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Developing high-performance and energy-efficient algorithms for maximum matchings is becoming increas-
ingly important in social network analysis, computational sciences, scheduling, and others. In this work, we
propose the first maximum matching algorithm designed for FPGAs; it is energy-efficient and has provable
guarantees on accuracy, performance, and storage utilization. To achieve this, we forego popular graph
processing paradigms, such as vertex-centric programming, that often entail large communication costs.
Instead, we propose a substream-centric approach, in which the input stream of data is divided into substreams
processed independently to enable more parallelism while lowering communication costs. We base our work
on the theory of streaming graph algorithms and analyze 14 models and 28 algorithms. We use this analysis to
provide theoretical underpinning that matches the physical constraints of FPGA platforms. Our algorithm
delivers high performance (more than 4× speedup over tuned parallel CPU variants), low memory, high
accuracy, and effective usage of FPGA resources. The substream-centric approach could easily be extended to
other algorithms to offer low-power and high-performance graph processing on FPGAs.

CCS Concepts: • Computer systems organization → Reconfigurable computing; • Hardware → Re-
configurable logic and FPGAs; Reconfigurable logic applications; • Mathematics of computing →
Matchings and factors; Graph algorithms; Approximation algorithms; • Theory of computation →
Parallel algorithms; Streaming models; • Computing methodologies → Vector / streaming algorithms;

1 INTRODUCTION
Analyzing large graphs has become an important task. Example applications include investigating
the structure of Internet links, analyzing relationships in social media, or capturing the behavior
of proteins [2, 95]. There are various challenges related to the efficient processing of such graphs.
One of the most prominent ones is the size of the graph datasets, reaching trillions of edges [39].
Another one is the fact that processing such graphs can be very power-hungry [5].

Deriving and approximating maximum matchings (MM) [35] are important graph problems. A
matching in a graph is a set of edges that have no common vertices. Maximum matchings are used
in computational sciences, image processing, VLSI design, or scheduling [35, 130]. For example, a
matching of the carbon skeleton of an aromatic compound can be used to show the locations of
double bonds in the chemical structure [130]. As deriving the exact MM is usually computationally
expensive, significant focus has been placed on developing fast approximate solutions [46].

ar
X

iv
:2

01
0.

14
68

4v
1 

 [
cs

.D
C

] 
 2

8 
O

ct
 2

02
0



1 M. Besta, M. Fischer, T. Ben-Nun, D. Stanojevic, J. De Fine Licht, and T. Hoefler

To enable high-performance graph processing, various schemes were proposed, such as vertex-
centric approaches [58], streaming [115], and others [124]. They are easily deployable in combina-
tion with the existing processing infrastructure such as Spark [139]. However, they were shown to
be often inefficient [102] and they are not explicitly optimized for power-efficiency.

To enable power-efficient graph processing, several graph algorithms and paradigms for FPGAs
were proposed [32, 47, 48, 57, 78, 105, 107, 135, 141, 145, 147, 149]. Yet, none targets maximummatch-
ings. Next, the established paradigms for designing graph algorithms that were ported to FPGAs,
e.g., the vertex-centric paradigm, are not straightforwardly applicable to the MM problem [116].

In this work, we propose the first design and implementation of approximating maximum match-
ings on FPGAs. Our design is power-efficient and high-performance. For this, we forego the es-
tablished vertex-centric paradigm that may result in complex MM codes [116]. Instead, basing
on streaming theory [60], we propose a substream-centric FPGA design for deriving MM. In this
approach, we ❶ divide the incoming stream of edges into substreams, ❷ process each substream
independently, and ❸ merge these results to form the final algorithm outcome.

For highest power-efficiency, phases ❶–❷ run on the FPGA; both phases work in the streaming
fashion and offer much parallelism, and we identify the FPGA as the best environment for these
phases. Conversely, the final gathering phase, that usually takes < 1% of the processing time as well
as consumed power and exhibits little parallelism, is conducted on the CPU for more performance.

To provide formal underpinning of our design and thus enable guarantees of correctness, memory
usage, or performance, we base our work on the family of streaming models that were developed to
tackle large graph sizes. A special case is the semi-streaming model [60], created specifically for
graph processing. It assumes that the input is a sequence of edges (pairs of vertices), which can
be accessed only sequentially in one direction, as a stream. The main memory (can be randomly
accessed) is assumed to be of size 𝑂 (𝑛 polylog(𝑛))1 (𝑛 is the number of vertices in the graph).
Usually, only one pass over the input stream is allowed, but some algorithms assume a small
(usually constant or logarithmic) number of passes. We investigate a total of 14 streaming models
and a total of 28 MM algorithms created in these models, and use the insights from this investigation
to develop our MM FPGA algorithm, ensuring both empirical speedups and provable guarantees
on runtime, used memory, and correctness.

Towards these goals, we contribute:
• the first design and implementation of the maximum matching algorithm on FPGAs,
• an in-depth analysis of the potential of using streaming theory (14 models and 28 algorithms)
for accelerating graph processing on FPGAs,

• a substream-centric paradigm that combines the advantages of semi-streaming theory and FPGA
capabilities,

• detailed performance analysis demonstrating significant speedups over state-of-the-art baselines
on both CPUs and FPGAs.
This paper is an extended version of our work published in the FPGA’19 proceedings [19].

2 BACKGROUND AND NOTATION
We first present the necessary concepts.

2.1 Graph-Related Concepts
2.1.1 Graph Model. We model an undirected graph 𝐺 as a tuple (𝑉 , 𝐸); 𝑉 = {𝑣1, ..., 𝑣𝑛} is a set

of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges; |𝑉 | = 𝑛 and |𝐸 | = 𝑚. Vertex labels are {1, 2, ..., 𝑛}. If

1𝑂 (polylog(𝑛)) = 𝑂 (log𝑐 (𝑛)) for some constant 𝑐 ∈ N
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𝐺 is weighted, it is modeled by a tuple (𝑉 , 𝐸,𝑤); 𝑤 (𝑒) or 𝑤 (𝑢, 𝑣) denote the weight of an edge
𝑒 = (𝑢, 𝑣) ∈ 𝐸. The maximum and minimum edge weight in 𝐺 are denoted with 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 .
𝐺 ’s adjacency matrix is denoted by 𝐴.

2.1.2 Compressed Sparse Row (CSR). In the well-known CSR format, 𝐴 is represented with
three arrays: 𝑣𝑎𝑙 , 𝑐𝑜𝑙 , and 𝑟𝑜𝑤 . 𝑣𝑎𝑙 contains all 𝐴’s non-zeros (that correspond to 𝐺 ’s edges) in the
row major order. 𝑐𝑜𝑙 contains the column index for each corresponding value in 𝑣𝑎𝑙 . Finally, 𝑟𝑜𝑤
contains starting indices in 𝑣𝑎𝑙 (and 𝑐𝑜𝑙 ) of the beginning of each row in 𝐴. 𝐷 denotes the diameter
of 𝐺 . CSR is widely adopted for its simplicity and low memory footprint for sparse matrices.

2.1.3 Graph Matching. A matching 𝑀 ⊆ 𝐸 in a graph𝐺 is a set of edges that share no vertices.𝑀
is calledmaximal if it is no longer a matching once any edge not in𝑀 is added to it.𝑀 ismaximum
if there is no matching with more edges in it. Maximum matchings (MM) in unweighted graphs are
called maximum cardinality matchings (MCM). Maximum matchings in weighted graphs are called
maximum weighted matchings (MWM). Example matchings are illustrated in Figure 1.
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Fig. 1. Examplematchings. Edges in matchings are represented by bold lines, edge weights are represented with numbers.

2.1.4 MaximumWeighted Matching. Given a weighted graph𝐺 = (𝑉 , 𝐸,𝑤), a maximum weighted
matching is a matching𝑀∗, such that its weight𝑤 (𝑀∗) = ∑

𝑒∈𝑀∗ 𝑤 (𝑒) is maximized. An algorithm
provides an 𝛼-approximation of 𝑀∗, if – for any derived weighted matching 𝑀 – it holds that
𝑤 (𝑀∗)/𝑤 (𝑀) ≤ 𝛼 (therefore 𝛼 ≥ 1). Note that the approximation ratio of the MCM is defined
inversely compared to the MWM: We say that an algorithm, that returns a matching𝑀𝐶 , provides
an 𝛼-approximation to the maximum cardinality 𝑀∗

𝐶
if it holds that |𝑀𝐶 |/|𝑀∗

𝐶
| ≥ 𝛼 (therefore

𝛼 ≤ 1). We do this to conform to the general approximation notation of maximum cardinality
matching [76, 81, 86] and maximum weighted matching [46, 62, 66].

2.2 Architecture-Related Concepts
2.2.1 FPGAs. FPGAs aim to combine the advantages of Application Specific Integrated Circuits

(ASICs) and CPUs: they offer ASIC’s high performance and low power usage, and they can be
reconfigured to compute arbitrary functions, similarly to CPUs. Usually, the FPGA clock frequency
is ≈10–600MHz, dependent on the algorithm and the FPGA platform. This is an order of magnitude
less compared to high-end CPUs (up to 4.7GHz [73]) and below GPUs (up to 1.5GHz [106]). Yet,
due to the custom design deployed directly in hardware, multiple advantages such as low power
consumption arise [50].

2.2.2 FPGA Components and Fundamental Building Blocks. Xilinx uses vanilla look-up tables
(LUTs) while Intel employs Adaptive Logic Modules as fundamental building blocks [121, 131].
Their micro-architecture is different but fundamental functionality is similar. Xilinx combines
multiple LUTs and associated registers into CLBs [121], while Intel combines ALMs into LABs [131].
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Next, Block Random Access Memory (BRAM) allows to store small amounts of data (up to 20 kbits
per BRAM [71]) and provides fast data access, acting similarly to a CPU cache. Today, thousands of
BRAM units are distributed over a single FPGA.

2.2.3 FPGA+CPU. Hybrid computation systems consist of a host CPU and an attached FPGA.
First ❶, an FPGA can be added to the system as an accelerator; the host main memory is separated
from the FPGA private DRAM memory and data must be transferred over PCIe. Often, the FPGA is
configured as a PCIe endpoint with a direct memory access (DMA) controller, allowing to move
data between the host and the FPGA without the need of CPU resources. PCIe is high-bandwidth
oriented, but exhibits high overhead and latency for small packets [41]. This drawback is overcome
by storing often accessed data in the private DRAM using the memory controller, or storing the
data on chip in the FPGA’s BRAM. Second ❷, the CPU and the FPGA can be directly linked by
an interconnect, such as Intel’s QuickPath Interconnect (QPI), providing a coherent view to a
single shared main memory. Examples of these systems include Intel HARP [108] and the Xilinx
Extensible Processing Platform [117]. The direct main memory access allows to share data without
the need to copy it to the FPGA. To prevent direct physical main memory accesses, HARP provides
a translation layer, allowing the FPGA to operate on virtual addresses. It is implemented in both
hardware as a System Protocol Layer (SPL) and in software, for example as a part of the Centaur
framework [109]. Moreover, a cache is available to reduce access time. According to Choi et al. [41],
systems with direct interconnect exhibit lower latency and higher throughput than PCIe connected
FPGAs. In our substream-centric FPGA design for deriving MM, we use a hybrid CPU+FPGA system to
take advantage of both the CPU and the FPGA in the context of graph processing.

