eyes. They are secure in their knowledge that their code is bulletproof, secure in their knowledge that
their test suites are: a complete test of their code. Now, introduce a profiler, and ask no more than that
the developer prove, rather than claim, SO coverage; that is, mere execution of all instructions in the
program.

Robert Bemecky
36

The results are eye-opening: Test suites rarely cover all the code. Developers are often at first puzzled
by this revelation. Next, they take steps to correct the problem, and rewete the s#tes to cover the
missing areas. When they see the results, they become converts.

Developers often consider formal test suites to be a waste of (their) time, because “it’s going to brihg’my
development work to a halt! We’ll never deliver on time !” Also, they are often offended by their manager
even suggesting that they write test suites, considering this to be an attack on their competence.,It is
difficult to sell them on the idea. In my experience with a large development group, the only effective
approach has been: “Just try it this once, and see how you like it, ok?” Once developers realize how
their code quality has improved, they buy in readily. People like to do the best job they can; they’ll
use tools if they see a real benefit in doing so.

Besides serving as obstacle courses for system alterations, test suires also provide a handy benchmark
for performance analysis purposes. If your new; improved system survives the obstacle course, but takes
twice as long (or even 5% longer!) to run it, are you likely to knowingly unleash it on an unsuspecting
public?

Finally, complete test suites allow those poor souls who are responsible for product support to have
some faith that a new product may in fact work as advertised or better. ‘The ability to rigorously test a
system you’re going to end up supporting, rather than taking a developer’s word on its robustness and
correctness, offers some peace of mind.

Suitably written test suites allow obstacle courses and performance measurements to be automated,
reducing the human effort required to support an otherwise labor-intensive activity, Such tests can be
run before and after each system change is released, to nip problems in the bud. Chasing performance
problems months or years after they were introduced into a system is extremely difficult - old code
simply stops working, due to lack of storage space for backup copies, incompatible operating system
upgrades, and other such mundane but all too real concerns.

A FEW PROFILERS

A number of profilers of various degrees of sophistication and convenience are available for most
computing languages and system-s on the market today. What follows here is not a survey. Rather, it
is intended to describe a few of the capabilities and limitations of several profiling tools (and facilities
which have been bent into profiling tools) that we at I.P. Sharp Associates have used for our own work.

‘Profiler Environments

Profilers perform their work within a specific computing environment. in APL, they are associated with
a specific APL task and application under the control of one user. The tool provided with MVS (an

37

Profiling, Performance, and Perfection

IBM operating system for large computer systems) is usually associated with a specific address space,

which might represent an entire collection of users, In VM (another IBM large system environment), it
is associated with a virtual machine, which may represent either one or many APL users.

The APL-based tools are oriented toward APL application writers, and have all those characteristics
that APL users expect and enjoy: ease of use tind human-comprehensible results.

The oEjerating system-based tools tend to be oriented toward assembler code programmers, and have all
those characteristics that their audience has grown to expect, They’re not exactly suited to the job, but
with enough effort, you can bend them to work. SOII of’...mo~ on this later.

APL Profiling Tools

SHARP APL’s Function Monitor, Ofm [ShS7j, provides the following information for any user-defined
verb which it monitors:

- Line counts pI,ovide information on how often each line in the verb was executed.

- Elapsed and processor time is supplied for each line, including and excluding time spent in verbs
invoked from that line.

- Configurable design gives you control over which verbs are to be monitored, and can control the
level of detail of information to be collected - summary information of one line per verb, or highly
detailed information on a line by line basis. The design is flexible enough to allow easy and consistent
extension in the future to support new monitoring capabilities.

- Timings are precise to the level of the underlying system processor timer, typically within a mi-
crosecond. You don’t have to run benchmal-ks for long periods of time to get meaningful results.

- Monitored information is correct whenever it is sampled, even within recursive, pendent, or suspended
verbs.

The power of q fm became obvious to developers here on the day it was released on our internal SHARP
APL system. The elapsed time from the point when the VIEWPOINT development team obtained the
Ofm documentation until they had used Ufm to obtain a 25% CPU time reduction in the VIEWPOINT
Report Writer was three hours!

