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ABSTRACT
Dictionary-based compression schemes provide fast decoding oper-
ation, typically at the expense of reduced compression effectiveness
compared to statistical or probability-based approaches. In this
work, we apply dictionary-based techniques to the compression
of inverted lists, showing that the high degree of regularity that
these integer sequences exhibit is a good match for certain types of
dictionary methods, and that an important new trade-off balance be-
tween compression effectiveness and compression efficiency can be
achieved. Our observations are supported by experiments using the
document-level inverted index data for two large text collections,
and a wide range of other index compression implementations
as reference points. Those experiments demonstrate that the gap
between efficiency and effectiveness can be substantially narrowed.
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1 INTRODUCTION
The compressed inverted file continues to be a critically impor-
tant data structure that supports efficient keyword-based querying
across large document collections. For each term t that appears
in the collection a postings list is constructed, containing the se-
quences ⟨dt,i ⟩ and ⟨ft,i ⟩, where dt,i and ft,i are, respectively, the
ordinal document number of the i th document containing t , and
the number of times that t appears in that document. Such indexes
support a wide range of querying modalities [44].

In this work, we revisit the question of representing the se-
quences ⟨dt,i ⟩ and ⟨ft,i ⟩. A wide range of compression techniques
have been developed [30, 40], with recent work including the use
of ANS-based compression [23, 24]; clustering of postings lists [29];
and the use of general-purpose compression libraries in conjunc-
tion with the well-known VByte approach [28]. We focus on the
efficiency end of this spectrum, that is, how best to represent the
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sequences in compressed form if the primary goal is fast decom-
pression. Competitors in this space include Trotman’s QMX codec
[36]; the VByte and Simple16 byte- and word-aligned mechanisms
[2, 39]; and the PFOR approach of Zukowski et al. [45].

Our Contribution. We develop a new compression approach,
DINT, based on a DIctionary of INTeger sequences. A key notion
is that of fixed-to-fixed decoding, a marked contrast to the many
variable-to-fixed and fixed-to-variable approaches that have been
previously explored. The core idea is that each unit of decoding
consumes one 16-bit or 8-bit integer codeword, and causes a fixed-
length copying operation from the internal codebook – the dictio-
nary – to the output buffer. The simplicity of this approach means
that DINT decoding is fast. As well, DINT also provides remark-
ably good compression effectiveness. The improved combination of
efficiency and effectiveness provides an important new reference
point in the available spectrum of known trade-off options.

2 BACKGROUND
We assume that a sequence of integers S = ⟨si ⟩ is to be stored,
with si ∈ Σ = {1, . . . |Σ|} for 1 ≤ i ≤ |S |. For inverted index
compression, the sequences are composed of document identifiers
dt,i (which we refer to as docids), and the frequencies ft,i associated
with them (referred to as freqs), where each posting in the index has
the form ⟨dt,i , ft,i ⟩. The two components can be stored separately;
fully interleaved; or in blocks of some size B that are themselves
then interleaved at a coarser level. It is also usual to transform
the docids within each postings list to a sequence of gaps, ⟨dt,i −
dt,i−1⟩ (assuming dt,0 = 0), with the corresponding requirement
on decoding to reconstitute the ascending sequence by computing
a prefix sum. A key feature of inverted index data is that both of
these two sequences are dominated by small values.

Byte- and Word-Aligned Codes. In byte-aligned compression
methods [31, 35, 39] input integers are partitioned into 7-bit frag-
ments, and the fragments are placed in bytes, leaving one bit spare
per byte. That bit then serves as a flag to mark the last fragment
of each integer, allowing the coded values to be reconstituted via
byte-at-a-time shift and mask operations. Compared to earlier bit-
aligned codes (see Witten et al. [40] for an overview), the elimina-
tion of bit-at-a-time decoding led to a substantial speed improve-
ment, albeit with a corresponding loss of coding effectiveness. A
range of byte-aligned coding variants have also been proposed
[5, 6, 8, 9, 14, 28, 31]. All of these methods are fixed-to-variable,
with one input token expressed as a variable number of output bits.

Word-aligned codes are also possible. For example, in the Sim-
ple16 representation [1] fixed-length 32-bit outputwords are formed,
each consisting of a selector and a payload containing some number
of same-length binary codewords. Variants include work by Zhang
et al. [42], who add the flexibility to employ patterns of codewords
not all the same length; and by Anh and Moffat [2], who consider
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the use of 64-bit output units. The QMX mechanism of Trotman
[36] also includes some elements of these approaches. Word-based
codes can be though of as being variable-to-fixed, since the com-
pression is achieved by varying the size of the input fragments
rather than the lengths of the codewords assigned.

Packed andPatchedApproaches. In thesemethods fixed-length
input blocks containing B symbols are represented by variable-
length compressed representations. The simplest option is to cal-
culate the maximum binary magnitude across the symbols in the
block, and code each value in the block in that many bits. Each
output block starts with a selector that indicates the bit-width of
each of its binary values. Lemire and Boytsov [17] explore such
codes, including the use of SIMD instructions. Trotman [36] also
makes use of SIMD operations to attain fast decoding.

