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One of the common queries in many database applications is finding approximate matches to a
given query item from a collection of data items. For example, given an image database, one
may want to retrieve all images that are similar to a given query image. Distance-based index
structures are proposed for applications where the distance computations between objects of
the data domain are expensive (such as high-dimensional data) and the distance function is
metric. In this paper we consider using distance-based index structures for similarity queries
on large metric spaces. We elaborate on the approach that uses reference points (vantage
points) to partition the data space into spherical shell-like regions in a hierarchical manner.
We introduce the multivantage point tree structure (mvp-tree) that uses more than one
vantage point to partition the space into spherical cuts at each level. In answering similarity-
based queries, the mvp-tree also utilizes the precomputed (at construction time) distances
between the data points and the vantage points.

We summarize the experiments comparing mvp-trees to vp-trees that have a similar partition-
ing strategy, but use only one vantage point at each level and do not make use of the
precomputed distances. Empirical studies show that the mvp-tree outperforms the vp-tree by
20% to 80% for varying query ranges and different distance distributions. Next, we generalize
the idea of using multiple vantage points and discuss the results of experiments we have made
to see how varying the number of vantage points in a node affects search performance and how
much is gained in performance by making use of precomputed distances. The results show
that, after all, it may be best to use a large number of vantage points in an internal node in
order to end up with a single directory node and keep as many of the precomputed distances as
possible to provide more efficient filtering during search operations. Finally, we provide some
experimental results that compare mvp-trees with M-trees, which is a dynamic distance-based
index structure for metric domains.
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1. INTRODUCTION
In many database applications it is desirable to answer queries based on
proximity, such as asking for data items that are similar to a query item, or
that are closest to a query item. We face such queries in the context of
many database applications such as genetics, text matching, image/picture
databases, time-series analysis, information retrieval, and so on. In genet-
ics, the goal is to find DNA or protein sequences that are similar in a
genetic database. In time-series analysis, we would like to find similar
patterns among a given collection of sequences. Image databases can be
queried to find and retrieve images in the database that are similar to the
query image with respect to specified criteria.

Similarity between images can be measured in a number of ways.
Features such as shape, color, and texture can be extracted from images in
the database for use as content information where the distance calculations
are based on them. Images can also be compared on a pixel by pixel basis
by calculating the distance between two images as the accumulation of the
differences between the intensities of their pixels.

In all the applications above, the problem is to find data items similar to
a given query item where the similarity between items is computed by some
distance function defined on the application domain. Our objective is to
provide an efficient access mechanism to answer these similarity queries.
In this paper we consider the applications where the distance function
employed is metric and computation of distances are expensive. It is
important for an application to have a metric distance function to filter
distant data items for a similarity query by using the triangle inequality
property (Section 2). As the distance computations are assumed to be
expensive, an efficient access mechanism should certainly minimize the
number of distance calculations for similarity queries and improve the
speed in answering them. This is usually done by employing techniques
and index structures to filter out distant (nonsimilar) data items quickly,
avoiding expensive distance computations for each of them.

Data items that are in the result of a similarity query can be further
filtered out by the user through visual browsing. This happens in image
database applications where the user picks those semantically related
images that are most similar to a query image by examining the images
retrieved in the result of a similarity query. This is mostly inevitable
because it is impossible to extract and represent all the semantic informa-
tion for an image by simply extracting features in the image. The best an
image database can do is present the images that are related or close to the
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query image and leave further identification and semantic interpretation of
images to users.

In this paper, the number of distance computations required in a similar-
ity search query is taken as the efficiency measure. We do not incorporate
the I/O operations required during the evaluation of queries into the cost
measure. This can be justified in part, since our target applications are the
ones where the distance computations are very expensive. In such applica-
tions, the distance-computation measure, to a degree, also reflects the I/O
costs (or other costs, such as network costs) because a distance computation
requires retrieving a database object from secondary memory (though it
does not reflect the I/O operations required by the index structure). As an
example, consider a www site with an index on a large number of pages on
some other www sites. For a similarity query, the cost of searching the
index for a similarity query is directly related to the number of www pages
retrieved during distance computations, making the I/O costs at the index
site negligible. However, the role of I/O costs should be incorporated in
general, and comparisons of mvp-tree performance with other access struc-
tures, for the general case where I/O costs can not be neglected, remains as
future research.

We introduce the mvp-tree (multivantage point tree) as a general solu-
tion to the problem of efficiently answering similarity-based queries for
high-dimensional metric spaces. The mvp-tree is similar to the vp-tree
(vantage point tree) [Uhlmann 1991], in the sense that both structures use
relative distances from a vantage point to partition the domain space. At
every node of the vp-tree, a vantage point is chosen among the data points,
and the distances of this vantage point from all other points (the points
that will be indexed below that node) are computed. These points are then
sorted into an ordered list with respect to their distances from the vantage
point. Next, the list is partitioned to create sublists of equal cardinality.
The order of the tree corresponds to the number of partitions made. Each of
these partitions keeps the data points that fall into a spherical cut, with
inner and outer radii being the minimum and the maximum distances of
these points from the vantage point.

The mvp-tree behaves more cleverly in making use of the vantage-points
by employing more than one at each level of the tree to increase the fanout
of each node of the tree. In vp-trees, for a given similarity query, most of
the distance computations are between the query point and the vantage
points. Because it uses more than one vantage point in a node, the mvp-tree
has fewer vantage points compared to a vp-tree. The distances of data
points at the leaf nodes from the vantage points at higher levels (which
were already computed at construction time) are kept in mvp-trees, and
these distances are used for efficient filtering at search time. More efficient
filtering at the leaf level is utilized by making the leaf nodes have higher
node capacities. This way, the major filtering step during the search is
delayed to the leaf level.

We present experiments with high-dimensional Euclidean vectors and
gray-level images to compare vp-trees to mvp-trees to demonstrate the
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efficiency of mvp-trees. In these experiments we use an mvp-tree that has
two vantage points in a node. The distance distribution of data points plays
an important role in the efficiency of the index structures; so we experi-
mented with different sets of Euclidean vectors with different distance
distributions. Our experiments with Euclidean vectors show that mvp-trees
require 40% to 80% fewer distance computations compared to vp-trees for
small query ranges. For higher query ranges, the percentage-wise differ-
ence decreases gradually, yet mvp-trees still perform better, making up to
30% fewer distance computations for the largest query ranges.

Our experiments on gray-level images using L1 and L2 metrics (see
Section 5.1) also reveal the fact that mvp-trees perform better than
vp-trees. For this data set we had only 1151 images to experiment with
(and so had rather shallow trees), and the mvp-trees performed up to
20-30% fewer distance computations.

We explore the issue of choosing better vantage points, preferably with-
out introducing too much overhead into the construction step. We test a
simple heuristic that chooses points that are far away from most of the data
points for Euclidean vectors, and compare it to the results where the
vantage points are chosen randomly.

We generalize the mvp-tree structure so that it can use any number of
vantage points in an internal node and conduct experiments to see how
using more than one vantage point in a node scales up. In these experi-
ments, Euclidean vectors are used to observe and compare the performance
of mvp-trees with more than two vantage points in a node. In the ultimate
case, all the vantage points are kept in a single directory node, creating a
two-level tree structure (one internal node and the leaves), where only the
vantage points in this single directory node are used hierarchically to
partition the whole data space. Interestingly, the two-level mvp-tree that
keeps all vantage points in a single directory is the most efficient structure
in terms of minimizing the number of distance computations in answering
similarity queries for high-dimensional Euclidean vectors we used in our
experiments. As a final step, we compare the generalized mvp-trees with
M-trees, which is one of the state-of-the-art index structures for metric
spaces.

The rest of the paper is organized as follows. Section 2 gives the
definitions for metric spaces and similarity queries. Section 3 presents the
problem of indexing in large spaces and also previous approaches to this
problem. The related work on distance-based index structures is also given
in Section 3. Section 4 introduces the mvp-tree structure. The experimental
results for comparing the mvp-trees with vp-trees are given in Section 5.
Section 6 elaborates on how to choose better vantage points. Section 7
explains how the mvp-tree structure can be generalized so that more than
two vantage points can be kept in any node. Section 8 presents the
experimental results for the generalized version of mvp-trees with different
numbers of vantage points, and the results of experiments conducted for
comparing mvp-trees to M-trees. The conclusions are given in Section 9.
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2. METRIC SPACES AND SIMILARITY QUERIES

In this section we briefly give the definitions for metric distance functions
and different types of similarity queries.

A metric distance function d(x,y) for a metric space is defined as follows:

(i) d~x, y! 5 d~y, x!

(ii) 0 , d~x, y! , `, x Þ y
(iii) d~x, x! 5 0
(iv) d~x, y! # d~x, z! 1 d~z, y! (triangle inequality)

The above conditions are the only ones we can assume when designing an
index structure based on distances between objects in a metric space. No
geometric information can be utilized for a metric space, unlike the case for
a Euclidean space. Thus, we only have a set of objects from a metric space
and a distance function d~! that can be used to compute the distance
between any two objects.

Similarity-based queries can be posed in a number of ways. The most
common type asks for all data objects within some specified distance from a
given query object. These queries require retrieval of the near neighbors of
the query object. The formal definition for this type of query is as follows:

Near-neighbor query. From a given set of data objects X 5 $X1, X2,
..., Xn% from a metric space with a metric distance function d~!, retrieve all
data objects that are within distance r of a given query point Y. The
resulting set is $Xi ? Xi [ X and d~Xi, Y! # r%. Here, r is generally re-
ferred to as the similarity measure, or the tolerance factor.

Some variations of the near-neighbor query are also possible. The near-
est-neighbor query asks for the object (or objects) that has the minimum
distance to a given query object. Similarly, k-closest objects may be
requested as well. Though not very common, objects that are farther than a
given range from a query object can also be asked, as well as the farthest or
the k-farthest objects from the query object. The formulations for all these
queries are similar to the formulation of the near-neighbor query given
above.

