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The fundamental idea of Abstract2 Interpretation (A2I), also called meta-abstract interpretation, is to apply
abstract interpretation to abstract interpretation-based static program analyses. A2I is generally meant to
use abstract interpretation to analyse properties of program analysers. A2I can be either offline or online.
Offline A2I is performed either before the program analysis, such as variable packing used by the Astrée pro-
gram analyser, or after the program analysis, such as in alarm diagnosis. Online A2I is performed during the
program analysis, such as Venet’s cofibred domains or Halbwachs et al.’s and Singh et al.’s variable partition-
ing techniques for fast polyhedra/numerical abstract domains. We formalize offline and online meta-abstract
interpretation and illustrate this notion with the design of widenings and the decomposition of relational
abstract domains to speed-up program analyses. This shows how novel static analyses can be extracted as
meta-abstract interpretations to design efficient and precise program analysis algorithms.
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1 INTRODUCTION
1.1 Vision
Static program analysis consists of a range of well established and widely used techniques for
automatically extracting properties concerning the dynamic behavior of programs. Abstract inter-
pretation generalizes most existing methodologies for static program analysis into a unique sound-
by-construction framework which is based on a simple but striking idea: extracting properties of
programs is approximating their semantics [Cousot and Cousot 1977a]. Although this basic notion
plays a fundamental role in most existing tools for sound (or even unsound) analysis of programs,
we face new challenges coming from the nature of code which evolves. Software keeps growing in
size and complexity and the idea of designing one reliable and comprehensive program analysis for
one critical and well structured program is nowadays outmoded, unless very specific application
constraints are considered (e.g., in safety critical applications). A modern static program analysis
tool is an extremely complex piece of software. It includes sophisticated abstractions, convoluted
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optimizations and resource handling strategies in order to be applicable to a wide range of pro-
grams, to be maintained and adapted to the evolution of the code to be analysed. Our vision is that
all this requires for program analysis the same optimizations and analyses that we require for the
software we use program analysis for, that is, we advocate the analysis of program analysis.

1.2 Related Work
The idea of analysing program analyses roots back to the works by Halbwachs et al. [2006, 2003],
who introduced a dynamic factorization of a polyhedra analysis, and has beenmade explicit by Gia-
cobazzi et al. [2015] for analysing the precision of static analyses. However, no general framework
is known in order to systematically design an analysis of analyses. Abstract2 interpretation (A2I)
is our solution to this problem which puts forward a notion of meta-analysis, that is, a parametric
domain-agnostic analysis of program analyses, designed through abstract interpretation.

A meta-analysis can be offline (or static), i.e., before the underlying program analysis has been
done so that the output of meta-analysis can be exploited by the program analysis. An example of
offline meta-analysis is the packing of program variables for the octagon abstraction performed
by the Astrée analyser [Bertrane et al. 2015]. Here, variables found likely unrelated by this meta-
analysis are put in different packs at each program point. The abstract domain resulting from this
offline meta-analysis is the map of program points to packs of variables to octagons. A further
example of offline meta-analysis has been introduced by Giacobazzi et al. [2015] who define a
static type inference system for abstract interpretation-based program analyses capable of infer-
ring complete abstract interpretations, namely program analyses with no false alarms. An offline
meta-analysis can also be done after a program analysis to provide a diagnosis on the output of
the analysis. This pattern of meta-analysis has been followed by Cadar and Donaldson [2016] for
analysing the absence of false negatives in the results of unsound program analyses and by Lee
et al. [2017] for designing a methodology for clustering alarms detected by a program analysis
according to their sound dependencies.

The basic idea of online (or dynamic) meta-analysis dates back to the extrapolation by widen-
ing and interpolation by narrowing in abstract interpretation: in fact, these operators analyse the
evolution of the fixpoint iterations of a program analysis to calculate the next iterate. This was
made explicit in cofibred domains by Venet [1996], generalizing [Bourdoncle 1992], and stating
that: “Widening operators have originally been used in abstract interpretation in order to cope
with infinite domains on which abstract iteration sequences were not necessarily computable. In
fact, the notion of widening is much more powerful since it allows the definition of abstract inter-
pretations with very few hypotheses on their structure by dynamically constructing the abstract
domain.” [Venet 1996, Section 1]. Cofibred domains were the first clear example of an online anal-
ysis of the program analyser so as to use the past fixpoint iterates to affect how the next iterates
will be computed. A more recent example is the online version of the above-mentioned offline
variable packing for octagons. The variable partitioning for the polyhedra abstract domain [Halb-
wachs et al. 2006, 2003; Singh et al. 2017] has been applied to octagons [Singh et al. 2015] and later
to linear numerical abstract domains [Singh et al. 2018]. The relational numerical abstract prop-
erties are decomposed into blocks where variables in different blocks are unrelated. The partition
of program variables into blocks changes during program analysis and the next variable partition
is computed by analysing the underlying program analysis. The “silhouettes” of Li et al. [2017]’s
shape analysis can be also viewed as an online meta-analysis to decide when and how to merge
case splits and to replace them with summaries in unions and widenings.
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1.3 Contributions
We show how the standard methods of abstract interpretation can be naturally lifted to reason
about abstract interpreters, therefore providing a systematic method for designing analyses of
program analyses by A2I. A simple running example of A2I will be given in Section 2, where we
describe a constant propagation-based analysis of interval program analysis.

After introducing some basic notation in Section 3, we start by defining a very general abstract
interpreter in Section 4 which will be then the subject of meta-analysis. Several instances of the
generic abstract interpreter are given in order to illustrate its wide spectrum of application.

We define the semantics of this generic abstract interpreter of programs in Section 5 and prove
its soundness in Section 6. This semantics is defined to be the sequence of fixpoint iterates of the
abstract interpreter. Keeping the sequence of iterates (i.e., traces) instead of the set of reachable
abstract values, as commonly done for standard program analysis, is essential here, since the meta-
abstract interpreter must take into account the full evolution of the iterates of the analyser while
performing its analysis, not only the properties of the abstract values incrementally computed
by the abstract interpreter. This corresponds to the most general version of a widening operator
based on the full past history of computations, as investigated by Cousot [2015]. The prefix/maxi-
mal/pointwise trace semantics of the abstract interpreter are given in fixpoint form using a prefix
order between traces as calculational order. The equivalence of these semantics is shown by cal-
culational design, a general proof technique advocated by Cousot [1999]. This therefore provides
a meta-collecting semantics, which is defined in a systematic way from the standard collecting
semantics of a programming language.

Offline meta-analyses are intended to extract properties of the analyser before its run (after its
run is a simple extension which takes into account terminated executions of the analyser only).
In Section 7, we specify properties of the abstract interpreter as sets of its traces. The strongest
of such properties is defined to be the collecting semantics of the meta-abstract interpreter. It
is given in fixpoint form for a calculational order (trace prefix ordering) which is different from
logical implication (set inclusion): this also happens in strictness analysis [Cousot and Cousot 1993;
Mycroft 1982], although here we deal with the additional technical difficulty deriving from the fact
that we do not compute in a ω-cpo, since the collecting semantics of the meta-abstract interpreter
must observe and keeps track of passing to the limit of infinite iterates of the abstract interpreter.
The offline meta-abstract interpreter collects properties of the analyser represented as sets of its
traces, as computed by its collecting semantics. This can be specified as an instance of the generic
abstract interpreter that we define in Section 5.

Standard abstract interpretation is applied in Section 8 to derive by calculational design an ab-
stract meta-abstract interpreter (thus defined by A2I) from the collecting meta-abstract interpreter.
In Section 9, this abstract meta-abstract interpreter is exploited for defining an interval widening
from classical ones, including thresholds, therefore providing examples of a systematic (as opposed
to a creative) method for designing widening operators (that can be also applied online). In Section
9.4, we mention examples hinting that offline meta-abstract interpretation can be also applied to
design abstract domains.

Online meta-analyses are defined and studied in Sections 10-12. Online meta-analysis is in-
tended to optimize an underlying program analyser. We show how the meta-interpreter, which
is still an instance of the generic abstract interpreter, can be used to analyse the abstract inter-
preter by interspersing the meta-interpreter within runs of the program abstract interpreter. As
an application of onlinemeta-abstract interpretation, we consider awideningwith dynamic thresh-
olds based on slopes. We generalize the techniques for speeding-up numerical program analyses
by Halbwachs et al. [2006, 2003] and Singh et al. [2015, 2017, 2018] to the decomposition of any
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relational domain as maps of blocks of related variables to relational properties of variables in each
block.This cannot be implemented as, e.g., a standard reduced product of abstract domains because
the variable partition evolves during the program analysis and therefore must be calculated during
the analysis by a suitable meta-analysis.

2 HOW A2I WORKS
A crucial aspect of lifting abstract interpretation from programs to abstract interpreters is given by
the nature of the properties we are interested in. Invariance and safety properties of the program
analyser are less relevant in this context, while properties that hold along all partial executions
of the analyser are particularly relevant. As significant examples, these properties include the de-
tection of stable bounds of interval analysis of program variables for the systematic design of
widening operators and the independence of program variables to dynamically weaken relational
abstract domains. In a sentence, by rephrasing the well-known safety/liveness dualism [Alpern
and Schneider 1987]: The analysis of program analyses looks for properties that will potentially or
eventually happen during an abstract interpretation. We call this process abstract abstract interpre-
tation or meta-abstract interpretation.

We show how meta-abstract interpretation works on the well-known interval analysis [Cousot
and Cousot 1977a] of the following simple program decorated with program points ℓ1 and ℓ2:

x=0; while ℓ1 (true) {x=x+2; ℓ2}

An abstract interpreter not using widening operators provides the pointwise ⊑-least solution in
the interval domain ⟨Int, ⊑, ⊥, ⊔⟩ of the system of equations (X1,X2) = F (X1,X2) defined by:{

X1 = F1(X1,X2) ≜ [0, 0] ⊔ X2

X2 = F2(X1,X2) ≜ X1 ⊕ [2, 2]
(1)

where (X1,X2) ∈ Int2 and ⊕ denotes the standard binary interval addition operation. The Jacobi
iterates for F in Int2, extended with their limit which is the least fixpoint of (1), are as follows:[

⊥

⊥

]
,
[
[0, 0]
⊥

]
,
[
[0, 0]
[2, 2]

]
,
[
[0, 2]
[2, 2]

]
, …,

[
[0, 2n]
[2, 2n]

]
,
[
[0, 2n]
[2, 2(n + 1)]

]
,
[
[0, 2(n + 1)]
[2, 2(n + 1)]

]
, …,

[
[0,∞]
[2,∞]

]

We have to define the collecting semantics of this abstract interpreter. In general, the collecting
semantics is the strongest property of a given semantics S : by viewing properties as sets (of items
having this property), the collecting semantics turns out to be the singleton {S}. Alternatively, the
collecting semantics is sometimes understood as a first abstraction of {S}, which defines a class
of properties of interest such as safety or reachability properties. For example, we could define
a collecting semantics of the above abstract interpreter as the set of all iterates of the abstract
interpreter. However, this invariant would be, in general, too imprecise. For example, this set would
lose the information that the iterates start from ⟨⊥, ⊥⟩ and are increasing. Thus, we consider a
more refined collecting semantics of the interval abstract interpreter which collects sequences
of iterates instead of sets of iterates. By analogy with program reachability analysis, we replace
states which are reachable at some program point by prefix traces reaching that program point.
The prefix trace collecting semantics is therefore given as a set of equations:{

X 1 = F 1(X 1,X 2) ≜ X 1 · ([0, 0] ⊔ lst(X 2))

X 2 = F 2(X 1,X 2) ≜ X 2 · (lst(X 1) ⊕ [2, 2])
(2)

where ⟨X 1, X 2⟩ is a pair of denumerable and possibly infinite traces of intervals, · is trace concate-
nation (where τ · τ ′ = τ when τ is an infinite trace), and lst(X1 ··· Xn) = Xn is the last element
of a nonempty finite sequence X1 ··· Xn . Let us recall that denumerable possibly infinite traces,
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ordered by the prefix preorder ≼pf, give rise to a cpo. The Jacobi iterates of (2) starting from the
pair of interval traces [⊥,⊥] are therefore as follows:[
⊥

⊥

]
,
[
⊥ · [0, 0]
⊥ · ⊥

]
,
[
⊥ · [0, 0] · [0, 0]
⊥ · ⊥ · [2, 2]

]
,
[
⊥ · [0, 0] · [0, 0] · [0, 2]
⊥ · ⊥ · [2, 2] · [2, 2]

]
,
[
⊥ · [0, 0] · [0, 0] · [0, 2] · [0, 2]
⊥ · ⊥ · [2, 2] · [2, 2] · [2, 4]

]
,…

[
⊥ · [0, 0] · [0, 0] · [0, 2]· ··· ·[0, 2n]
⊥ · ⊥ · [2, 2] · [2, 2]· ··· ·[2, 2(n + 1)]

]
,
[
⊥ · [0, 0] · [0, 0] · [0, 2]· ··· ·[0, 2n] · [0, 2(n + 1)]
⊥ · ⊥ · [2, 2] · [2, 2]· ··· ·[2, 2(n + 1)] · [2, 2(n + 1)]

]
,…

The lub of this infinite chain of pairs of finite traces is a pair of infinite traces:[
⊥ · [0, 0] · [0, 0] · [0, 2]· ··· ·[0, 2n]· ···
⊥ · ⊥ · [2, 2] · [2, 2]· ··· ·[2, 2n]· ···

]
n≥1

A2I, i.e. the meta-abstract interpreter, has to effectively compute an abstraction of this prefix
trace collecting semantics. Given that the prefix trace collecting semantics is expressed in fixpoint
form (2), the fixpoint specification of this meta-abstract interpreter can be designed by fixpoint
approximation as pioneered in [Cousot and Cousot 1979].