A problem with Packed mechanisms is that unexpectedly-large
values force long codewords for a whole block of symbols. Recog-
nizing this issue, Zukowski et al. [45] introduced the patched frame
of reference (PFOR) approach. A bit-width is chosen that covers
most of the values in the block, but not necessarily all of them, and
any values that require more than that many bits (referred to as
exceptions) are represented using a secondary patching mechanism.
A search over likely bit-widths can be performed, so that the most
compact output representation, exceptions included, is achieved for
each block; this is referred to as the Opt-PFOR approach [17, 41].

Packed approaches are typically fixed-to-variable arrangements.

Other Methods. Other recent work includes that of Ottaviano
and Venturini [26], Ottaviano et al. [27], Wang et al. [38], Moffat
and Petri [23, 24], and Pibiri and Venturini [29]. We have included
several of these methods in our experimentation in Section 5.

Dictionary-BasedCompression. Martinez et al. [22] introduce a
dictionary-based approach that they call plurally parsable. Starting
with a probability distribution over an alphabet of symbols, and an
assumption of a memoryless source, they construct a set of strings
with which to populate a dictionary of some target size, and then
use a greedy parsing approach to render any input sequence into a
stream of integer dictionary offsets. Their dictionary is allowed to
contain sequences that are prefixes of other entries, and the entries
are capped at some maximum length ℓ so that they can be stored
in a rectangular two-dimensional array.

Table 1(a) gives an example of a plurally parsable dictionary, as-
suming an input alphabet of {a, b, c, d}, with symbol “a” dominant,
and a dictionary of width ℓ = 4 and of length 2b = 8. Each entry
in the dictionary contains ℓ + 1 entries, as many as ℓ of which are
the corresponding string, and the last one of which is the number
of symbols in that string. Using this dictionary, the example string
⟨aaab aabc aaaa b⟩ (with spaces introduced purely for visual sep-
aration) would be greedily parsed as ⟨aaa, b, aa, b, c, aaaa, b⟩, and
coded as the sequence of b = 3-bit integers ⟨5, 1, 4, 1, 2, 7, 1⟩ using
a total of 21 bits. Note how all three of the “b”s, and the “c” as well,
are coded as sequences of length one. In the development below we
refer to these instances as being singletons. The dictionary does not
force the “b”s to be coded as singletons, but the left-to-right greedy
parsing of the input has resulted in that happening. Singletons are
relatively costly, because each of them requires a full codeword in
the compressed stream.

Index String
0 a - - - 1
1 b - - - 1
2 c - - - 1
3 d - - - 1
4 a a - - 2
5 a a a - 3
6 a b - - 2
7 a a a a 4

Index String
0 - - - - 1
1 a - - - 1
2 b - - - 1
3 a a - - 2
4 a b - - 2
5 b a - - 2
6 a a a a 4
7 a a a b 4

(a) (b)
Table 1: Two examples of plurally parsable dictionaries of width
ℓ = 4 over the alphabet {a, b, c, d} where symbol “a” is highly
probable, symbol “b” is moderately probable, and “-” entries indicate
don’t-care values. The last column provides the length of each string
and is also stored as part of the dictionary. In (b), index zero is used
as the code for rare symbol exceptions.

Martinez et al. [22] use the final ℓ + 1 st column as a way of
accelerating decoding. Rather than execute a loop that counts ex-
actly the right number of symbols from a dictionary entry to the
output buffer and in doing so tests a guard at every iteration, the
decoding process always copies the full ℓ + 1 symbols to the output
buffer in a single fixed operation, and then increases the output
pointer by the amount indicated by the ℓ + 1 st copied value. Be-
cause the conditional in the innermost nested loop is eliminated,
branch mis-predictions are reduced, and high decoding speeds can
be achieved.

To build the dictionary Martinez et al. [22] describe a process
that tentatively assigns strings to the dictionary based on their zero-
order probability of occurrence as indicated by their corresponding
symbol frequencies, and then iteratively refines those estimates,
converging to a set of variable length strings that provides the best
coverage. They build a suite of such dictionaries for different initial
symbol distributions, and then use them to losslessly code 64 × 64-
pixel blocks of grey-scale image data, with a matching dictionary
selected for each block, and indicated to the decoder via a selector
at the start of the block.

Hoobin et al. [13] and Liao et al. [20, 21] have also considered
dictionary-based compression options, applying them to the text
of large document collections; and Zhang et al. [43] have sought to
apply the same Relative Lempel Ziv approach to index data.

3 BASE IMPLEMENTATION
We now describe our initial application of dictionary-based com-
pression to inverted index data. Then, in Section 4, a range of
refinements are introduced.