Here we are mainly concerned about distance-based indexing for large
metric spaces. We also concentrate on the near-neighbor queries when we
introduce our index structure. Our main objective is to minimize the
number of distance calculations for a given similarity query, as the dis-
tance computations are assumed to be very expensive for the applications
we target. In the next section we discuss the indexing problem for large
metric spaces and review previous approaches to the problem.

3. INDEXING IN LARGE METRIC SPACES

The problem of indexing large metric spaces can be approached in different
ways. One approach is to use distance transformations to Euclidean spaces,
which is discussed in Section 3.1. Another is to use distance-based index
structures. In Section 3.2, we discuss distance-based index structures and

Indexing Large Metric Spaces • 365

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.



briefly review the previous work. In Section 3.3, vp-tree structure is
discussed in more detail.

3.1 Distance Transformations to Euclidean Spaces

For low-dimensional Euclidean domains, the conventional index structures
[Samet 1989] such as R-trees (and its variations) [Guttman 1984 ; Sellis et
al. 1987; Beckmann et al. 1990] can be used effectively to answer similarity
queries. In such cases, a near-neighbor search query asks for all the objects
in (or that intersect) a spherical search window where the center is the
query object and the radius is the tolerance factor r. There are some special
techniques for other forms of similarity queries, such as nearest-neighbor
queries. For example, in Roussopoulos et al. [1995], some heuristics are
introduced to efficiently search the R-tree structure to answer nearest-
neighbor queries. However, the conventional spatial structures stop being
efficient if the dimensionality is high. Experimental results [Otterman
1992] show that R-trees become inefficient for n-dimensional spaces where
n is greater than 20.

It is possible to make use of conventional spatial index structures for
some high-dimensional Euclidean domains. One way is to apply a mapping
of objects from the original high-dimensional space to a low-dimensional
(Euclidean) space by using a distance transformation and then conven-
tional index structures (such as R-trees) as a major filtering mechanism in
the transformed space. For a distance transformation from a high-dimen-
sional domain to a lower-dimensional domain to be effective, the distances
between objects before the transformation (in the original space) should be
greater than or equal to the distances after the transformation (in the
transformed space); otherwise the transformation may impose some false
dismissals during similarity search queries. That is, the distance transfor-
mation function should underestimate the actual distances between objects
in the transformed space. For efficiency, the distances in the transformed
space should be close estimates of the distances in the actual space. Such
transformations have been successfully used to index high-dimensional
data in many applications such as time sequences [Agrawal et al. 1993;
Faloutsos et al. 1994a], and images [Faloutsos et al. 1994b].

Although it is possible to make use of general transformations such as
DFT, Karhunen-Loeve for any Euclidean domain, it is also possible to come
up with application-specific distance transformations. In the QBIC (Query
By Image Content) system [Faloutsos et al. 1994b], the color content of
images was used to compute similarity between images. The differences
between the color content of two images are computed from their color
histograms. Computation of a distance between the color histograms of two
images is quite expensive because the color histograms are high-dimen-
sional (the number of different colors is generally 64 or 256) vectors, and
crosstalk (as some colors are similar) between colors have to be considered.
To increase speed in color distance computation, QBIC keeps an index on
the average color of images. The average color of an image is a three-
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dimensional vector with the average red, blue, and green values of the
pixels in the image. The distance between average color vectors of images is
proven to be less than or equal to the distance between their color
histograms; that is, the transformation underestimates the actual dis-
tances. Similarity queries on the color content of images are answered by
first using the index on average color vectors as the major filtering step and
then refining the result by actual computations of histogram distances.

Note that, although the idea of using a distance transformation works
fine for many applications, it makes the assumption that such a transfor-
mation exists and is applicable to the domain of interest. Transformations
such as DFT or Karhunen-Loeve are not effective in indexing high-dimen-
sional vectors where the values of dimensions are uncorrelated in any given
vector. Therefore, unfortunately, it is not always possible or cost effective to
employ a distance transformation. Yet, there are distance-based indexing
techniques that are applicable to all domains where metric distance func-
tions are employed. These techniques can be used directly for high-
dimensional spatial domains, since the conventional distance functions
(such as Euclidean, or any Lp distance) defined on these domains are
metric. Sequence matching, time-series analysis, and image databases are
some example applications having such domains. Distance-based tech-
niques are also applicable for domains where the data is nonspatial (that is,
data objects can not be mapped to points in a multidimensional space), such
as text databases which generally use the edit distance (which is metric) for
computing similarity data items (lines of text, words, etc.). We review a few
of the distance-based indexing techniques in Section 3.2.

3.2 Distance-Based Index Structures

There are a number of research results for efficiently answering similarity
search queries in different contexts. Burkhard and Keller [1973] suggest
the use of three different techniques for finding best-matching (closest) key
words in a file to a given query key. They employ a metric distance function
on the key space, which always returns discrete values (i.e., the distances
are always integers). Their first method is a hierarchical multiway tree
decomposition. At the top level, they pick an arbitrary element from the
key domain and group the rest of the keys with respect to their distances to
that key. Keys that are of the same distance from that key get into the
same group. Note that this is possible because the distance values are
always discrete. The same hierarchical composition goes on for all the
groups recursively, creating a tree structure.

The second method in Burkhard and Keller [1973] partitions the data
space into a number of sets of keys. For each set, a center key is picked
arbitrarily, and the radius, which is the maximum distance between the
center and any other key in the set, is calculated. The keys in each set are
partitioned in the same way recursively, creating a multiway tree. Each
node in the tree keeps the centers and the radii for the sets of keys indexed
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below. The strategy for partitioning the keys into sets was not discussed
and was left as a parameter.

The third method in Burkhard and Keller [1973] is similar to the second
one, but there is the requirement that the diameter (the maximum distance
between any two points in a group) of any group is less than a given
constant k, where the value of k is different at each level. The group
satisfying this criterion is called a clique. This method relies on finding the
set of maximal cliques at each level and keeping their representatives in
the nodes to direct or trim the search. Note that keys may appear in more
than one clique; so the aim is to select as representative keys the ones that
appear in as many cliques as possible.

In another approach, Shasha and Wang [1990] suggest using precom-
puted distances between data elements to efficiently answer similarity
search queries. The aim is to minimize the number of distance computa-
tions as much as possible, since they are assumed to be very expensive.
Search algorithms of O~n! or even O~nlogn! (where n is the number of
data objects) are acceptable if they minimize the number of distance
computations. In Shasha and Wang’s method [Shasha and Wang 1990], a
table of size O~n2! keeps the distances between data objects if they are
precomputed. The other pairwise distances are estimated (by specifying an
interval) by making use of the precomputed distances. The technique of
storing and using precomputed distances may be effective for data domains
with small cardinality; however, space requirements and search complexity
become overwhelming for larger domains.

Uhlmann [1991] introduced two hierarchical index structures for similar-
ity search. The first is the vp-tree (vantage-point tree). The vp-tree basically
partitions the data space into spherical cuts around a chosen vantage point
at each level. This approach, referred to as ball decomposition in the paper,
is similar to the first method in Burkhard and Keller [1973]. At each node
the distances between the vantage point for that node and the data points
to be indexed below that node are computed. The median is found and the
data points are partitioned into two groups, one of them accommodating
the points whose distances to the vantage point are less than or equal to
the median distance, and the other group accommodating the points whose
distances are larger than or equal to the median. These two groups of data
points are indexed separately by the left and right subbranches below that
node, which are constructed in the same way recursively.

Although the vp-tree was introduced as a binary tree, it is also possible to
generalize it to a multiway tree for larger fanouts. Yiannilos [1993]
provided some analytical results on vp-trees and suggested ways to pick
better vantage points. Chiueh [1994] proposed an algorithm for the vp-tree
structure to answer nearest-neighbor queries. We talk about vp-trees in
detail in Section 3.3.

The gh-tree (a generalized hyperplane tree) structure was also introduced
in Uhlmann [1991]. A gh-tree is constructed as follows. At the top level, two
points are picked and the remaining points are divided into two groups,
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depending on which of these two points they are closer to. This partitioning
descends down recursively to create a tree structure. Unlike the vp-trees,
the branching factor can only be two. If the two pivot points are well-
selected at every level, the gh-tree tends to be a well-balanced structure.

The FQ-tree (fixed queries tree) is another tree structure that uses the
idea of partitioning the data space around reference points [Baeza-Yates et
al. 1994]. The main difference from the vp-tree is that the FQ-tree uses the
same reference point for all internal nodes at the same level. So the total
number of reference points (vantage points) used is equal to the height of
the tree. The partitioning in FQ-trees is similar to the first approach in
Burkhard and Keller [1973]. A discrete (or discretized) distance function is
assumed, and the data space is partitioned with respect to every possible
distance value from the reference point. A performance analysis of FQ-trees
is also given in Baeza-Yates et al. [1994]. The idea of using a single
reference point for all nodes in the same level is an interesting one. We use
a similar technique in the design of mvp-trees.

The GNAT (geometric near-neighbor access tree) structure [Brin 1995] is
another mechanism for answering near-neighbor queries. A k number of
split points are chosen at the top level. Each one of the remaining points is
associated with one of the k data sets (one for each split point), depending
on which split point they are closest to. For each split point, the minimum
and the maximum distances from the points in the data sets of other split
points are recorded. The tree is built recursively for each data set at the
next level. The number of split points, k, is parameterized and chosen to be
a different value for each data set, depending on its cardinality. The GNAT
structure is compared to the binary vp-tree, and it is shown that the
preprocessing (construction) step of GNAT is more expensive than the
vp-tree, but its search algorithm makes less distance computations in the
experiments for different data sets.