The traces X 1 and X 2 of all the iterates of (2), are of the form ⊥ · [ℓ1,h1] · [ℓ2,h2]· ··· ·[ℓn,hn ],
with n ⩾ 0, which reduces to⊥ for n = 0. Consider the abstraction αc (where cmeans constancy):

α2
c (⟨X 1, X 2⟩) ≜ ⟨αc(X 1), αc(X 2)⟩

αc(⊥ · [ℓ1,h1] · [ℓ2,h2]· ··· ·[ℓn,hn ]) ≜ ⟨
n⊔
c

i=1
ℓi ,

n⊔
c

i=1
hi ⟩

Here, ⊔c denotes the lub in the well-known Kildall’s constant propagation lattice [Kildall 1973]
⟨Dc, ⊑c, ⊥c, ⊤c, ⊔c, ⊓c⟩, as depicted below and whose abstraction ⟨℘(Z), ⊆⟩ −−−−→−→←−−−−−

α̇c

γ̇c
⟨Dc, ⊑c⟩

is defined by: α̇c(∅) ≜ ⊥c, ∀z ∈ Z . α̇c({z}) ≜ z, and α̇c(X ) = ⊤c otherwise. The meta-abstract
interpreter performs its computations componentwise in the product lattice D2

c :

Dc ≜

⊥c

· · · −2 −1 0 1 2 · · ·

⊤c

D
2
c ≜

⟨⊥c, ⊥c ⟩

⟨−1, 1⟩ ⟨0, 0⟩

⟨0, ⊤c ⟩⟨−1, ⊤c ⟩ ⟨⊤c, 1⟩ ⟨⊤c, 0⟩· · · · · ·· · ·· · ·

· · · · · ·

⟨⊤c, ⊤c ⟩

By calculational design which exploits fixpoint approximations of (2), we get the equations:{
⟨l1, h1⟩ = F c

1(⟨l1, h1⟩, ⟨l2, h2⟩) ≜ ⟨l1 ⊔c 0 ⊔c min(0, l2), h1 ⊔c 0 ⊔c max(0,h2)⟩
⟨l2, h2⟩ = F c

2(⟨l1, h1⟩, ⟨l2, h2⟩) ≜ ⟨l2 ⊔c (l1 ⊕
c 2), h2 ⊔c (h1 ⊕

c 2)⟩
(3)

where ⟨li , hi ⟩ ∈ D2
c and ⊥c is absorbent for all the operators on Dc. Hence, the Jacobi iterates for

the equations (3) are as follows:[
⟨⊥c, ⊥c⟩

⟨⊥c, ⊥c⟩

]
,
[
⟨0, 0⟩
⟨⊥c, ⊥c⟩

]
,
[
⟨0, 0⟩
⟨2, 2⟩

]
,
[
⟨0, ⊤c⟩

⟨2, 2⟩

]
,
[
⟨0, ⊤c⟩

⟨2, ⊤c⟩

]
.

This pointwise ⊑c-least fixpoint of (3) represents precisely the fact that only the lower interval
bound is definitely stable at 0 for the abstract interpreter while no information on the upper inter-
val bound can be obtained, meaning that the upper bound is possibly unstable. This very simple
meta-analysis suggests a widening to ⟨[0, +∞], [2, +∞]⟩ for the underlying interval analysis.
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3 BASIC NOTATION
B ≜ {tt, ff} is the set of Booleans,N is the set of natural numbers,N+ is the set of positive naturals,
Z is the set of integers. O is the class of all ordinals, where ω is the first infinite ordinal and ω+1 is
its successor. The conditional choice is ( tt ? a : b ) = a and ( ff ? a : b ) = b. ℘(S) is the powerset
of a set S while ℘f(S) is the set of its finite subsets. Given a set D and n ∈ N+, both Dn and

∏n
1 D

denote the n-ary Cartesian product. The componentwise extension of an operation/relation f on
D to a product Dn is denoted by ḟ . For example, ⊑̇ denotes the componentwise extension of a
partial order relation ⊑.

A poset ⟨D, ⊑⟩ is a setD endowed with a partial order ⊑. A poset is Noetherian when it contains
no infinite chain (i.e., it satisfies the ascending chain condition). ⟨D, ⊑, ⊥, ⊔⟩ is a complete partial
order (cpo) if ⟨D, ⊑⟩ is a poset such that all its chains have a least upper bound (lub)⊔, including the
empty chainwhose lub is the infimum⊥ = ⊔∅. For aω-cpo, only denumerable chains (orω-chains)
are considered: hence, if ⟨x i , i ∈ N⟩ is a ⊑-increasing sequence in D then its lub ⊔i ∈Nx i ∈ D exists.
A complete lattice ⟨D, ⊑, ⊥, ⊤, ⊔, ⊓⟩ is a poset ⟨D, ⊑⟩ such that any subset X ⊆ D has a lub ⊔X ,
and therefore a greatest lower bound (glb) ⊓X , so that, in turn, D has the infimum ⊥ = ⊔∅ = ⊓D
and the supremum ⊤ = ⊔D = ⊓∅.

A (total) function is denoted by f ∈ P −→ Q and for all subsetsX ⊆ P , f (X ) ≜ { f (x) ∈ Q | x ∈
X } denotes the image of X by f . If ⟨P, ⊑⟩ and ⟨Q, ≼⟩ are posets then f ∈ P −→ Q is monotone
(or increasing), denoted by f ∈ P

↗
−→Q , when ∀x,y ∈ P . x ⊑ y =⇒ f (x) ≼ f (y). f ∈ P −→ P

is called extensive (reductive) when ∀x ∈ P . x ⊑ f (x) (∀x ∈ P . f (x) ⊑ x ). f is idempotent
when f = f ◦ f , where ◦ is function composition. A upper (resp. ω-upper) continuous function
f ∈ P uc−−−→ P preserves existing lubs of chains (resp. ω-chains).

AGalois connection (GC) ⟨P, ⊑⟩ −−−→←−−−α
γ
⟨Q,≼⟩ is a pair of functionsα ∈ P −→ Q andγ ∈ Q −→ P

between posets ⟨P, ⊑⟩ and ⟨Q, ≼⟩ such that ∀x ∈ P . ∀y ∈ Q . α(x) ≼ y ⇐⇒ x ⊑ γ (y). A
GC is called Galois insertion (or retraction), denoted by −−→−→←−−−, when α is onto (or, equivalently, γ
is injective), while a GC is called a Galois isomorphism, denoted by −−→−→←←−−−, when α is bijective (or,
equivalently,γ is bijective). An upper closure operator ρ on a poset ⟨P, ⊑⟩ is a monotone, extensive
and idempotent function ρ ∈ P −→ P . It turns out that ρ is an upper closure operator on ⟨P, ⊑⟩ if
and only if ⟨P, ⊑⟩ −−−−→−→←−−−−−

ρ

1P
⟨ρ(P), ⊑⟩, where 1P is the identity map on P .

Given a poset ⟨D, ⊑⟩, lfp⊑ f denotes the ⊑-least fixpoint of f ∈ D −→ D, if this exists. Given
a ∈ D, lfp⊑

a
f denotes the least fixpoint of f greater than or equal to a, if it exists. The transfinite

iterates f δ (a), for all δ ∈ O, of f ∈ D −→ D starting from a ∈ D (⊥ ∈ D by default) are
defined by transfinite induction: f 0(a) ≜ a; f δ+1(a) ≜ f (f δ (a)) for successor ordinals δ + 1;
f λ(a) ≜ ⊔δ<λ f

δ (a) for limit ordinals λ, if this lub in D exists. The transfinite iterates of f from a

are increasing when for all δ , δ ′ ∈ O, if δ ⩽ δ ′ and f δ (a), f δ
′

(a) are defined then f δ (a) ⊑ f δ
′

(a).
Consider a system of fixpoint equations {xi = fi (x1, . . . , xn)}

n
i=1, for fi ∈ Dn −→ D. Given an

initial vector (x0
1, . . . , x

0
n) ∈ D

n , the corresponding Jacobi and Gauss-Seidel iterates are inductively
defined as follows: for all k ⩾ 0, i = 1, . . . ,n,

xk+1
i ≜ fi (x

k
1 , . . . , x

k
n ) Jacobi iterates

xk+1
i ≜ fi (x

k+1
1 , . . . , xk+1

i−1 , x
k
i , x

k
i+1, . . . , x

k
n ) Gauss-Seidel iterates

4 STATIC ANALYSIS BY A GENERIC ABSTRACT INTERPRETER
4.1 Iterates of a Generic Abstract Interpreter
Generalizing from fixpoint equation solving to cope, e.g., with extrapolation and interpolation op-
erators, a static analysis of a program P [Cousot and Cousot 1977a, 1979] consists in computing
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a sequence of iterates ⟨X k , k ∈ [0, ℓ[⟩ of an abstract interpreter AJPK, which is either finite for
some ℓ ∈ N+, in case the abstract interpreter does terminate, or infinite with ℓ = ω, in case the ab-
stract interpreter does not terminate. Hence, this contemplates possibly nonterminating program
analyses, e.g., analyses not using widening operators in non-Noetherian abstract domains.

In the most general setting, an abstract interpreter AJPK of a program P is based on an infinite
sequence of semantic entities ⟨DJPKk ,CJPKk , FJPKk+1,k ∈ N⟩, where, for all k ∈ N: DJPKk is
an abstract domain, CJPKk ∈ DJPKk −→ B is a convergence/termination criterion and finally
FJPKk+1 ∈ DJPKk −→ DJPKk+1 is an abstract value transformer. For the sake of conciseness, in
the following we will often omit the qualifier JPK in these notations.

The possibly infinite sequence of iterates ⟨X k , k ∈ [0, ℓ[⟩ of AJPK, where X 0 is some initial
abstract value ranging in D0, is computed as follows:

initial iterate k = 0: X 0 ∈ D0 (4)
next iterate k + 1 if ¬Ck (X k ): X k+1 = Fk+1(X k ) ∈ Dk+1

termination if ∃k .Ck (X k ): ℓ = k + 1

nontermination if ∀k .¬Ck (X k ): ℓ = ω

Hence, ℓ is set to ω for a nonterminating analysis such that
∧

k ∈N ¬C
k (X k ) holds, while for a

terminating analysis we have that ℓ ∈ N+ and
( ∧ℓ−2

k=0 ¬C
k (X k )

)
∧Cℓ−1(X ℓ−1) holds.

We don’t distinguish between terminating and nonterminating executions. Hence, in Section 5,
wewill give a semantics of the abstract interpreter where for any terminating execution ofAJPK, its
finite sequence of iterates ⟨X k , k ∈ [0, ℓ[⟩, with ℓ ∈ N+, will be extended to an infinite sequence
by repeating the final iterate X ℓ−1 infinitely often. This defines an infinite sequence of iterates
which is ultimately stationary after ℓ − 1, i.e., ∀k ⩾ ℓ − 1, X k = X ℓ−1 and Cℓ−1(X ℓ−1) holds. We
will also assume that for a nonterminating execution of AJPK, its infinite sequence of iterates ⟨X k ,

k ∈ N⟩ has a mathematical limit which is denoted by Xω and, of course, will be never reached by
a real static analysis. This limit Xω belongs to some abstract domain Dω and is provided by some
function Fω defined on infinite sequences of iterates, namely, Xω = Fω(⟨X k , k ∈ N⟩) ∈ Dω .

It is worth remarking that, in this framework, the abstract domains ⟨Dk , k ∈ N ∪ {ω}⟩, the
convergence conditions ⟨Ck , k ∈ N⟩ and the transformers ⟨Fk , k ∈ N+ ∪ {ω}⟩ are determined
as a function of the program P, as opposed to using the same semantic entities (in particular a
unique semantic domain) for all programs. As a simple example of this phenomenon, consider
standard constant propagation [Kildall 1973], which maps program variables to the constancy
lattice Dc already recalled in Section 2. A map from all the variables to Dc would not satisfy the
ascending chain condition since there are infinitely many variables in the language, as opposed to
finitely many variables occurring in a program1. Moreover, in our general setting, Dk , Ck and Fk

may change at each fixpoint iteration of the abstract interpreter. Besides, we require that limits of
infinite computations, provided by Fω , are defined for infinite sequences of fixpoint iterates only,
that is, not necessarily for all infinite sequences of abstract values, as it happens, e.g., in a cpo
which has the lub of any increasing chain of abstract values.