STSC offers CD@’ [St85], a Monitoring Facility for their APL systems.
services provided Iby Ofm.

CIMF provides a subset of the

IBM offers a performance monitoring took with APL2 called TIME 1 Ib87 1. As of the publication

Robert Bemecky
38

deadline for this tutorial, I was unable to find any documentation describing its precision or ability to
handle recursion.

Operating System’ Profiling Tools

IBM provides VM TRACE for VM, and SLIP/GTF for MVS. SLIP is a generalized tool which IBM
often uses as a problem determination aid; i.e., “When does my program get to instruction x?” When
profiling, the question more often asked is: “When does my program get to instructions Z+LM?” The
Generalized Trace Facility (GTF) is used in conjunction with SLIP to intercept and process the events
generated by SLIP.

One way SLIP/GTF can be used to perform profiling is as follows: The user configures SLIP to interrupt
the executing program whenever an instruction of interest is executed. SLIP does this by conditioning
the underlying S/370 PER (Program Event Recording) hardware to perform that task.

When a PER interrupt occurs, GTF processes it, takes some action, and returns control to the executing
program. In spite of its name, GTF’s capabilities in this regard are quite limited, and about the only
practical action which can be taken for instruction tracing is apparently to ask GTF to write a trace
record to disk or tape for each instruction intercepted.

For any realistic profiling work, VM TRACE and SLIP/GTF are inadequate. To see why, consider a
real example chosen from the I.P. Sharp archives.

A performance problem had been reported in the SHARP APL newly released R19.0 interpreter: A user
claimed a specific application ran slower than it did in the previous release. In the course of studying
the problem, I had gotten to the point where it was clear that a problem existed, but I had been unable
to determine what change in software was responsible for the problem. A search of our software change
log, SOFTLOG, showed that hundreds of software changes had been made to the interpreter since the
earlier release and that factoring out the changes by backing off each set of interdependent changes and
running the affected application was simply impracticai,

We decided that an instruction trace of the application running on the two software releases might
provide enlightenment. The tool closest to hand was VM TRACE, so we started with it.

VM TRACE was designed as an aid for programmers, to let them step through programs and display
the result of executing each instruction on a terminal or to write a line on the “vm print spool queue,”
traditionally used as the repository for data destined for a physical printer. Given a suitable amount of
monkeying around, it is possible (not convenient, but possible) to capture this printer file data and copy
it to a normal file where it can be analyzed by a program.

Knoring that the application was likely to execute iuts of instructions, and being concerned about

Profiling, Performance, and Perfection
39

havihg to analyze a large quantity of data (one record per instruction executed!), I chose a very small
applitation test, which normally ran in about ten seconds on an IBM 3090 class processor. I started a
test bstem with only one user on it, configured VM TRACE as required, and started the application.
However, there was a problem - the disk space assigned for printer files* in most shops is painfully
inadequate for the quantities of data being called for here, and when a trace fills up that disk space,
everything stops. Not just your job, but every job in the shop which wants to print something. It’s quite
user-hostile, and not the kind of-thing which exactly endears one to the operations staff, so we gave up
on VM TRACE.

Next, we tried SLIP/GTF, which $t least has the ability to write its trace information on magnetic tape.
We restarted the application after configuring GTF and SLIP appropriately, at which time, GTF happily
started to spin tape, writing trace records. After a while, it started to write a second reel of tape. Then
a third. We left for dinner at this point, and returned several hours later to find a mound of tapes, a
slightly disgruntled computer operations staff, and tapes still spinning. At this point, I decided to cut
my losses and analyze what I had obtained thus far. .