3 FROM SEMI-STREAMING TO FPGAS
We first summarize the analysis into the theory of streaming models and algorithms. We conducted
the analysis to provide formal underpinning of our work and thus ensure provable properties,
for example correctness, approximation, or performance. Towards this goal, we analyzed 14
different models of streaming (simple streaming [68], semi-streaming [60], insert-only [60], dy-
namic [8], vertex-arrival [44], adjacency-list [101], cash-register [103], Turnstile [103], sliding
window [49], annotated streaming [37], StreamSort [3], W-Stream [52], online [80], and MapRe-
duce [51]) and 28 different MM algorithms. Moreover, to understand whether streaming itself is the
best option for developing MWM on FPGAs, we extensively analyzed existing graph processing
works on FPGAs [47, 48, 57, 84, 89, 90, 96, 107, 110, 137, 138, 142, 143, 147–149]. The outcome of this
analysis is as follows: the best candidates for adoption in the FPGA setting are semi-streaming
graph algorithms that expose parallelism by decomposing the incoming stream of edges
for independent processing, for example the MWM algorithm by Crouch and Stubbs [46].

3.1 Why Streaming (aka Edge-Centric)?
Before analyzing different streaming models and algorithms, we first investigate whether streaming
itself is the best paradigm for developing theMWM algorithm for FPGAs. In the streaming paradigm,
also known as the edge-centric paradigm, the “first class citizen” is an edge. A sequence of edges is
streamed in and out from the memory to the FPGA, and a specified operation is performed on each
edge and possibly some associated edge properties. This way of accessing the graph has major
advantages because of its sequential memory access pattern, which improves spatial locality [30].

However, there also exist other paradigms for processing graphs, most importantly the established
vertex-centric paradigm [97], where the “first class citizen” is a vertex. Here, one programs an
algorithm by developing a (usually small) routine that is executed for each vertex in the graph
concurrently. In this routine, one usually has access to the neighbors of a given vertex. Such an
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approach can lead to many random memory accesses as neighboring vertices may be stored in
different regions of the memory. Still, it is often used because many important algorithms such as
BFS or PageRank can easily be implemented in this model [30].

To identify the best graph processing paradigm for implementing the MWM algorithm in FPGA,
we first analyze the existing FPGA graph processing implementations, focusing on the used para-
digm. Table 1 illustrates the most relevant designs. We group separately generic graph processing
frameworks and specific algorithm implementations. Each group is sorted chronologically. Selected
columns in this table constitute criteria used to categorize the surveyed FPGA works (the full results
of this analysis are in a separate extended survey [30]).

The first such criterion is generality, i.e., whether a given FPGA scheme is focused on a particular
graph problem or whether it constitutes a generic framework that facilitates implementing different
graph algorithms. Another criterion is a used graph programming paradigm. We also distinguish
between works that target a single FPGA and ones that scale to multiple FPGAs. Finally, we
consider the used programming language and the storage location of the whole processed
graph datasets. In the latter, “DRAM” indicates that the input dataset is located in DRAM and it is
streamed in and out of the FPGA during processing (i.e., only a part of the input dataset is stored in
BRAM at a time). Contrarily, “BRAM” indicates that the whole dataset is assumed to be located
in BRAM. To investigate the scalability of the analyzed solutions, we provide sizes (𝑛,𝑚) of the
largest processed graphs.

The analysis indicates that the streaming (edge-centric) paradigm and its variants have so far been
the most successful in processing large graphs. The only vertex-centric design that processed a graph
with𝑚 >1B required multiple FPGAs [34]. Contrarily, two recent edge-centric designs based on
single FPGAs were able to conduct computations on such graphs [89, 148].

Moreover, although the vertex-centric paradigm facilitates developing simple algorithms such as
BFS or PageRank, it is often difficult to use for solving more complex graph problems. For example,
as Salihoglu and Widom state [116], “(...) implementing graph algorithms efficiently on Pregel-like
systems (...) can be surprisingly difficult and require careful optimizations.”. For example, when
describing graph problems as fundamental as deriving Strongly Connected Components (SCCs), Bi-
Connected Components (BCCs), and Minimum Spanning Forest (MSF), Salihoglu and Widom [116]
observe that “(...) implementing even the basic versions of SCC and MSF is quite challenging, taking
more than 700 lines of code.” while Yan et al. [136] state that “It is challenging to design Pregel
algorithms for problems such as BCCs and SCCs.”. The problem is not only related to Pregel. Yan
et al. [136] make similar observations about the established GraphLab [94] and PowerGraph [65]
vertex-centric frameworks, stating that they do “not support algorithms in which a vertex needs
to communicate with a non-neighbor, such as the [Shiloach-Vishkin] algorithm [for Connected
Components], the list ranking algorithm, and the [Case Checking] algorithm.”. They make similar
observations for BCCs and SCCs. Thus, when developing vertex-centric graph algorithms, one
resorts to algorithms that fit the vertex-centric paradigm well. An example is Label Propagation
for Connected Components [136]. Yet, this algorithm takes 𝑂 (𝐷) time in the PRAM model [67]
while the Shiloach-Vishkin algorithm [122], hard to express in the vertex-centric paradigm [136],
uses only 𝑂 (log𝑛) time in PRAM. Similar observations are made for other graph problems [83].
This indicates that it is difficult to design efficient vertex-centric formulations of graph algorithms
that require accessing more than neighbors of each vertex.
Thus, in our work, we use edge streaming for developing the MWM algorithm for FPGAs.

This is because (1) it has been shown to scale to large graphs and (2) it straightforwardly enables
pipelining of edges, thus facilitating the utilization of FPGA hardware resources. Finally (3), the
existing rich theory of streaming graph processing for complex graph problems such as matchings,
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random walks, and others [3, 8, 37, 44, 49, 51, 52, 60, 60, 80, 101, 103, 103] indicates that it is easier
to develop fast MWM schemes with edge streaming than with the vertex-centric paradigm.

3.2 Why Semi-Streaming?
The semi-streaming model [60] was created specifically for graph processing. However, there are
numerous other streaming models that are also used for developing graph algorithms, namely
simple streaming [68], insert-only [60], dynamic [8], vertex-arrival [44], adjacency-list [101], cash-
register [103], Turnstile [103], sliding window [49], annotated streaming [37], StreamSort [3],
W-Stream [52], online [80], and MapReduce [51]. A detailed comparison of these models and
analysis of their relationships is outside the scope of this paper2. Here, we briefly justify why we
selected semi-streaming as the basis for our MWM algorithm for FPGAs. First, semi-streaming
enables a generic streaming setting in which one can arbitrarily process the incoming stream of
edges. This will enable our substream-centric approach where the incoming edges are divided into
independent substreams. Second, there exists a rich body of algorithms and techniques developed
for the semi-streaming setting. Finally, most importantly, in semi-streaming one assumes that
processing the incoming stream of edges can utilize at most 𝑂 (𝑛 polylog(𝑛)) random memory.
Thus, algorithms under this model may address the limited FPGA BRAM capacity better
than algorithms in models with weaker memory-related constraints.

3.3 Which Semi-Streaming MM Algorithm?
Table 2 compares the considered semi-streaming and related MM algorithms. We identify those
with properties suggesting an effective and versatile FPGA design: low space consumption, one
pass, and applicability to general graphs. Finally, virtually all designed algorithms are approximate.
Yet, as we show later (§ 5), in practice they deliver near-accurate results.

We conjecture that the majority of the considered MM algorithms deliver limited performance
on FPGA because their design is strictly sequential: every edge in the incoming stream can only
be processed after processing the previous edge in the stream is completed. However, we identify
some algorithms that introduce a certain amount of parallelism. Here, we focus on the algorithm by
Crouch and Stubbs [46], used as a basis for our FPGA design (last row of Table 2). We first outline
this algorithm and then justify our selection. We also discuss other considered MWM algorithms.

3.3.1 Algorithm Intuition. The MWM algorithm by Crouch and Stubbs [46] delivers a (4 + 𝜀)-
approximation of MWM. It consists of two parts. In Part 1, one selects 𝐿 subsets of the incoming
(streamed) edges and computes a maximum cardinality matching for each such subset. In Part 2,
the derived maximum matchings are combined into the final maximum weighted matching. The
approach is visualized in Figure 2.

3.3.2 AlgorithmDetails. The algorithm of Crouch and Stubbs [46] provides a (4+𝜀)-approximation
to the MWM problem assuming an arbitrarily ordered stream of incoming edges with possible graph
updates (edge insertions). The basic idea is to reduce the MWM problem to 𝐿 ≡ 𝑂 (polylog(𝑛))
instances of the MCM problem. Given the input stream of incoming edges 𝐸, 𝑂

( 1
𝜀
log𝑛

)
many

substreams are generated. Each substream 𝐸𝑖 is created by filtering the edges according to their
weight. Specifically, we have 𝐸𝑖 = {𝑒 ∈ 𝐸 | 𝑤 (𝑒) ≥ (1 + 𝜀)𝑖 }. Since an edge that belongs to
substream 𝑖 + 1 also belongs to substream 𝑖 , it holds that 𝐸𝑖+1 ⊆ 𝐸𝑖 . Next, for each substream,
an MCM 𝐶𝑖 is constructed. The final (4 + 𝜀)-approximation to MWM is greedily constructed by
considering the edges of every 𝐶𝑖 , in the descending order of 𝑖 .
2This comparison will be provided in a separate survey on streaming graph processing; this survey will be released upon
the publication of this work.
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Reference
(scheme name) Venue Generic

Design1
Considered
Problems2

Programming
Paradigm4

Used
Language

Multi
FPGAs4

Input
Location5 𝑛† 𝑚†

Kapre [79]
(GraphStep) FCCM’06 �

spreading
activation [93]