The iterates are generated by the following generic abstract interpreter A:

AJPK(X 0) ≜ X := X 0; k := 0;

while (¬Ck (X )) (5)
{ X := Fk+1(X ); k := k + 1; }

1Let us remark that recursion may introduce infinitely many instances of the parameter/local variables and a widening
may be needed [Cousot and Cousot 1977b].
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Hence, for this abstract interpreterAJPK, and as later made clear in (20), the abstract domains ⟨Dk ,

k ∈ N⟩, convergence criteria ⟨Ck , k ∈ N⟩ and transformers ⟨Fk+1, k ∈ N⟩ can be dynamically
determined by the meta-abstract interpreter at each iteration step k ∈ N of the program analysis.
The limit domain Dω and the limit transformer Fω are of mere mathematical nature, namely, not
used by the generic abstract interpreter AJPK (interpreter) but exploited for modeling its possibly
nonterminating behaviour through a suitable collecting semantics. For example, a widening must
provide a sound approximation of this limit of an infinite sequence of iterates.

4.1.1 Fixpoint Abstract Interpreter. A standard example of abstract interpreter is provided by a
single abstract domain ⟨D, ⊥, ⊑, ⊔⟩ which is a ω-cpo and by a ω-upper continuous transformer
F ∈ D uc−−−→ D, both implicitly defined as a function of the program under analysis. The analysis
computes the least fixpoint lfp⊑ F of F which is the lub ⊔ of the chain of iterates X 0 ≜ ⊥ and
X k+1 ≜ F (X k ), with convergence criterion C(X ) ≜ (F (X ) ⊑ X ). Since the iterates form an
increasing chain, they finitely converge when D is Noetherian, otherwise they may diverge to the
limit Xω =

⊔
k ∈NX

k ≜ lfp⊑ F , which is well-defined in a ω-cpo. In this context, we can also use
the abstract interpreter (5) to specify a concrete program semantics, for instance a denotational
semantics (e.g., [Jones and Nielson 1995; Scott 1972]).

4.1.2 Chaotic Abstract Interpreter. Continuing Section 4.1.1, the fixpoint equation X = F (X ) is
often given by a system of equations {Xi = Fi (X1, . . . ,Xn)}

n
i=1 on a product abstract domain ⟨Dn,

⊑̇, ⊥̇, ⊔̇⟩, for some n > 0. In this case, one can use chaotic iterations [Cousot 1977; Cousot and
Cousot 1977a] as defined by some set∆k ⊆ {1, . . . ,n} of components that evolve at each iteration
step k ∈ N. Hence, a different function Fk+1 is applied at each iteration step k , namely, (Fk+1(X ))i
≜ if i ∈ ∆k+1 then Fi (X

k
1 , . . . ,X

k
n ) else X k

i . This includes as instances Gauss-Seidel iterations and
the classical worklist algorithm of data-flow analysis [Kildall 1973].

4.1.3 Widening Abstract Interpreter. Continuing Section 4.1.2, the abstract domainD could be non-
Noetherian. In this case, a terminating widening operator is applied on loop and recursion entries
only. Thus, again, a different function Fk+1 is applied at each iteration step k and this function, in
general, is not monotone (recall that a terminating widening cannot be monotone [Cousot 2015]).
Where, when and how the terminating widening should be applied can be determined by a meta-
abstract interpreter.

4.2 Interval Abstract Interpreter
Let us illustrate how a meta-abstract interpreter can be fruitfully exploited for designing a widen-
ing for an abstract interpreter which performs program analysis with the interval abstract domain.

4.2.1 Interval Domain. Let I be either the set Z of mathematical integers,M = [min_int,max_int]
of machine integers,Q of rationals, F of floating point numbers, orR of reals. For machine integers,
min_int and max_int are, resp., the smallest and largest representable integers, and overflow is
considered to be an error. For modular integer arithmetics we refer to [Gange et al. 2014]. Let the
abstract domain of numerical intervals [Cousot and Cousot 1976, 1977a] be the complete lattice
⟨Int, ⊑, ⊥, ⊤, ⊔, ⊓⟩ where

Int ≜ {⊥} ∪ {[x, x ] | x ∈ I ∧ x ⩽ x ∧ x ∈ I} ∪ {[−∞, x ] | x ∈ I} ∪ {[x,∞] | x ∈ I} ∪ {[−∞,∞]}.

The empty interval ⊥ = ∅ can be encoded by any [x, x ] with x < x (e.g. normalized to [∞,−∞])
and ⊤ = [−∞,∞]. The intervals [−∞,−∞] < Int and [∞,∞] < Int are excluded. The partial order ⊑
on Int is interval inclusion: ⊥ ⊑ ⊥ ⊏ [x, x ] ⊑ [y,y] if and only if y ⩽ x ⩽ x ⩽ y.
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We consider the standardGalois insertion ⟨℘(I), ⊆⟩ −−−−→−→←−−−−−
α i

γi
⟨Int, ⊑⟩whereα i abstracts a possibly

unbounded set of numerical values by their minimum and maximal values. We define min I ≜ −∞,
max I ≜ ∞, min ∅ ≜ ∞, max ∅ ≜ −∞, where −∞ = min_int and ∞ = max_int for machine
integers. Thus, we have that α i (S) ≜ [min S,max S] and γi ([x, x ]) ≜ {z ∈ I | x ⩽ z ⩽ x}.

4.2.2 Example. We illustrate the meta-analysis of the abstract interpreter AJPK defined in (5) for
the following program P on the interval domain Int, which is the same program already used in
Section 2 with additional program points:

ℓ1 x=0; while ℓ2 (true) {x=x+2; ℓ3}ℓ4 (6)

We consider Dk ≜ Int4, for all k ∈ N ∪ {ω}, and X 0 ≜ ⟨⊤, ⊥, ⊥, ⊥⟩ ∈ Int4. The abstract
transformers Fk+1, for k ∈ N, are the chaotic iterations of the following function:

F (⟨I1, I2, I3, I4⟩) ≜ ⟨I1, [0, 0] ⊔ I3, (I2 ⊓ ⊤) ⊕ [2, 2], I2 ⊓ ⊥⟩.

The abstract convergence criterionCk , for all k ∈ N, isCk (⟨I1, I2, I3, I4⟩) ≜ ([0, 0] ⊔ I3 ⊑ I2), and
the limit of an infinite sequence of iterates is given by the lub, that is, Fω(⟨X k , k ∈ N⟩) ≜

⊔
k ∈NX

k .
The iterates of the interval abstract interpreterAJPK are assumed to be the Gauss-Seidel chaotic

iterations for the abstract transformer F . Thus, it turns out that:
X 0 = ⟨⊤, ⊥, ⊥, ⊥⟩, X 1 = ⟨⊤, [0, 0], [2, 2], ⊥⟩, X 2 = ⟨⊤, [0, 2], [2, 4], ⊥⟩, . . .

Xn+1 = ⟨⊤, [0, 2 ∗ n], [2, 2 ∗ (n + 1)], ⊥⟩, . . . , Xω = ⟨⊤, [0,∞], [2,∞], ⊥⟩.

5 TRACE SEMANTICS OF THE ABSTRACT INTERPRETER
We define the prefix trace semantics of the abstract interpreter and then derive by calculational
design its maximal trace and projection semantics.

5.1 Sequences
Let ⟨Dk , k ∈ N ∪ {ω}⟩, ⟨Ck , k ∈ N⟩ and ⟨Fk , k ∈ N+ ∪ {ω}⟩ specify an abstract interpreter AJPK
as defined in Section 4. The disjoint union of all the abstract domains is denoted by:

D ≜
⊎

k ∈N∪{ω } D
k

WewriteX k ∈ D to mean thatX k ∈ Dk . Given a nonempty set of indices I ⊆ N∪{ω},X ∈ I −→ D
is a I -indexed sequence of elements in D, where we typically use X i = X (i) to denote the element
of X with index i ∈ I . We define the following sets of sequences, where ℓ ∈ N:

Dℓ ≜ [0, ℓ] −→ D nonempty finite sequences of length ℓ + 1

Dω ≜ N −→ D ω-infinite sequences
Dω+1 ≜ N ∪ {ω} −→ D ω+1-transfinite sequences

Concatenation of finite sequences is denoted by · and it is pointwise extended to sets of sequences.
Sequences are also denoted with the following explicit notations:

⟨X i , i ∈ [0, ℓ]⟩ = X 0· ··· ·X i · ··· ·X ℓ ∈ Dℓ

⟨X i , i ∈ N⟩ = X 0· ··· ·X i · X i+1· ··· ∈ Dω

⟨X i , i ∈ N ∪ {ω}⟩ = X 0· ··· ·X i · ··· ·Xω ∈ Dω+1

Sequence concatenation · is extended to concatenate aω-infinite sequence inDω with an element
in D thus giving a ω+1-transfinite sequence as follows:

(X 0· ··· ·X i · ···) · Xω ≜ X 0· ··· ·X i · ··· ·Xω ∈ Dω+1
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We also define the following sets:
D+++ ≜

∪
ℓ∈NDℓ nonempty finite sequences

D+++ω ≜ D+++ ∪ Dω nonempty finite or infinite sequences
D+++ω+1 ≜ D+++ω ∪ Dω+1 nonempty finite, infinite or transfinite sequences
D∗ω+1 ≜ D+++ω+1 ∪ {϶} empty, finite, infinite or transfinite sequences

For any exponent κ, if X 0 ∈ D then Dκ(X 0) ≜ {σ ∈ Dκ | σ(0) = X 0}. For a sequence
X ∈ D∗ω+1, let |X | ∈ N∪{ω,ω+1} denotes its length, which isω whenX is infinite andω+1 when
X is transfinite. For any sequence X ∈ D∗ω+1 and k ∈ N, the notation X 0 · X 1· ··· ·X k ∈ D+++

denotes a nonempty finite prefix of X , meaning that this prefix is well-defined, i.e., |X | ≥ k + 1.

5.1.1 Well-Behaved Sequences. We define a Boolean predicate on nonempty sequences in D+++ω

which models the notion of being a well-behaved sequence for the termination conditions ⟨Ck ,k ∈

N⟩ of an interpreter AJPK. For any sequence X ∈ D+++ω , we define:
iterating sequence: it(X ) ≜ ∀i ∈ [0, |X |[. ¬Ci (X i ) (7)
stationary sequence: st(X ) ≜ ∃ℓ ∈ [0, |X |[.

(
Cℓ(X ℓ) ∧

∀i ∈ [0, ℓ[ . ¬Ci (X i ) ∧ ∀j ∈ [ℓ, |X |[ . X j = X ℓ
)

well-behaved sequence: wb(X ) ≜ it(X ) ∨ st(X )

Thus, wb(X ) holds when either a termination condition Ci is never met in X , i.e., it(X ) holds,
or if a termination condition is first met at some state X ℓ of X then, from that state X ℓ on, the
sequence X is (finitely or infinitely) stationary at X ℓ , i.e., st(X ) holds. We will require that well-
behaved infinite sequences have a limit, i.e., Fω ∈ {X ∈ Dω | wb(X )} −→ Dω . The notion of being
well-behaved is extended to ω+1-transfinite sequences X · Xω ∈ Dω+1 simply by requiring that
wb(X ) ∧ Xω = Fω(X ) holds.

5.2 Prefix Trace Semantics of the Abstract Interpreter
5.2.1 Prefixes of Sequences. Given a set S ∈ ℘(D+++ω+1) of nonempty (finite, infinite or transfinite)
sequences, its nonempty prefix closure pref(S) is defined as follows:

pref ∈ ℘(D+++ω+1) −→ ℘(D+++ω+1)

pref(S) ≜ {σ ∈ D+++ω+1 | ∃σ ′ ∈ D∗ω+1 . σ · σ ′ ∈ S}
Observe that in this definition σ ′ ∈ D∗ω+1 may be the empty sequence, and therefore S ⊆ pref(S)
always holds, or a singleton sequence, and therefore pref(S) may include ω-infinite prefixes of
ω+1-transfinite sequences. For example, we have that

pref({X 0 · X 1 · X 2· ··· ·X k · ··· ·Xω }) = {X 0 · X 1 · X 2· ··· ·X k | k ⩾ 0}

∪ {X 0 · X 1 · X 2· ··· ·X k · ···, X 0 · X 1 · X 2· ··· ·X k · ··· ·Xω }.

It turns out that pref is an upper closure operator on ⟨℘(D+++ω+1), ⊆⟩.

5.2.2 Prefix Trace Semantics. If we choose the semantics of AJPK defined in (5) to be either the
final result (if any) or the full computation towards this result, as recorded by the sequence of
iterates, then information is lost on how this result was obtained. Thus, our semantics for AJPK
will be given by the set of all the partial sequences of iterates computed by AJPK. For example,
for a chaotic abstract interpreter as described in Section 4.1.2, this semantics will be the set of all
the partial sequences of chaotic iterations for the specific iteration strategy chosen by the abstract
interpreter. This semantics SpfJAK (X 0), for an initial abstract value X 0 ∈ D0, is as follows:
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SpfJAK (X 0) (8)

≜
{
X 0, where X 0 ∈ D0

. . . . . .

X 0 · X 1 · X 2· ··· ·X k+1, X k+1 ≜

{
Fk+1(X k ) ∈ Dk+1 if

∧k
i=0 ¬C

i (X i )

X ℓ ∈ Dℓ if ∃ℓ ⩽ k .
∧ℓ−1

i=0 ¬C
i (X i ) ∧Cℓ(X ℓ)

. . . . . .