The results were less than encouraging for someone who was hoping to make practical use of instruction
tracing as a way to solve all the problems known to mankind. That particular ten-second test would
have run for about two weeks of dedicated procese&ime, and have written roughly 6QO reels of tape,
or 120 gigabytes of trace information! The war stories and jokes which arose from this event led, in a
day or so, to the design and development of SPY by Leigh Clayton, as a result of gsuggestion from
Kirk Iverson,

The basic problem with the IBM-provided tools is that they were not really designed for the kind of use
to which we were. putting them. They were designed to be used with events which occur infrequently
- once per minute: or hour - instead of at megahertz frequencies. The PER hardware was doing its job
quite well, but the operating system supports for that hardware were simply inadequate. ‘However, I.P,
Sharp was, and is, a society of toolmakers. When we find available tools lacking, we build new ones
to meet our needs.

In 1974, I created a “PSW Sampler” as a way to do statistical profiling. Similar in spirit to hitting
“break” on a running application periodically “to see how it’s doing,” the PSW Sampler used timer
delays to interrupt: the running APL system and build a histogram of PSW values encountered in APL
at those times. In the S/370, the PSW (Program Status Word) is. akin to)SI in APL: It tells you
what program is executing, and where it was when you interrupted it. Using the PSW Sampler, we
determined that syntax analysis in APL consumed 10% to 15% of the processor time associated with
most applications, with storage management f_ctions running a close second.

The problems with the PSW Sampler grew out of its statistical nature. It gave a fairly good gross picture
of the system, but wasn’t reproducible, couldn’t perform total code coverage, and was unable to monitor
certain parts of the system, such as serialized code. Because of this, the PSW Sampler got dusty, and

Robert Bemecky
\ 40

stopped working around the time we switched from SHARP DOS to MVS. But it wasn’t really missed
until Leigh recalled the PSW Sampler’s technique of using a histogram, ratherthan w&&g data to a file.
Realizing that this approach could be used with SLIP to efficiently achieve most of!dur’requirements,
Leigh designed and wrote SPY.

SPY runs in conjunction with SLIP, intercepting the PER interrupts and processing them itself, to build
a storage-resident.histogram of instruction execution. The requirement specifications for SPY were that
it minimize the number of instructions required to trace a single instruction, that it not perform I/O
while tracing, and that it produce a histogram, rather than a history trace, to minimize post-processing
requirements.

SPY is a hybrid system, written partly in S/370 Assembler code, to handle the sensitive PER interrupts,
and partly in SHARP APL, to provide back-end analysis capabilities such as instruction count summaries,
instruction count detail reports, and code coverage reports. The use of APL also offers significant
flexibility and convenience in modifying and extending SPY’s capabilities. For example, it was trivial
to extend SPY to include reporting to the assembler code label level, once we obtained documentation
from IBM on the foxmat of AUTCXEST [Ke881 output.

SPY has been a wild success from day zero. It allowed us to gather the precise statistics we required in
a few minutes, rather than weeks, and the post-processing task requires only seconds to process roughly
a megabyte of data, instead of hundreds of gigabytes. Thanks to Leigh’s expertise, SPY’s overhead
is quite low - a factor of about 30 slowdown instead of thousands. This allows it to be used for
high-volume event tracing, and to be realistically used to monitor real applications.

According to Leigh, SPY doesn’t stand for anything beyond its obvious cloak-and=dagger denotation.
1 prefer to think of it as the Sharp Performance Yardstick. but who am 1 to dispute the meaning of a
name? Juliet?

Case Study - Storage Manager

The performance problem mentioned earlier is a prime example of how suitable instrumentation allows
rapid focusing on the true, rather than suspected cause of a problem. In software of any complexity,
a long-standing Performance problem that cannot be attributed to any specific change to the system is
hard to track down. Queries to involved developers of the form “Do you recall any changes you made
which have even the most remote possibility of causing the problems we’re seeing?” result in a “No
flies on me, mate!” response from all of them: they know their code works perfectly - the proble’m
must be someone else’s, There is no way to assess which area is at fault except by backing off changes
one at a time until you find the offending one. In a complex system, where changes often interact, this
is a problem of Gordian-Knot complexity, and is simply impossible to solve.

SPY allowed us to nail the interpreter performance problem in a few hours - we .had been chasing the

41

Profiling, Performance, and Perfection

problem unsuccessfully for more than a week.