The Dictionary. There are two factors that make inverted index
data highly distinctive. First, there are very long runs of “1”s (al-
most always the most frequent symbol in the alphabet) that create
opportunities for the use of a frequent symbol exception, whereby
long repetitive sequences are handled outside the normal regime.
As is demonstrated in Section 5, upwards of a third of the docids
and freqs in typical inverted index sequences are “1”s, and handling
these economically is a key requirement. Second, the alphabet for
docid gaps is very large, into the millions, and it is impossible to



Figure 1: Analysis of a typical sequence of 2,048 docid gaps from
the posting list of a single term in a large text collection, eight blocks
of size B = 256, with each row spanning 64 docids. Long runs of
“1”s are shown in the darkest blue color; other shades represent
frequently-occurring subsequences of length 1, 2, 4, 8 and 16, and
are coded as matches against the dictionary. The three red squares
in the ninth and tenth rows are docid gaps that are relatively rare
in the collection, and must be coded as exceptions because they do
not appear in the dictionary.

consider providing a codeword for every symbol, even as a single-
ton. Instead, use must be made of rare symbol exceptions, a special
code that indicates that the next symbol must be fetched from a
secondary stream of uncompressed integers.

Figure 1 shows an example of repeated frequent subsequences
occurring in a typical extract of 2,048 docid gaps. Each colored
rectangle represents a sequence that occurs many times across the
index, and hence can be represented as a codeword relative to a
dictionary of 65,536 such sequences. Only three of the docid gaps
in this typical fragment are sufficiently rare that they are coded as
exceptions, rather than via the dictionary.

Rare Symbol Exceptions. To see the use of rare symbol excep-
tions, consider the dictionary shown in Table 1(b), in which only
two singleton codes are provided. Using this table the same example
string ⟨aaab aabc aaaa b⟩would be parsed ⟨aaab, aa, b,−, c, aaaa, b⟩,
and coded as the sequence of integers ⟨7, 3, 2, 0, c, 6, 2⟩ using a total
of 6 × 3 + 1 × 2 = 20 bits, where it is assumed that the rare symbol
exception needed for “c” (following the escape codeword of “0”)
requires two bits over the alphabet of four symbols. In this small
example an overall slight reduction in cost arises, primarily because
of the presence of the string “aaab” in the dictionary. But the gen-
eral principle is valid: the greater the number of long sequences
that can be included in the dictionary, the better the compression
rate that we can hope to achieve.

The large symbol alphabet used in index compression means
that it makes sense to employ multiple exception options: code
“0” to indicate that the corresponding patching symbol is a b-bit
value between 1 and 2b , where, as before, b is the width in bits of
each of the codewords and the dictionary is 2b entries; code “1”
to indicate that the associated patching value is a 2b-bit value in
the range 2b + 1 to 22b ; and so on. For example, when b = 16, two
rare-exception codes cover the space of 32-bit integers; and four

rare-symbol exception codewords are employed if b = 16 and the
input is regarded as being the space of 64-bit integers.

Frequent Symbol Exceptions. To handle long runs of “1”s, fur-
ther exception codes are added, covering sequences of length B,
B/2, B/4, . . ., 2ℓ. The first of these covers an entire block that is
all “1”s very economically; and short runs of (only) ℓ “1”s can be
covered by a regular non-exception codeword if required. For a
b = ℓ = 16 configuration, there will thus be six dictionary slots
reserved for exceptions – two rare symbol exception codes, and
four frequent symbol exception codes – leaving 65,530 codewords
for regular dictionary entries.

Frequency Estimation. The set of 2b sequences making up the
dictionary should be tailored to the data being compressed, so that
the dictionary stores a selection of highly useful subsequences.

To count sub-sequence frequencies, an interval sampling ap-
proach is employed, examining the source sequence at uniform
intervals of L = 2k ≥ ℓ and extracting samples of each length
ℓ′ ∈ {1, 2, 4, . . . , ℓ} at that point. The frequency of a sequence
of length ℓ′ is incremented by L/ℓ′. For example, if ℓ′ = 2 and
L = 8, a two-symbol prefix is extracted every 8 symbols in the in-
put sequence, and that two-symbol combination has its frequency
incremented by four. To reduce the counting time L can be made
relatively large, for example, L = 1024, and to reduce the space
required by the data structure accumulating the counts, a reservoir-
based approach can be employed [19, 37]. Both of these techniques
produce estimates of the sequence frequencies and not exact counts.
But having exact counts would not necessarily be any more useful,
since any particular factor parsed from the source sequence might
include part or all of other dictionary strings, affecting those counts.
In the experiments reported in Table 2 and in Section 5 exhaustive
sampling with L = ℓ′ is used.

Dictionary Construction. In general, the problem of building a
dictionary that minimizes the length of the message when coded
relative to the dictionary is NP-hard [34]. Hence, rather than seek
optimal solutions, we consider two heuristics for selecting the set
of 2b sequences with which to populate the dictionary. Both ap-
proaches suppose that each observed sequence S of length |S | has
been estimated to occur freq[S] times.

The first approach – which we denote as decreasing static volume,
or DSV – chooses the set of targets that provide the greatest cover-
age volume, where coverage volume is calculated as the product of
frequency and length of the targets, with no consideration given to
possible interactions between sequences. That is, each candidate
sequence S is given a score of |S | × freq[S], and the set of sequences
with the largest scores are used to form the dictionary.