X 0 · X 1· ··· ·X k · ··· ·Xω
}

Xω ≜ Fω(⟨X k , k ∈ N⟩) ∈ Dω

The semantics SpfJAK (X 0) of A is given by the infinite set of nonempty prefixes of its (possibly
ultimately stationary) ω+1-transfinite sequence of iterates starting from X 0. Clearly, this set of
sequences is closed by prefixes and is therefore called the prefix trace semantics of A starting
from X 0. It is worth noting that this prefix semantics is a refinement of the standard invariance
collecting semantics which for each reachable state X k records the history of the computation
X 0 ·X 1 ·X 2· ··· ·X k leading to that state X k , thus observing the past evolution of computations.

The prefix trace semantics SpfJAK (X 0) defined in (8) can be easily characterized as a ⊆-least
fixpoint of an operator Fpf(X

0) on sets of sequences in ℘(D+++ω+1) defined as follows:
Fpf(X

0) ∈ ℘(D+++ω+1)
↗
−→℘(D+++ω+1) (9)

Fpf(X
0) X ≜ {X 0}

∪ {X · Fk+1(X k ) | ∃k ∈ N. X ∈ Dk ∧ X ∈ X ∧ it(X )}

∪ {X · X k | ∃k ∈ N. X ∈ Dk ∧ X ∈ X ∧ st(X )}

∪ {X · Xω | X ∈ Dω ∧ pref(X ) ⊆ X ∧ wb(X ) ∧ Xω = Fω(X )}

Pॸॵॶॵॹiॺiॵॴ 5.1. The transfinite iterates ⟨Fpf(X
0)k ∅, k ∈ N ∪ {ω,ω+1}⟩ of Fpf(X

0) from ∅ (or
⟨Fpf(X

0)k X 0, k ∈ N∪{ω,ω+1}⟩ fromX 0) in the complete lattice ⟨℘(D+++ω+1), ⊆, ∅, ∪⟩ are increasing
and converge to the least fixpoint

SpfJAK (X 0) = lfp⊆Fpf(X
0) (10)

Let Dpf(X
0) ≜ {pref({σ }) | σ ∈ D+++ω+1(X 0)} denote the set of nonempty prefixes of a

nonempty sequence starting from X 0. Then, it turns out that, for all k , Fpf(X
0)k ∅ ∈ Dpf(X

0),
so that SpfJAKX 0 = lfp⊆Fpf(X

0) ∈ Dpf(X
0).

5.2.3 Prefix Semantics of the Interval Abstract Interpreter. Themeta-iterates ⟨Xk ,k ∈ N∪{ω,ω+1}⟩
of Proposition 5.1 providing the prefix trace semantics of the interval abstract interpreter for the
Gauss-Seidel chaotic iterates of the program (6) in Section 4.2.2 are as follows:

X
0 = ∅, X

1 =




⊤
⊥
⊥
⊥





, X

2 =




⊤
⊥
⊥
⊥


,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥





, X3 =




⊤
⊥
⊥
⊥


,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


·

⊤

[0, 2]
[2, 4]
⊥





, . . . ,

X
k+1 =




⊤
⊥
⊥
⊥


,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


, . . . ,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


·

⊤

[0, 2]
[2, 4]
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥





, . . . ,

X
ω =




⊤
⊥
⊥
⊥


,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


, . . . ,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


·

⊤

[0, 2]
[2, 4]
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥


·


⊤
[0, 2 ∗ (k + 1)]
[2, 2 ∗ (k + 2)]

⊥


· ···



,
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X
ω+1 =




⊤
⊥
⊥
⊥


, . . . ,


⊤
⊥
⊥
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥


, . . . ,


⊤
⊥
⊥
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥


· ···,


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


·

⊤

[0, 2]
[2, 4]
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥


· ··· ·


⊤

[0,∞]
[2,∞]
⊥





.

5.3 Maximal Trace Semantics of the Abstract Interpreter
Because sets of the semantic domain Dpf(X

0) are prefix closed, an equivalent representation of
some X ∈ Dpf(X

0) could be given by the longest sequence in X, if this exists. Indeed, the limit
meta-iterate Fpf(X

0)ω ∅ = {X 0 · X 1· ··· ·X k | k ⩾ 0} is prefix closed and has no maximal
sequence: in this case, the ω-infinite sequence X 0 ·X 1· ··· ·X k · ··· is taken as its representation.

5.3.1 Maximal Trace Isomorphic Abstraction. Let us define lim ∈ ℘(D+++ω+1) −→ ℘(D+++ω+1)
which adds the ω-infinite limits of sets of sequences as follows:

lim(S) ≜ S ∪ {X ∈ Dω | pref({X }) ⊆ S}

Note that lim is an upper closure operator on ⟨℘(D+++ω+1), ⊆⟩ and ⟨D+++ω+1(X 0), ≼pf, X0,
b
⟩ is a

cpo, where≼pf is the prefix partial order between sequences: σ ≼pf σ
′ ≜ ∃σ ′′ ∈ D∗ω+1 .σ ·σ ′′ =

σ ′. In particular X 0 is the least element and that if σ ,σ ′ ∈ D+++ω+1(X 0) are both ω-infinite or
ω+1-transfinite then σ and σ ′ are uncomparable unless they are equal. The lub

b
C of a nonempty

chain C in D+++ω+1(X 0) is the longest (with length in N+ ∪ {ω,ω+1}) sequence in lim(C).
Recall that Dpf(X

0) ≜ {pref({σ }) | σ ∈ D+++ω+1(X 0)}. It turns out that we have a Galois iso-
morphism ⟨Dpf(X

0), ⊆⟩ −−−−→−→←←−−−−−
αm

γm
⟨D+++ω+1(X 0), ≼pf⟩ called maximal trace isomorphic abstraction,

where, for all σ ∈ D+++ω+1(X 0), αm(pref({σ })) ≜
b
pref({σ }) and γm(σ) ≜ pref({σ }).

5.3.2 Maximal Trace Semantics of the Abstract Interpreter. Themaximal trace semanticsSmJAKX 0

of the abstract interpreter A is defined as maximal trace abstraction of its prefix trace semantics:
SmJAKX 0 ≜ αm(SpfJAKX 0) ∈ Dm(X

0) ≜ D+++ω+1(X 0)

This maximal trace semantics can be characterized as limit of the transfinite iterates of the follow-
ing function Fm(X

0):
Fm(X

0) ∈ Dm(X
0) −→ Dm(X

0) (11)

Fm(X
0) X ≜




X · Fk+1(X k ) if ∃k ∈ N . X ∈ Dk ∧ it(X )

X · X k if ∃k ∈ N . X ∈ Dk ∧ st(X )

X · Xω if X ∈ Dω ∧ wb(X ) ∧ Xω = Fω(X )

X 0 otherwise

Pॸॵॶॵॹiॺiॵॴ 5.2. The transfinite iterates ⟨Fm(X
0)k X 0, k ∈ N ∪ {ω,ω+1}⟩ of Fm(X

0) from X 0

in the cpo ⟨Dm(X
0), ≼pf, X0,

b
⟩ are ≼pf-increasing and converge to the limit

SmJAKX 0 =
b
k ∈ N∪{ω ,ω+1}Fm(X

0)kX 0 ∈ Dm(X
0) (12)

which is a minimal fixpoint of Fm(X
0) (but not necessarily the least one which may not exist).

It turns out that if ⟨Xk , k ∈ N+ ∪ {ω,ω+1}⟩ are the iterates of Fpf(X
0) defining SpfJAKX 0

then the iterates of Fm(X
0) converging to SmJAKX 0 are exactly ⟨αm(Xk ), k ∈ N ∪ {ω,ω+1}⟩. It

is worth remarking that the absence of the least fixpoint for Fm(X
0) in (12) is a consequence of

the fact that the transformerFm(X
0) can also extend invalid sequences, i.e., sequences inDm(X

0)
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which do not correspond to executions of the abstract interpreter and might be incomparable
with SmJAKX 0. Clearly, SmJAKX 0 is the least fixpoint of Fm(X

0) when Fm(X
0) is restricted to

its iterates starting from X 0.

5.3.3 Maximal Trace Semantics of the Interval Abstract Interpreter. ⟨X i , i ∈ N ∪ {ω,ω + 1}⟩ are
the iterates of Fm(X

0) of Proposition 5.2, providing the maximal trace semantics of the interval
abstract interpreter for the Gauss-Seidel chaotic iterates of the program (6) in Section 4.2.2:

X 0 =


⊤
⊥
⊥
⊥


, X 1 =


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


, X 2 =


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


·

⊤

[0, 2]
[2, 4]
⊥


, . . . ,

X k+1 =


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥


, . . . , Xω =


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥


· ···

Xω+1 =


⊤
⊥
⊥
⊥


·

⊤

[0, 0]
[2, 2]
⊥


· ··· ·


⊤

[0, 2 ∗ k ]
[2, 2 ∗ (k + 1)]

⊥


· ··· ·


⊤

[0,∞]
[2,∞]
⊥


.

5.4 Projection Semantics of the Abstract Interpreter
For the fixpoint and chaotic abstract interpreters described in Sections 4.1.1 and 4.1.2, the abstract
domain at iteration k is a Cartesian product

∏n
i=1 D

k
i , with n ≥ 1, so that D consists of n-ary

vectors. We assume that the same domain is used at each program point, that is, for all i ∈ [1,n],
Dk
i = Dk . The abstract interpreter at iteration k attaches an abstract information ranging in Dk

to each program point i ∈ [1,n] of the program it analyses. A meta-analyser may want to analyse
this local (to a program point) abstract information rather than the global abstract information
provided by the maximal trace semantics SmJAKX 0, as we did in the introductory example of
Section 2. This can be done by relying on a projection abstraction.

5.4.1 Projection Isomorphic Abstraction. Let D =
⊎

k ∈N∪{ω }

∏n
i=1 D

k and Di ≜
⊎

k ∈N∪{ω } D
k ,

with i ∈ [1,n], where the subscript hints that Di refers to the program point i . In each iterate of
the abstract interpreter, we abstract by αpr a sequence of vectors inD to an-ary vector of sequences
in (Di )

+++ω+1 simply by taking then sequences of abstract values inD, one for each program point:

αpr

©­­­­­«



v0
1
...

v0
n


·


v1
1
...

v1
n


·····



vk1
...

vkn


····

ª®®®®®¬
≜



v0
1 · v1

1· ··· ·vk1 · ···
...

v0
n · v1

n· ··· ·vkn · ···


This abstraction gives rise to a Galois isomorphism ⟨D0,+++ω+1,≼pf⟩ −−−−→−→←←−−−−−

αpr

γpr
⟨
∏n

i=1(Di )
+++ω+1, ≼̇pf⟩.

5.4.2 Projection Abstraction of the Interval Abstract Interpreter. Continuing Example 5.3.3, we get
the following transfinite sequence of vectors of sequences:

ÛX 0 =


⊤
⊥
⊥
⊥


, ÛX 1 =


⊤ · ⊤
⊥ · [0, 0]
⊥ · [2, 2]
⊥ · ⊥


, ÛX 2 =


⊤ · ⊤ · ⊤
⊥ · [0, 0] · [0, 2]
⊥ · [2, 2] · [2, 4]
⊥ · ⊥ · ⊥


, …, ÛX k+1 =


⊤ · ⊤ · ··· · ⊤
⊥ · [0, 0] · ··· · [0, 2 ∗ k ]
⊥ · [2, 2] · ··· · [2, 2 ∗ (k + 1)]
⊥ · ⊥ · ··· · ⊥


,…,

ÛXω =


⊤ · ⊤ · ··· · ⊤ · ···
⊥ · [0, 0] · ··· · [0, 2 ∗ k ] · ···
⊥ · [2, 2] · ··· · [2, 2 ∗ (k + 1)] · ···
⊥ · ⊥ · ··· · ⊥ · ···


, ÛXω+1 =


⊤ · ⊤ · ··· · ⊤ · ··· · ⊤
⊥ · [0, 0] · ··· · [0, 2 ∗ k ] · ··· · [0,∞]
⊥ · [2, 2] · ··· · [2, 2 ∗ (k + 1)] · ··· · [2,∞]
⊥ · ⊥ · ··· · ⊥ · ··· · ⊥


.

5.4.3 Projection Semantics of the Abstract Interpreter. The projection semantics SprJAKX 0 of the
abstract interpreter A, for an initial n-dimensional vector X 0 ∈

∏n
i=1 D

0, is defined as projection
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abstraction of the maximal trace semantics of A:
SprJAKX 0 ≜ αpr(SmJAKX 0) = αpr(αm(SpfJAKX 0)) ∈ Dpr(X

0) ≜ (
∏n

i=1(Di )
+++ω+1)(X 0)

This projection semantics can be characterized as limit of the transfinite iterates of the following
function Fpr(X

0):

Fpr(X
0) ∈ Dpr(X

0) −→ Dpr(X
0) (13)

Fpr(X
0) ÛX ≜




ÛX · Fk+1( ÛX k ) if ∃k ∈ N . ÛX ∈
∏n

i=1(Di )
k ∧ itpr( ÛX )

ÛX · ÛX k if ∃k ∈ N . ÛX ∈
∏n

i=1(Di )
k ∧ stpr( ÛX )

ÛX · ÛXω if ÛX ∈
∏n

i=1(Di )
ω ∧ wbpr( ÛX ) ∧ ÛXω = Fω( ÛX )

X 0 otherwise

where itpr( ÛX ) ≜ it(γpr( ÛX )) and similarly for stpr and wbpr.