More recently, Ciaccia et al. [1997] introduced the M-tree structure,
which differs from the other distance-based index structures in being able
to handle dynamic operations. The M-tree is constructed bottom-up (in
contrast to the other structures such as the vp-tree, GNAT, and the gh-tree,
which are constructed top-down), and it can handle dynamic operations
with reasonable cost and without requiring periodical restructuring. An
M-tree stores a given set of objects $o1, . . . , o2% into fixed-size leaf nodes,
which correspond to sphere-like regions of the metric space. Each leaf node
entry contains the id of a data object, its feature values (used in a distance
computation), and its distance from a routing object, which is kept at the
parent node. Each internal node entry keeps a child pointer, a routing
object, and its distance from its parent routing object (except for the root),
and the radius of the sphere-like region that accommodates all the objects
indexed below that entry (called the covering radius). The search is pruned
by making use of the covering radii and the distances from objects to their
routing objects in their parent nodes. Experimental results for M-trees are
provided in Ciaccia et al. [1997]; Ciaccia and Patella [1998]; Ciaccia et al.
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[1998a; 1998b]. An analytical cost model based on distance distribution of
the objects is derived in Ciaccia et al. [1998b] for M-trees. Evaluation of
complex similarity queries (with multiple similarity predicates) using M-
trees is discussed in Ciaccia et al. [1998a]. Ciaccia and Patella [1998]
provide an algorithm for creating an M-tree from a given set of objects via
bulkloading. We provide some experimental results with M-trees in Section
8.2.

3.3 Vantage Point-Tree Structure

Let us briefly discuss the vp-tree to explain the idea of partitioning the
data space around selected points (vantage points) at different levels to
form a hierarchical tree structure and using it for effective filtering in
similarity search queries.

The structure of a binary vp-tree is very simple. Each internal node is of
the form ~Sv, M, Rptr, Lptr!, where Sv is the vantage point, M is the
median distance among the distances of all the points (from Sv) indexed
below that node, and Rptr and Lptr are pointers to the left and right
branches. The left branch of the node indexes the points whose distances
from Sv are less than or equal to M, and the right branch of the node
indexes the points whose distances from Sv are greater than or equal to M.
References to the data points are kept in leaf nodes, instead of pointers to
the left and right branches.

Given a finite set S 5 $S1, S2, .., Sn% of n objects and a metric distance
function d~Si, Sj!, a binary vp-tree V on S is constructed as follows.

(1) If ?S? 5 0, then create an empty tree.
(2) Else, let Sv be an arbitrary object from S. (Sv is the vantage point)

M 5 median of $d~Si, Sv! ? Si [ S%

Let Sl 5 $Si ? d~Si, Sv! # M, where Si [ S and Si Þ Sv%

Sr 5 $Sj ? d~Sj, Sv! $ M, where Sj [ S%

(The cardinality of Sl and Sr should be equal)
Recursively create vp-trees on Sl and on Sr as the left and right branches of
the root of V.

The binary vp-tree is balanced, and can therefore be easily paged for
storage in secondary memory. The construction step requires O~nlog2n!

distance computations, where n is the number of objects.
For a given query object Q, the set of data objects that are within

distance r of Q is found using the search algorithm given below.

(1) If d~Q, Sv! # r, then Sv (the vantage point at the root) is in the answer set.
(2) If d~Q, Sv! 1 r $ M (median), then recursively search the right branch.
(3) If d~Q, Sv! 2 r # M, then recursively search the left branch.

(note that both branches can be searched if both search conditions are
satisfied.)
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The correctness of this simple search strategy can be proven easily by
using the triangle inequality of distances among any three objects in a
metric data space (see Appendix).

Generalizing binary vp-trees into multiway vp-trees. The binary
vp-tree can be easily generalized into a multiway tree structure for larger
fanouts at every node, hoping that the decrease in the height of the tree
would also decrease the number of distance computations. The construction
of a vp-tree of order m is very similar to that of a binary vp-tree. Instead of
finding the median of the distances between the vantage point and the data
points, the points are ordered with respect to their distances from the
vantage point and partitioned into m groups of equal cardinality. The
distance values used to partition the data points are recorded in each node.
We refer to those values as cutoff values. There are m 2 1 cutoff values in
a node. The m groups of data points are indexed below the root node by its
m children, which are themselves vp-trees of order m created in the same
way recursively. The construction of an m-way vp-tree requires O~nlogmn!
distance computations. That is, creating an m-way vp-tree decreases the
number of distance computations by a factor of log2m at the construction
stage compared to binary vp-trees.

However, there is one problem with high-order vp-trees. A vp-tree
partitions the data space into spherical cuts (see Figure 1). These spherical
cuts become too thin for high-dimensional domains, leading the search
regions to intersect with many of them, and thus to more branching during
a similarity search. As an example, consider an N-dimensional Euclidean
space where N is a large number, and a vp-tree of order three is built to
index the uniformly distributed data points in that space. At the root level,
the N-dimensional space is partitioned into three spherical regions, as
shown in Figure 1. The three different regions are colored differently and
labeled 1, 2, and 3. Let R1 be the radius of region 1 and R2 be the radius of
the sphere enclosing regions 1 and 2. Due to the uniform distribution

3

2
1

R 1

R 2

Fig. 1. The root level partitioning of a vp-tree with branching factor 3. The three different
regions are labeled 1, 2, 3, and they are all shaded differently.
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assumption, the N-dimensional volumes of regions 1 and 2 can be consid-
ered equal. The volume of an N-dimensional sphere is directly proportional
to the Nth factor of its radius, so we can deduce that R2 5 R1*~2!1/N. The
thickness of the spherical shell of region 2 is R2 2 R1 5 R1*~21/N 2 1!. To
give an idea, for N 5 100, R2 5 1.007R1.

So when the spherical cuts are very thin, the chances of a search
operation descending down to more than one branch becomes higher. If a
search path descends down to k out of m children of a node, then k distance
computations are needed at the next level, where the distance between the
query point and the vantage point of each child node has to be found. This
is because the vp-tree keeps a different vantage point for each node at the
same level. Each child of a node is associated with a region that is like a
spherical shell (other than the innermost child, which has a spherical
region), and the data points indexed below that child node all belong to that
region. Those regions are disjoint for the siblings. Since the vantage point
for a node has to be chosen among the data points indexed below a node,
the vantage points of the siblings are all different.

4. MULTIVANTAGE-POINT TREES

In this section we present the mvp-tree (multivantage point tree). Similar
to the vp-tree, the mvp-tree partitions the data space into spherical cuts
around vantage points. However, it creates partitions with respect to more
than one vantage point at each level and keeps extra information in the
leaf nodes for effective filtering of distant points in a similarity search
operation.

4.1 Motivation

Before introducing the mvp-tree, we discuss a few useful observations that
can be used as heuristics for designing a better search structure using
vantage points.

Observation 1. It is possible to partition a spherical shell-like region
using a vantage point chosen from outside the region. This is shown in
Figure 2, where a vantage point outside of a region is used to partition it
into three parts, which are labeled as 1, 2, 3 and shaded differently (region
2 consists of two disjoint parts).

This means that the same vantage point can be used to partition the
regions associated with the nodes at the same level. When the search
operation descends down to several branches, we do not have to make a
different distance computation at the root of each branch. Also, if the same
vantage point can be used for all the children of a node, that vantage point
can be kept in the parent just as well. This way we would keep more than
one vantage point in the parent node. We can avoid creating the children
nodes by incorporating them in the parent. This could be done by increas-
ing the fanout of the parent node. The mvp-tree takes this approach and
uses more than one vantage point in the nodes for higher utilization.
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Observation 2. In the construction of the vp-tree structure, for each data
point in the leaves, we compute the distances between that point and all
the vantage points on the path from the root node to the leaf node that
keeps that data point. So for each data point, ~logm~n!! distance computa-
tions (for an vp-tree of order m) are made (which is equal to the height of
the tree). In vp-trees, such distances (other than the distance to the
vantage point of the leaf node) are not kept. However, it is possible to keep
these distances for the data points in the leaf nodes to provide further
filtering at the leaf level during search operations. We use this idea in
mvp-trees. In mvp-trees, for each data point in a leaf, we also keep the first
p distances (here, p is a parameter) that are computed in the construction
step between that data point and the vantage points at the upper levels of
the tree. The search algorithm is modified to make use of these distances.

Figure 3 illustrates how the precomputed distances could be helpful in
filtering distant objects. In this figure, a shallow vp-tree is shown with two
internal nodes having vantage points vp1 and vp2, and a leaf node with
data point p1. Consider a near-neighbor query where the query point is Q
and the similarity range is r, as depicted in Figure 3. The data space is
partitioned into two regions with respect to vp1 where the boundary is
shown with the bold circle around vp1. The outer region is partitioned
using vp2. The similarity search proceeds down to the leaf node where p1
is kept. By considering only the distance between p1 and vp2 (which is the
way done in vp-trees), we would not be able to filter out p1, and therefore
would have to compute d~Q, p1! (see inequality (1)). However, if the
distance d~vp1, p1! (which is computed at construction time) is also
considered, then p1 can be filtered out due to inequality (2).

Having shown the motivation behind the mvp-tree structure, we explain
the construction and search algorithms below.

4.2 Mvp-Tree Structure

The mvp-tree uses two vantage points in every node. Each node of the
mvp-tree can be viewed as two levels of a vantage point tree (a parent node

Fig. 2. Partitioning a spherical shell-like region using a vantage point from outside.

Indexing Large Metric Spaces • 373

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.



and all its children) where all the children nodes at the lower level use the
same vantage point. This makes it possible for an mvp-tree node to have
large fanouts and a smaller number of vantage points in nonleaf levels.

In this section we show the structure of mvp-trees and present the
construction algorithm for binary mvp-trees. In general, an mvp-tree has
three parameters:

● the number of partitions created by each vantage point ~m!;

● the maximum fanout for the leaf nodes ~k!; and

● the number of distances for the data points to be kept at the leaves ~p!.

In binary mvp-trees, the first vantage point (referred to as Sv1) divides
the space into two parts, and the second vantage point (referred to as Sv2)
divides each of these partitions into two. So the fanout of a node in a binary
mvp-tree is four. In general, the fanout of an internal node is denoted by
the parameter m2, where m is the number of partitions created by a
vantage point. The first vantage point creates m partitions and the second
point creates m partitions from each of the partitions created by the first
vantage point, making the fanout of the node m2.

In every internal node, we keep the median M1 for the partition with
respect to the first vantage point, and medians M2@1# and M2@2# for
partitions with respect to the second vantage point.