BSP (similar to
vertex-centric) unsp. � BRAM 220k 550k

Weisz [135]
(GraphGen) FCCM’14 �

TRW-S,
CNN [127] Vertex-Centric unsp. � DRAM 110k 221k

Kapre [78]
(GraphSoC) ASAP’15 � SpMV Vertex-Centric C++

(HLS) � BRAM 17k 126k

Dai [47]
(FPGP) FPGA’16 � BFS Edge-Centric∗ unsp. � DRAM 41.6M 1.4B

Oguntebi [107]
(GraphOps) FPGA’16 �

BFS, SpMV, PR,
Vertex Cover Edge-Centric∗ MaxJ

(HLS) � BRAM 16M 128M

Zhou [147] FCCM’16 � SSSP, WCC, MST Edge-Centric unsp. � DRAM 4.7M65.8M
Engelhardt [57]
(GraVF) FPL’16 � BFS, PR, SSSP, CCVertex-Centric Migen

(HLS) � BRAM 128k 512k

Dai [48]
(ForeGraph) FPGA’17 � PR, BFS, WCC Edge-Centric∗ unsp. � DRAM 41.6M 1.4B

Zhou [149] SBAC-PAD’17� BFS, SSSP Hybrid (Vertex
+Edge-Centric) unsp. � DRAM 10M 160M

Lee [89]
(ExtraV) FPGA’17 � BFS, PR, CC Edge-Centric∗ C++

(HLS) � DRAM 124M 1.8B

Zhou [148] CF’18 � SpMV, PR Edge-Centric unsp. � DRAM 41.6M 1.4B

Yang [137] report (2018) � BFS, PR, WCC Edge-Centric∗ OpenCL � 4.85M 69M

Yao [138] report (2018) � BFS, PR, WCC Vertex-Centric unsp. � BRAM 4.85M 69M

Betkaoui [32] FTP’11 � GC Vertex-Centric Verilog � DRAM 300k 3M

Betkaoui [33] FPL’12 � APSP Vertex-Centric Verilog � DRAM 38k 72M

Betkaoui [34] ASAP’12 � BFS Vertex-Centric Verilog � DRAM 16.8M 1.1B
Attia [13]
(CyGraph) IPDPS’14 � BFS Vertex-Centric VHDL � DRAM 8.4M 536M

Zhou [146] ReConFig’15 � PR Edge-Centric unsp. � DRAM 2.4M 5M

Besta [19] FPGA’19 � MWM Substream-CentricVerilog � DRAM 4.8M 117M

Table 1. Summary of the features of selected works sorted by publication date. 1Generic Design: this criterion indicates
whether a given scheme provides a graph processing framework that supports more than one graph algorithm (�) or
whether it focuses on concrete graph algorithm(s) (�). 2Considered Problems: this column lists graph problems (or
algorithms) that are explicitly considered in a given work; they are all described in detail in an extended survey [30] (BFS:
Breadth-First Search [43], SSSP: Single-Source Shortest Paths [43], APSP: All-Pairs Shortest Paths [43], PR: PageRank [111],
CC: Connected Components [43], WCC: Weakly Connected Components [43], MST: Minimum Spanning Tree [43], SpMV:
Sparse Matrix and Dense Vector product, TC: Triangle Counting [118], BC: Betweenness Centrality [104], GC: Graphlet
Counting [118], TRW-S: Tree-Reweighted Message Passing [128], CNN: Convolutional Neural Networks [17, 144]). 3Used
Programming Paradigm: this column specifies programming paradigms and models used in each work; ∗The star
indicates that a given scheme uses a paradigm similar to the edge-centric streaming paradigm, for example sharding as
used in GraphChi [88], where edges are first preprocessed and divided into shards, with shards being streamed in and
out of the main memory. 4Multi FPGAs: this criterion indicates whether a given scheme scales to multiple FPGAs (�) or
not (�). 5Input Location: this column indicates the location of the whole input graph dataset. “DRAM” indicates that
it is located in DRAM and it is streamed in and out of the FPGA during processing (i.e., only a part of the input dataset
is stored in BRAM at a time). Contrarily, “BRAM” indicates that the whole dataset is assumed to be located in BRAM.
𝑛†,𝑚†: these two columns contain the numbers of vertices and edges used in the largest graphs considered in respective
works. In any of the columns, “unsp.” indicates that a given value is not specified.
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Reference Approx. Space #Passes Wgh1 Gen2 Par3

[60] 1/2 𝑂 (𝑛) 1 � � �

[86, Theorem 6] 1/2 + 0.0071 𝑂 (𝑛 polylog(𝑛)) 2 � � �

[86, Theorem 2] 1/2 + 0.003* 𝑂 (𝑛 polylog(𝑛)) 1 � � �

[77, Theorem 1.1] 𝑂 (polylog(𝑛)) 𝑂 (polylog(𝑛)) 1 � � �

[60, Theorem 1] 2/3 − 𝜀 𝑂 (𝑛 log𝑛) 𝑂 (log (1/𝜀) /𝜀) � � �

[6, Theorem 19] 1 − 𝜀 𝑂
(
𝑛 polylog(𝑛)/𝜀2

)
𝑂
(
log log (1/𝜀) /𝜀2

)
� � �

[86, Theorem 5] 1/2 + 0.019 𝑂 (𝑛 polylog(𝑛)) 2 � � �

[86, Theorem 1] 1/2 + 0.005* 𝑂 (𝑛 log𝑛) 1 � � �

[86, Theorem 4] 1/2 + 0.0071* 𝑂 (𝑛 polylog(𝑛)) 2 � � �

[81] 1 − 1/𝑒 𝑂 (𝑛 polylog(𝑛)) 1 � � �

[64, Theorem 20] 1 − 1/𝑒 𝑂 (𝑛) 1 � � �

[76, Theorem 2] 1 − 𝑒−𝑘𝑘𝑘−1

(𝑘−1)! 𝑂 (𝑛) 𝑘 � � �

[40] 1 𝑂̃
(
𝑘2
)

1 � � �

[40] 1/𝜀 𝑂̃
(
𝑛2/𝜀3

)
1 � � �

[12, Theorem 1] 1/𝑛𝜀 𝑂̃
(
𝑛2−3𝜀 + 𝑛1−𝜀

)
1 � � �

[60, Theorem 2] 6 𝑂 (𝑛 log𝑛) 1 � � ?

[98, Theorem 3] 2 + 𝜀 𝑂 (𝑛 polylog(𝑛)) 𝑂 (1) � � ?

[98, Theorem 3] 5.82 𝑂 (𝑛 polylog(𝑛)) 1 � � ?

[140] 5.58 𝑂 (𝑛 polylog(𝑛)) 1 � � ?

[59] 4.911 + 𝜀 𝑂 (𝑛 polylog(𝑛)) 1 � � ?

[66] 3.5 + 𝜀 𝑂 (𝑛 polylog(𝑛)) 1 � � ?

[113] 2 + 𝜀 𝑂
(
𝑛 log2 𝑛

)
1 � � ?

[62] 2 + 𝜀 𝑂 (𝑛 log𝑛) 1 � � ?

[60, Section 3.2] 2 + 𝜀 𝑂 (𝑛 log𝑛) 𝑂

(
log1+𝜀/3 𝑛

)
� � ?

[6, Theorem 28] 1
1−𝜀 𝑂

(
𝑛 log(𝑛)/𝜀4

)
𝑂
(
𝜀−4 log𝑛

)
� � �

[6, Theorem 22] 1
2
3 (1−𝜀)

𝑂

(
𝑛

(
𝜀 log𝑛−log 𝜀

𝜀2

))
𝑂
(
𝜀−2 log

(
𝜀−1

) )
� � �

[6, Theorem 22] 1
1−𝜀 𝑂

(
𝑛

(
𝜀 log𝑛−log 𝜀

𝜀2

))
𝑂
(
𝜀−2 log

(
𝜀−1

) )
� � �

[46] 4 + 𝜀 𝑂 (𝑛 polylog(𝑛)) 1 � � �

Table 2. (§ 3) Comparison of algorithms for maximum matching. ∗Approximation in expectation, 1Wgh: accepted
weighted graphs, 2Gen: accepted general (non-bipartite) graphs, 3Par: Potential for parallelization; 𝑘 is the size of a given
maximum matching. �: A given feature is offered. �: A given feature is not offered. In the context of parallelization: �: a
given algorithm is based on a method that is easily parallelizable (e.g., sampling), �: a given algorithm uses a method that
may be complex to parallelize (e.g., augmenting paths),?: it is unclear how to parallelize a given algorithm (e.g., it is based
on a greedy approach).
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Fig. 2. The design of the MWM algorithm of Crouch and Stubbs [46].

We select this algorithm as the basis of our substream-centric FPGA design as it (1) can be
straightforwardly parallelized, (2) ensures only 𝑂 (𝑛 polylog𝑛) memory footprint as it belongs to
the semi-streaming model, (3) targets general weighted graphs, (4) its structure matches well the
design of a hybrid FPGA+CPU system: while substreams can be processed in parallel on the FPGA,
the greedy sequential merging of substreams into the final MWM can be done on the CPU, and (5)
it needs only one pass over the streamed dataset of size𝑂 (𝑚 + 𝑛), limiting expensive data transfers
between the FPGA and DRAM.

3.4 How To Adapt Semi-Streaming to FPGAs?
In § 4, we describe the FPGA adaptation, design, and implementation of the selected semi-streaming
MM algorithm. We stream the edges as stored in the CSR representation. Our substream-centric
design implements a staged pipeline with throughput of up to one edge per cycle.

3.5 Other Considered Matching Algorithms
We could not find other algorithms that would clearly satisfy all the above five criteria (stated
in § 3.3) simultaneously. However, we do not conclude that other algorithms are unsuitable for
an efficient FPGA implementation, and leave developing such designs as future work. Here, for
completeness, we describe other streaming matching algorithms considered in our analysis. Details
of these algorithms (models, techniques, random vs. deterministic design) can be found in Table 3.

3.5.1 Generic Techniques for Deriving Matchings. First, we shortly describe generic techniques that
we identified while analyzing matching algorithms. We identified these techniques to investigate
which algorithms are easily parallelizable (when a given technique is easily parallelizable, this
implies that algorithms relying on this technique may also be easily parallelizable).
Sampling and Unbiased Estimators Sampling [54] in general is used to estimate some quantity,
for example the number of triangles in a graph. One first samples edges that are then used to
generate an unbiased estimator of the graph property in question. After that, the challenging task
is to show that the space constraint of 𝑂 (𝑛 polylog(𝑛)) is not exceeded, and that the estimator
succeeds to give an estimation within a small error range with some probability. Often, the error
range and success probability can be controlled and are assumed to be constants. This method is
abbreviated with a simple General sampling.
Sketching and 𝐿0 Sampling Graph sketching is a technique that reduces dimensionality of given
data while preserving certain properties. It is commonly used in dynamic graph streams because in
such streams a sampled edge might be removed afterwards, and thus a simple sampling scheme as
described above cannot be used. Specifically, sketching based on 𝐿0 sampling proved to be useful in
different cases [7, 8] when the dynamic streaming model with inserts and deletes is assumed.
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Simulation of Local Distributed Algorithms An approach used in several cases is based on
porting a local distributed algorithm solving a given graph problem to the streaming model to
simulate its behaviour and solve the same problem in the streaming setting [77].
Augmenting Paths An𝑀-augmenting path [112] is a path that starts and ends with vertices that
are not adjacent to edges that belong to𝑀 , and all other vertices in this path are adjacent to such
edges. Moreover, every second edge in the path belongs to𝑀 . It is easy to see that by removing all
the edges of such a path from𝑀 , and by adding those in this path that were not in𝑀 , one increases
the size of𝑀 by 1. This technique is used to improve the size of maximal matchings.
Greedy Approach A traditional greedy approach [42] is also used in streaming settings.
Linear Programming (LP) Some problems can be reduced to a linear program [112] which also
provides a solution to the initial problem.
Local Ratio The local ratio technique [15] is an approach for solving combinatorial optimization
problems and is related to linear programming.