Pॸॵॶॵॹiॺiॵॴ 5.3. The transfinite iterates ⟨Fpr(X
0)k X 0, k ∈ N ∪ {ω,ω+1}⟩ of Fpr(X

0) from X 0

in the cpo ⟨Dpr(X
0), ≼̇pf, X

0, ⋎̇⟩ are ≼̇pf-increasing and converge to the limit

SprJAKX 0 =
ḃ

k ∈ N∪{ω ,ω+1}
Fpr(X

0)k X 0 ∈ Dpr(X
0) (14)

which is a minimal fixpoint of Fpr(X
0) (but not necessarily the least one which may not exist).

6 SOUNDNESS OF THE ABSTRACT INTERPRETER
Assume that A = ⟨Dk ,Ck , Fk ,X 0⟩ (where this simplified notation is meant to include Dω and
Fω ) is a “concrete” instance of the abstract interpreter (5) while A = ⟨Dk ,C k , F k ,X 0⟩ is a second
“abstract” instance. Recall that D =

⊎
k ∈N∪{ω } D

k and D =
⊎

k ∈N∪{ω } D
k . Let ⊑ be a partial order

on D, modeling logical implication of concrete properties, and γ ∈ D −→ D be a concretization
function providing a notion of sound approximation for abstract values: d ∈ D is a sound approx-
imation of d ∈ D when d ⊑ γ (d ) holds. Assume that =/⊑ consistently denotes either = or ⊑. Let
=̇/⊑̇ ∈ ℘(D+++ω+1(X 0) × D+++ω+1(X 0)) and γ̇ ∈ D+++ω+1(X 0) −→ D+++ω+1(X 0) be the pointwise
extensions of =/⊑ ∈ ℘(D × D) and γ ∈ D −→ D to sequences in D+++ω+1(X 0).

Let ⟨X k , k ∈ N∪{ω,ω+1}⟩ be a well-behaved sequence of iterates forA and, analogously, ⟨X k ,

k ∈ N∪ {ω,ω+1}⟩ for A. We define the following conditions relating these sequences through γ :
(6.a) X 0 =/⊑ γ (X 0);
(6.b) ∀k ∈ N . (¬Ck (X k ) ∧ ¬C k (X k ) ∧ X k =/⊑ γ (X k )) =⇒ Fk+1(X k ) =/⊑ γ (F k+1(X k ));
(6.c) ∀k, ℓ ∈ N . (ℓ < k ∧ ¬Ck (X k ) ∧C ℓ(X ℓ) ∧ X k =/⊑ γ (X k )) =⇒ (Fk+1(X k ) =/⊑ γ (X k ));
(6.d) ∀k, ℓ ∈ N . (ℓ < k ∧Cℓ(X ℓ) ∧ ¬C k (X k ) ∧ X k =/⊑ γ (X k )) =⇒ (X k =/⊑ γ (F k+1(X k ));
(6.e) (∀k ∈ N . X k =/⊑ γ (X k )) =⇒ (Fω(⟨X k , k ∈ N⟩) =/⊑ γ (F ω(⟨X k , k ∈ N⟩))).

Pॸॵॶॵॹiॺiॵॴ 6.1. Under hypotheses (6.a)–(6.e), SmJAKX 0 =̇/⊑̇ γ̇ (SmJAK X 0) holds.

Proposition 6.1 establishes a very general soundness of the abstract interpreterA with respect to
A for the maximal trace semantics. Since the maximal trace semantics of the concrete interpreter
is the transfinite sequenceX = SmJAKX 0 = X 0 ·X 1 ·X 2· ··· ·X k · ··· ·Xω and similarly for the
abstract interpreterX = SmJAK X 0 = X 0 ·X 1 ·X 2· ··· ·X ℓ· ··· ·X ω , it is worth observing that
X =̇/⊑̇ γ̇ (X ) implies Xω =/⊑ γ (X ω), i.e., the soundness of the limit result X ω of the abstract
interpreter A with respect to the limit result Xω of A.

Example 6.2 (Reachability Semantics). A classical example is the reachability semantics post[t∗]I
of a transition system ⟨S, I , t⟩ where S is a set of states, I ⊆ S are initial states, t ∈ ℘(S × S) is a
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transition relation, post[t ]X ≜ {s ′ ∈ S | ∃s ∈ X . ⟨s, s ′⟩ ∈ t} is the standard post-image of X ⊆ S

through the relation t , and t∗ is the reflexive-transitive closure of t .This reachability semantics is an
instanceA of (5) where: for all k ∈ N, Dk = ℘(S), Fk+1(X ) = I ∪post[t ]X ,Ck (X ) = (Fk (X ) ⊆ X ),
Dω = ℘(S), Fω(⟨X k , k ∈ N⟩) =

∪
k ∈NX

k , X 0 = I . The partial order ⊑ on D = ℘(S) is logical
implication ⊆. The soundness of an abstract interpreter A = ⟨Dk ,C k , F k ,X 0⟩ is often based on
the following hypotheses: ∀k ∈ N. I ⊆ γ (X k ), ∀k ∈ N.∀X ∈ Dk .post[t ]γ (X ) ⊆ γ (F k+1(X )) (semi-
commutation), C k (X ) =⇒ (γ (F k+1(X )) ⊆ γ (X )) (convergence), and

∪
k ∈N γ (X

k ) ⊆ F ω(⟨X k ,

k ∈ N⟩). These satisfy (6.a)–(6.e), so that, by Proposition 6.1, we obtain a generalization of the
standard soundness result post[t∗]I ⊆ γ ((SmJAK X 0)ω). □

7 COLLECTING SEMANTICS FOR OFFLINE META-ANALYSIS
Offline meta-analysis consists in performing an analysis of the abstract interpreter A which anal-
yses a given program P before performing the analysis of P, that is, before executing A for that
program P. Being P fixed so are ⟨Dk ,Ck , Fk ⟩, which are a function of P. Thus, the whole theory
of abstract interpretation can be used for designing a static analysis of the abstract interpreter A.
To design such a meta-abstract interpreter, we first select a semantics of the abstract interpreter
A among those given in Section 5, then we define its collecting semantics, next the abstraction of
this collecting semantics, and finally we design the meta-abstract interpreter as an instance of (5).

7.1 From Semantics to Static Analyses
Semantics S ∈ D are defined on a computational domain D as limits of iterates ⟨X k ,k ∈ ∆⟩
ranging in D and partially ordered by ⊑ (which is a total order on the iterates). Static analyses
operate on properties of the semantics in ℘(D) and are defined as limits of iterates of semantic
properties ⟨X k , k ∈ ∆⟩. In order to connect semantics and static analyses, the (strongest) collecting
semantics C ≜ {S} is defined as the strongest property of S , so that collecting semantics and static
analyses are both properties in ℘(D). C is the limit of the “singleton” iterates ⟨{X k },k ∈ ∆⟩.
Although the order for the “singleton” iterates ⟨{X k },k ∈ ∆⟩ could be the straightforward lifting
of ⊑ from D to singletons of ℘(D), we aim at defining an order on ℘(D) that also works for
static analyses, i.e., which is not restricted to singletons of ℘(D) only but is defined for arbitrary
properties in ℘(D). Thus, up to some abstraction, this order should be the one which provides the
ordering of the abstract iterations ⟨X k ,k ∈ ∆⟩ whose limit is the result of the static analysis.

As usual, we represent extensionally properties by the set of elements having this property.
Thus, let the semantics SJAKX 0 ∈ D of the abstract interpreter be any one defined in Section 5
where D is the underlying cpo. The collecting semantics is the strongest property of the abstract
interpreter, that is CJAKX 0 ≜ {SJAKX 0} ∈ ℘(D). A has a property P ∈ ℘(D) if and only if it
is implied by the strongest one, i.e., CJAKX 0 ⊆ P , or, equivalently, SJAKX 0 ∈ P . For some static
analyses, a weaker collecting semantics is chosen (abstracting the strongest one) such as the reach-
able collecting semantics described in Example 6.2 as in classical abstract interpretation [Cousot
and Cousot 1977a] for invariant generation.

7.2 Collecting Semantics of the Abstract Interpreter
The semantics SJAKX 0 ∈ D is defined as transfinite limit of a ⊑-increasing and convergent se-
quence ⟨X k , k ∈ N ∪ {ω}⟩ where each X k is in D. Because CJAKX 0 = {SJAKX 0} ∈ ℘(D),
we would like the collecting semantics CJAKX 0 to be defined as a limit of an increasing and con-
vergent sequence ⟨{X k }, k ∈ N ∪ {ω}⟩ of iterates in ℘(D). The problem is: for which order on
℘(D)? Of course, the approximation ordering ⊆ does not work.Therefore, we define the following
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computational preorder relation ⊑̃ on ℘(D):

P ⊑̃ Q
△
⇐⇒ ∀σ ∈ P . ∃σ ′ ∈ Q . σ ⊑ σ ′

It is standard to consider ⊑̃ as partial order on the quotient ℘(D) | ∼= for the equivalence relation
P ∼= Q ⇔ P ⊑̃ Q ∧Q ⊑̃ P . However, we do not need to consider this quotienting since we use ⊑̃
only to compare iterates and ⊑̃ is a partial (indeed total) order along these iterates. Moreover, as in
the classical case of strictness analysis for functional programs [Cousot and Cousot 1993; Mycroft
1982], we have a computational preorder ⊑̃which is different from the approximation order ⊆ (i.e.,
logical implication).2

7.3 Projection Collecting Semantics of the Abstract Interpreter
In the following, we consider as semantics of the abstract interpreter the projection semantics
defined in Section 5.4. All the semantics in Section 5 can be used similarly.

The collecting semantics of the projection semantics SprJAKX 0, for an initial n-dimensional
vector X 0 ∈

∏n
i=1 D

0
i , can be defined as follows.

Ppr(X
0) ≜

⊎ω+1
k=1 ℘

(
(
∏n

i=1(Di )
k )(X 0)

)
CprJAKX 0 ≜ {SprJAKX 0} (15)

Tpr(X
0) ∈ Ppr(X

0) −→ Ppr(X
0) Tpr(X

0) X̂ ≜ {Fpr(X
0) ÛX | ÛX ∈ X̂ }

Let ⟨Ppr(X
0), ˜̇≼pr⟩ be the pre-order defined by P ˜̇≼pr Q ⇐⇒ ∀σ ∈ P . ∃σ ′ ∈ Q . σ ≼̇pf σ

′. Let
ς : Dpr(X

0) −→ ℘(Dpr(X
0)) denote the singleton embedding, i.e., ς( ÛX ) ≜ { ÛX }. Hence, we have

that ⟨Dpr(X
0), ≼̇pf⟩ −−−−−→−→←←−−−−−−

ς

ς−1

⟨ς(Dpr(X
0)), ˜̇≼pr⟩ and ⟨ς(Dpr(X

0)), ˜̇≼pr,
˙̃⊔pr⟩ is a cpo.

Pॸॵॶॵॹiॺiॵॴ 7.1. The transfinite iterates ⟨Tpr(X 0)k {X 0}, k ∈ N ∪ {ω,ω+1}⟩ of Tpr(X 0) from
{X 0} in the cpo ⟨ς(Dpr(X

0)), ˜̇≼pr,
˙̃⊔pr⟩ are ˜̇≼pr-increasing, ultimately stationary, and converge to

the limit
CprJAKX 0 = ˜̇⊔

pr
k ∈ N∪{ω ,ω+1}

Tpr(X
0)k {X 0} ∈ Ppr(X

0) (16)

which is a minimal fixpoint of Tpr(X 0) (but not necessarily the least one which may not exist).

A result similar to (16) holds for the prefix and maximal trace semantics defined in Section 5.

7.3.1 Projection Collecting Semantics of the Interval Abstract Interpreter. Continuing Example 5.4.2,
we obtain

X̂ 0 =




⊤
⊥
⊥
⊥






˜̇≼pr X̂ 1 =




⊤ · ⊤
⊥ · [0, 0]
⊥ · [2, 2]
⊥ · ⊥






˜̇≼pr X̂ 2 =




⊤ · ⊤ · ⊤
⊥ · [0, 0] · [0, 2]
⊥ · [2, 2] · [2, 4]
⊥ · ⊥ · ⊥






˜̇≼pr … ˜̇≼pr

X̂ k+1 =




⊤ · ⊤ · ··· · ⊤
⊥ · [0, 0] · ··· · [0, 2 ∗ k ]
⊥ · [2, 2] · ··· · [2, 2 ∗ (k + 1)]
⊥ · ⊥ · ··· · ⊥





˜̇≼pr … ˜̇≼pr X̂

ω =




⊤ · ⊤ · ··· · ⊤ · ···
⊥ · [0, 0] · ··· · [0, 2 ∗ k ] · ···
⊥ · [2, 2] · ··· · [2, 2 ∗ (k + 1)] · ···
⊥ · ⊥ · ··· · ⊥ · ···





˜̇≼pr

X̂ω+1 =




⊤ · ⊤ · ··· · ⊤ · ··· · ⊤
⊥ · [0, 0] · ··· · [0, 2 ∗ k ] · ··· · [0,∞]
⊥ · [2, 2] · ··· · [2, 2 ∗ (k + 1)] · ··· · [2,∞]
⊥ · ⊥ · ··· · ⊥ · ··· · ⊥





.