Amore nuanced analysis leads to the second heuristic we explore.
Suppose that some sequence S is being considered to be placed in
the dictionary. Given that S is now a candidate, it seems likely that
both its first half, denoted S1, of length |S |/2, and its second half,
denoted S2, also of length |S |/2, with S = S1S2, will already be in the
dictionary. This is because (assuming interval sampling) freq[S1] ≥
freq[S] and (via symmetry, but not guaranteed) that freq[S2] ≥
freq[S]. And if S1 and S2 are already in the dictionary, then the
saving generated by also adding S to the dictionary is only freq[S],
since one codeword will be used for each instance of S , rather than



1: set output ← 0 ▷ initialize output counter
2: while output < B do
3: set codeword ← get_code()
4: if codeword < 6 then
5: if codeword < 2 then ▷ rare symbol exception
6: use get_code() to access and copy
7: excep_lens[codeword] codes to output
8: set output ← output + 1
9: else ▷ frequent symbol exception
10: bulk copy excep_lens[codeword] “1”s to output
11: from an array containing 2b “1”s
12: set output ← output + excep_lens[codeword]
13: else ▷ normal codeword
14: set index ← start[codeword]
15: copy ℓ symbols from dictionary[index] to output
16: set output ← output + length[codeword]
17: return

Figure 2: Decoding process for one block. Function get_code() re-
turns the next b bits from the input sequence as an integer value;
array length[] refers to the length ℓ′ of the corresponding target
sequence and might be stored as a component of the start[] array
(see Figure 3); and the fixed array excep_lens[] contains values that
match the choice of b and ℓ. For example, when b = ℓ = 16 and
B = 256, excep_lens[] = {1, 2, 256, 128, 64, 32}.

two. The same argument can be applied inductively, with the base
case arising when singletons are being considered. The true cost
of not including them in the dictionary is simply the difference in
cost generated by the use of a rare symbol exception. Hence, the
second heuristic we consider for populating the dictionary is that
of decreasing static frequency or DSF, choosing the sequences with
the highest freq[S] estimates, regardless of length. As a secondary
sort key, to break ties, we sort by decreasing length |S |. Note that
this inductive argument is also why we focus on a restricted set of
target lengths {1, 2, . . . , ℓ/2, ℓ}, with ℓ = 2k for some k .

We also explored adaptive selection heuristics, dynamically up-
dating the freq[S] count for sequences that were prefixes and suf-
fixes of longer strings when they were committed to the dictionary,
the idea being to maintain more precise frequency estimates. Small
gains in compression effectiveness were observed in some test sit-
uations, but small losses in others; and overall we were unable
to consistently outperform the DSF method. Other refined mech-
anisms for populating the dictionary will be a target for future
research, noting that the problem we face here has parallels in the
Re-Pair compression technique [16], which has also been used for
index compression [7]; and that Apostolico and Lonardi [3] have
also considered the question of identifying useful subsequences.

Decoding. The standard unit of access is a single block of B inte-
gers and we employ B = 256 throughout this investigation; that
is, each postings list is partitioned into fixed-length blocks, with
any remaining elements represented using a secondary mechanism.
Fewer than 5% of the postings are coded in this manner. Each block
of integers is represented as a set of one or more codewords, each
of these being a b-bit binary code.

Dictionary width

ℓ = 4 ℓ = 8 ℓ = 16

b = 8 4.786 4.770 4.774
b = 12 4.893 4.486 4.396
b = 16 5.289 4.505 4.332

Table 2: Total index size in GiB for a complete document-level
index (docids and freqs combined, including block-access overhead
and dictionary space) for the Gov2 collection using a block size of
B = 256 items and the DSV dictionary construction approach.

Quantity Variable-length Constant-length

docids freqs docids freqs

instructions ( × 109) 53.63 35.02 41.72 28.35
instructions/cycle 1.16 1.13 1.28 1.24
cache-misses ( × 107) 10.77 9.06 8.21 7.60
branch-misses (%) 3.40 2.79 2.24 0.35
nanosec/integer 1.82 1.08 1.12 0.73

Table 3: Performance counts reported by the Linux perf tool, com-
paring variable-length copying and constant-length copying for
ℓ = 16 when decoding the index sequences of Gov2 using a rectan-
gular dictionary.

The action of the decoding algorithm is described in Figure 2,
where it is assumed that b = ℓ = 16, with codewords “0” and “1”
indicating rare symbol exceptions, and codewords “2”. . .“5” indicat-
ing frequent symbol exceptions. Small changes might be required
if b or ℓ are varied, but note that the rare symbol exception code-
words and frequent symbol exception codewords should always be
grouped together in the code space, so that a single conditional is
sufficient to reach the dominant case, that of a standard codeword
referring to a symbol sequence in the dictionary (step 14).

Choosing Parameters. To establish likely parameter combina-
tions for a full implementation, we carried out a preliminary ex-
ploration of the variables b (bits per codeword) and ℓ (maximum
length of dictionary entries, in integers), using the Gov2 docu-
ment collection (see Table 5), and the DSV dictionary construction
heuristic. Table 2 lists the resultant total index sizes (in GiB); as
can be seen, there are several combinations of b and ℓ that pro-
vide good compression effectiveness once suitable dictionaries have
been identified, with the b = 16 and ℓ = 16 combination slightly
better than the other arrangements. Baseline compression rates for
other methods on this dataset, and also on a second collection, are
provided in Section 5, as well as decoding speed measurements. As
a single preliminary reference point, a VByte index for the same
data occupies 11.85 GiB, and requires more than twice the space.