3.5.2 Maximum Cardinality Matching. We start with algorithms for MCM algorithms. A simple
maximal matching can be obtained by iterating over edges in some arbitrary order and greedily
adding an edge only if both its endpoints are not used yet; this scheme requires 𝑂 (𝑛) space [60].
Since every maximal matching is a 1/2-approximation to a maximum matching, this scheme leads
to a 1/2-approximation for the maximum cardinality matching. For a long time, this approach was
used to derive the best approximation of a maximum matching, using only one pass.

Konrad et al. [86] present a variety of algorithms, taking either one or two passes over the input
stream of edges. The general idea is to simulate a three pass algorithm. The original three pass
algorithm relies on the refinement of a maximummatching in a bipartite graph using𝑀-augmenting
paths, as already used by Feigenbaum et al. [60, Theorem 1].
Kapralov et al. [77] simulate a local distributed algorithm in the semi-streaming model. The

local algorithm is able to distinguish graphs with an Ω(𝑛) size matching from the graphs having
no 𝑛/polylog(𝑛) size matching. This approach is transformed into a one-pass semi-streaming
algorithm, requiring only 𝑂 (polylog(𝑛)) space. 𝑂 (log(𝑛)) many instances of this algorithm are
executed in parallel, resulting in an 𝑂 (polylog(𝑛))-approximation.
For bipartite graphs, (1 − 1/𝑒)-approximations are possible in both the online [81] and vertex

model [64]. Both assume that both vertex classes belonging to sets 𝑈 ,𝑊 of the bipartite graph
𝐺 = (𝑈 ,𝑊 , 𝐸) have the same size, and that one set of the vertices is known beforehand (say 𝑈 ).
The other set (say𝑊 ) is then streamed in and at the same time the edges are revealed to the other
set. However, the two approaches differ by the fact that one is online, so must make a decision as
soon as the edges arrive, and the other can defer the decision to a later point in time. Additionally,
the algorithm of Goel et al. [64] is deterministic. A refinement of Kapralov’s scheme [76] allows
multiple passes on the input and also achieves a (1 − 1/𝑒)-approximation for one pass. Differently,
the |𝑈 | = |𝑊 | constraint is not mentioned.
In the dynamic graph stream model, Chitnis et al. [40] present an exact approximation using

𝑂̃ (𝑘2) space (where 𝑘 is the size of the matching |𝑆∗ |), requiring only one pass. The approach is
refined for (1/𝛼)-approximative matchings, using 𝑂̃ (𝑛2/𝛼3) memory. Both algorithms rely on a
sampling primitive, which runs in parallel and is also applicable in the MapReduce [51] setting.
A one-pass algorithm in the dynamic graph stream model is presented by Assadi et al. [12,

Theorem 1.1]. The algorithm uses a bipartite graph and two approximations of the matching as
the input. Note that one can run the algorithm for 𝑂 (log(𝑛)) many estimates of the matching, to
determine the correct approximation value. The algorithm relies on 𝐿0-sampling to process the
input and succeeds with probability of at least 0.15. Despite the fact that the algorithm runs for
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Reference Model Determinism Technique Matching type

[60] Insertion-Only Deterministic - Cardinality

[86, Theorem 6] Insertion-Only Deterministic Augmenting Paths Cardinality

[86, Theorem 2] Insertion-Only Deterministic Augmenting Paths Cardinality

[77, Theorem 1.1] Insertion-Only Deterministic Local Algorithm Cardinality

[60, Theorem 1] Insertion-Only Deterministic Augmenting Paths Cardinality

[6, Theorem 19] Insertion-Only Deterministic LP Cardinality

[86, Theorem 5] Insertion-Only Deterministic Augmenting Paths Cardinality

[86, Theorem 1] Insertion-Only Deterministic Augmenting Paths Cardinality

[86, Theorem 4] Insertion-Only Randomized Augmenting Paths Cardinality

[81] Online Randomized - Cardinality

[64, Theorem 20] Vertex-Arrival Deterministic - Cardinality

[76, Theorem 2] Vertex-Arrival Deterministic - Cardinality

[40] Dynamic Graph Stream Randomized General Sampling Cardinality

[40] Dynamic Graph Stream Randomized General Sampling Cardinality

[12, Theorem 1] Dynamic Graph Stream Randomized 𝐿0 Sampling Cardinality

[60, Theorem 2] Insertion-Only Deterministic Greedy Weighted

[98, Theorem 3] Insertion-Only Deterministic Greedy Weighted

[98, Theorem 3] Insertion-Only Deterministic Greedy Weighted

[140] Insertion-Only Deterministic - Weighted

[59] Insertion-Only Deterministic - Weighted

[66] Insertion-Only Deterministic - Weighted

[113] Insertion-Only Deterministic Local Ratio Weighted

[62] Insertion-Only Deterministic Local Ratio Weighted

[60, Section 3.2] Insertion-Only Deterministic - Weighted

[6, Theorem 28] Insertion-Only Deterministic LP Weighted

[6, Theorem 22] Insertion-Only Deterministic LP Weighted

[6, Theorem 22] Insertion-Only Deterministic LP Weighted

[46] Insertion-Only Deterministic - Weighted

Table 3. (§ 3.5)Comparison of algorithms formaximummatching.Model: model used to construct a given algorithm,
Determinism: whether a given algorithm is deterministic or randomized, Technique: used general technique (see § 3.5.1);

bipartite graphs only, by choosing a random bipartition of the vertices it is possible to run the
algorithm for arbitrary graphs, reducing the approximation by a factor of at most two.

Works on maximum matchings in low arboricity graphs also exist [45, 99, 100].

3.5.3 Maximum Weighted Matching. Feigenbaum et al. [60] presented the first 6-approximation
in 2005. In the same year, the bound was improved to 5.82 [98], which also allows a (2 + 𝜀)-
approximation using a constant number of passes, assuming 𝜀 is small. Note that both of these
one-pass algorithms decide at edge arrival, if the edge is kept or not by comparing the weight of
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the incoming edge to some value that depends on the matching computed so far. Using so called
shadow-edges, which may be reinserted into the matching later on [140], the approximation value
can be reduced to 5.58. Epstein et al. [59] partition the input edges into𝑂 (log(𝑛)) edge sets. For each
set, a separate maximal cardinality matching is computed. Finally, a greedy algorithm is applied to
merge the cardinality matchings. This randomized method allows a (4.911 + 𝜀)-approximation, and
can be derandomized by running all possible outcomes of the randomized algorithm in parallel.
Note that there is a constant number of parallel executions for a fixed 𝜀. A similar approach is used
to lower the one-pass approximation to 4 + 𝜀 [46]: The algorithm reduces the maximum weight
matching problem to a polylog number of copies of the maximum cardinality matching problem.
At the end, a greedy merge step is applied to get the final result. It is also proven that this specific
approach cannot provide a better approximation than 3.5 + 𝜀. This lower bound of 3.5 + 𝜀 was
achieved two years later [66]. Recently, the 2 + 𝜀 approximation ratio was achieved [113] using
the local ratio technique [14, 16]. Ghaffari [62] improved the algorithm and reduced the space
required from 𝑂 (𝑛 log2 (𝑛)) to 𝑂 (𝑛 log(𝑛)). The proof is done differently using a blaming-charging
argument.

Different multi-pass algorithms exist: Feigenbaum et al. [60] noticed that multiple passes allow
to emulate an already existing algorithm [132] solving the maximum weighted matching problem.
This approach uses only 𝑂 (𝑛 log(𝑛)) space resulting in an (2 + 𝜀)-approximation with 𝑂 (log(𝑛))
passes. Ahn et al. [6] rely on linear programming: given a graph 𝐺 = (𝑉 , 𝐸,𝑤), a suitable linear
program is defined, which needs to be solved. The Multiplicative Weights Update Meta-Method [11]
is used to solve the linear program. Different approaches are presented to lower the amount of
space and passes on the input stream.

4 MAXIMUMMATCHING ON FPGA
We now describe the design and implementation of the substream-centric MM for FPGAs.

4.1 Overview of the Algorithm
We start with a high-level overview of the MWM algorithm. A pseudo code is shown in Listing 1.
For each edge, we iterate in the descending order of 𝑖 over the 𝐿 substreams, identifying them by
their respective weights (Line 11). The 𝑖-th substream weight is given by (1+𝜀)𝑖 . For each maximum
matching 𝐶𝑖 , we use a bit matrix 𝑀𝐵 to track if a vertex has an incident edge to ensure that 𝐶𝑖
remains a matching (i.e., that no two vertices share an edge). Bits included in𝑀𝐵 are calledmatching
bits. Bits in𝑀𝐵 associated with a vertex 𝑢, the source vertex of a processed edge, (𝑢-matching bits)
determine if 𝑢 has an incident edge included in some matching; they are included in column𝑚𝑏𝑢
of matrix 𝑀𝐵. Matching bits associated with vertex 𝑣 , the destination vertex of a processed edge,
(𝑣-matching bits) track the incident edges of 𝑣 ; they are included in column𝑚𝑏𝑣 of matrix𝑀𝐵. Since
there are 𝐿 matchings and 𝑛 vertices, the bit matrix𝑀𝐵 is a matrix of size 𝐿 ×𝑛. Furthermore, every
matching stores its edges in a list. If an edge is added, a flag is set to true to prevent that the edge
is added to multiple lists (Line 16). This reduces the runtime of the post-processing part, in which
we iterate in the descending order over the 𝐿 lists of edges to generate the (4 + 𝜀)-approximation to
the maximum weighted matching.