2It is also standard to consider the lower/Hoare powerdomain [Abramsky and Jung 1994], that is the set of Scott down-
closed subsets of D for the preorder ⊑ (that is, subsets X ∈ ℘(D) which are down-closed, i.e. X = ↓X , and contain the
lub of each of their ⊑-increasing ω-chains). The resulting ω-cpo ensures that continuous functions have a ω-limit of their
iterates which is their least fixpoint. This is not applicable here because, as observed in Example 5.4.2, our functions may
be noncontinuous and require iterates beyond ω .
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8 OFFLINE A2I
The meta-abstract interpreter for offline analysis of the abstract interpreter A is calculationally
derived by an abstraction α(CprJAKX 0) of the projection collecting semantics defined in (16) of A.

As illustrated by Example 7.3.1 for interval analysis, the abstract projection collecting semantics
CprJAKX 0 defined in (16) collects at each program point i a singleton containing the sequence of
abstract properties iteratively calculated at point i by the abstract interpreter (5) for the program
under analysis (program (6) in our examples). In order to define the meta-abstract interpreter, we
have therefore to provide an abstraction of (finite or infinite) sequences of abstract properties
computed by the abstract interpreter.

8.1 Parametric Abstract Domain
To design the meta-abstract interpreter, we need an abstract domain ⟨Dpa, ⊑, ⊥, ⊔⟩ with ar-
bitrary lubs ⊔ and an abstraction αkpa ∈ Dk −→ Dpa for each abstract domain Dk , with k ∈

N ∪ {ω}. This will be extended to an abstraction map α̇pa ∈ Ppr(X
0) −→ Ḋpa, where Ppr(X

0) =⊎ω+1
k=1 ℘

(
(
∏n

i=1(Di )
k )(X 0)

)
is defined in (15) and Ḋpa ≜

∏n
i=1 Dpa so that ⟨Ḋpa, ⊑̇, ⊥̇, ⊔̇⟩ is the

n-ary componentwise extension of the abstract domain Dpa. If ÛX ∈
∏n

i=1(Di )
+++ω+1(X 0) then we

write ÛX k
i ∈ D

k for the k-th element of the i-th component sequence ÛXi ∈ D+++ω+1(X 0) of ÛX . The ab-
straction αkpa ∈ D

k −→ Dpa is extended to sequences by taking the lub along the whole sequence
as follows:

αpa ∈ D+++ω+1(X 0) −→ Dpa

αpa(X ) ≜
⊔

k ∈[0, |X |[

αkpa(X
k )

This abstraction map is then extended pointwise and homomorphically to sets of vectors of
sequences by the function α̇pa ∈ Ppr(X

0) −→ Ḋpa as follows:

α̇pa(P̂) ≜
∏n

i=1

⊔{
αpa(Ẋi )

�� Ẋ ∈ P̂} =
∏n

i=1

⊔{ ⊔
k ∈[0, |Ẋi |[

αkpa(Ẋ
k
i )

�� Ẋ ∈ P̂}

Therefore, since we assume the existence of lubs ⊔ in Dpa, we have a Galois connection

⟨Ppr(X
0), ⊆⟩ −−−−−→←−−−−−

α̇pa

γ̇pa
⟨Ḋpa, ⊑̇⟩ (17)

8.2 Parametric Abstract Semantics
Consider meta-abstract functions F i ∈ Dpa −→ Dpa for each program point i ∈ [1,n], which are
assumed to be monotone and such that:

∀k ∈ N.∀X ∈
∏n

i=1 D
k . ¬Ck (X ) =⇒ ∀i ∈ [1,n]. αk+1

pa ((Fk+1(X ))i ) ⊑ F i (α
k
pa(Xi ))

∀Ẋ ∈
∏n

i=1 Dω . wbpr(Ẋ ) =⇒ ∀i ∈ [1,n]. αωpa(F
ω(Ẋi )) ⊑

⊔
k ∈N

αkpa(Ẋ
k
i )

The functions F i , i ∈ [1,n], induce pointwise a meta-abstract function F ∈ Ḋpa −→ Ḋpa simply by
defining F (Ẋ ) ≜

∏n
i=1 F i (Ẋi ).

An over-approximation of CpaJAKX 0 ≜ α̇pa(CprJAKX 0) = α̇pa({SprJAKX 0}) can be ob-
tained by iterating the meta-abstract transformer Tpa ∈ Ḋpa −→ Ḋpa induced by F and defined as
follows:

Tpa(Ẋ ) ≜ Ẋ ⊔̇ F (Ẋ )
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Pॸॵॶॵॹiॺiॵॴ 8.1. The least fixpoint of Tpa above Ẋ 0 ≜
∏n

i=1 α
0
pa(X

0
i ) ∈ Ḋpa is such that

CpaJAKX 0 ⊑̇ lfp
˙⊑

Ẋ
0 Tpa (18)

The iterates of the semantic transformer Tpa in (18) can be calculated by an instance of the
generic abstract interpreter A in (5) where the abstract domain is fixed to ⟨Ḋpa, ⊑̇, ⊥̇⟩, the abstract
transformer is fixed to Tpa ∈ Ḋpa −→ Ḋpa, the termination condition is fixed to λ Ẋ .Tpa(Ẋ ) ⊑̇ Ẋ

and the initial abstract value is ⊥̇. This instance of A is called offline meta-abstract interpreter.
Several possible choices for the abstract domain Dpa are discussed below for designing widening
operators for the interval abstract domain.

8.2.1 Example. Continuing Example 7.3.1, we obtain

Û
X

0

=



α0
pa(⊤)

α0
pa(⊥)

α0
pa(⊥)

α0
pa(⊥)


⊑̇ … ⊑̇

Û
X
k+1

=



⊔
{α0

pa(⊤), α
1
pa(⊤) , . . ., αk+1

pa (⊤)}⊔
{α0

pa(⊥), α
1
pa([0, 0]), . . ., α

k+1
pa ([0, 2 ∗ k ])}⊔

{α0
pa(⊥), α

1
pa([2, 2]), . . ., α

k+1
pa ([2, 2 ∗ (k + 1)])}⊔

{α0
pa(⊥), α

1
pa(⊥) , . . ., αk+1

pa (⊥)}


⊑̇ … ⊑̇

Û
X
ω+1

=



⊔
{α0

pa(⊤), α
1
pa(⊤) , . . ., αk+1

pa (⊤) , . . ., αωpa(⊤)}⊔
{α0

pa(⊥), α
1
pa([0, 0]), . . ., α

k+1
pa ([0, 2 ∗ k ]) , . . ., αωpa([0,∞])}⊔

{α0
pa(⊥), α

1
pa([2, 2]), . . ., α

k+1
pa ([2, 2 ∗ (k + 1)]), . . ., αωpa([2,∞])}⊔

{α0
pa(⊥), α

1
pa(⊥) , . . ., αk+1

pa (⊥) , ··· , αωpa(⊥)}


.

9 DESIGN OFWIDENINGS AND ABSTRACT DOMAINS BY OFFLINE A2I
A general guideline for designing a widening operator in an abstract domain whose values can be
represented as a conjunction of constraints is to drop constraints which become unstable during
abstract fixpoint computations. Applications of this principle can be found in widenings for in-
tervals [Cousot and Cousot 1977a], octagons [Miné 2006] and polyhedra [Cousot and Halbwachs
1978]. In the context of A2I, the general idea is to enforce convergence of a program analysis by
detecting its instabilities through a meta-analysis.

9.1 Constancy Abstraction
The introductory example of Section 2 can be formulated as an offline meta-abstract interpretation.
Instabilities in a sequence of intervals come from unstable lower or upper bounds of these inter-
vals. This instability can be detected by exploiting Kildall’s [1973] constancy abstract domain ⟨Dc,

⊑c, ⊥c, ⊤c, ⊔c, ⊓c⟩, already recalled in Section 2. Here, the role of meta-abstract domain Dpa of
Section 8.1 is played by the product domain ⟨D2

c , ⊑⟩, whose elements are denoted by ⟨ℓ,h⟩, while
the meta-abstraction αpa ∈ Int −→ D

2
c (notice that since interval analysis always uses Int at each

iteration k , the abstraction αpa does not depend on an index k) is defined as follows:

αpa(⊥) ≜ ⟨⊥, ⊥⟩, αpa([ℓ,h]) ≜ ⟨ℓ, h⟩, αpa(⊤) = ⟨⊤, ⊤⟩.

The transformer F of Section 8.2 is defined to be the pairwise application of the standard constancy
abstraction transformer of [Kildall 1973]. Therefore, an interval (lower or upper) bound which is
not stable in the iterates of an interval analysis is meta-abstracted to ⊤ ∈ Dc. Because the meta-
abstract domain D

2
c is of finite height, the meta-analysis always finitely converges.

Example 9.1. Given ⟨ℓ, h⟩ ∈ D2
c define ⟨ℓ, h⟩.1 = ℓ and ⟨ℓ, h⟩.2 = h. Continuing Example 5.4.2,

the transformer F for the program P is calculationally designed (calculations are omitted due to
lack of space) and provides the following system of equations for ⟨X1,X2,X3,X4⟩ ∈ (D

2
c )

4:
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


X1 = ⟨⊤, ⊤⟩

X2 = ⟨0 ⊔c min(0,X3.1), 0 ⊔c max(0,X3.2)⟩
X3 = ⟨(X2.1 ⊓c ⊤) ⊕c 2, (X2.2 ⊓c ⊤) ⊕c 2⟩
X4 = ⟨X2.1 ⊓c ⊥, X2.2 ⊓c ⊥⟩

(19)

where⊤⊕c 2 = ⊤,⊥⊕c 2 = ⊥, min(0,⊥) = max(0,⊥) = ⊥, and min(0,⊤) = max(0,⊤) = ⊤. The
resolution of this system (19) provides the following finite sequence of Jacobi iterates X i ∈ (D2

c )
4:

X0 =



⟨⊥, ⊥⟩

⟨⊥, ⊥⟩

⟨⊥, ⊥⟩

⟨⊥, ⊥⟩


, X1 =



⟨⊤, ⊤⟩

⟨0, 0⟩
⟨⊥, ⊥⟩

⟨⊥, ⊥⟩


, X2 =



⟨⊤, ⊤⟩

⟨0, 0⟩
⟨2, 2⟩
⟨⊥, ⊥⟩


, X3 =



⟨⊤, ⊤⟩

⟨0, ⊤⟩
⟨2, 2⟩
⟨⊥, ⊥⟩


, X4 =



⟨⊤, ⊤⟩

⟨0, ⊤⟩
⟨2, ⊤⟩
⟨⊥, ⊥⟩


This tells us that in the interval analysis of the program P the interval upper bound of the variable
x is possibly unstable at program points ℓ2 and ℓ3, while the lower bound is definitely stable (0
at program point ℓ2 and 2 at program point ℓ3). Hence, this suggests a widening of the interval
upper bound to +∞ for the variable x at program points ℓ2 and ℓ3 in the interval analysis of P by
the analyser A. □

9.2 Threshold Abstraction
Widenings with thresholds (or “up to”) [Cousot and Cousot 1992; Halbwachs et al. 1997] do not
directly widen to infinity but to successive thresholds a priori determined. For example, these
thresholds may be powers of 2 or 10, physical constants, constants syntactically found in the pro-
gram, etc. To improve the meta-analysis described in Section 9.1, let us consider a widening that
guarantees that interval analysis will always produce better results than sign analysis, i.e., a widen-
ing with thresholds in {−1, 0, 1}. This widening can be designed through a meta-analysis which
relies on the following lattices D↓ and D↑ for lower and upper bounds of intervals.

D↓

⊥

· · · −3 −2 −1

↓ −1

0

↓ 0

1

↓ 1

2 3 · · ·

⊤

D↑

⊥

· · · −3 −2 −1

↑ 1

0

↑ 0

1

↑ −1

2 3 · · ·

⊤

The meaning of abstract values are given by two concretization maps γ↓ ∈ D↓ −→ ℘(I) and
γ↑ ∈ D↑ −→ ℘(I) defined as follows: γ↓(⊥) ≜ ∅, γ↓(z) ≜ {z}, γ↓(↓ z) ≜ {z ′ ∈ I | z ′ ⩽ z} and
γ↓(⊤) ≜ I; γ↑ is dually defined, in particular γ↑(↑z) ≜ {z ′ ∈ I | z ′ ⩾ z}.