We obtained a copy of the application that the user claimed ran degraded under the new release. Then,
with the help of Karen Brant and Gary Wride, both of whom were then members of the Software
Coordination Team, wi ran the application under both releases. Our measurements substantiated the
user’s claim of degraded performance.

This step was required because $e application itself had been substantially rearchitected in the interval,
and we wished to make sure the problem was really there, as described. We then reran the application
under SPY with both releases of the system, to determine where the discrepancy in performance was
coming from.

The results were eye-opening. Within ati hour, we determined that a change to the storage manager had
introduced a fault which rarely affected applications, but when it did, the effect was dramatic. Figure
1 gives a comparison of the first few lines of output from both runs. Let’s do some quick analysis of
these results. “TOTAL” is the count of actual relevant instructions executed. It is quite clear that an
undesirable change has occurred in this test - 49 million versus 53 million instructions - degradation
of more than 10% .

A look at the more detailed information below shows that AFMT is clearly the heavy user of cycles on
this job, weighing in at 14.24 million instructions. Since both counts are within a tenth of a percent of
each other, we know that AFMT is not our problem. Ditto for SABI and FUNSCAN. But what about
SBREAL? It went f+om 3.3 millioi to 8.3 million instructions, clearly a change we didn’t expect, in
spite of the fact that other system changes resulted in many fewer calls to it (248 versus 406). This
made it abundantly clear that our problem lay in SBREAL.

A detailed instruction trace in SBREAL showed an obvious fault, The fault was quickly corrected, and
the system tested1 again. Results were gratifying. Not only did the application run faster now than in
R17.0, but we proved that we had resolved the problem by direct, quantifiable comparison of instruction
counts on a function by function basis. The instruction count for SBREAL dropped to 2.8 million, in
line with the author’s expectations, which were that SHREAL in R19.0 should cost less than it did in
R17.0.

In the next months, we used SPY extensively on a number of benchmarks of our own, and on a number
of benchmarks supplied by OEM and inhouse SHARP APL sites, with the intent of improving SHARP
APL performance so that all benchmarks would perform significantly better than before. This effort
paid off handsomely, as Figure 5 shows. Release 19.12 of SHARP APL offered substantially improved
total CPU time reductions for a wide range of applications, all achieved in a short period of time. With
SPY, we rapidly located hot spots in the system brought on by a number of very different applications,
and quickly cool them off.

Robert Bemecky
42

Case Study - pormatter

1 was able, in the course of a few hours, to improve the performance of S],fmt, at a time when thar
wasn’t even my prime concern. I had made some rather trivial changes to the ‘formatter, and was writing
an SO coverage test suite for it. SO coverage is by no means a complete
reputation for exposing code faults. In the cour;e of writing the suite, I
which had been in the code, undetected, for eli=ven years. After fixing
under SPY.

tcst,&,ut’it has a well-deserved
stumbled onto a program fault
this, I ran my completed suite

Figure 2 shows a fragment of the result of “SPY-ing” in order to achieve SO code coverage. An APL
function called COVER analyzes a SPY histogram, an assembler code listing, and a load module, to
produce a report highlighting the lines of code which were not executed during a particular test suite.
The missed lines axe indicated by question marks.

The version of COVER described here annotates the entire assembler code listing. A variant of COVER,
which I find more convenient to use, produces only the non-covered lines as its output. When the output
is an empty array, you’re done. This empty array is no joke!

It is oft& enlightening to browse through codecoverage results in detail, as potential bottlenecks,
obvious bugs, or shortcomings may come to light. The fragment of code in Figure 3 is taken from an
old version of q fret. 1 have annotated the listing by replacing the assembler-generated code with the
instruction counts which resulted from executing a simple format expression on a 5OOGetement array.

In Figure 3, it is obvious that the four lines-starting at LSH are being executed far more often than any
other in the code fragment. In fact, several minutes of analysis showed that the loop performed by those
lines could be replaced with non-looping code which indexed a table. An hour of coding and testing
produced a significant speedup of the entire formatter.