4.1.1 Time & Space Complexity. The space complexity is 𝑂 (𝑛𝐿) to track the matching bits, and
𝑂 (min(𝑚,𝑛/2)𝐿 log(𝑛)) to store the edges of 𝐿maximummatchings. The time complexity is𝑂 (𝑚𝐿)
for substream processing on the FPGA and 𝑂 (𝑛𝐿) for substream merging on the CPU, resulting in
the total complexity of 𝑂 (𝑚𝐿 + 𝑛𝐿).
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1 //Input: 𝜀, 𝐸, 𝐿. Output: T (a (4 + 𝜀)-approximation of MWM). I/O

2
3 //PART 1 (Stream processing): compute 𝐿 maximum matchings

4 C: List of Lists; //𝐿 lists to store edges in 𝐿 substreams
5 MB: Matrix; //The matching bits matrix of size 𝐿 × 𝑛
6 substream_weights: List; //The list of substream weights;
7 // substream_weights[i] = (1 + 𝜀)𝑖 .
8 has_added: bool; // Controlling adding an edge to only one MCM
9 foreach(WeightedEdge e : 𝐸) {
10 has_added = false;
11 for(i = 𝐿 − 1; i >= 0; i--) {
12 if(e.weight >= substream_weights[i]) {
13 if(!MB[e.u][i] && !MB[e.v][i]) {
14 MB[e.u][i] = 1; MB[e.v][i] = 1;
15 if(! has_added) {//Add e only once to the matchings
16 C[i].add(e); has_added = true;
17 } } } } } FPGA
18
19 //PART 2 (Post processing): combine 𝐿 matchings into a MWM

20 T: List; //A list with the edges of the final MWM
21 tbits: List; //An array containing the matching bits of T
22 for(i = 𝐿 − 1; i >= 0; i--) {
23 foreach(WeightedEdge e : C[i]) {
24 if(! tbits[e.u] && !tbits[e.v]) {
25 tbits[e.u] = 1; tbits[e.v] = 1;
26 T.add(e);
27 } } }
28 return T; CPU

Listing 1. (§ 4.1) The high-level overview of the substream-centric Maximum Weighted Matching algorithm,
based on the scheme by Crouch and Stubbs [46]

4.1.2 Reducing Data Transfer with Matching Bits Storage. We assume that the input is streamed
according to the CSR order corresponding to the input adjacency matrix. If we process a matrix row,
we load the edges from DRAM to the FPGA. Further, we can store the matching bits𝑚𝑏𝑢 of vertex
𝑢 in BRAM on the FPGA, since they are reused multiple times (temporal locality). The matching bits
of 𝑣 are streamed in from DRAM. Since the matching bits for 𝑣 are not used afterwards for the
same matrix row, we write them back to DRAM. Using this approach, we can process the whole
graph row by row and need to store only the 𝑢-matching bits in BRAM.

4.2 Blocking Design for More Performance
4.2.1 Problem of Data Dependency. We cannot start processing the next row of the adjacency

matrix until the last matching bits of the previous row have been written to DRAM, because we
might require accessing the same 𝑣-matching bits again (read after write dependency). In such a
design, the waiting time required after each row could grow, decreasing performance.

4.2.2 Solution with Blocking Rows. We alleviate the data dependency by applying blocking. We
merge 𝐾 adjacent rows to become one stream; we call the merged stream of 𝐾 rows an epoch, and
denote the 𝑘-th epoch (starting counting from 1) as 𝑘 . There are ⌈𝑛/𝐾⌉ epochs in total. To enable
merging the rows, we define a lexicographic ordering over all edges.

4.2.3 Lexicographic Ordering. Let a tuple (𝑢, 𝑣,𝑤, 𝑘) denote an edge with vertices 𝑢, 𝑣 , weight
𝑤 , and associated epoch 𝑘 = ⌊(𝑢 − 1)/𝐾⌋ + 1. Then, the lexicographic ordering is given by:
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1 //Input and Output: as in Listing 1. I/O

2
3 //PART 1 (Stream processing): compute 𝐿 maximum matchings

4 for(Epoch k = 1; k <= ⌈𝑛/𝐾 ⌉; k++) {
5 Load u-matching bits from DRAM into double-buffered BRAM
6 Merge the 𝐾 rows of edges (loaded from DRAM into one stream S)
7 with a merging network (Figure 4), apply lexicographic order
8 // Process each edge
9 foreach(WeightedEdge e : S) {
10 Matching bits requester loads matching bits (e.v) from DRAM
11 // Apply the 8 stage pipeline for each edge
12 Stage 1: extract v-matching bits from a data chunk ,
13 determine BRAM address
14 Stage 2: load the matching bits for e.u from BRAM
15 Stage 3: wait for one cycle due to the latency of the BRAM
16 Stage 4: store the arriving BRAM data in a register , select
17 the correct matching bits , compute el[i] = e.w = (1 + 𝜀)𝑖
18 Stage 5: compute the matchings
19 Stage 6: write u-matching bits to BRAM , write
20 v-matching bits to double -buffered BRAM if required
21 Stage 7: determine the least significant bit in te,
22 store them in variable i
23 Stage 8: write the edge to DRAM at C[i]
24 (if part of a matching), write v-matching bits to DRAM
25 }
26 Wait till all writes to DRAM are committed} FPGA
27
28 //PART 2 (Post processing): As in Listing 1. CPU

Listing 2. (§ 4.1–§ 4.4) The pseudocode of the substream-centric MWM algorithm, enhanced with the blocking
optimization and a lexicographic ordering.

(𝑢𝑎, 𝑣𝑎,𝑤𝑎, 𝑘𝑎) < (𝑢𝑏, 𝑣𝑏,𝑤𝑏, 𝑘𝑏) iff 𝑘𝑎 < 𝑘𝑏∨ (𝑘𝑎 = 𝑘𝑏∧𝑣𝑎 < 𝑣𝑏) ∨ (𝑘𝑎 = 𝑘𝑏∧𝑣𝑎 = 𝑣𝑏∧𝑢𝑎 < 𝑢𝑏); the
edge weight is ignored. An example is in Figure 3 (top). The lexicographic ordering is implemented
by a simple merging network.

4.2.4 Advantages of Blocking. At the end of each epoch, 𝑣-matching bits are written to DRAM.
This reduces the number of such transfers from 𝑛 to 𝑛/𝐾 . Moreover, if edges in different rows share
the same 𝑣-matching bits, only one load from DRAM is required. Finally, 𝑢-matching bits can be
kept in BRAM, since they are reused multiple times.

4.2.5 Further Optimizations. To achieve a performance of up to one processed edge per cycle, we
pipeline the processed edges, we distribute the 𝑢-matching bits over multiple BRAMs (to facilitate
reading data from different addresses), and we double buffer 𝑢-matching bits to reduce latencies.

4.3 Input and Output Format
The input to the FPGA algorithm is a custom variant of the Compressed Sparse Row (CSR) format.
An example is given in Figure 3 (bottom). The format has two parts: The pointer_data and the
graph_data. First, the pointer_data stores information about the start and end of each row of the
adjacency matrix. An entry contains three parts: the ID of the data chunk with information about
where the first edge is stored, the data chunk offset denoting the offset of the first edge from the
start of the data chunk, and the number of associated edges (a data chunk refers to data of a given
size at an aligned memory address). Each entry uses 32 bits, making an entry of the pointer_data
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96 bits. We fit five entries (480 bits) in a data chunk. Second, the graph_data is a stream of edges.
One entry consists of the column index and the edge weight. The row identifier is given by the
corresponding entry in the pointer_data. One graph_data entry requires 64 bits, allowing to
store eight edges in a data chunk.

Our custom data layout has different advantages over the usual CSR format. First, a single entry
of the pointer_data already gives all required information about the start and length of the row
of the adjacency matrix. This entails some redundancy compared to the traditional CSR, but only
requires one load from DRAM to resolve a given edge. Further, CSR splits the column indices and
values. We merge them together in one stream, reducing the number of random accesses.

The output of the FPGA consists of 𝐿 substreams of edges. The 𝑖-th stream contains edges of
the maximum matching 𝐶𝑖 . We use 128 bits for each edge: 32 bits each for the vertex IDs, the edge
weight, and the assigned index 𝑖 of the maximum matching (which could be omitted). A single data
chunk therefore contains four output edges.

4.4 Details of Processing Substreams on FPGA
We explain the interaction of the FPGA modules dedicated to generating the lexicographic ordering
(Part 1) and computing the maximum matchings (Part 2); see Figure 4, Figure 5, and Listing 2.

4.4.1 Generating Lexicographic Ordering. As input to the FPGA, we get the address pointing to
the start of pointer_data, the number of vertices 𝑛, the number of edges𝑚, a pointer 𝑝𝑜𝑢𝑡 where
we write the output to, and an offset value 𝑜 to distinguish the 𝐿 output streams (start of output
stream 𝑖 is at 𝑝𝑜𝑢𝑡 + 𝑖 · 𝑜). The pointer requester is responsible for requesting the data chunks
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Example pointer and graph data (custom compressed sparse row (CSR) format)

Fig. 3. An example input adjacency matrix, its annotated lexicographic ordering illustrated by arrows (𝐾 = 4), and and its
custom compressed sparse row (CSR) format. The entries of the adjacency matrix denote the weight of an edge.
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Fig. 4. (§ 4.4) The interaction of the FPGA modules to approximate MWM. For clarity, the State Controller is omitted.
The wires of incoming data from Centaur consists of 512 bits for data and 8 bits for tag. All modules are connected using
AXI interfaces. All valid bits are omitted. The merger network is in Figure 5.
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details

Starting
queue

all wires in
the merger
are 96 bit

Fig. 5. (§ 4.4) Themerger network from Figure 4 for 𝐾 = 8.

holding the pointer_data. The requested pointers arrive at the pointer receiver. Given a data
chunk, the pointer receiver unwraps the five pointers, and passes them to the edge requester. The
pointer_data from the pointer receiver is passed to four different queues 𝑄0, 𝑄1, 𝑄2, 𝑄3, where
every queue gets a subset of the pointers dependent on 𝐾 . Assume for simplicity that the vertex
IDs start at 0 and (𝐾 mod 4) = 0. Then, to be precise, given a pointer 𝑝 (𝑢) pointing to row 𝑢, we
assign 𝑝 (𝑢) to 𝑄𝑖 if (𝑢 mod 𝐾) ≥ 𝐾/4 · 𝑖 ∧ (𝑢 mod 𝐾) < 𝐾/4 · (𝑖 + 1). For example, with 𝐾 = 16,
𝑄0 stores 𝑝 (𝑢) with 𝑢 = 0, 1, 2, 3, 16, 17, 18, 19, 31 . . ., and 𝑄1 stores 𝑝 (𝑢) with 𝑢 = 4, 5, 6, 7, 20, . . ..
The pointer_data is loaded from the queues into a BRAM array 𝐵𝑃 of size 𝐾 , where every entry
holds two pointers (2𝐾 pointers are therefore stored in total). If an entry 𝑖 of 𝐵𝑃 has pointers 𝑝 (𝑢 ′)
and 𝑝 (𝑢 ′′), it holds that 𝑖 = (𝑢 ′ mod 𝐾) = (𝑢 ′′ mod 𝐾) and 𝑝 (𝑢 ′′) requests edges for an epoch
after 𝑝 (𝑢 ′). Therefore, only the first pointer in an entry is valid to use and we have random access
to 𝐾 valid pointers in total. To describe the mechanism that determines the selection of the next
pointer to request new edges, we first inspect further processing steps.