The meta-abstract domain Dpa here is the product ⟨D↓ × D↑, ⊑,⊥,⊔⟩ while the abstraction
αpa ∈ Int −→ D↓ × D↑ is the same of Section 9.1: αpa(⊥) ≜ ⟨⊥, ⊥⟩, αpa([ℓ,h]) = ⟨ℓ, h⟩, and
αpa(⊤) = ⟨⊤, ⊤⟩. The transformer F of Section 8.2 is the pairwise application of the transformers
for each abstract domain D↓ and D↑. These are calculationally designed in a similar way to the
calculational design of the transformers for the interval abstract domain (cf. [Cousot 1999]). To
give an example, the transformer X ⊕↓ 2 = α↓({z+2 | z ∈ γ↓(X )}) is designed by cases as follows:
• ⊥ ⊕↓ 2 = α↓({z + 2 | z ∈ γ↓(⊥)}) = α↓(∅) = ⊥;
• If z ∈ I then z ⊕↓ 2 = α↓({z

′ + 2 | z ′ ∈ γ↓(z)}) = α↓({z + 2}) = z + 2;
• ↓−1 ⊕↓ 2 = α↓({z + 2 | z ∈ γ↓(↓−1)}) = α↓({z + 2 | z ⩽ −1}) = α↓({z | z ⩽ 1}) = ↓1;
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• If i ∈ {0, 1} then ↓ i ⊕↓ 2 = α↓({z + 2 | z ∈ γ↓(↓ i)}) = α↓({z + 2 | z ⩽ i}) = α↓({z | z ⩽
i + 2}) = ⊤, since i + 2 > 1;
• ⊤ ⊕↓ 2 = α↓({z + 2 | z ∈ γ↓(⊤)}) = α↓(N) = ⊤.

Because the threshold meta-abstract domainD↓×D↑ has finite height, the meta-analysis always
finitely converges. Therefore, an interval lower (resp. upper) bound which is not stable in the
iterates of an interval analysis is meta-abstracted in the threshold abstract domain D↓ (resp. D↑)
to the largest (resp. smallest) possible threshold.

Example 9.2. Continuing Example 9.1, the system of equations for ⟨X1,X2,X3,X4⟩ ∈ (D↓×D↑)
4

has the same form of the equations in (19) but for the equation of X3 which is replaced by:

X3 = ⟨(X2.1 ⊓ ⊤) ⊕↓ 2, (X2.2 ⊓ ⊤) ⊕↑ 2⟩

The iterative resolution of this system provides the same finite sequence of Jacobi iterates of Ex-
ample 9.1. This is coeherent with the fact that on the program P the thresholds {−1, 0, 1} cannot
be used for the widening. Instead, the threshold meta-analysis for the following program Q:

x=−3; while ℓ (true) { if (x < 0) x=x+2; else x=0; }

would detect that in the interval analysis of Q the interval upper bound of the variable x is possibly
unstable at program point ℓ but is bounded by 1. This meta-analysis suggests a widening to 1
instead of +∞ for x at program point ℓ in the interval analysis of Q. □

9.3 On the Design of Widenings
Since there is hardly any systematic methodology to invent, in general, inductive arguments, there
is hardly any systematic methodology to design widenings and the related extrapolation or inter-
polation operators [Cousot 2015]. Our approach of defining a meta-abstract interpreter which
analyses the program abstract interpreter works necessarily per program, as shown in general
by Cousot and Cousot [1992]. From our perspective, the design of a static program analysis is
a conceptual inductive process which essentially consists in repeating this meta-analysis for all
programs (e.g. to design a widening that is valid for all programs not only for a finite set of pro-
grams). Hankin and Hunt [1994] have proposed a method to design widenings by abstraction to a
finite lattice (or more generally a Noetherian lattice). Cousot and Cousot [1992] showed that this
is not as powerful as a general widening because it lacks the “ability to extrapolate to infinitely
many distinct abstract values for all programs but to a finite number only for any given program”.
Instead, this is different for meta-abstract interpretation which is applied to a given program.

9.4 Offline A2I for Designing Relational Abstract Domains
A relational abstract domain Dr can be essentially viewed as an encoding of a subset of functions
in L −→ ℘(R −→ V) where L is a set of program labels/points, R is a set of references (e.g.
program variables) and V is a set of values (more details are in Section 12.2). When the size of
R (e.g. program variables) is very large, its polynomial (e.g. for octagons) or exponential (e.g. for
polyhedra) cost may become prohibitive. A common solution is to consider a further abstraction
to functions having a dependent type ℓ ∈ L −→ ℘(R̂(ℓ) −→ V) where R̂(ℓ) ⊆ R is a subset,
depending on the program point ℓ, of references for which onemay assume that a relation between
the variables in R̂(ℓ) at program point ℓ will be useful while a relation with the other variables
in R \ R̂(ℓ) is likely to be useless. How to define

∏
ℓ∈L R̂(ℓ) depends on the relational abstract

domain Dr and on the specific program, so that this process can be understood as an offline meta-
analysis. An early example of this approach for designing relational domains is provided by the
offline/static variable packing in the Astrée program analyser as described by [Blanchet et al. 2003,
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Section 7]. More refined offline meta-analyses for octagons are designed in [Heo et al. 2016, 2017;
Lee et al. 2017; Oh et al. 2016] where R̂(ℓ) over-approximates the set of pairs of program variables
x,y such that the octagon analysis is guaranteed to find a precise relation ±x ±y ⩽ c with c , +∞.

10 ONLINE A2I
Offline abstract2 interpretations are interesting but duplicate in part thework necessary to perform
program analysis. But exactly the same idea can be applied online, that is, during the static analysis
itself to determine some parameters which may improve the precision/cost ratio of that program
analysis. This is called online (or dynamic) abstract2 interpretation.

10.1 Online Abstract2 Interpreter
The online abstract2 interpreter A2JPK of a program P is the generic abstract interpreter AJPK de-
fined in (5) using the projection semantics of Section 5.4 and modified so that the next abstract do-
main Dk+1, the next transformer Fk+1 ∈ Dk −→ Dk+1, and the next convergence criterion Ck+1

for any iteration k + 1, with k ∈ N, are obtained through a meta-analysis MAJPK which takes
as input the previous domain Dk , previous transformer Fk and previous convergence criterion
Ck together with an abstraction X of the history of computation of A2JPK. The online abstract2
interpreter A2JPK depends on a parametric abstraction Dpa, defined through αpa/γpa as in Sec-
tion 8, of its history of computation: this abstraction X is initially αpa(X

0) and is then updated to
αpa(γpa(X ) · Fk+1(X k )) at each iteration k . The standard abstract interpreter AJPK defined in (5)
is obtained as a particular case of A2JPK by making no meta-analysis and by skipping to record
the abstraction X of its history of computation.

MAJPK(D, F ,C,γpa,X ) ≜

X := ⟨D, F , C, γpa(X )⟩; k := 0;
while (¬Ck

ma(X)) {

X := F
k+1
ma (X); k := k+1;

}
let ⟨D, F , C, X ⟩ = X in
return ⟨D, F , C⟩;

A2JPK(D0,D1, F 1,C0,X 0,αpa,γpa) ≜

X := X 0; k := 0; X := αpa(X
0);

while (¬Ck (X )) {
X := Fk+1(X ); k := k + 1;

X := αpa(γpa(X ) · X );

⟨Dk+1, Fk+1, Ck ⟩ := MAJPK(Dk , Fk ,Ck−1,γpa,X );
}

(20)

The soundness of the online abstract2 interpreter A2JPK follows directly from Proposition 6.1.
The difference is that the hypotheses (6.a) to (6.e) on ⟨⟨Dk , Fk , Ck ⟩, k ∈ N+⟩ in Proposition 6.1,
which are the assumptions for the soundness of the abstract interpreter AJPK, must now be taken
as a formal specification for the calls to the meta-abstract interpreterMAJPK(Dk , Fk ,Ck−1,γpa,X )
defined in (20). It should be noted that in the pseudocode above this latter meta-abstract inter-
preter MAJPK is itself implemented as an instance of the generic interpreter AJPK where Ck

ma are
its convergence conditions and F

k+1
ma its transformers. Thus, the proof of soundness of MAJPK

essentially follows from the results of Section 6.

11 DESIGN OFWIDENING OPERATORS BY ONLINE A2I
In general, a widening can be understood as an attempt to observe a program analysis in order to
take a decision on how the analysis should go on. In our perspective, a widening can be therefore
viewed and designed as instance of an online A2I.

11.1 Widening Steps by Online A2I
The constancy and threshold abstractions described in Sections 9.1 and 9.2 and used for designing
a widening by an offline meta-analysis, can be also used by an online meta-analysis whose goal is
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to dynamically determine the behaviour of the widening steps. We assume this scenario: given an
abstract domainD, transformer F ∈ D −→ D, and convergence criterionC , for any k ∈ N, we have
Dk = D, Ck = C and Fk+1 = λX .X ∇ F (X ) when an application of a widening ∇ is determined
to be necessary by a meta-analysis, otherwise Fk+1 = F . As noticed by Cousot [2015], in principle
the widening can take all the previous iterates into account to make its extrapolation decision, e.g.
a widening could depend on the increasing/decreasing rates of the previous iterates. It is worth
noticing that an online choice of the widening steps will be more precise (as a widening operator)
compared to an offline static determination of all the widening steps since the online approach
allows to apply different widenings during the iterates of the abstract interpreter. In particular,
termination enforcement is not required at the start of the iterates and can be postponed (e.g.
within a given time bound) to improve the precision of the analysis.

11.2 Interval Widenings by Online Slope Abstraction
A problem with the threshold abstraction described in Section 9.2 is that it is not program depen-
dent. An alternative is to consider a non-Noetherian meta-abstract domain given by the product
of the following two non-Noetherian lattices D∞

↓
and D

∞
↑

which extend, resp., D↓ and D↑ with
an infinite set of “slopes” to determine the thresholds for the widening of the meta-analysis.

D
∞
↓
· · · · · · −n · · · −2 −1 0 1 2 · · · n · · ·

↓−n
. . .
↓−2
↓−1
↓0
↓1
↓2
. . .
↓n
. . .
⊤

...

...

...

⊥

D
∞
↑

· · ·· · ·n· · ·210−1−2· · ·−n· · ·

↑n
. . .

↑2
↑1

↑0
↑−1

↑−2
. . .
↑−n

. . .
⊤

. . .

. . .

. . .

⊥

A slope function associates with each iteration step a corresponding threshold in D
∞
↑

and D
∞
↓

respectively for the lower and upper bound of intervals. Given a finite set ofm natural numbers
0 ≤ N1 < . . . < Nm which partitions N inm + 1 intervals, and a corresponding slope function
t ∈ N+ −→ N+ ∪ {+∞} such that i, j ∈ [1,m]∧ i < j =⇒ t(i) < t(j) and j ≥ m =⇒ t(j) = +∞,
the widening of an interval lower or upper bound x at iterate k +1 is obtained by an online meta-
analysis as follows: x ∇k x ′ ≜ x ± t(k)|x ′−x |, where x ′ is the new value of the (lower for −, upper
for +) bound x . Let us describe this online meta-analysis by a simple example.

Example 11.1. Consider the following program P:
x=0; while ℓ (x <= 128) x=x+2;

with slopes for the interval bounds defined by the function t(n) ≜ (n < 10 ? 2n : +∞ ). The
interval analysis of P at program point ℓ is specified by the equation:

[a,b] = F ([a,b]) ≜ [0, 0] ⊔ (([a,b] ⊓ [−∞, 128]) ⊕ [2, 2]).

The widening ∇k to be used between iterates X k = [a,b] and X k+1 = F ([a,b]) = [a′,b ′] of the
analysis at ℓ is determined by a meta-analysis of the iterates of the abstract interpreter as follows:

[a,b]∇k [a′,b ′] ≜ [a − t(k)|a′ − a |,b + t(k)|b ′ − b |]

At any iteration of the analyser, the online meta-analysis determines the threshold to jump to in
the analysis. The threshold is the result of a meta-analysis in the abstract domains D∞

↑
and D

∞
↓
.
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The following table summarises the iterates (1st column) of the analyser (2nd column) and of the
online meta-analysis (5th column) for P:

widening to the
interval analysis result [a′k ,b ′k ] meta-analysis ∇k meta-analysis ∇k

analysis at ℓ : [ak ,bk ] = of the meta- of the lower of the upper
iteration F ([a′k−1,b ′k−1]) analysis at ℓ bound a′k at ℓ bound b ′k at ℓ

k = 0 ⊥ ⊥

k = 1 [0, 0] [0, 0]

k = 2 [0, 2] [0, 8] 0 − t(2)(0 − 0) = 0 0 + t(2)(2 − 0) = 8

k = 3 [0, 10] [0, 24] 0 − t(3)(0 − 0) = 0 8 + t(3)(10 − 8) = 24

k = 4 [0, 26] [0, 56] 0 − t(4)(0 − 0) = 0 24 + t(4)(26 − 24) = 56

k = 5 [0, 58] [0, 120] 0 − t(5)(0 − 0) = 0 56 + t(5)(58 − 56) = 120

k = 6 [0, 122] [0, 248] 0 − t(6)(0 − 0) = 0 120 + t(6)(122 − 120) = 248

k = 7 convergence of the interval analysis at ℓ to [0, 250]

Instead of performing the widening ∇k in the ranges Nk , the online meta-analysis allows to per-
form them less frequently at their frontiers only (which makes no difference for ranges of width 1
but is more precise in general). Lagrange, Newton-Gregory, Hermit, Taylor, Laurent, etc., polyno-
mial extrapolation of the sequences of lower and upper bounds may also be useful. □

11.3 Improving the Precision of Polyhedra Widenings
The basic strategy for a polyhedra widening P1 ∇ P2 keeps all the constraints of P1 satisfied by the
system of generators of P2 [Cousot and Halbwachs 1978].There might be several different minimal
systems of linear inequalities defining P1 so that the widening depends upon the representation of
P1. The standard widening on polyhedra originally suggested by [Halbwachs 1979, Définition 5.3.3,
p. 57] solves this problem by adding to P1 the constraints of P2 that can replace a constraint of P1
without changing P1.