Although the above example shows inline code, I usllaily sort the report by instruction counts, to quickly
highlight the large CPU burners (a la Pareto.)

Reports of the above nature are valuable when developing code. If I believe that a specific piece of
code should be executed n times per data element, thenI wiII be able to predict what the report contents
should be when executed with a specific test suite, and thus verify that things are working as expected.
Deviations from the expectations are cause for alarm and careful analysis to resolve the differences.

SO coverage also turned up some unreachable code, which proved to be faulty search loops. 1
to replace these by one line of inline code .- the fastest line of code is the one that isn’t there.
the one that fails the least!

was able
It’s also

On the performance front, it is often handy to be able to obtain real instruction counts when comparing

43
Profiling, Performance, and Perfection

two versions of a component, because the amount of other changes inuoke;d (other development work,
opekating system upgrades, faster processors) may be such that it is impossible to obtain meaningful
mea%urements otherwise. It also offers i way for developers to quantify their improvements beyond
vague measures of CPU time. Figure 4 contains excerpts from the APL function SPYSUMM executed
against two versions of Ofnrt;, before and after the changes described eariier.

Feveral items are worth noting here: First, we timestamp all data sets, so that we have a way of ensuring
that we are in fact analyzing thi correct data. In a large development shop with many operating systems
running at once, it is easy to get confused rl;nd analyze oki data or someone else’s data by mistake.
Second, note that the number of distinct instructions executed has decreased slightly. If I had not made
changes that would lead me to e&ect a discrepancy of that sort, 1 would go back and- look more closely,
to see what else had unexpectedly changed, perchance to turn up a bug. Finally, the most interesting part:
the relative instruction counts of 5.5 million against 4.3 million show a clear performahce improvement
of 22%. Not bad for a few hours’ work!

A lesson to be learned here is that aithough anybody could have looked at that code and immediately
seen how bad it was, nobody had done’so. (I feel compelled to point out that the fortmatter code in
question here was not written by an I.P. Sharp employee).

A benefit of profil.ing is that it directs your attention io.the root of a problem immediately and forcefully.
The importance o:f this cannot be overstated. In the Dfmt study, changing 10 lines out of 200,000 made
a significant improvement in performance. The television repair technician who chgged 50 dollars for
two minutes’ work to replace a tube (this is an old story) said “That’s 1 dollar for the tube and 49
dollars for knowing which one to change.” It’s the same with performance improvements: you have to
know where to look, and profilers are ti very inexpensive wlty to learn where to,.look,

Case Sthdy - Cross Sums

Although superco:mputer applications such as’ computational fluid dynamics, ray tracing, and petroleum
exploration are getting a lot of press lately, other major computing challenges are worthy of our attention.
Some of these Everests, including Conway’s Game of Life [Du71, Mc883, New Eleusis [Be81], and
Rubik’s cube [Pe84], have been addressed in the literature, but others have inexplicably remained
unchallenged. One such problem is Cross-Sums+

Cross-Sums resemble crossword puzzles, except that:
- the words are integers
- the clues are the sum of the digits in the word
- no word contains a zero
- no word contains duplicate digits.

Robert Benecky
44

Cross-Sums puzzles can be found in almost any Crossword Puzzle magazine.

Since duplicates and zeros are forbidden; a Boolean dictionary of valid words for Cross-Sums is:

&$(9P2)T’o’l 012*9

The set of w-digit words summing to a is:

((a=bd+.x~g)Ao=+/bd)fbd

One heuristic in Cross-Sums is determining the set of digits which may validly occur in a particular
square. And-ing vertical and horizontal sets, using Avl and inner product, eliminates impossible choices.
Process of elimination is the key. For many puzzles, this suffices. For harder ones, recursion based on
guesswork is called for.