Copying Fixed-Length Strings. To further motivate fixed-length
dictionary-based compression, Table 3 shows statistics collected
using the Linux perf utility when decoding the sequences of the
same Gov2 dataset. In the left pair of columns, the copying process
is executed via a loop controlled by a variable that copies the correct
number of symbols from the dictionary to the output; in the right
pair of columns, a constant ℓ symbols are always copied, with ℓ



start

0 1 2 3 4 5 6 7

0 1 1 2 2 2 4 4−− 0 2 4 0 2 4 8

a b b a a a a a a a a b

dictionary

copied when codeword=1,4 copied when codeword=7

copied when codeword=2,5

copied when codeword=3,6

8420

input codeword

Figure 3: Packed layout for the dictionary shown in Table 1(b), with ℓ = 4 and b = 3. The first number in each element in start[] is the
sequence length. All trailing don’t-care symbols have been trimmed, and dictionary sequences have been removed if they are a prefix of
another longer sequence. As an example, when the input codeword is 3 the four integers in dictionary[4 . . . 7] are copied to the output, and
then the output pointer is incremented by two. In this illustration no provision has been made for frequent symbol exceptions.

ℓ, c docids freqs

m pred. actual m pred. actual

4, 2.495 4.25 0.59 0.82 5.02 0.50 0.50
8, 4.177 4.63 0.90 0.91 7.05 0.59 0.56
16, 5.342 4.69 1.14 1.12 7.87 0.68 0.73

Table 4: Average number of decoded integers per codeword, m,
when decoding the sequences of Gov2, using DINT-DSF with a
rectangular dictionary and b = 16; and predicted and actual de-
coding times measured in nanoseconds per integer, based on c , the
measured decoding time per codeword.

fixed at compilation time. Copying a fixed number of bytes allows
better exploitation of the instruction cache, and leads to a higher
instruction throughput (instructions/cycle) with fewer cache- and
branch-misses. Overall, the time taken to extract each decoded
integer decreases to around two-thirds of what it would be if the
copying process was controlled by a loop that copied fewer bytes,
a substantial reduction.

Decoding SpeedAnalysis. Two parameters affectDINT’s sequen-
tial decoding time:m, the average number of decoded integers per
codeword, and c , the cost of the copy operation that is associated
with each codeword. Decoding more values per codeword increases
throughput; on the other hand, copying fewer words during a single
decoding operation is faster. This means that using smaller (larger)
values of ℓ decreases (increases) the cost of a single copy opera-
tion, but also that more (fewer) operations are needed to decode
the sequence. To quantify this behavior, Table 4 reports measured
values for c , and form as a function of ℓ, using the docids and freqs
sequences of Gov2. The predicted decoding time is calculated as
c/m nanoseconds/integer, and provides a reasonable estimate of
the measured decoding costs in the columns headed “actual”.

4 FURTHER IMPROVEMENTS
This section describes several improvements to the initial scheme
presented in Section 3.

Packed Dictionary Structure. The rectangular dictionary em-
ployed in Section 3 and shown in Table 1 is potentially expensive in
terms of space, especially if there are relatively few targets of length
ℓ, or if there is significant overlap between prefixes and suffixes
of different targets. To this end we consider ways of reducing the
space required by the dictionary, noting that the smaller the space
required, the more likely it is to be retained primarily in cache.

To reduce the memory required by the dictionary the packed
form shown in Figure 3 can be employed. Now the target lengths
are separated from the sequences, and more than one target can
indicate the same start position in the single consolidated dictionary
string. Packing the dictionary both allows unused trailing symbols
to be avoided, and also allows targets that are prefixes of each other
to share space. The length[] component of each dictionary entry (see
Figure 2) is stored as a one-byte field within each dictionary offset
in the array start[], allowing sequences that have the same starting
point to be distinguished, an arrangement that is valid provided
that b ≤ 24 and ℓ < 256. The indirection via start[] means that
one additional array dereferencing operation is required in each
innermost loop in Figure 2, plus a mask/shift sequence to extract
the two parts of start[codeword], but the net cost is moderate and
might be warranted by the space savings. In rectangular form an
ℓ = 16 and b = 16 dictionary requires 4× 216 × (16+ 1) = 4.25 MiB;
in packed form that requirement can be reduced to around 1 MiB.
Detailed results are presented in Section 5.

Exploiting String Overlap. Further savings are also possible, be-
yond those offered by prefix matches and trailing don’t-cares. For
example, with strategic reordering and overlapping, the twelve-
symbol dictionary[] array in Figure 3 could be further condensed
to just six symbols “baaaab”, since every target listed in Table 1(b)
appears within it as a subsequence. The problem of identifying
a minimal-length super-sequence in which every one of an origi-
nal set of supplied sequences occurs as a sub-sequence is NP-hard
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greedy parse
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3
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Figure 4: Example in which optimal parsing requires fewer codewords than greedy parsing. The sequence “aadbaaaa” is being represented
relative to the dictionary shown in Table 1(b). The cost below each node is the length of the shortest path from the origin to that point. The
parse shown at the bottom of the graph has a cost of 5; whereas the greedy parse shown above requires 6 codewords. In both cases it is
assumed that “d” requires a rare symbol exception (rse) codeword, followed by a patch codeword that identifies the symbol required.