The edge receiver gets data chunks containing graph_data from the framework and unwraps
them (we use the Centaur framework [109] to access main memory independently of the CPU).
Information regarding the offset and number of edges which are valid for a data chunk request
is also passed from the edge requester to the edge receiver. Next, an edge 𝑒 = (𝑢, 𝑣,𝑤) is passed
from the edge receiver to themerger. There, the edge is inserted in a starting queue (with ID (𝑢
mod 𝐾)). The merger merges the 𝐾 streams in lexicographic ordering. It consists of a series of
merging elements, where each element has two input queues and an output port. The element
compares edges in its queues and outputs the edges according to the lexicographic ordering. The
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merging elements form a binary tree, such that for a given 𝐾 , there are 𝐾/2 starting elements with
𝐾 starting queues in total.

The edge requester can observe the size of the starting queues of the merger. It operates in two
modes to determine a pointer to new edges. In mode 1, one selects a pointer 𝑝 (𝑢) from queue 𝑄𝑖
as the next candidate if the corresponding starting (merger) queue (𝑢 mod 𝐾) does not overflow,
and store the pointer in BRAM 𝐵𝑃 at position (𝑢 mod 𝐾). If mode 1 fails (for example, if there is
no empty space at the appropriate position in BP), then mode 2 selects the pointer according to the
merger starting queue which has the least amount of edges. Note that the edge requester also takes
the requests which are in flight into account to predict the future size of the starting queue. This
approach ensures that the merger queues do not overflow and their load is balanced.
For a row 𝑢 which has no edges, a special information is passed from the edge requester to the

edge receiver. It then inserts an artificial edge in the merger. This allows to overcome problems,
where a merging element waits for new input, but does not receive any, since the adjacency matrix
row is empty. The merging network filters these edges at the output port (they are not passed on).

4.4.2 Deriving 𝐿 Maximum Matchings. The stream in lexicographic ordering is passed to the
matching bits requester. This module requests the 𝑣-matching bits from DRAM. It can only
operate when the bits of the epoch before have been acknowledged. Also, it only processes edges
belonging to the current epoch which is defined by the state controller. The requested data is
received in thematching bits receiver. It passes the full data chunk to the edge processor. Using
the matching bits and the ordered stream of edges, the edge processor computes the 𝐿 maximum
matchings in parallel in an 8-stage pipeline (Listing 2, Lines 10–24). In Stage 1, 𝑣-matching bits
for a given edge are extracted from a data chunk. Further, the address of the 𝑢-matching bits in
BRAM is computed. Since the more up-to-date 𝑣-matching bits might also be stored in BRAM,
this address is also determined. In Stage 2, read requests to fetch the matching bits from BRAM
are issued. Stage 3 only waits one clock cycle for BRAM to return the data. In Stage 4, the BRAM
data arrives and is stored in a register. The stage also decides if 𝑣-matching bits are taken from
the data chunk or from BRAM. Further, the stage computes the matching value 𝑡𝑒 indicating if an
edge 𝑒 = (𝑢, 𝑣,𝑤) belongs to substream 𝐸𝑖 ; 𝑡𝑒 [𝑖] = 𝑤 ≥ (1 + 𝜀)𝑖 for 𝑖 ∈ {0, . . . , 𝐿 − 1}. In Stage 5,
the actual matching is computed. As the BRAM data from Stage 4 may already be obsolete, the
computed values are also stored in registers for instant access in the next cycle. The result is passed
to Stage 6, in which the updated 𝑢-matching bits (and if required also the 𝑣-matching bits) are
written back to BRAM. In Stage 7, the maximum matching with the highest index, to which the
edge is assigned, is determined. Finally, Stage 8 passes the edge to the edge writer to write it back
to DRAM (if the edge is used in a matching) and also passes the updated 𝑣-matching bits to the
matching bits writer for writing back to DRAM.
The BRAM storing the 𝑢-matching bits is double buffered. While the first BRAM buffer is used

in the edge processor, the matching bits for the next epoch are loaded from DRAM to the second
BRAM buffer. Since an epoch can alter the 𝑢-matching bits required for the next epoch, we write
the according updates also in the double buffered BRAM if required. To prevent that stale data from
DRAM overwrites the more up-to-date data, we use a register (the valid-array) as flag. After an
epoch, the access is redirected to the BRAM containing the loaded data. The BRAM matching
bits requester requests the according data from DRAM, and the BRAMmatching bits receiver
unwraps the data chunks. It passes the data to the edge processor. There, Stage 6 checks for data
from the BRAM matching bits receiver and updates the according entry in the BRAM.

The acknowledgement receiver tracks the count of write acknowledgements from the frame-
work and determines if all 𝑣-matching bits are committed to DRAM when an epoch ends. When all
edges from the epoch are processed, the state controller indicates the start of the next epoch.
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4.5 Substream Merging on the CPU
After the 𝐿 MCMs are written to DRAM, the CPU inspects them in the decreasing order to compute
the final maximum matching (4 + 𝜀)-approximation. This part is a simple greedy scheme that
exposes little parallelism, thus we execute it on the CPU. It takes 𝑂 (𝐿𝑛) time and 𝑂 (𝐿𝑛) work.

4.6 Summary of Optimizations
In Figure 4, we also use dashed rectangles to illustrate which modules are responsible for the most
important optimizations: edge reordering on the fly, parallel substreams (pipelining), and blocking.
Modules responsible for pipelining are appropriately replicated.

4.7 Interactions with DRAM
We use the Centaur framework [109] as the interface to the Accelerator Functional Unit (AFU), the
custom FPGA implementation, allowing to access main memory independently of the CPU. Centaur
consists of a software and a hardware part. The software part allows to start and stop hardware
functions, to allocate and deallocate the shared memory, and pass input parameters to the FPGA.
The hardware part is responsible for bootstrapping the FPGA, setting up the QPI endpoint, and
handling reads and writes to the main memory. In our design, we use dedicated arbiter modules for
all read and write requests to Centaur: the requester and the writer. The requester has four queues.
The pointer requester, the edge requester, the matching bits requester, and the BRAM matching
bits requester can all write the DRAM address (from which a data chunk of 512 bits should be read)
to these four requester queues. The requester uses a fixed priority order to send the requests to the
Centaur framework. Centaur provides an 8 bit tag to identify the requests. For simplicity, fixed
tags are used for each of the four modules emitting requests. The modules listening for incoming
data (pointer receiver, edge receiver, matching bits receiver, and BRAM matching bits receiver)
process the data chunk of size 512 bits only when the tag matches the expected value. The design
relies on the FIFO behavior of Centaur, such that requests with the same tag are not reordered.
The writer orchestrates the modules (the matching bits writer and the edge writer) which issue
writes to DRAM. Similarly to the requester, the writer has a queue for each writing module (two in
total) and it uses a fixed priority order. The modules issuing the requests use fixed tags. Note that
data is written in chunks of 512 bits. The acknowledgment receiver monitors the Centaur interface
for writes that have been written. This information is passed to the state controller (not shown in
Figure 4) to orchestrate the modules. Since Centaur allows only to access data in chunks of 512 bits,
the addresses passed to the framework have 58 bits.

5 EVALUATION
We now illustrate the advantages of our hybrid (CPU+FPGA) MWM design and inspect resource
and energy consumption. For every benchmark, each tested algorithm was synthesized, routed, and
executed on the hybrid FPGA platform specified below.

5.1 Setup, Methodology, Baselines
5.1.1 Compared Algorithms. Since to our best knowledge no MWM algorithms for FPGAs are avail-

able, we compare our design to three state-of-the-art CPU implementations. In total, we evaluate
three CPU and two CPU+FPGA algorithms; see Table 4. First ❶, we implement a sequential CPU-
only version of the substream-centric MWM, based on the scheme by Crouch and Stubbs [46], as pre-
sented in Listing 1 (CS-SEQ). Second ❷, we parallelize the algorithm with OpenMP’s parallel-for
statement to compute different maximum matchings in parallel (CS-PAR). Third ❸, we implement
the algorithm by Ghaffari [62] (G-SEQ) that provides a (2 + 𝜀)-approximation to MWM with time
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complexity of 𝑂 (𝑚) and space complexity of 𝑂 (𝑛 log(𝑛)) bits. Thus, this algorithm is optimal in
the asymptotic time and space complexity. We compare these three algorithms to our optimized
FPGA+CPU implementation, SC-OPT ❹. Finally, we also tested SC-SIMPLE ❺, a variant of our
implementation that uses no blocking. SC-SIMPLE delivers more performance than the comparison
baselines but it is consistently outperformed by SC-OPT, we thus usually exclude it for clarity
of presentation. However, we use it in power consumption experiments to illustrate how much
additional power is used by the design optimizations in SC-OPT. To our best knowledge, we report
the first performance data for deriving maximum matchings on the FPGA.

5.1.2 Implementation Details and Reproducibility. We implement our algorithms in Verilog on a
hybrid CPU+FPGA system using the Centaur framework [109]. The modules outlined in Figure 4
are connected using AXI interfaces. To facilitate reproducibility and interpretability [69], we make
the whole code publicly available3.

Algorithm Platform Time complexity

Crouch et al. [46] Sequential (CS-SEQ) CPU 𝑂 (𝑚𝐿 + 𝑛𝐿)
Crouch et al. [46] Parallel (CS-PAR) CPU 𝑂 (𝑚𝐿/𝑇 + 𝑛𝐿)
Ghaffari [62] Sequential (G-SEQ) CPU 𝑂 (𝑚)
Substream-Centric, no blocking (SC-SIMPLE) Hybrid 𝑂 (𝑚 + 𝑛𝐿2)
Substream-Centric, with blocking (SC-OPT) Hybrid 𝑂 (𝑚 + 𝑛/𝐾 + 𝑛𝐿)

Table 4. (§ 5) Overview of the evaluated MWM algorithm implementations.

5.1.3 Setup. We use Intel HARP 2 [108], a hybrid CPU+FPGA system. It is a dual socket platform
where one socket is occupied by an Intel Broadwell Xeon E5-2680 v4 CPU [72] with 14 cores (28
threads) with up to 3.3 GHz clock frequency. Each core has 32 KByte L1 cache and there is 35
MByte L3 cache in total. An Arria-10 FPGA (10AX115U3F45E2SGE3) is in the other socket. The
used FPGA has speed grade 2 [74]. It provides 55 Mbit in 2,713 BRAM units and 427,200 ALMs. The
FPGA is connected to the CPU by one QPI and two PCIe links. The system runs Ubuntu 16.04.3
LTS with kernel 4.4.0-96 as the operating system. All host code is compiled with gcc 5.4.0 and the
-O3 compile flag.