In order that data entry for the puzzle should be simple - many puzzles are harder to type in than they
are to solve - I chose complex numbers ;LS ;ul obvious (10 me) way to enter values. (It turns out there
is a much simpler method, but I won’t discuss that one. j

My function solved most puzzles adequately, but it was slow. I decided to apply profiling with Dfm to
determine where the time was going. I used the.following crude APL functions:

Q setall
Cl3 -11 Ofm on2 3

Q

Q r+getati!
Cl1 rcrlnt 3
C21 r-(L(21.~lf--l q fm r)x~lk 1 le6)ar

c31 r-vsrtc r

Q

Q setfn u
Cl1 -163 Ofm CLI
Q

Q r+getfn W
Cl3 r+L 1 le6xylt-2Tylk-62 Ofm w
c21 a+' ',(50--lmr)ra Ocr GJ

r.31 yc-r~>'r551'~~C-OZo~+~lt~r),~
C43 r+Tsrtc r
Q

Profiling, Performance, and i%;fection
45

V rcsrtc w;S;OZo;b
Cl3 Dim-0
c23 Z+jvF,O 1+>oto1
C33 bt(bCil#O)/i
C41 bc(6LPbIPb
C51 ~~~~CO1~Cb;1~~~~C1l~Cb;l
v

Let’s apply these to the Cross-Sums pro&Tarn on a typical puzzle. Since we don’t know anything, we
start by monitoring everything:

s&a22 0 ica 'nll 0 getatt
30 1315808 ad$ust

2 460844 f<llh
1 106521 cs

116 88739 tihite
15 26492 hnum
15 26334 vnum

The first column .is the number of times the verb in the third column was invoked. The second column
is the number of CPU microseconds used in the verb. Clearly, adjust is the major eater of resources
here. Taking a closer look at it, by monitoring just that one verb in detail, we see:

setfn 'ad&t&' 0 es 'nl' 0 getfn 'adjust'
244 748889 C283 Zt(sums=sCC;-l+'lPjJ)Sseqs
244 141429 C333 ZbC;2;jl+Sbf;Z;~lA~l 0 vf Z
244 62208 C323 t+((+/m)=t+.Am)ft

Again, the first column is the number of calls, and the second is processor time used. The third column
is, of course, the text itself. The first line, which is tie largest consumer, is puzzling (no pun intended)
- it is fairly simple APL, and not the sort of thing one would expect to cause problems. Here is another
lesson of profiling: Bottlenecks occur where they will, not where you expect.

Decomposing line 28 into two lines, to determine which part of the line is the offending one, yields the
following output ifi-orn get f n:

244 707791 C293 Z+sums=I
244 144244 C363 ibE;2;Jl+SbEi;jlA~l OvfZ
244 62117 C351 t+((+/m)=Z+.Am)ft

Since the rest of the old line 2g doesn’t even appear, it’s clear that the problem lies in the =. But how
can this be, since equality is such a simple function‘ ? Maybe it has something to do with data types?
In fact, when we look closer, we see that 2 is a complex array, and sums is an integer array. I forgot

Robert Bernecky
46

to convert the complex input data to integers during setup. Now, modify things to ensure everything is
integer, and try again, from the top:

setatZ 0 -es ‘nl’ 0 getatz

30 658678 adjust
2 461912 f $2 Zh
1 102782 cs

116 88496 tihite
15 26688 hnum
15 26672 vnum

That’s better - we chopped the cost of adjust in half ! It turns out that there are other complex
number problems still lurking about in fr 2 2 and fZ 2 Zh, but we’ll correct those behind the scenes.
Going after other game, we pick on ad&.&t again. It’s still the major CPU user, and hence is the area
we can still probably squeeze the hardest. Here’s the getfn results:

244 136209 C331 ~bC;i;jl+~bC;~;~‘l~~l 0 vfZ
244 95867 1281 Z+(sums=sCZ;-l+"Pjl)fseqs
244 61620 C321 Z+((+/m)=t+.Am)ft

The problem here is that this release of the system didn’t special case aA:‘k w, but ran it through a
general adverb support facility. The proper solution to this problem is to lean on the software vendor,
but maybe we can do something quicker. Let’s just reshape the arguments so they match, and see how
that does:

244 96285 C281 t+(sums=s[C;-l-~llPjl)fse~s
244 81575 t333 m+ibC;i;jl 0 ibC;;jl~-rnAm(~Prn)PvfZ
244 61878 C321 Z+((+/m)=Z+.wn~/2

Not bad - we knocked that one down a Fair bil as well. How did we do? Well, final comparisons
showed a reduction in processor time from 2 12 177 to 80692 - a factor of 2.6 improvement in about a
half hour of analysis and programming time. This sort of improvement is typical for small applications,
but larger applications will take more time for changes of this magnitude - 10% of a large amount of
code is still a large amount of code, and the time spent in analysis, planning, measuring, and actually
changing code will be proportionately larger.

PERILOUS PITFALLS OF PROFILING

Profiling is not without its pitfalls. The Heisenberg interactions of almost any profiler can produce
misleading results. For example:

- Storage required for profiler history information CM alter the behavior of a system. In APL with
Ofm, this might manifest itself as either WS FULL or degraded performance.

Profiling, Performance, and Perfection
47

- Real-time systems may exhibit extreme sensitivity to performance degradations caused by profilers.
In the case of some tests I have run on a time-sharing APL scheduler, the profiler overhead was such
that the test would never complete, because the timer-event-driven scheduler kept getting further and
further behind in time.

- When using profilers to gain confidence about the validity of test suites, it is ,important not to treat
profiler results as a panacea. Test suite results must be verified to assert that the program is producing
correct results as well. This may. seem obvious, but it is something that is often overlooked by.suite
authors. Regression tests should be added to test suites, to ensure that program faults which were
not picked up by extant ‘test suites have in fact been repaired, and stay repaired.

- Don’t use profilers to improve performance until a&r ensurjng that you have a proper design.
Tolerating poor design on the assumption you can protile your way out of any performance problems
which occur is naive and shortsighted. As a good exampte, a lot of the code we optimized in the
Cross-Sums example is wasted effort: that code is continually recomputing numbers which could be
computed once, during initialization, if a slightly different design was chosen. lnstead of making it
run faster, we should instead’have removed it - the fastest code is the code that isn’t there!

SUMMARY

- Profilers can assist in making dramatic performance improvements in applications.

- Performance problems occur where they will, not where you think.

- Use profilers, logging, and plots to monitor critical applications over time, to predict problems before
they become crises.

- Use profilers a1.s one more element of your Quality Assurance toolkit.

Now, go forth and multiply your productivity with profilers!

ACKNOWLEDGEMENTS

The tools and techniques described in this tutorial represent the research and development efforts of a
number of APL professionals once known collectively as the APL Systems Development Department
of I.P. Sharp Associates Limited. Without their ideas and devotion to excellence, this tutorial could not
exist. I am further indebted to Elena Anzalone for her meticulous assistance in editing this tutorial.

Robert Bernecky
48

BIBLIOGRAPHY

[Be81] Berry, M.J.A., APL and the Search ji)r Ttxl/?: A Ser c~f’Funr:tions to Piay New Eieusis, APL Quote-
Quad, Vol. 12, No. 1, 1981.

[Bo76J Boehm, B.W., Softwure Engineering, IEEE Trunsucrions on Computers, C-25, 1976

[Br74] Brooks, F.P., The Mythical Man-month: Essays on Soj?ware Engineering, Addison-Wesley, 1974.

[Da881 Dawson, K.W., private communication, 1988.

[Du71] Duby, J., Algorithm 70, “Conway’s Gume ‘Lve’ “, APL Quote-Quad III, 2 & 3, 1971.

[Ib87] APL2 Programming: Using the Supplied Routines, SH20-9233-1, IBM Corporation, 1987.

[Ke88] Kerr, D.W., private communication, 1988. AUTOTEST is a capability of the 1BM S/370 Assembler,
which was introduced in the mid-60’s as a debugging aid, but which has not been supported on any
recent operating system offered by IBM. 11 look i\ f’air bit of hunting to locate anyone who knew
anything about AUTOTEST, but IBM finally crime through for us.