The exact distances between the data points and vantage points of that
leaf are kept in a leaf node. D1@i# and D2@i#~i 5 1,2, . . . , k! are the
distances from the first and second vantage points, respectively, where k is
the maximum fanout for the leaf nodes, which may be chosen larger than
the fanout m2 of internal nodes.

     vp1

 p1: d(p1,vp1),d(p1,vp2)

     vp2

(1)
 d(vp2,Q) + r ≥ d(p1,vp2) ≥ d(vp2,Q) -r

(2)
 d(vp1,p1) > d(vp1,Q) + r

 vp1

 Q
 p1

 vp2

r

Fig. 3. A vp-tree decomposition where the use of precomputed (at construction time)
distances make it possible to filter out a distant point ~p1!.
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For each data point x in the leaves, the array x.PATH@p# keeps the
precomputed distances between the data point x and the first C vantage
points along the path from the root to the leaf node that keeps x. The
parameter p can not be bigger than the maximum number of vantage
points along a path from the root to any leaf node. Figure 4 shows the
structure of internal nodes and the leaf nodes of a binary mvp-tree.

Having given the explanation for the parameters and the structure, we
present the construction algorithm next. Note that, for simplicity, in
presenting the algorithm we took m 5 2 .

Constructing mvp-trees. Given a finite set S 5 $S1, S2, .., Sn% of n
objects and a metric distance function d~Si, Sj!, an mvp-tree with parame-
ters m 5 2, k, and p is constructed on S as follows.

(Here we use the notation given in Figure 4. The variable level is used to
keep track of the number of vantage points used along the path from the
current node to the root. It is initialized to 1.)

(1) If ?S? 5 0, then create an empty tree and quit
(2) If ?S? # k 1 2, then

(2.1) Select an arbitrary object Sv1 from S. Sv1 is the first vantage point.
(2.2) Delete Sv1 from S.
(2.3) Calculate all d~Si, Sv1! where Si [ S, and store in array D1.
(2.4) Let Sv2 be the farthest point from Sv1 in S; Sv2 is the second vantage
point.
(2.5) Delete Sv2 from S.
(2.6) Calculate all d~Sj, Sv2! where Sj [ S, and store in array D2.
(2.7) Quit

(3) Else if ?S? . k 1 2, then
(3.1) Let Sv1 be an arbitrary object from S. Sv1 is the first vantage point.

 Sv1 

 Sv2       |M 2[1]|

 M 1

|M 2[2]|

 {          child pointers           }

 Sv1           D1[1]     D1[2]      ...     D1[k]

 Sv2          D2[1]     D2[2]      ...     D2[k]

    P1 ,       P2 ,                 Pk ,
 P1.PATH   P2.PATH  ...     Pk.PATH

Internal node

Leaf node
(P1 through Pk are data points)

Fig. 4. Node structure for a binary mvp-tree.
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(3.2) Delete Sv1 from S.
(3.3) Calculate all d~Si, Sv1! where Si [ S, if ~level # p!, then Si.PATH
@level# 5 d~Si, Sv1!

(3.4) Order the objects in S with respect to their distances from Sv1.
M1 5 median of $d~Si, Sv1! ? Si [ S% . Break this list into 2 lists of
equal cardinality at the median.
Let SS1 and SS2 be these two sets in order, that is, SS2 keeps the
farthest objects from Sv1.

(3.5) Let Sv2 be an arbitrary object from SS2. Sv2 is the second vantage
point.
(3.6) Let SS2 :5 SS2 2 $Sv2% (Delete Sv2 from SS2)
(3.7) Calculate all d~Sj, Sv2! where Sj [ SS1 or Sj [ SS2, if ~level , p!,
then Sj.PATH@level 1 1# 5 d~Sj, Sv2!

(3.8) M2@1# 5 median of $d~Sj, Sv2! ? Sj [ SS1%.
M2@2# 5 median of $d~Sj, Sv2! ? Sj [ SS2%.

(3.9) Break the list SS1 into two sets of equal cardinality at M2@1#

Similarly, break SS2 into two sets of equal cardinality at M2@2#

Let level :5 level 1 2, and recursively create the mvp-trees on these
four sets.

The mvp-tree construction can be modified easily so that more than two
vantage points can be kept in one node. We talk about this generalization
in Section 7. Also, higher fanouts at the internal nodes are also possible,
and may be more favorable in some cases.

Observe that we chose the second vantage point to be one of the farthest
points from the first vantage point. If the two vantage points were close to
each other, they would not be able to effectively partition the data set.
Actually, the farthest point may very well be the best candidate for the
second vantage point. This is why we chose the second vantage point in a
leaf node to be the farthest point from the first vantage point of that leaf
node. Note that any optimization technique (such as a heuristic to choose
the best vantage point) for vp-trees can also be applied to mvp-trees. We
briefly discuss better ways of choosing vantage points in Section 6.

The construction step requires O~nlogmn! distance computations for the
mvp-tree. There is an extra storage requirement for mvp-trees, as we keep
p distances for each data point in every leaf node.

A full mvp-tree with parameters ~m, k, p! and height h has 2*~m2h 2
1! / ~m2 2 1! vantage points. This is actually twice the number of nodes in
the mvp-tree, since two vantage points are kept at every node. The number
of data points that are not used as vantage points is ~m2~h21!!*k , which is
the number of leaf nodes times the capacity ~k! of a leaf node.

It is a good idea to have k large, so that most of the data items are kept
in the leaves. If k is large, the ratio of the number of vantage points versus
the number of points in the leaf nodes becomes smaller, meaning that most
of the data points are accommodated in the leaf nodes. This makes it
possible to filter out many distant (out of the search region) points from
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further consideration by making use of the p precomputed distances for
each point in a leaf node. In other words, instead of making many distance
computations with the vantage points in the internal nodes, we delay the
major filtering step of the search algorithm to the leaf level where we have
more effective ways of avoiding unnecessary distance computations.

4.3 Search Algorithm for mvp-Trees

The search algorithm proceeds depth-first for mvp-trees. We keep the
distances between the query object and the first p vantage points along the
current search path as we will be using these distances for filtering data
points in the leaves (if possible). An array, PATH@#, of size p, is used to
keep these distances.

Similarity search in mvp-trees. For a given query object Q, the set of
data objects that are within distance r of Q are found using the following
search algorithm:

(1) Compute the distances d~Q, Sv1! and d~Q, Sv2!. (Sv1 and Sv2 are first and
second vantage points)

If d~Q, Sv1! # r then Sv1 is in the answer set.
If d~Q, Sv2! # r then Sv2 is in the answer set.

(2) If the current node is a leaf node,
For all data points ~Si! in the node,
(2.1) Find d~Si, Sv1! and d~Si, Sv2! from the arrays D1 and D2 respectively.
(2.2) If @d~Q, Sv1! 2 r # d~Si, Sv1! # d~Q, Sv1! 1 r# and

@d~Q, Sv2! 2 r # d~Si, Sv2! # d~Q, Sv2! 1 r# , then
if for all i 5 1. . . p
~PATH@i# 2 r # Si.PATH@i# # PATH@i# 1 r! holds,
then compute d~Q, Si!. If d~Q, Si! # r, then Si is in the answer set.

(3) Else if the current node is an internal node
(3.1) If ~level # p! then PATH@level# 5 d~Q, Sv1!

If ~level , p! then PATH@level# 5 d~Q, Sv2!

(3.2) If d~Q, Sv1! 1 r # M1 then
if d~Q, Sv2! 1 r # M2@1# then recursively search the first branch
with level 5 level 1 2
if d~Q, Sv2! 2 r $ M2@1# then recursively search the second branch
with level 5 level 1 2

(3.3) If d~Q, Sv1! 2 r $ M1 then
if d~Q, Sv2! 1 r # M2@2# then recursively search the third branch
with level 5 level 1 2
if d~Q, Sv2! 2 r $ M2@2# then recursively search the fourth branch
with level 5 level 1 2

The efficiency of the search algorithm very much depends on the distri-
bution of distances among the data points, the query range, and selection of
vantage points. In the worst case, most data points are relatively far away
from each other (such as randomly generated vectors in a high-dimensional
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domain, as in Section 5). In this case the search algorithm can make O~N!
distance computations, where N is the cardinality of the data set. However,
even in the worst case, the number of distance computations made by the
search algorithm is far less than N, making it a significant improvement
over linear search. Note that the claim on worst-case complexity is true for
all distance-based index structures simply because all of them use the
triangle inequality to filter out data points that are distant from the query
point.

In the next section we present the results of our experimental study for
the evaluation of performance of mvp-trees.

5. IMPLEMENTATION

We implemented the main memory model of the mvp-trees to test and
compare it with the vp-trees. The mvp-tree and the vp-trees are both
implemented in C under UNIX operating system. Since the distance
computations are assumed to be expensive for the metric spaces we
consider, the number of distance computations was used as the cost
measure. The mvp-tree structure is not a paged structure, so we do not
discuss the I/O performance here. We counted the number of distance
computations required for similarity search queries by both mvp and
vp-trees for comparison.

5.1 Data Sets

Two types of data, high-dimensional Euclidean vectors and gray-level MRI
images (where each image has 256*256 pixels) were used for empirical
study.

High-dimensional Euclidean vectors. We used two sets of Euclidean
vectors with two different distributions. A Euclidean distance metric was
used as the distance metric for all the experiments. Note that the dimen-
sionality of the Euclidean data sets or the choice of Euclidean distance L2

metric is not of particular significance here. There are many other indexing
techniques such as TV-trees [Lin et al. 1994] and X-trees [Berchtold et al.
1996] that are particularly designed for high-dimensional Euclidean data.
For general metric spaces, we only use the pairwise distances between
objects in the data space for both index construction and search, as we
assume that no geometric information is available. The only characteristics
that would affect the query performance is the pairwise distance distribu-
tion of the objects in the metric space [Ciaccia et al. 1998b]. So although
mvp-trees and vp-trees were not specifically designed for the Euclidean
vectors we experimented with, using them in the experiments provides us a
convenient test bed for relating search performance with different distance
distributions.