[12]. But simple greedy approximation algorithms can provide so-
lutions that are within a constant factor of being optimal [4, 15].
The approach we employ here considers the initial set of sequences,
determines the longest possible match between a prefix of one se-
quence and a suffix of another, and replaces the two sequences with
their lapped concatenation. Each such step reduces the number of
sequences in the set by one, and ensures that a single sequence
emerges in which every one of the original sequences is embedded.
For example, starting with the sequences in Table 1(b), the first
cycle combines “aaaa” and “aaab” to form “aaaab”.

Optimal Block Parsing. Dictionary-based compression imple-
mentations typically make use of greedy left-to-right parsing, with
the longest matching dictionary entry employed at each coding
step. But in the situation considered here it is straightforward to
identify an optimal parse for each block, because each dictionary
sequence or frequent symbol exception has a cost of one, and each
rare symbol exception also has a fixed cost that depends only on its
value. Figure 4 shows how the prefixes of the block correspond to
nodes in an acyclic directed graph, and how the dictionary entries
are edges that extend one prefix of the block to a longer one. Within
this graph the shortest path from source to sink describes an opti-
mal parse, and can be computed via a left-to-right iterative labeling
process that assigns the source with cost zero, and then pushes
tentative costs ahead from each node via the edges that emanate
from it. The small number of edges that are possible at each node
(a maximum of log2 ℓ + 1 if target lengths are restricted to powers
of two) makes this process only moderately slower than the more
usual greedy approach, with a complexity of O(n log ℓ) for a list of
n integers, and hence a complexity of O(n) if ℓ is regarded as being
a constant.

Multiple Dictionaries. Following the example of Moffat and Petri
[23], it is also possible for multiple dictionaries to be used. For
example, if the input symbols are assumed to be integers between
1 and 232 − 1, then the use of 32 dictionaries allows each block to
be handled within a context established by ⌊log2max⌋, where max
is the largest value in the block. Stratifying the blocks according to
their maximum value and coding each block against a dictionary
specifically created for that maximum value offers clear benefits.
For example, blocks in which max < 4 are likely to generate quite
different dictionaries from those arising when (say) max < 1024,
even though “1”s are likely to still be the most common symbol.

There is, however, a cost – each additional dictionary must be
stored during decoding operations, and both adds to the memory
cost, and also adds to the likelihood of cache misses. For this rea-
son, other, less costly, categorizations might also be desirable. In
Section 5 we make use of the mapping context = ⌈log2 log2max⌉
(taking log2 0 = 0 when max = 1), creating a set of six different
contexts (0 . . . 5) with limiting values 2, 4, 16, 256, 65536, and 232.

Once the suite of dictionaries has been created, the encoder
either uses the same mapping to determine which context to use
when encoding each block, or carries out an exhaustive search over
all contexts to identify the one that minimizes the compressed size.
Either way, each encoded block is prefixed by a selector indicating
which dictionary to use. In the DINT implementation the selector
is (slightly wastefully) stored as a one-byte integer.

There is a second way in which multiple dictionaries might be
employed, and that is through the use of alternative combinations of
b and ℓ. For example (see Table 2) it might be beneficial to consider
both b = 16 and b = 8 dictionaries for each context, anticipating
(say) that blocks in which context is small might be handled more
compactly by a 256-element dictionary and the corresponding 8-bit
codewords. Again, the selector is used to indicate which context is
in use in any particular block. No extra memory space is required
by this option, since the b = 8 dictionary for any context is an exact
prefix of the b = 16 dictionary.

As already noted, when multiple contexts are in use memory
consumption might become an issue. If so, rather than store each
dictionary separately, a set of distinct start[] arrays can be used
to index a single shared dictionary[] array (see Figure 3), with the
complete set of contexts’ sequences stored overlapped using the
heuristic already described.

Finally in this section, note that Moffat and Petri [24] make use
of the block median as a second factor in determining contexts,
obtaining small compression gains when using a entropy-coder.
This might be a possibility with dictionary coders too, but the
codewords used here are far from being entropy based, and the
dictionaries that are required are each an order of magnitude larger,
likely eroding the savings that can be anticipated.

5 EXPERIMENTS
We now present the results of detailed experiments based on a
range of public software and an implementation of the new DINT
approach.



Collection Lists Postings Documents

Gov2 39,180,840 5,880,709,591 25,205,179
CCNEWS 43,844,574 20,150,335,440 43,530,315

Table 5: Number of lists, postings and documents for the Gov2 and
CCNEWS collections.

Datasets and Methodology. We use the standard Gov2 collec-
tion containing 426 GiB of text; and CCNEWS, an English subset of
the freely available NEWS subset of the CommonCrawl1, consist-
ing of news articles in the period 09/01/16 to 30/03/18, following
the methodology of Petri and Moffat [28]. Postings lists for both
collections were extracted from the Indri search engine to ensure
reproducibility, using a document ordering derived from the re-
cursive graph bisection reordering technique of Dhulipala et al.
[11] (rather than the more usual URL ordering). Each index was
considered as two streams of integers, one containing gaps between
document identifiers (docids) and one containing within-document
frequencies (freqs), with both of those streams split into per-term
postings list segments in the usual manner. Statistics for these two
datasets are provided in Table 5.