5.1.4 Datasets. The input graphs are shown in Table 5. We use both synthetic (Kronecker) power-
law graphs of size up to 𝑛 = 221,𝑚 = 48𝑛 from the 10th DIMACS challenge [1] and real world
KONECT [85] and SNAP [91] graphs. For unweighted graphs, we assigned weights uniformly at
random with a fixed seed. The value range is given by [1, (1 + 𝜀)𝐿−1 + 1].

5.1.5 Measurements. The runtime is measured by clock_gettime with parameter
CLOCK_MONOTONIC_RAW, allowing the nanosecond resolution. The runtime of the FPGA imple-
mentations is determined by the Centaur framework. We execute each benchmark ten times to
gather statistics and we use box plot entries to visualize data distributions.

5.2 Scaling Size of Synthetic Graphs
We first evaluate the impact from varying graph sizes (synthetic power-law Kronecker graphs), for
the fixed amount of parallelism (the weak scaling experiment). The results are illustrated in Figure 6.
The throughput for CS-SEQ and CS-PAR stays approximately constant below ≈12M edges/s. G-SEQ
3https://spcl.inf.ethz.ch/Parallel_Programming/Matchings-FPGA
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Graph Type Reference 𝑚 𝑛

Kronecker Synthetic power-law DIMACS 10 [1] ≈48𝑛 2𝑘 ; 𝑘 = 16, . . . , 21
Gowalla Social network KONECT [85] 950,327 196,591
Flickr Social network KONECT [85] 33,140,017 2,302,925
LiveJournal1 Social network SNAP [91] 68,993,773 4,847,571
Orkut Social network KONECT [85] 117,184,899 3,072,441
Stanford Hyperlink graph KONECT [85] 2,312,497 281,903
Berkeley Hyperlink graph KONECT [85] 7,600,595 685,230
arXiv hep-th Citation graph KONECT [85] 352,807 27,770

Table 5. Selected used graph datasets. K𝑥 denotes a Kronecker graph with 2𝑥 vertices.

decreases in performance as the graph size increases. We conjecture that this is due to the increasing
size of the hash map used to track pointers. This increases the time for inserts and deletes, and might
also require re-allocations to increase the space. The performance for SC-OPT increases from≈135M
to ≈140M edges/s. This is because the initial (constant) overhead (due to reading from DRAM)
becomes less significant with larger graphs. We conclude that the substream-centric SC-OPT
beats comparison targets for all considered sizes of power-law Kronecker graphs.

K16 K17 K18 K19 K20 K21

Kronecker Graph

0

 2000

 4000

 6000

 8000

10000

12000

14000

T
im

e 
[m

s]

Runtime (lower is better)

SC-OPTG-SEQ

CS-PAR

CS-SEQ

K16 K17 K18 K19 K20 K21
Kronecker Graph

0

 20

 40

 60

 80

100

120

140

160

M
illi

on
 e

dg
es

/s

Throughput (higher is better)
SC-OPT

G-SEQ

CS-PAR
CS-SEQ

Fig. 6. (§ 5.2) Influence of graph size 𝑛 on performance (synthetic power-law graphs). 𝐾 = 32, 𝐿 = 64,𝑇 = 4, 𝜀 = 0.1.

5.3 Processing Different Real-World Graphs
We next analyze the performance of the considered designs for different real-world graphs; the
results are illustrated in Figure 7. CS-SEQ and CS-PAR achieve sustained ≈3M edges/s and ≈10M
edges/s, respectively. The performance of SC-OPT is ≈45M edges/s for small graphs due to the
initial overhead of reading data from DRAM. Compared to the experiment with Kronecker graphs,
the performance of both SC-OPT and G-SEQ is lower for all graphs except Orkut. The reason
is the average vertex degree: it equals ≈48 in Kronecker graphs compared to ≈14 in Flickr and
LiveJournal1. If the ratio is high, G-SEQ can drop many edges without further processing in an
early phase. This reduces expensive updates to the hash map and lists. For SC-OPT, the waiting
time (of data dependencies) lowers the performance. Still, substream-centric SC-OPT ensures
highest performance for all considered real-world graphs.
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Fig. 7. (§ 5.3) Influence of graph dataset𝐺 on performance (real-world graphs). 𝐾 = 32, 𝐿 = 64,𝑇 = 4, 𝜀 = 0.1.

5.4 Scaling Number of Threads 𝑇
In the CPU versions, one can compute in parallel different maximum matchings in SC-PAR using
𝑇 threads. In the following, we run a strong scaling experiment (fixed graph size, varying 𝑇 ) for
a power-law Kronecker graph. Figure 8 illustrates the results. Since G-SEQ and CS-SEQ are not
multi-threaded, they do not scale with 𝑇 . The parallelized CS-PAR reaches up to ≈40M edges/s, a
≈6× improvement over the sequential version, and an ≈14× improvement over the parallel version
with one thread. Therefore, the algorithm is still ≈3× slower than SC-OPT which achieves up to
≈140M edges/s on the K20 Kronecker graph. Scaling is limited since the parallel version takes
𝐿 passes over the stream, whereas the other CPU algorithms process the input in one pass. The
bandwidth usage of the parallel version with𝑇 = 64 threads is ≈32 GB/s (≈44M edges and 64 passes
in one second), assuming no data sharing. Note that we only parallelize the stream-processing
part which computes the 𝐿 = 64 maximum matchings. However, as our analysis shows that the
post-processing part takes <1% of the computation time of the maximum matching, parallelization
of post-processing would provide hardly any benefit. We conjecture that the scaling of SC-PAR
stops due to bandwidth limitations and the limited computational resources of 14 cores. Finally,
SC-OPT is the fastest regardless of 𝑇 used by other schemes.

5.5 Approximation Analysis
We briefly analyze how well in practice SC-OPT approximates the exact MWM. The results are in
Figure 9 (SC-OPT, SC-SIMPLE, CS-SEQ, and CS-PAR produce the same results). The accuracy is
negligibly (≈3%) lower than that of G-SEQ for a fixed 𝜀 and varying𝑛 (Kronecker graphs). The higher
𝜀 becomes, the more SC-OPT has advantage over G-SEQ. As higher 𝜀 entails less circuit complexity
(fewer substreams are processed independently, assuming a fixed𝑤𝑚𝑎𝑥 [46]), we conclude that
the substream-centric MWMSC-OPT scheme provides better approximation than G-SEQ
when physical resources become more constrained.

5.6 Influence of Blocking Parameter 𝐾
We also analyze the performance impact from 𝐾 , a parameter that determines how many rows in
the streamed-in adjacency matrix are merged together using a lexicographic ordering. Figure 10
illustrates the results. On one hand, the CPU schemes cannot take significant advantage when 𝐾
increases, showing that no cache locality is exploited. On the other hand, FPGA-based SC-OPT
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Fig. 8. (§ 5.4) Influence of the number of threads𝑇 on performance. The input graph is Kronecker with 𝑛 = 220, 𝐾 =
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Explanation of the approximation ratio is provided in Section 2.

accelerates from ≈125M to ≈175M edges/s. This is up to 2× faster than the work-optimal G-SEQ and
up to 55× faster than CS-SEQ. This is expected as the amount of stalling is reduced by a factor of
𝑛/𝐾 . Moreover, increasing 𝐾 allows to share more matching bits between edges. The performance
impact is reduced when 𝐾 reaches 256. We conjecture this is because of the random access to the
matching bits, approaching the peak random bandwidth. Furthermore, G-SEQ outperforms all
other CPU implementations with up to ≈90M edges/s. Compared to CS-SEQ (≈3.15M edges/s) and
CS-PAR (≈5.6M edges/s), this is >15×. Finally, parallelization comes with high overhead, such that
the four threads in CS-PAR achieve less than 2× speedup compared to CS-SEQ.We conclude that
our blocking scheme enables SC-OPT to achieve even higher speedups.

5.7 Influence of MaximumMatching Count 𝐿
Finally, we analyze the impact of 𝐿 on performance. 𝐿 is the number of substreams and thus
maximum matchings computed independently. CS-SEQ and CS-PAR achieve high performance
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Fig. 10. (§ 5.6) Influence of epoch size 𝐾 on the performance. The input graph is Kronecker with 𝑛 = 220. 𝐿 = 128,
𝑇 = 4, and 𝜀 = 0.1.

with up to ≈400M edges/s for 𝐿 = 1. The performance drops linearly with 𝐿 (X-axis has a logarithmic
scale) to≈800k edges/s for CS-SEQ and≈1.3M edges/s for CS-PAR. G-SEQ also drops in performance
as 𝐿 increases due to 𝜀 and 𝑤𝑚𝑎𝑥 . Since 𝐿 increases, we also increase the range of the weight (𝐿
influences the approximation by 𝜀 = 𝐿

√
𝑤𝑚𝑎𝑥 − 1). Thus, for 𝐿 = 1 the maximum edge weight is

given by𝑤𝑚𝑎𝑥 = 1, allowing G-SEQ to drop many edges in an early phase. The drop of performance
between 𝐿 = 32 and 𝐿 = 64 are due to a change in 𝜀, requiring G-SEQ to store more data. Similarly,
we change 𝜀 between 𝐿 = 128 and 𝐿 = 256. SC-OPT keeps its performance at ≈140M edges/s
(≈330ms) and outperforms other schemes.
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Fig. 11. (§ 5.7) Influence of 𝐿 on performance. The input graph is Kronecker (𝑛 = 220, 𝐾 = 32,𝑇 = 4). As 𝐿 changes,
𝜀 changes as follows: for 1 ≤ 𝐿 ≤ 32, we select 𝜀 = 0.6, for 64 ≤ 𝐿 ≤ 128 we select 𝜀 = 0.1, and for 256 ≤ 𝐿 ≤ 512 we
select 𝜀 = 0.03; 𝑤𝑚𝑎𝑥 is given by 𝑤𝑚𝑎𝑥 = (1 + 𝜀)𝐿 . We restricted the range of 𝐿 for SC-OPT due to the significant runtime
required to generate different bitstreams for evaluation.
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5.8 FPGA Resource Utilization
Table 6 shows the usage of FPGA resources. As maximum matchings are computed on the FPGA
in one clock cycle, the number of computed matchings 𝐿 influences the amount of used logic.
Moreover, for SC-OPT, 𝐾 and 𝐿 determine the FPGA layout. Specifically, 𝐾 influences the BRAM
usage, since every element in the merging network requires two queues which are each mapped to
one BRAM unit. We also consider the amount 𝐵 [bits] of BRAM allocated to storing the matching
bits. SC-OPT requires only 21% of Arria-10’s BRAM and 32% out of all ALMs for a design that
outperforms other targets by at least ≈2× (Figures 10–11); these speedups can be increased even
further by maximizing circuitry utilization. Finally, we include SC-SIMPLE in the analyses to
illustrate the impact of additional optimizations in SC-OPT. CS-SIMPLE uses less ALMs (approx.
21%) than CS-OPT (usage varies, up to 82%).