Our first set of experiments were conducted on uniformly distributed
Euclidean vectors. We used 50,000 uniformly distributed vectors in 10-
dimensional Euclidean space. For this set, all vectors were chosen ran-
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domly from the 10-dimensional unit hypercube. The pairwise distance
distribution of these uniformly distributed vectors are shown in Figure 5.
The distance values are sampled at intervals of length 0.01.

The distance distribution of randomly generated 10-dimensional vectors
is similar to a Gaussian curve where the distances between any two points
fall mostly within the interval [0.5, 2.0], concentrating around the midpoint
1.25. For this vector set, we tried query (similarity) ranges from 0.2 to 0.5
in our experiments. The reason we chose 10-dimensional vectors to test our
structures on uniformly distributed data is based on the fact that it is very
hard to get meaningful results in higher dimensional spaces. We initially
tried randomly generated 20-dimensional Euclidean vectors, but the selec-
tivity for the query ranges we tried was very low. We were not able to find
more than one near neighbor (mostly none at all), even for the highest
query range (0.5) used in the experiments. Although 10-dimensional vec-
tors may not be considered as high-dimensional data, the selectivity of
queries is much higher in 10 dimensions, which allows us to relate the
selectivity factor with query performance in the experiments for uniformly
distributed vectors. The selectivity for different query ranges for 10-
dimensional vectors is presented in Section 5.2.

Another set of experiments were conducted on 20-dimensional Euclidean
vectors generated in clusters of equal size. The clusters were generated as
follows. First, a random vector is generated from the 20–dimensional unit
hypercube with each side of size 1. This random vector becomes the seed for
the cluster. Then the other vectors in the cluster are generated from this
vector, or a previously generated vector in the same cluster, simply by
altering each dimension of that vector with the addition of a random value
chosen from the interval @2 «, «#, where « is a small constant (between 0.1
to 0.2).

Since most of the points are generated from previously generated points,
the accumulation of differences may become large, and therefore, there are
many points that are distant from the seed of the cluster (and from each
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Fig. 5. Distance distribution for uniformly distributed vectors in 10–dimensional Euclidean
space. (Y axis shows the number of data object pairs that have the corresponding distance
value. The distance values are sampled at intervals of length 0.01).
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other), and many are outside of the unit hypercube. We call these groups of
points clusters because of the way they are generated, not because they are
a bunch of points that are physically close in the Euclidean space. In Figure
6, the distance distribution histogram for a set of clustered data is shown,
where each cluster is of size 1000, and « is 0.15. Again the distance values
are sampled at intervals of size 0.01. One quickly realizes that this data set
has a different distance distribution where the possible pairwise distances
have a wider range. The distribution is not as sharp as it was for random
vectors. For this data set, we tested similarity queries with r ranging from
0.2 to 1.0 for different query sets. We did not try the same experiments on
10-dimensional vectors (generated in the same way), as we were able to
observe the query range/selectivity relationship on 20-dimensional space.
The selectivity of the queries for this data set is discussed in Section 5.2 as
well.

Gray-level MRI images. We have also experimented on 1151 MRI
images with 256*256 pixels and 256 values of gray level. These images are
a collection of MRI head scans of several people. Since we did not have any
content information on these images, we simply used L1 and L2 metrics to
compute the distances between images. Remember that the Lp distance
between any two N-dimensional Euclidean vectors X and Y (denoted
Dp~X, Y!) is calculated as follows:

Dp~X, Y! 5 pÎO
i51

N

~?Xi 2 Yi?!
p

the L2 metric is the Euclidean distance metric. An L1 distance between two
vectors is simply found by accumulating absolute differences for each
dimension.

Distance distribution histogram for 20 -dimensional 
vectors generated in clusters 

0

5000000

10000000

15000000

20000000

25000000

0

0.
74

1.
48

2.
22

2.
96 3.
7

4.
44

5.
18

5.
92

6.
66 7.
4

8.
14

8.
88

9.
62

Distance Value

Fig. 6. Distance distribution for 20-dimensional Euclidean vectors generated in clusters. (Y
axis shows the number of data object pairs that have the corresponding distance value. The
distance values are sampled at intervals of length 0.01).

380 • T. Bozkaya and M. Ozsoyoglu

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.



When calculating distances, these images are simply treated as
256*256 5 65,536-dimensional Euclidean vectors, and the pixel by pixel
intensity differences are accumulated using L1 or L2 metrics. This data set
is a good example where it is very desirable to decrease the number of
distance computations by using an index structure. The distance computa-
tions not only require a large number of arithmetic operations, but also
require considerable I/O time, since the images are stored on disk using
around 61K per image (images are in binary PGM format using one byte
per pixel).

The distance distributions of the MRI images for L1 and L2 metrics are
shown in the two histograms in Figures 7 and 8. There are
~1150*1151! / 2 5 658,795 different pairs of images, and hence as many
computations. The L1 distance values are normalized by 10,000 to avoid
large values in all distance calculations between images. The L2 distance
values are similarly normalized by 100. After the normalization, the
distance values are sampled at intervals of length 1 in each case.

The distance distribution for the images is much different than the one
for Euclidean vectors. There are two peaks, indicating that while most of
the images are distant from each other, some of them are quite similar,
probably forming several clusters. This distribution also gives us an idea
about choosing meaningful tolerance factors for similarity queries, in the
sense that we can see what distance ranges can be considered similar. If
the L1 metric is used, a tolerance factor ~r! around 500,000 is quite
meaningful, while the if L2 metric is used, the tolerance factor should be
around 3000.

It is also possible to use other distance measures as well. Any Lp metric
can be used just like L1 or L2. An Lp metric can also be used in a weighted
fashion where each pixel position is assigned a weight that would be used
to multiply intensity differences of two images at that pixel position when
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Fig. 7. Distance histogram for images when the L1 metric is used.
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computing the distances. Such a distance function can be easily shown to
be metric. It can be used to give more importance to particular regions (for
example, center of the images) in computing distances.

5.2 Experimental Results

High-dimensional Euclidean vectors. For Euclidean vectors, we
present the search performances of four tree structures: the vp-trees of
order 2 and 3 and two mvp-trees with the ~m, k, p! values (3,9,5) and
(3,80,5), respectively. In the experiments with vp-trees of higher order, we
observed that higher order vp-trees give similar or worse performances,
hence those results are not presented here. We have also tried several
mvp-trees with different parameters; however, we observed that order 3
~m! gives slightly better (but very close) results compared to order 2 or any
value higher than 3. We kept 5 ~p! reference points for each data point in
the leaf nodes of the mvp-trees. The two mvp-trees for which we display the
results have different k (leaf capacity) values to see how it affects search
efficiency. We do not take into account how the leaf and internal nodes of
an mvpt-tree are paged because we do not consider I/O behavior in this
study. In the following figures, the mvp-tree with ~m, k, p! values (3,9,5) is
referred to as mvpt(3,9) and the other mvp-tree is referred to as mvpt(3,80),
since both trees have the same p values. The vp-trees of order 2 and 3 are
referred to as vpt(2) and vpt(3), respectively.

We discuss the results on uniformly distributed data sets first. In all the
experiments, the query points are generated in the same way as the data
points are; that is, they conform to the same uniform distribution. The
results in Figure 9 are obtained by taking the average of four different runs
for each structure where a different seed (for the random function used to
pick vantage points) is used in each run. The result of each run is obtained
by averaging the results of 100 search queries. For this set of experiments,
selectivity versus query range information is given in Table I, where the
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total number of near neighbors found in 100 queries is shown for query
ranges 0.2 thru 0.5.

Figure 9 shows the performance results for 10-dimensional uniformly
distributed Euclidean vectors. As shown in the figure, the mvp-trees
perform better than vp-trees, especially for small query ranges. Between
the vp-trees, vpt(2) was the one with superior performance, compared to
vpt(3) for all query ranges. Compared to vpt(2), mvpt(3,9) performed 25%,
20%, 10%, and 4% fewer distance computations for query ranges 0.2, 0.3,
0.4, and 0.5 (respectively), where mvpt(3,80) performed 65%, 40%, 20% and
3% fewer distance computations for the same query ranges. We see that the
performances are very close for high query ranges because the selectivity of
queries jump quickly for high query ranges (see Table I), making it harder
to filter out non-near-neighbor data points during the search for all
structures.

For Euclidean vectors generated in clusters, we use two different query
sets. In the first query set, which we refer to as Q1, all query objects are
generated randomly from the 20-dimensional unit hypercube, as in the
previous test case. In the second query set, which we refer to as Q2, query
objects are generated by slightly altering randomly chosen data objects, so
that we are guaranteed finding some near neighbors during query evalua-
tion. Note that this set of query points actually conforms to data distribu-
tion, as the data points are generated in the same way. The experimental
results for the two query sets are shown in Figures 10 and 11. Each query
set contains 100 objects, and results are obtained by averaging two differ-
ent runs (with different seeds). Table II shows the total number of near
neighbors found during the evaluation of these queries for different query
ranges.

Figure 10 shows the performance results for the data set where the
vectors are generated in clusters and the query objects are generated
randomly (query set Q1). For these data and query sets, vpt(3) performs
slightly better than vpt(2) (around 10%). The mvp-trees again perform
much better than vp-trees. The mvpt(3,80) makes around 70%–80% fewer
distance computations than vpt(3) for small query ranges (up to 0.4), where
mvpt(3,9) makes around 45%–50% fewer computations for the same query
ranges. For higher query ranges, the gain in efficiency decreases slowly as
the query range increases. For the query range 1.0, mvpt(3,80) requires
25% fewer distance computations compared to vpt(3), and mvpt(3,9) re-
quires 20% fewers.

Figure 11 shows performance results for the data set where the vectors
are generated in clusters (query set Q2). For this data set, the perfor-

Table I. Total Number of Near Neighbors in Experiments with 10-Dimensional Random
Vectors

Query range ~r! 0.2 0.3 0.4 0.5

Number of near neighbors found 1 38 503 3431
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mances of vpt(3) and vpt(2) were very close. Other than that, the relative
performances of the index structures were very similar to the previous
case, although the absolute number of distance computations is less than
for randomly generated query points (query set Q1). Again, mvpt(3.80)
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Fig. 9. Search performance of vp and mvp trees for 10-dimensional randomly generated
Euclidean vectors.