[Ma83j Martin, J., & McClure, C., Software Maintenance: The Problem and Its Solutions, Prentice-Hall,
1983.

[Mc88] McDonnell, E.E., Life: Na&y, Brutish, and Shorr, APL Quote-Quad, Vol. 18, No. 2, 1987. The
bibliography in this paper refers to several earlier APL versions of Life.

[Pe84] Peelle, H.A., Representing Rubik’s Cube in APL, APL Quote-Quad, Vol. 14, No. 4, 1984.

[Sh87] l.P. Sharp Associates Limited, Ofm Function Monitor Futility User Guide, Publication Code 0842
99-l El, 1987.

[St851 STSC, Inc., APL*PLUS Enhancements, 198s.

[We88 1 Webster’s Ninth New Collegiate Dictionclt-,*, Mc~%i\rll- Webster Inc., Springfield, Mass., 1988.

P&i ling, Performance, and Perfection

49

Release 17.0
Function Total Ops Fn Calls Ops/Call

TOTAL 49026703

AFMT 14240525

SABI 7229089

FUNSCAN 3444068

SBREAL 3384237

SYNTXXA 2190024

SBDEAL 2134061

LOSYFN 1802568

DBLOWUIP 1’257081

SLOPTOP 1206161

XRHONOPC 1020284

BLDCONZ: 913129

15

1531

1694

406

109

49288

1325

7018

109651

18415

38

949368

4721

2033

8335

2009 1

43

1360

179

11

55

24029

Release 19.0
Total Ops Fn Calls OpsKall

53612664
14243964
7241263

3444068

86 18659

2145202

1872554

1778102

1257632

1206315

1018385

933100

15 949597
1531 4729

1694 2033

248 34752

109 19680

48748 38

267 1 665

7005 179

109665 11

18380 55

38 24555

Figure 1 - SPYming for Performance

0002DO

0002D4

0002D8

0002DC:
0002EO
0002E4

0002E8

0002EA,

5800 B958

5900 AE66

4740 AA42

5900 AE6A
4720 AA42

5800 B954

1200

4780 AA42

00958 L RO,DVISVC

01 E70 C RO,=F’4’

OlA4C BL LISER22

01 E74 ????.P c RO,=F"ll
OIA4C ????? BH LISER22
00954 ClSFtiTXl L RO,DVISVR

LTR RO,RO

OlA4C BZ LISER22

Figure 2’ - SPY-ing for Code Coverage

Robert Bemeckq

50

COUNT

15000

15000

15000

15000

15000

15000

15000

15000

25000

25000

2mOO

260000

260000

260000

250000

15000

INSTRUCTlON AND COMMENTS

L5J

LSF

L5H

BAL RF,SKBL
ST 7,ERPOS
MVC RTXA(LQUAL),DQUAL
MVC HCV(LHDCV),HDCV
xc GTXA(GDAZ-GTXA),GTXA
BAL RF,NUM
LPR 191
ST 1-N
MVC FC(I),SBRHO+4-WS(7)
LA 1 ,AFCZ
LCR 2,l
BC7’R 1 .(I
CLC O(l,l),FC
B/if LQPX

Bh’E L5f-i

MVC FCF,AFCFZ-AFCZ(1)

Figure 3 - SPYming on Of mt

51

Profiling, Performance, and Perfection

SPY WROTE SP’YOUT DATASET AT 1989-01-2 I 19:00:34
Total distinct addresses executed 469
TOTAL OPS = 5552816
Document= AFMT

SPY WROTE SP’YOUT DATASET AT 1989-01-22 025456
Total Djstinct addresses executed 458
TOTAJ., OPS= 43i3199
Document= AFMT

Figure 4 - SPWng on Clfmt

SHARP APL cpu time
% relative to rl7.0

100
C

75 P
U

50
%

25

benchmark name

w....w. r17 ---- r19.0 -- r19.8 I rf9:12

Figure 5 - Rellease 19.12 Performance

Robert Bernecky

52