FPGA Algorithm Parameters Used BRAM Used ALMs

SC-SIMPLE log𝐵 = 12, 𝐿 = 8 5.6 MBit (10%) 89,388 (21%)
SC-SIMPLE log𝐵 = 18, 𝐿 = 6 21 MBit (38%) 88,920 (21%)
SC-OPT 𝐾 = 32, 𝐿 = 512 11.5 MBit (21%) 151,998 (32%)
SC-OPT 𝐾 = 256, 𝐿 = 128 24.8 MBit (45%) 350,556 (82%)

Table 6. (§ 5.8) FPGA resource usage for different parameters.

5.9 Energy Consumption
We estimate the energy consumption of SC-SIMPLE and SC-OPT using the Altera PowerPlay Power
Analyzer Tool; see Table 7 (we use 200MHz and include static power). Furthermore, the host CPU
(Broadwell Xeon E5-2680 v4) has TDP of 120 Watt [72] when all cores are in use (We use TDP as
the baseline for the CPU because the utilized server is physically located elsewhere and we are
unable to directly measure the used power). The TDP is an upper bound for CS-PAR at 𝑇 = 64.
FPGA designs reduce consumed energy by at least ≈88% compared to the CPU.

Algorithm Parameters Energy Consumption [W]

SC-SIMPLE log𝐵 = 18, 𝐿 = 6 14.714
SC-SIMPLE log𝐵 = 12, 𝐿 = 8 14.598
SC-OPT 𝐾 = 32, 𝐿 = 512 14.789
SC-OPT 𝐾 = 256, 𝐿 = 128 14.789
SC-OPT 𝐾 = 32, 𝐿 = 64 14.657
CS-PAR 𝑇 = 64 120
Table 7. (§ 5.9) Estimated energy consumption for different parameters.

5.10 Design Space Exploration
We now briefly analyze the interaction between the performance of our FPGA design and the
limitations due to the clock frequency. The resource usage, determined by 𝐿 and 𝐵, influences the
frequency upper bound due to wiring and logic complexity. We applied a grid search to derive
feasible frequencies for SC-SIMPLE; see Figure 12 (we exclude SC-OPT as our analysis shown that
the design is too complex to run at 400MHZ and we were only able to use it with 200MHz). Dark
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grey indicates 400MHz, light grey indicates 200MHz (we use only the two frequencies as only those
two were supported by the Centaur framework at the time of evaluation). Two factors have shown
to limit the performance. First, while computing the matching, we use an addition with a variable
that uses 𝐿 bits. Thus, the addition complexity grows linearly with 𝐿. More importantly, the BRAM
signal propagation limits the frequency. For example, for SC-SIMPLE and log𝐵 = 13, the place and
route report shows that the reset signal to set all BRAM units to zero becomes the critical path.
As alleviating these two issues would make our final design even more complex, we leave it for
future work. Specifically, we are now working on a general FPGA substream centric engine that
will feature pipelined reset BRAM signals.
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Fig. 12. (§ 5.10) Design space exploration: the used (available) frequencies.

5.11 Optimality Analysis
We also discuss how far the obtained results are from the maximum achievable performance
numbers; we focus on the most optimized SC-OPT. SC-OPT can process up to ≈175M edges/s. This
is close to the optimum due to different reasons: Firstly, the implementation can process up to
1 edge per cycle (200M edges/s). Thus, the achieved performance is optimal within only ≈12%.
Second, assuming that edges are read aligned from memory, it allows to read 8 edges per read
request. Further, if every edge requires its own data chunk with matching bits, it needs 1 request
per edge. Overall, this results in 1 + 1/8 = 1.125 read requests per edge. Under this assumption, the
performance is limited to 178M edges/s. SC-OPT performs close to this bound, which is possible
because the matching bits can be shared between edges.

6 BEYOND SUBSTREAM-CENTRIC MM
We now briefly discuss how to apply our substream-centric FPGA design to other streaming
graph algorithms. First, we identify some MM schemes that also divide the streamed dataset into
substreams and can straightforwardly be adopted to the hybrid CPU+FPGA system. TheMWM
algorithm by Grigorescu et al. [66] reduces the MWM problem to 𝑂 (𝜀−1 log(𝑛)) instances of
maximummatchings, which could be processed on the FPGA analogously to our design; its merging
phase could also be executed on the CPU. All our optimizations, such as blocking, are applicable
in this case. Moreover, theMWM algorithm by Feigenbaum et al. [60, Algorithm 4] does not
divide the stream of edges into substreams, but its design would potentially allow for applying our
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blocking scheme. A key part of this algorithm is maintaining a certain value 𝑞𝑒 associated with each
edge 𝑒 . Given an edge 𝑒 = (𝑢, 𝑣,𝑤), 𝑞𝑒 depends on values 𝑞𝑢 and 𝑞𝑣 associated with vertices 𝑢 and 𝑣 .
We can apply the blocking pattern by storing 𝑞𝑢 for 𝑢 in BRAM, and streaming in 𝑞𝑣 for 𝑣 . Next, the
MWM algorithm by Ghaffari [62] provides a (2 + 𝜀)-approximation. The algorithm compares
the weights of incoming edges to values 𝜑 , indexed by 𝑢 or 𝑣 . Therefore, it can be computed on the
FPGA using the blocking pattern by storing the values 𝜑𝑢 in BRAM, and streaming 𝜑𝑣 from DRAM,
similarly to matching bits in our design. Further, as the algorithm requires postprocessing to derive
the final result, it could be also delegated to the CPU.

We also identify algorithms unrelated to matching that could be enhanced with our design. The
random triangle counting algorithm by Buriol et al. [36] is also a suitable candidate for the
presented blocking pattern. The algorithm requires three passes. In pass 1, the number of paths
of length two in the input graph is computed. In pass 2, a random path of length two is selected.
In pass 3, the stream is searched for a certain edge, dependent on the randomly selected path. To
reduce variance, passes 2–3 are run in parallel using a pre-determined number of random variables
(up to a million). This also implies that in pass 3 every edge in the stream must be checked against
a million edges. To reduce the workload, a hash map is used. The map is filled with edges which
are expected to occur. We propose the following approach to exploit the blocking pattern: the CPU
fills a hash map for each epoch with edges expected to arrive. The map is passed to the FPGA. The
edges for this epoch are streamed in and compared to the pre-filled hash map. If the epoch changes,
the next hash map is passed over.

7 RELATEDWORK
Our work touches on various areas. We now discuss related works, briefly summarizing the ones
covered in previous sections (streaming models in § 3 and streaming maximummatching algorithms
in § 3.3, Table 2, and § 6).

7.1 Graph Processing on FPGAs
The FPGA community has recently gained interest in processing graphs [18–20, 23, 25, 27–31,
63, 125] and other forms of general irregular computations [21, 22, 24, 53, 61, 82, 119, 120, 129].
First, some established CPU-related schemes were ported to the FPGA setting, for example vertex-
centric [57, 58], GAS [145], edge-centric [149], BSP [78], andMapReduce [141]. There are also efforts
independent of the above, such as FPGP [47], ForeGraph [48], and others [32, 78, 105, 107, 135, 147].
These works target popular graph algorithms such as BFS or PageRank. Multiplication of matrices
and vectors [26, 87] has also been addressed in the context of FPGAs [55, 56, 92, 126, 134, 151]; these
efforts could be used for energy-efficient and high-performance graph analytics on FPGAs due
to the possibility of expressing graph algorithms in the language of linear algebra [82]. Our work
differs from these designs as we focus on the problem of finding graph matchings. For more detailed
analysis of related work, please refer to Table 1.

7.2 Graph Matchings and FPGAs
The only work related to matchings and FPGAs that we are aware of merely uses matchings
to enhance FPGA segmentation design [38], which is unrelated to deriving matchings and graph
processing in general.

7.3 Streaming Models and Algorithms
We investigate the rich theory of streaming models [3, 8, 37, 44, 49, 51, 52, 60, 68, 80, 101, 103]
and identify the semi-streaming model [60] as the best candidate for using together with FPGAs
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to deliver algorithms with provable properties that match FPGA characteristics such as limited
memory. We then investigate semi-streaming algorithms for maximum matchings [6, 12, 40, 46, 59,
60, 62, 64, 66, 76, 77, 81, 86, 98, 113, 140] and identify the scheme by Crouch and Stubbs [46] that
we use as the basis for our substream-centric design that ensures low-power, high-performance, and
high-accuracy general maximum weighted matchings on FPGAs.

7.4 Hybrid FPGA+CPU Platforms
Finally, our work is related to the study of hybrid CPU+FPGA platforms [4, 9, 10, 70, 75, 109,
114, 123, 133, 141, 150, 150]. We illustrate a case study with maximum matchings and show that
hybrid platforms can outperform state-of-the-art parallel CPU designs in both performance and power
consumption. Other works on graph processing on hybrid FPGA-CPU systems include a hybrid
scheme for BFS [133].

8 CONCLUSION
An important problem in today’s graph processing is developing high-performance and energy-
efficient algorithms for approximating maximum matchings. Towards this goal, we propose the
first maximum matching algorithm for FPGAs. Our algorithm is substream-centric: the input stream
is divided into substreams that are processed independently on the FPGA and merged into the
final outcome on the CPU. This exposes parallelism while keeping communication costs low: only
𝑂 (𝑚) data must be streamed from DRAM to the FPGA. Our algorithm is energy-efficient (88% less
consumed energy over a tuned CPU variant) and provably accurate, fast (speedups of >4× over
parallel CPU baselines), and memory-efficient (𝑂 (𝑛 log𝑐 𝑛) required storage).
The underlying FPGA design uses several novel optimizations, such as merging rows of the

graph adjacency matrix and ordering resulting blocks lexicographically. This enables low utilization
of FPGA resources (only 21% of Arria-10’s BRAM and 32% out of all ALMs) while outperforming
CPU baselines by at least ≈2×. Both the FPGA implementation and the substream-centric approach
could be extended to other graph problems.
Finally, to the best of our knowledge, the proposed design is the first to combine the theory of

streaming with the FPGA setting. Our insights coming from the analysis of 14 streaming models
and 28 streaming matching algorithms can be used to develop more efficient FPGA designs.
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