Table II. Total Number of Near Neighbors for Query Sets Q1 and Q2 with Respect to
Different Query Ranges (for Euclidean vectors generated in clusters)

Query range ~r! 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

# Near neighbors found ~Q1! 0 0 0 0 0 1 3 20 105
# Near neighbors found ~Q2! 2 95 101 132 246 344 464 647 875
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Fig. 10. Search performances of vp and mvp trees for Euclidean vectors generated in clusters
(query set Q1).
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makes around 70% fewer distance computations compared to vpt(3) for
small query ranges, and around 30% for highest query ranges. Mvpt(3,9)
makes around 45% to 30% fewer distance computations compared to vpt(3).

We can summarize our observations as follows:

● Higher order vp-trees perform slightly better for wider distance distribu-
tions; although the difference is very small. For data sets with narrow
distance distributions, low-order vp-trees are better.

● mvp-trees perform much better than vp-trees. The idea of increasing leaf
capacity pays off, since it decreases the number of vantage points by
shortening the height of the tree and delays the major filtering step to
the leaf level.

● For both random and clustered vectors, mvp-trees with high leaf node
capacity are a considerable improvement over vp-trees, especially for
small query ranges (up to 80%). The efficiency gain (in number of
distance computations) is smaller for larger query ranges, but still
significant (around 30% for 20-dimensional vectors).

Gray-level MRI images. The experimental results for similarity
search performances of vp and mvp trees on MRI images are given in
Figures 12 and 13. For this domain, we present the results for two vp-trees
and three mvp-trees. The vp-trees are of order 2 and 3, referred to as vpt(2)
and vpt(3). All the mvp-trees have the same p paramete, which is 4. The
three mvp-trees are mvpt(2,16), mvpt(2,5), and mvpt(3,13) where the first
parameter is the order ~m! and the second is the leaf capacity ~k!. We did
not try for higher m or k values, as the number of data items in our domain
is small (1151). Actually, 4 is the maximum p value common to all three
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Fig. 11. Vp and mvp tree search performance for Euclidean vectors generated in clusters
(query set Q2).
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mvp-tree structures due to the low cardinality of the data domain. The
results are averages taken after different runs for different seeds and for 30
different query objects in each run. Query objects are MRI images selected
randomly from the data set.

The selectivity of the query ranges is shown in Tables III and IV for L1

and L2 metrics, respectively. As we mentioned in Section 5.1, the images
seem to form several clusters as the number of near neighbors found seems
to be around 100 for moderate to large query ranges for both distance
metrics.

The search performances of the five structures we tested (two vp-trees
and three mvp-trees) for the L1 metric are shown in Figure 12. The query
range values shown are normalized by 10,000 as for Figure 7. Among the
vp-trees, vpt(2) performs around 10–20% percent better than vpt(3).
mvpt(2,16) and mvpt(2,5) perform very close to each other, both having
around 10% edge over vpt(2). The best one is mvpt(3,13) performing around
20–30% fewer distance computations compared to vpt(2).

The search performances for the L2 metric are shown in Figure 13. The
query range values shown are normalized by 100 as for Figure 8. Similar to
the case when the L1 metric was used, vpt(2) outperforms vpt(3) with a
similar approximate 10% margin. mvpt(2,16) performs better than vpt(2)
but its performance degrades for higher query range values. This should
not be taken as a general result, since the random function used to pick
vantage points has a considerable effect on the efficiency of these struc-
tures (especially for small cardinality domains). Similar to the previous
case, mvpt(3,13) gives the best performance among all the structures, once
again making 20–30% fewer distance computations compared to vpt(2).

In summary, the experimental results for the data set of gray-level
images support our previous observations about the efficiency of mvp-trees
with high leaf-node capacity. Even though our image data set has a very
low cardinality (leading to shallow tree structures), we were able to get
around 20–30% gain in efficiency. If the experiments were conducted on a
larger set of images, we would expect higher performance gains.

6. CHOOSING VANTAGE POINTS

In Yiannilos [1993], it was suggested that, when constructing vantage point
trees, choosing vantage points from the corners of the space leads to better
partitions, and hence better performance. This heuristic can be used if we
have an idea about the geometry of the data space and the distribution of
the data points in the data space. In the general case, we simply do not

Table III. Average Number of Near Neighbors for Images Using the L1 Metric

Query range (normalized by 10000)

L1 Metric 30 40 50 60 80 100
# Near neighbors found 5.8 13.8 38.6 94.9 127.8 134
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have any idea about where the corners of the data space are. The only
information we can make use of is the pairwise distances between objects.

There is a reason why the vantage points chosen from around the corners
of the data space provide better partitions. Basically, the distance distribu-

Table IV. Average Number of Near Neighbors for Images Using the L2 metric

Query Range (normalized by 100)

L2 Metric 10 20 30 40 50 60 80
# Near neighbors found 1 2.43 11.3 73.6 122.1 132.7 153.6
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Fig. 12. Similarity search performances of vp and mvp trees on MRI images when the L1

metric is used for distance computations.
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tions for the corner points are more flat than the distance distributions for
the center points. Figure 14 illustrates this point. For a uniformly distrib-
uted 20-dimensional Euclidean data space, we computed the distances of
all the data points from two vantage points: the first one is the center
point, and the second is a corner point. As we can easily see from the figure,
the distribution for the center point is sharper, which means that using the
center point as a vantage point is less useful in trimming the search during
similarity queries.

Most of the data points are far away from the corner points, which is a
trivial fact that can also be observed from Figure 14. This simple fact is
actually why the vantage points from the corners work better. In the
general case, for metric spaces, although we may not be able to choose
vantage points from the corners of the space, we may still be able to choose
better vantage points. Here, we suggest a simple heuristic.

Choosing a Vantage Point:
(1) Choose a random point.
(2) Compute the distances from this point to all the other points.
(3) Choose the farthest point as the vantage point.

Note that the simple procedure above cannot guarantee choosing the very
best vantage point, but it does help in choosing better vantage points
compared to those chosen without this heuristic (i.e., randomly). In case of
Euclidean spaces, this heuristic is verifiable for some distributions simply
because the farthest point from any given point is most likely to be a point
that is close to the corner (or sides of the Euclidean hypercube). We tested
this simple heuristic to see if it provides better performance on the
20-dimensional Euclidean vector sets generated in clusters. But this time
the comparison is between mvp-trees that randomly choose the first van-
tage point in any internal node and the mvp-trees that choose the first
vantage point using the heuristic shown below. We show the results only
for randomly generated query objects (referred to as Q1 in Section 5).

Figure 15 shows the result of this comparison when an mvp-tree with
parameters m 5 3, k 5 80, p 5 5 (mvpt(3,80)) is used. The performance
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gain varied between 5% to 10%, in terms of the average number of distance
computations in a query. Note that this performance gain comes at the
expense of an increased number of distance computations at construction
time. Actually, it is also possible to use the random vantage point (the one
picked first at step 1) as the second vantage point, in which case there
would not be any extra distance computations made.

In trimming the search during similarity queries, it is also important
that the consecutive vantage points seen along a path are not very close to
each other. In mvp-trees, this also makes for better utilization of the
precomputed distances at search time. We have already adopted this
strategy by choosing the second vantage point in an internal node to be one
of the farthest points from the first one. In Section 7, when explaining the
generalized mvp-tree structure that may have any number of vantage
points in an internal node, we use the same strategy.

7. GENERALIZED MVP-TREES

In Section 4, when we introduce the multivantage point tree structure, we
only consider the case where two vantage points are used in an internal
node to hierarchically partition the data space. As mentioned before, the
construction and search algorithms can be modified easily, so that more
than two vantage points can be used in an internal node. In this section we
change the structure of the mvp-tree a little bit and treat the number of
vantage points in an internal node as a parameter. So in addition to the
parameters m, k, and p, a fourth parameter, v, is introduced as the
number of vantage points used in an internal node.

The leaf node structure is also changed as a minor improvement. The leaf
nodes do not contain vantage points any more, but they only accommodate
the data points and p precomputed distances for each data point. When the
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search proceeds down to a leaf node, only these p precomputed distances
will be used to filter out distant data items. Again, the distances kept for a
data item are the distances from the first p of the vantage points along the
path, starting from the root node to the leaf node that contains the data
item.

7.1 Constructing Generalized Mvp-Trees

The vantage points in an internal node are selected in a similar way to that
explained in Section 4. The first vantage point, say vp1, is picked randomly
(or using the heuristic in Section 6), and it is used to partition the data
space into m spherical shell-like regions, which are referred to as R1,
. . . Rm (R1 is the partition that keeps the closest points and Rm is the
partition that keeps the farthest points). The farthest point from vp1 is
selected as the second vantage point, vp2. This time, vp2 is used to
partition the regions R1, . . . Rm into further m regions, creating m2

regions $Ri, j ? i, j 5 1, . . . m%. Here Ri, 1. . . Ri, m are the partitions of the
region Ri . If v . 2, the third vantage point is chosen as the farthest point
from vp2 in Rm, m . This guarantees that the third vantage point is distant
from the previous vantage points, namely, vp1 and vp2. It is distant from
vp1 because it is one of the data points in partition Rm, which accommo-
dates the farthest points from vp1. Similarly, vp3 is distant from vp2,
because it is the farthest point from vp2 among all the points from Rm, m.
Note that vp3 may not be the farthest point from vp2 (the farthest point
may be in Ri, m where i Þ m), but it is still a distant point. This process
continues in the same way until all v of the vantage points are chosen, and
the data space is partitioned into mv regions $Ri1, . . . , iv ? i1, . . . iv 5 1,
. . . , m%. The construction algorithm is given below.