All compression results are for complete indexes without stop-
ping or other reduction mechanisms being applied, and cover all
postings; with sizes reported in GiB and rates given in bits per
integer. Where a blocksize is required, B = 256 is used, with trailing
part-blocks represented using Interp [25]. All compression effec-
tiveness results given for DINT include the overhead cost of the
corresponding dictionaries.

Implementations and Hardware. All experimentation is based
on the ds2i framework [26, 27], with methods implemented us-
ing C++14 and compiled with g++ 7.2.0 (using all optimizations)
on a server equipped with 512 GiB RAM and an Intel Xeon 6144
processor employing 32 kiB of L1 cache, 1024 kiB of L2 cache, and
25344 kiB of L3 cache. The experimental framework and all code is
available at https://github.com/jermp/dint.

Compression Effectiveness. Table 6 gives baseline compression
effectiveness results for the four streams of integers that make
up the indexes of these two collections, using a range of previous
mechanisms, including: Varint-GB [10]; Varint-G8IU [33]; QMX
[36]; Simple16 [1]; Opt-PFOR [41]; PEF [26]; Clust-EF [29]; and
Interp [25]. The ANS version tested uses a set of 64 two-dimensional
med-max contexts for each of docids and freqs [24].

Table 6 also includes the new DINT scheme, using both of the
dictionary construction mechanisms discussed in Section 3, with
greedy parsing, a single dictionary for each stream for each collec-
tion (that is, four dictionaries in total, one per stream), and b = 16
and ℓ = 16 (see Table 2). As can be seen, with these standard settings
DINT yields compression rates better than Simple16, and compara-
ble to those attained by theOpt-PFOR approach. The two dictionary
construction mechanisms give slightly different effectiveness, and
the DSF approach has a small but consistent advantage over the
DSV heuristic.

1http://commoncrawl.org/2016/10/news-dataset-available/

Method Gov2 CCNEWS

GiB docids freqs GiB docids freqs

Varint-GB 14.48 11.04 10.04 48.68 10.72 10.01
Varint-G8IU 12.77 9.90 8.69 43.87 9.75 8.93
VByte 11.85 9.22 8.02 39.65 8.88 8.00
QMX 5.59 4.99 3.11 19.20 5.12 3.04
Simple16 5.28 4.84 2.81 16.85 4.70 2.46
Opt-PFOR 4.55 4.33 2.26 15.50 4.49 2.10

DINT-DSV 4.33 4.25 2.00 15.25 4.52 1.95
DINT-DSF 4.29 4.22 1.98 15.09 4.48 1.92

PEF 4.16 3.85 2.23 13.75 3.89 1.97
Clust-EF 4.02 3.66 2.16 13.44 3.79 1.92
Interp 3.86 3.54 2.04 12.80 3.64 1.79
ANS, 2d 3.71 3.56 1.86 12.58 3.67 1.69

Table 6: Total index size (GiB) and compression rate (bits per in-
teger) for docids and freqs for two test collections, using a range
of compression techniques. The two DINT implementations both
make use of b = 16 and ℓ = 16, single dictionaries, and greedy
parsing. The rows are ordered by decreasing total index size.

Method Gov2 CCNEWS

docids freqs docids freqs

Interp 7.84 7.56 8.59 7.91
PEF 3.13 3.78 3.05 2.68
Opt-PFOR 1.87 1.31 1.35 1.05
Simple16 1.46 1.15 1.45 1.06
VByte 1.24 0.85 1.07 0.79
QMX 1.13 1.06 1.48 1.38

DINT-DSF: ℓ = 16 0.87 0.64 0.91 0.64
DINT-DSF: ℓ = 8 0.80 0.55 0.79 0.54

Varint-GB 0.75 0.61 0.65 0.58
Varint-G8IU 0.66 0.61 0.57 0.52
Masked-VByte 0.66 0.59 0.59 0.49
Stream-VByte 0.58 0.57 0.57 0.54

Table 7: Sequential decoding throughput in nanoseconds per in-
teger, measured over the complete index. Both DINT rows make
use of b = 16 and a packed dictionary. The rows are ordered by
increasing speed of docids decoding on Gov2.

Sequential Decoding Speed. Table 7 compares decoding speeds
of DINT (using a packed dictionary constructed using the DSF
process with b = 16 and two values of ℓ) and a range of other
index compression approaches (including the SIMD-ized mecha-
nisms of Masked-VByte [32] and Stream-VByte [18]), measured by
decoding the entire index in a sequential manner. The net result
of the experiment is that, compared to the methods that provide
comparable or better effectiveness (Table 6), DINT is faster and,
compared to methods of similar speed, DINT provides better com-
pression effectiveness. Moffat and Petri [23, 24] report speeds for
ANS decoding; based on their measured relativities, it would be
second-from-top in Table 7; and based on the results reported by

https://github.com/jermp/dint
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Figure 5: Percentage of integers, codewords, and dictionary entries
associated with each target size for the docids and freqs of Gov2,
using the DSF approach and parameters b = 16, ℓ = 16.