Constructing an mvp-tree with parameters m, v, k, p. Given a
finite set S 5 $S1, . . . , Sn% of n objects, and a metric distance function
d~Si, Sj!, an mvp tree with parameters m, v, k, and p is constructed as
follows. The notation is the same as in Section 4.

(1) If ?S? 5 0, then create an empty tree and quit.
(2) If ?S? # k then

(2.1) Create a leaf node L and put all the data items in S to L
(2.2) Quit.

(3) Else if ?S? . k then
(3.1) Let Sv1 be an arbitrary object from S; Sv1 is the first vantage point.
(3.2) Delete Sv1 from S.
(3.3) Calculate all d~Si, Sv1! where Si [ S
(3.4) If ~level # p! then

Si.PATH@l# 5 d~Si, Sv1!.
level :5 level 1 1

(3.5) Order the objects in S with respect to their distances from Sv1. Break
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this list into m lists of equal cardinality, recording all the distance values
at cutoff points. Denote these lists as SR1, . . . , SRm.
(3.6) Let j 5 2 (j is just a loop variable)
(3.7) While j # v do

(3.7.1) Choose Svj to be the farthest point from Sv~j21! in SRm, . . . , m

(~j 2 1! m ’s)
(3.7.2) Delete Svj from SRm, . . . , m

(3.7.3) Calculate all d~Sj, Svj! where Sj [ SRi1, i2, . . . i~j21! where i1,
i2, . . . i~j 2 1! 5 1, . . . , m
(3.7.4) If ~level # p! then

Si.PATH@level# 5 d~Sj, Svj!

(3.7.5) Use these distances to partition each of the SRi1, i2, . . . i~j21! ~i1,
i2, . . . i~j 2 1! 5 1, . . . , m! regions further into m more regions,
creating SRi1, i2, . . . ij ~i1, i2, . . . ij 5 1, . . . , m!. Record cutoff values.
(3.7.6) level 5 level 1 1;

j 5 j 1 1;
(3.8) Recursively create the mvpt-tree on each of the mv partitions, namely
SRi1, i2, . . . , iv~i1, i2, . . . iv 5 1, . . . , m!.

The search algorithm is similar to the one discussed in Section 4. Starting
from the root, all the children whose regions intersect with the spherical
query region will be visited during a search query. When a leaf node is
reached, the distant data points will be filtered out by looking at the
precomputed distances (the first p of them) from the vantage points higher
up in the tree.

7.2 Updating Mvp-Trees

Here we briefly discuss the update characteristics of the generalized
mvp-tree structure. Since the mvp-tree is created from an initial set of data
objects in a top-down fashion, it is a rather static index structure. It is also
balanced because of the way it is constructed (the number of objects
indexed in the subtrees of a node can differ by at most 1). Note that all the
distance-based index structures other than M-trees are created top-down,
and are therefore static like mvp-trees. However, it is possible to handle
dynamic insertions if it is allowed to violate the balance of the mvp-tree, in
which case the tree structure may grow downwards in the direction of the
tree branches where the insertions are made. If the distribution of the
dynamically inserted data points conforms to the distribution of the initial
data set that the index is built on, the mvp-tree grows smoothly, staying
balanced, or close to being balanced. If the insertions cause the tree
structure to be skewed (that is, the additions of new data points change the
distance distribution of the whole data set), global restructuring may have
to be done, possibly during off hours of operation. The number of distance
computations that have to be done during a restructuring process depends
on the number of precomputed distance values kept in the leaf nodes. If all
precomputed distance values are kept, they can be reused (via choosing the
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same vantage points) during the restructuring process, and the restructur-
ing would be done with minimum distance computation possible. The
implementation and evaluation of these strategies for updating the mvp-
trees are in our agenda for future work.

In the next section, the results of experiments using different values for
the parameters of the mvp-trees are provided, and the query performances
are compared for these cases.

8. EXPERIMENTS WITH GENERALIZED MVP-TREES

In these experiments, the same sets of Euclidean vectors are used as in
Section 5, where in the first set the vectors are generated randomly, and in
the second set the vectors are generated in clusters. Pairwise distance
distributions of these data sets are given in Section 5. We use query ranges
starting from 0.2 thru 0.5 for randomly generated vectors, and 0.3 thru 1.0
for vectors generated in clusters. Randomly generated vectors are tested
using randomly generated query objects, and Euclidean vectors generated
in clusters are tested using both query sets Q1 (randomly generated query
objects) and Q2 (query objects generated from randomly chosen data
objects) as in Section 5. In Section 8.1, we investigate the effect of using
different numbers of vantage points in the internal nodes, and utilizing
precomputed distances at search time. In Section 8.2, we present experi-
mental results done with one of the state of the art distance-based index
structures, the M-trees,1 .

8.1 Tuning Mvp-Tree Parameters

In the first set of experiments we tried to see the effects of changing the
number of vantage points used in an internal node of an mvp-tree. Figures
16–18 show the results for six mvp-trees with different values for the
parameter v. In all structures, the parameters m, k, and p are the same,
having the values 2, 13, and 7, respectively. In Figures 16–18, these
structures are referred to by their ~m, v, k, p! parameters. The parame-
ters v and k are chosen in such a way that all the trees have the same
number of vantage points along any path from the root node to any leaf
node. For example, for the structure mvpt~m 5 2, v 5 1, k 5 13, p 5
7!, for a set of 50,000 Euclidean vectors, there are 12 vantage points along
any path from the root to a leaf, since  log2~50,000 / k! 5 12. The same
holds for the other structures as well.

Note that the structure mvpt(2,1,13,7) is not much different than the
binary vp-tree (one vantage point in every internal node), except for the
fact that precomputed distances are used in this structure during search
time, and the leaf size is larger. We should also mention that

1The authors thank Paolo Ciaccia and Marco Patella for providing, for purposes of comparison,
the code of the M-tree.

392 • T. Bozkaya and M. Ozsoyoglu

ACM Transactions on Database Systems, Vol. 24, No. 3, September 1999.



mvpt(2,12,13,7) is a tree structure with only one internal node, meaning
the total number of vantage points in the whole tree is 12.

The performance results shown in Figures 16–18 are quite interesting.
For clustered vectors and query set Q1 (randomly generated query objects)
(Figure 17), we see that mvpt(2,1,13,7) catches up with the other structures
for moderate query ranges and then actually performs slightly better for
large query ranges, except for mvpt(2,12,13,7), which remains the best for
all query ranges. This tells us that for large query ranges, when many
distance computations have to be made anyway, having a large number of
vantage points at the internal levels of the tree sometimes actually helps in
trimming the search better. On the other hand, for small query ranges, too
many distance computations between the vantage points and the query
point have to be made, which makes mvp-trees with smaller v values
perform worse than mvp-trees with larger v values. The situation is similar
in the case where 10-dimensional random vectors are used; however,
mvp-trees with smaller v values close the gap quickly and perform approx-
imately similarly for the largest query range. For query set Q2 on clustered
vectors (Figure 18), mvp-trees with higher v values perform better for all
query ranges. The percentage-wise performance difference was quite high,
especially for small query ranges.

In the next set of experiments, the parameter p is varied and m, v, and k
are kept constant. For this set, we used the mvpt~2,12,13, p! structure
(with varying p) that performed the best in our previous test. Again,
performance results are obtained for both data sets of Euclidean vectors,
and are as in Figures 19–21. The parameter p is varied from 7 to 12 (the
maximum).

We can clearly observe that using higher p values improves the search
performance significantly. To give an idea, in Figure 19, mvpt(2,12,13,12)
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Fig. 16. Performance of mvp-trees with different v values for 10-dimensional uniformly
distributed Euclidean vectors.
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performs 85% fewer distance computations compared to mvpt(2,12,13,7) for
the query range 0.2 for 20-dimensional Euclidean vectors. The performance
difference gradually decreases, and for query range 0.5 it performs 42%
fewer distance computations. Similar behavior is also observed for the
experiments with Euclidean vectors generated in clusters. For query set Q1

(Figure 20), the performance difference ranges from 70% to 27% for query
ranges 0.3 to 1.0. For query set Q2 (Figure 21), the performance difference
never goes below 40 %. However, more storage is needed for higher p
values, which may affect the I/O time during queries.
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Fig. 17. Performance of mvp-trees with different v values for Euclidean vectors generated in
clusters (query set Q1).
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Our last set of experiments were done to investigate how changing the
leaf size together with the number of vantage points in the internal nodes
affects performance. We experimented on six mvp-trees where each has
only a single directory (internal) node having a different number of vantage
points in it, and therefore each has a different leaf size. Here we are
basically varying the number of vantage points from the root to any leaf
node; this is done by introducing extra levels of decomposition, and hence
decreasing the leaf size. The parameter p is chosen to be the same for all
structures (it is 7). The performance results are shown in Figures 22–24.

From Figures 22–24, we see that using more vantage points increases the
performance by trimming more branches at lower levels of the tree. In all
the structures, the number of precomputed distances ~p! used in search
queries are the same (which is 7), and the v values of all the structures are
larger than p. That is, the vantage points used in mvpt(9,2,100,7) (all 9 of
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Fig. 19. Performance of mvpt~2,12,13, p! for different p values using 10-dimensional
uniformly distributed Euclidean vectors.
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them) are equal to the first 9 vantage points used in the other mvp-tree
structures. This means that, for all the structures, the same set of precom-
puted distances are kept for the data points in the leaves. Furthermore,
any performance difference between these structures is simply due to the
extra trimming that is done in the internal level.

Mvpt(14,2,4,7) uses 5 more vantage points compared to mvpt(9,2,100,7).
Employment of 5 extra vantage points in mvpt(14,2,4,7) results in 65% to
25% fewer distance computations (performance difference decreases for
increasing query ranges) for 10-dimensional random vectors; 44% to 9%
fewer distance computations for Euclidean vectors generated in clusters
using query set Q1; and 50% to 22% using query set Q2.

Our observations from these experiments can be summarized as follows:
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Fig. 21. Performance of mvpt~2,12,13, p! for different p values using Euclidean vectors
generated in clusters (query set Q2).
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uniformly distributed Euclidean vectors.
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● The best performance is obtained by using only one internal node and a
single set of vantage points, as can be seen from Figures 16–18, where
mvpt(2,12,13,7) performed the best. This is an interesting result, as it
implies that we do not really need to come up with complex structures
after all; just pick a good set of reference points (vantage points),
compute the distances of the other points from these points, and create a
simple directory structure using these distances to direct the search.

● As expected, using more precomputed distances at search time clearly
improves search performance in terms of the number of distance compu-
tations made. If all the precomputed distances are kept for the data
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Fig. 23. Performance of mvp-trees with different v and k parameters using Euclidean vectors
generated in clusters (query set Q1).
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points in the leaves, and the mvp-tree structure consists of a single
internal node (as discussed above, ex: mvpt(2,12,13,7)), it may further
imply that restructuring the tree after a batch of dynamic operations
could be handled with only minimum number of distance computations
and the cost of sorting and partitioning the data points with respect to
their distances from the vantage points.

● Using more vantage points and keeping small leaf sizes also increases
trimming in the directory nodes, provided that there is only one internal
level. If there is more than one internal level, the mvp-tree seems to
suffer from making too many distance computations between the query
objects and the vantage points, although it provides better filtering for
the data points in the leaves.

8.2 Comparison with M-Trees

We also made some experiments comparing the M-tree structure [Ciaccia et
al. 1997] to mvp-trees, in terms of the average number of distance compu-
tations made in similarity queries. We used the BulkLoading algorithm
[Ciaccia and Patella 1998] in creating the M-tree. We remind readers that
the M-tree, unlike the other distance-based index structures, including
mvp-trees, is a dynamic index structure and is created bottom-up. It is
designed as a paged index structure to minimize required I/O operations as
well as distance computations. There are two parameters used to tune the
M-tree for better performance, that is, minimum node utilization and page
size. We chose the minimum node utilization as 0.2 and page size 8K. The
minimum node utilization does not affect the number of distance computa-
tions made for a search query too much [Ciaccia and Patella 1998],
although it makes a difference in the building costs (which we do not
consider here). We actually tried two values, 0.2 and 0.3. M-trees; since
minimum utilization of 0.2 performed slightly better, we only include the
results for that value. The node size affects query performance for both I/O
costs and distance computations [Ciaccia et al. 1998b]. (Note that we do not
consider I/O performance here.) A page size of 4K was shown to be the best
choice for minimizing distance computations (referred to as the CPU cost)
[Ciaccia et al.1998b] for experiments with 5–dimensional vectors and using
the L` metric, although the difference from the other choices in page size
was not drastically different (around 10% for 1K to 16K). We tried three
page sizes, 4K, 8K, and 16K. M-trees with a page size of 8K gave the best
performance in terms of minimizing the number of distance computations,
so we show the results for a page size of 8K.

The experiments were conducted with the same data sets of Euclidean
vectors discussed in Section 5. For comparison, we included three struc-
tures next to M-trees. vpt(2) is the vantage point tree of order 2, also used
for the experiments discussed in Section 5. The mvp-trees are, as usual,
denoted by their m, v, k, p parameters. Remember that mvpt(2,1,13,7) is
actually a vp-tree that makes use of p~7! of the precomputed distances and
that mvpt(2,10,50,7) has one internal node with 10 vantage points and a
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large leaf capacity. Note that the results for the vp-tree and the mvp-trees
are also given in Sections 5.2 and 8.1.

In Figures 25–27, we see the query performances of the four index
structures in terms of the average number of distance computations made
in a similarity search query. For 10-dimensional randomly generated
Euclidean vectors (Figure 25), M-tree performs very close to vpt(2) for
moderate query ranges. For small query ranges, its performance is poor. It
gets better as the query range increases, and for the range 0.5 it performs
the best, surpassing vpt(2) and mvpt(2,10,50,7) performance by making
24% fewer distance computations and that of mvpt(2,1,13,7) performance
by making around 10% fewer. We believe that M-trees catch up (and even
surpass) mvp-trees because the distance distribution is narrow and mvp
and vp-tree performances degenerate faster by increasing the query range
as compared to M-trees. In mvp-trees (and vp-trees) a vantage point is
employed at each node to partition the data points that are below that
node, which are not necessarily physically close to each other or to the
vantage point. For uniformly distributed data, this leads to the filtering
mechanism being less effective when the query ranges become relatively
large, but highly efficient for small to moderate query ranges. When we
talk about a query range being relatively large, we mean relative to the
distance distribution of the data space. M-trees adjust to increasing query
ranges more gracefully because they partition the data points based on
physical closeness (trying to create clusters); but this leads to too much
overhead for small query ranges, where they become less efficient com-
pared to mvp-trees.

The M-tree does not perform as well for vectors generated in clusters.
When query set Q1 is used (Figure 26), for the range 1.0, the mvp-trees
make fewer than around 50% distance computations than the M-tree. (To
give an idea, for query range 0.7, it is %72 for mvpt(2,1,13,7) and 80% for
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10-dimensional randomly generated Euclidean vectors.
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mvpt(2,10,50,7)) . For small query ranges, the M-tree makes at least an
order of magnitude more distance computations than the other structures
do. When the query set Q2 is used, the relative performances display a
similar pattern as that in Figure 27. For query set Q2, the M-tree performs
close to vpt(2) for large query ranges, and actually performs fewer distance
computations for the range 1.0.

The partitioning strategy of M-trees is different from mvp-trees because
they (M-trees) partition the data space into a number of sphere-like regions
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in every node recording the center point (routing object) and the covering
radius for each partition. Naturally, this kind of a partitioning strategy is
supposed to work well for applications where the data objects form several
clusters of points that are physically close. We have also experimented
using a data set of 50,000 20-dimensional vectors with 10 clusters. The
clusters’ centers are uniformly distributed in the unit hypercube and the
variance is s2 5 0.1. Again, Euclidean distance (the L2 metric) is used as
the distance metric. We also generated 100 query points that conform to
the same distribution. Table V provides the performance results for three
different query ranges (0.3, 0.4, 0.5) in terms of the number of distance
computations made. As expected, the performance of the M-trees in terms
of the number of distance computations made is much better for the data
set with physical clusters. What is more important is that the performances
of mvp-trees as well as the vp-tree are comparable, the difference being less
than 5% in all cases.

9. CONCLUSIONS

In this paper we have introduced the mvp-tree, which is a distance-based
index structure that can be used in any metric data domain. Like the other
distance-based index structures, the mvp-tree does not make any assump-
tions about the geometry of the data space and provides a filtering method
for similarity search queries based only on relative distances between data
objects. Similarly to the vp-tree, the mvp-tree takes the approach of
partitioning the data space around the vantage points, but behaves much
better in choosing these points and makes use of the precomputed (at
construction time) distances when answering similarity search queries. We
generalize the idea of using multiple vantage points in an internal node
and experiment on mvpt-trees with different numbers of vantage points in
an internal node. The experimental results show that using a small set of
vantage points and a single directory node provides the best results.

Like most of the distance-based index structures, the mvp-tree is a static
index structure. It is constructed top-down on a given set of data points,
and is guaranteed to be balanced. Handling update operations (insertion
and deletion) with reasonable costs for the mvp-tree is currently an open
problem. In general, the difficulty for distance-based index structures
stems from the fact that it is not possible or it is not cost-efficient to impose
a global total order or a grouping mechanism on the objects of the

Table V. Performance Results for Queries with Data Set where Data Points Form Several
Physical Clusters

Query
Total number of near

neighbors found Total number of distance computations
Range (100 queries) M-tree vpt(2) mvpt(2,1,13,7) mvpt(2,10,50,7)

0.3 248 4869 5019 4774 4588
0.4 11104 5265 5194 5104 5087
0.5 98069 5545 5290 5202 5617
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application data domain. In the case for mvp-trees, to keep the tree
balanced, periodic restructuring operations may be needed. Although re-
structuring is unavoidable for balanced mvp-trees, it can be done with a
minimum number of distance computations if all the precomputed dis-
tances are kept and an mvp-tree with a single directory node is used.

We considered the number of distance computations as the cost measure
for comparing performance of mvp-trees with other access structures.
While this is justifiable for applications where distance computations are
very expensive, in the general case, I/O costs may not be negligible.
Performance comparisons incorporating I/O costs as well as distance com-
putations remain for future research.

In Section 6 we discussed some heuristics for choosing better vantage
points, and demonstrated empirically that these heuristics improve the
performance of mvp-trees. However, selection of better vantage points at
construction time is still an open problem, especially for metric spaces
where data distribution is not known a priori and no geometry of the data
space can be assumed. It is especially important for the mvp-trees that
employ a large number of vantage points in the internal nodes, since the
vantage points in a node are used to partition the data space in a
hierarchical manner and each vantage point (except the first one in every
node) is used to partition a multiple number of regions.

APPENDIX

Below we show the correctness of the search algorithm for vp-trees.
Let Q be the query object, r be the query range, Sv the vantage point of a

node that we visit during the search, and M the median distance value for
the same node. We have to show that

if d~Q, Sv! 1 r , M, then we do not have to search the right branch. (I)

if d~Q, Sv! 2 r . M, then we do not have to search the left branch. (II)

For (I), let X denote any data object indexed in the right branch, i.e.,

d~X, Sv! $ M ~1!

M . d~Q, Sv! 1 r ~2! ~hypothesis!

d~Q, Sv! 1 d~Q, X! $ d~X, Sv! ~3! ~triangle inequality!

d~Q, X! . r ~4! ~summation of ~1!, ~2!, and ~3!!

Because of (4), X cannot be in the query result, which means that we do not
have to check any object in the right branch.

For (I), Let Y denote any data object indexed in the left branch, i.e.,

M $ d~Y, Sv! ~5!

d~Q, Sv! 2 r . M ~6! ~hypothesis!

d~Y, Sv! 1 d~Q, Y! $ d~Q, Sv! ~7! ~triangle inequality!

d~Q, Y! . r ~8! ~summation of ~5!, ~6!, and ~7!!
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Because of (8), Y cannot be in the query result, which means that we do not
have to check any object in the left branch.
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