Pibiri and Venturini [29], the Clust-EF mechanism can be expected
to decode more slowly than the PEF approach, placing it also in the
upper section of the table (neither of these two implementations
was compatible with the sequential decoding test harness used to
generate Table 7).

Note that once the sequence frequency estimates have been
collected, DINT dictionary formation and encoding is very fast, and
we do not report encoding times in this version of the work.

Dictionary Performance. Figure 5 provides a summary of the
patterns already illustrated in Figure 1, and shows the distribution of
target lengths in the raw index, in the compressed index, and in the
dictionary respectively. For example, around 20% of the compressed
codewords are rare symbol exceptions covering just 2% of the docids
in the actual Gov2 index; whereas 38% of the docids can be handled
by frequent symbol exceptions, consuming just 1% of the actual
codewords. The freqs dictionary matches are longer than in the
docids stream, leading to higher compression rates.

Optimal Parsing. The second row in Table 8 shows the additional
gains that result from the use of optimal parsing. This gain comes at
the expense of a small increase in encoding time, but has no effect
on decoding time.

Multi-Context Operation. The third row of Table 8 shows the
additional compression gains that result when a total of six dictio-
naries are used per stream, conditioned on the largest valuemax in
each block via the mapping context = ⌈log2 log2max⌉. A one-byte
selector is required per block, partially negating the gains, but even
so, there is an overall benefit. In the fourth row, six further dictionar-
ies are added per stream, allowing b = 8 operation (still with ℓ = 16)
in blocks where this provides an advantage. The choice between the
b = 8 and b = 16 dictionary is made by test-compressing the block
using the two options. There is again a consistent gain achieved. In
the fifth row, an exhaustive test-compression search over all twelve
available contexts is made on a per-block basis, slowing decoding
time, but not affecting decoding throughput in any way. Further
small compression gains emerge.

Method Gov2 CCNEWS

GiB docids freqs GiB docids freqs

DINT-DSF 4.29 4.22 1.98 15.09 4.48 1.92
+ opt. pars. 4.25 4.19 1.95 14.93 4.45 1.89
+ 6 contexts 4.22 4.09 1.94 14.64 4.31 1.88
+ b = 8, 16 4.10 4.02 1.83 14.21 4.23 1.78
+ exh. srch. 4.07 4.00 1.81 14.08 4.19 1.77

+ entropy 3.60 3.51 1.75 12.88 3.77 1.72

Table 8: Total index size (GiB) and compression rate (bits per inte-
ger) for docids and freqs using b = 16 and ℓ = 16. The first row uses
DINT-DSFwith greedy parsing; four enhancements are then added,
and in the penultimate row a total of 12 contexts are used with
optimal parsing and an exhaustive search to identify the cheapest
context for each block. In the last row, the dictionary indices are
then assumed to be input to a set of 12 optimal entropy coders.
Except for the last row (gray numbers), which contains values that
are calculated rather than measured, these results can be directly
compared with Table 6.

Dictionary docids freqs

MiB ns/int MiB ns/int

rectangular, ×1 4.250 1.12 4.250 0.73
packed, ×1 1.045 0.87 1.750 0.64
overlapped, ×1 0.874 0.95 1.408 0.70

rectangular, ×6 21.796 1.66 21.343 1.04
packed, ×6 7.269 1.19 9.122 0.81
overlapped, ×6 6.234 1.37 7.736 0.90

Table 9: Dictionary space (MiB) for different schemes and corre-
sponding decoding speeds, for Gov2. In the three “×1” rows, one
dictionary is used for the docids and another for the freqs. In the
“×6” rows, six dictionaries are used for each stream, with (in the
last row) all six of them combined into a single dictionary[] array,
and six start[] arrays maintained.

Table 9 shows the dictionary cost of the various combinations
considered. Decoding using a packed dictionary is faster than de-
coding via a rectangular dictionary because of its more compact
memory footprint, but overlapping the strings to further save space
loses the alignment property of the packed arrangement, and in-
creases decoding cost. Use of multiple contexts leads to slightly
better compression, but slows decoding throughput because of the
increased memory and greater number of cache misses.

6 CONCLUSIONS
Figure 6 summarizes the relative performance of the new DINT
approach, combining Tables 6 and 7. When presented in this way
it is clear that our dictionary-based technique represents an impor-
tant new approach to inverted index compression, approaching the
speed of the very fastest methods for decoding and, at the same
time, approaching the compression effectiveness of the best meth-
ods in terms of space required. Verifying that the throughput gains
(demonstrated in Section 5) translate to faster query processing in
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realistic settings is a clear area for future work. We also plan to ex-
plore less costly frequency estimation techniques, and quantify the
extent to which accurate counts are needed for best compression.

Looking beyond the considerable gains we have already achieved,
the last row of Table 8 shows that the streams of dictionary indices
still possess a great deal of redundancy. The application of entropy
codes should yield further important trade-off options for index
compression, and we also plan to explore that possibility.
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