Several improvements of the precision of this widening have been proposed based on suitable
analyses of the iterates of a polyhedra analysis (see [Bagnara et al. 2005]) and can be viewed under

P1

P2

P3

the light of a meta-analysis. For example, the improvement suggested by
Cousot and Cousot [1992] and adopted by Besson et al. [1999] is to use
the lub of polyhedra instead of the widening when the iterates are along a
chain of finite length.This always happens for a ⊆-increasing chain of poly-
hedrawhose dimensions are strictly increasing, as in the case of the polyhe-
dra P1, P2 and P3 depicted in the picture, whose dimensions are strictly in-
creasing. Of course, dimensions are finite because they are bounded by the
number of program variables, so that, using this strategy, the dimensions
will ultimately stabilize and therefore a widening will become necessary.

12 DYNAMIC PARTITIONING OF RELATIONAL DOMAINS BY A2I
In a series of papers, Halbwachs et al. [2006, 2003]; Singh et al. [2015, 2017, 2018] have shown that
transformers of relational numerical domains, notably polyhedra, can be efficiently implemented
by dynamically partitioning the program variables in disjoint blocks such that variables in different
blocks of the partition are ensured to be unrelated. This dynamic decomposition of the analysis
has been proved to be often much more efficient than the standard monolithic analysis despite
the overhead cost due to maintaining the variable partition. We show that dynamic partitioning
is an online meta-abstract interpretation in a more general context of (not necessarily numerical)
relational abstract domains for static program analysis of invariance properties.
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12.1 Collecting Semantics
Let R be a set of references (variables, memory addresses, array elements, program points, recur-
sion stacks, etc.), V be a set of values and Σ ≜ R −→ V be the corresponding set of states, whose
properties range in the complete lattice ⟨P ≜ ℘(Σ), ⊆⟩. Let F ∈ P −→ P be a join preserving
transformer for a given program P such that its collecting semantics of reachable states is lfp⊆F.
The collecting semantics lfp⊆F for P is formally calculated by the abstract interpreter AJPK in (5)
with Dk = P, Fk+1 = F and Ck (X ) = F(X ) ⊆ X , for all k ∈ N, and X 0 = Σ. The semantics of
this instance of the interpreter AJPK has Dω = P and Fω is the lub

∪
of ℘(Σ).

12.2 Relational Abstract Domains
Relational abstract domains Dr rely on constraints ranging in a set Cr. Each constraint C ∈ Cr
refers to a finite number of references ref(C) ∈ ℘f(R) and typically provides some bounds to the
possible values of these references. Hence, the concretization γr of a constraint C ∈ Cr is a set
of states for references ranging in ref(C), that is, γr(C) ∈ ℘(ref(C) −→ V). We assume ref to be
surjective, i.e., ∀R ∈ ℘f(R) . ∃C ∈ Cr . ref(C) = R.

A relational abstract property P ∈ Dr is a finite set of constraints understood as a logical con-
junction, so that Dr ≜ ℘f(Cr) and γr(P) ≜

∩
C ∈P {ρ ∈ R −→ V | ρ ↓ ref(C) ∈ γr(C)} ∈ P, where

ρ ↓ R denotes the restriction of the function ρ to a subset R ⊆ R of its domain and, by a slight
abuse of notation, γr is used both for constraints and for abstract elements in Dr. Therefore, γr is
an antitone function, meaning that the more constraints the less states satisfy them. For example,
γr(w = x) = {ρ ∈ {w, x} −→ R | ρ(w) = ρ(x)}, γr(y ⩽ z) = {ρ ∈ {y, z} −→ R | ρ(y) ⩽ ρ(z)},
and γr({w = x,y ⩽ z}) = {ρ ∈ {w, x,y, z} −→ R | ρ ↓ {w, x} ∈ γr(w = x), ρ ↓ {y, z} ∈ γr(y ⩽ z)}.
Observe that ⟨Dr, ⊇, Cr, ∅, ∩, ∪⟩ is a lattice but cannot be chosen as abstract domain since differ-
ent predicates may have the same meaning, so that ∩ is not the abstract logical union. For example,
γr({x ⩾ 0, x = y}) = γr({y ⩾ 0, x = y}) but γr({x ⩾ 0, x = y} ∩ {y ⩾ 0, x = y}) = γr({x = y})
is a strict superset.

A relational abstract domain is a lattice ⟨Dr,=r, ⊑r,⊥r,⊤r,⊔r,⊓r⟩, not necessarily complete (e.g.
for polyhedra arbitrary lubs do not exist), where=r is semantic equality, i.e. P =r P

′ when γr(P) =
γr(P

′), and ⊑r is abstract logical implication, i.e. P ⊑r P ′ when γr(P) ⊆ γr(P
′). In general, several

different abstract predicates may have the same meaning so that P ⊑r P ′ ∧ P ′ ⊑r P in general
does not imply that P = P ′. The concretization γr is assumed to preserve finite meets ⊓r but
not necessarily infinite ones. Since constraints are interpreted conjunctively, we have that P ⊇
P ′ implies P ⊑r P ′ (but not necessarily the converse holds) and ⊓r = ∪. We also assume that
γr(⊥r) = ∅,γr(⊤r) = Σ (so⊤r can be represented by the empty set of constraints), andγr(P∩P ′) ⊇
γr(P ⊔r P

′) ⊇ γr(P) ∪ γr(P
′) so that ⊔r is an overapproximation of the union (e.g. convex hull for

polyhedra).

12.3 Abstract Relational Semantics
Let Fr ∈ Dr −→ Dr be a relational abstract transformer for a given program P, not necessarily
monotone (e.g., it can rely on nonmonotone widenings [Cousot 2015]), whose soundness condi-
tion is F ◦ γr ⊆ γr ◦ Fr. The abstract relational semantics is formally calculated by the abstract
interpreter AJPK in (5) with Dk = Dr, Fk+1 = Fr, Ck (X ) = Fr(X ) ⊑r X , for all k ∈ N, and
X 0 = ⊤r. Here, limits of infinite sequences of abstract values might not exist (e.g. for an infinite
sequence of polyhedra converging to a disk), hence the semantics of AJPK should simply record
nontermination, for example with Dω = {Ω} and Fω(X ) = Ω for any infinite sequence X of ab-
stract values which is not ultimately stationary. If the execution of the abstract interpreter AJPK
terminates with some abstract value P ∈ Dr then lfp⊆F⊆ γr(P) holds.
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12.4 The Complete Lattice of Partitions
A partition of a set R is a set π of nonempty pairwise disjoint subsets of R, called blocks, whose
union isR. Let Part(R) denotes the set of partitions ofR, where given π ∈ Part(R), for any x ∈ R,
π(x) denotes the unique block of π containing x . Define π ⪯ π ′ when ∀x ∈ R . π(x) ⊆ π ′(x) so
that ⟨Part(R), ⪯, {[x ]}x ∈R, {R}, ⋎, ⋏⟩ is a complete lattice where {[x ]}x ∈R is the least (or finest)
partition; {R} is the greatest (or coarsest) partition, and π ⋏ π ′(x) = π(x) ∩ π ′(x) is the glb. The
lub π ⋎ π ′ can be obtained by an iterative procedure (cf. [Grätzer 2011, Section V.4]).

12.5 Abstract Property Decomposition
In general, the abstract relational properties Dr are costly to represent and compute with (e.g. ex-
ponential in the size of R for polyhedra). Halbwachs et al. [2006, 2003]; Singh et al. [2015, 2017,
2018] have shown that relational numerical domains can be efficiently implemented by decompos-
ing relational properties according to a variable partition in such a way that variables in different
blocks of the partition are unrelated. This can be extended to generic relational abstract domains.

LetB ∈ ℘f(R) be a nonempty finite set of references and defineCr↓B ≜ {C ∈ Cr | ref(C) ⊆ B} to
be the set of relational constraints with references ranging in B only, and, in turn,Dr↓B ≜ ℘(Cr↓B)
to be the set of relational properties whose references are in B. ⟨Dr ↓ B,=r, ⊑r,⊥r,⊤r,⊔r,⊓r⟩ is a
subset of ⟨Dr, ⊑r⟩ and it is assumed to be a lattice. If necessary, the infimum ⊥r is added toDr ↓B.
Let us define the abstraction map αB ∈ Dr −→ Dr ↓ B by αB(P) ≜ P ∩ (Dr ↓ B), i.e., αB(P) is
the subset of constraints of P whose references are all in B. This is extended componentwise for a
given partition π ∈ Part(R) by defining απ (P) ≜

∏
B∈π αB(P). Thus, απ ∈ Dr −→ Dr ↓ π where

Dr↓π ≜
∏

B∈π Dr↓B. Hence, a π -partitioned set of constraints
∏

B∈π PB ∈ Dr↓π is a tuple of sets
of constraints which are indexed by blocks B ∈ π and such that any set PB of the tuple may contain
constraints with variables ranging in the block B only. We consider ⊑πr to be the componentwise
(i.e., block by block) extension of ⊑r, so that ⟨Dr ↓ π ,=

π
r , ⊑

π
r ,⊥

π
r ,⊤

π
r ,⊔

π
r ,⊓

π
r ⟩ is a lattice.

The meaning of a partitioned abstract property in Dr ↓ π has to be understood conjunctively,
namely, γπ ∈ Dr ↓ π −→ Dr is defined by γπ (

∏
B∈π PB) ≜

∪
B∈π PB . Hence, the concretization in

℘(R −→ V) of
∏

B∈π PB ∈ Dr ↓ π is given by γr(γπ (
∏

B∈π PB)) = γr(
∪

B∈π PB) =
∩

B∈π γr(PB).
This is an instance of a cofibred domain in the sense of Venet [1996], viewed as a map from blocks
of a partition evolving during the analysis to constraints with references ranging in that block.

Observe that αB ∈ Dr −→ Dr ↓ B admits the adjoint map γ B(PB) ≜ PB ∪ ¬(Dr ↓ B), with
¬(Dr ↓B) ≜ Dr \ (Dr ↓B), hence we have a Galois insertion ⟨Dr, ⊆⟩ −−−−→−→←−−−−−−

αB

γ
B

⟨Dr ↓B, ⊆⟩. In turn,

this induces a Galois insertion ⟨Dr, ⊆⟩ −−−−→−→←−−−−−−
απ

γ
π

⟨Dr ↓ π , ⊆̇⟩, where ⊆̇ is the blockwise inclusion.
However, note that γ π is not γπ . For example, consider R = {x,y}, π = {{x}, {y}}, P = {x =

0, x + y ≤ 0} and P = ⟨{x = 0}, {y = 0}⟩ ∈ Dr ↓ π . We have that απ (P) = ⟨{x = 0}, ∅⟩ ⊆̇ P

whereas P ⊈ γπ (P) = {x = 0,y = 0}. On the other hand, P ⊆ γπ (P) =⇒ απ (P) ⊆̇ P always
holds.

12.6 Exact Decompositions
Since απ (P) removes from P ∈ Dr the constraints whose variables are not all in some block of π ,
in general a partition π is not exact for P . For example, if π = {{x,y}, {z,w}} then γπ (απ ({x =
w, x = y,y ⩽ z})) = γπ (⟨{x = y}, ∅⟩) = {x = y} ⊊ {x = w, x = y,y ⩽ z}. We are
interested in partitions π of the variables occurring in P ∈ Dr such that γπ (απ (P)) = P . These
partitions are called exact3, while π is called approximate for P when γπ (απ (P)) ⊊ P . For example,

3In [Singh et al. 2017] π is called permissible for P , while in [Halbwachs et al. 2006] P is called factorizable according to π .
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π = {{w, x}, {y, z}} is exact for P = {w = x,y ⩽ z} and απ (P) = ⟨{w, x} 7→ {w = x}, {y, z} 7→

{y ⩽ z}⟩. On the other hand, the partition π ′ = {{w}, {x,y, z}} is approximate for P since the
decomposition yields απ ′(P) = ⟨{w} 7→ ∅, {x,y, z} 7→ {y ⩽ z}⟩. In general, observe that the
coarsest partition {R} is always exact for all P ∈ Dr. The decomposition απ (P) of an abstract
relational property P ∈ Dr by means of an exact partition π of R does not lose any information
with respect to P since γr(γπ (απ (P))) = γr(P). Otherwise, it should be remarked that απ (P) may
be an over-approximation of P since P ⊇ γπ (απ (P)) so that γr(P) ⊆ γr(γπ (απ (P))) holds. We have
the following characterization of an exact partition π ∈ Part(R) for a relational property P ∈ Dr:
γπ (απ (P)) = P ⇐⇒ ∀C ∈ P . ∃B ∈ π . ref(C) ⊆ B.

12.7 Partition Abstraction
A partition is a property of a set of constraints in Dr so it abstracts properties in ℘(Dr). Let us
first define αpt ∈ Cr −→ Part(R) by αpt(C) ≜ {ref(C)} ∪ {{x} | x ∈ R \ ref(C)}, and in turn
αpt ∈ Dr −→ Part(R) by αpt(P) ≜

b
{αpt(C) | C ∈ P}. It turns out that if P ∈ Dr then ∀C ∈

P . ∃B ∈ αpt(P) . ref(C) ⊆ B so that the partition αpt(P) is always exact for the relational property
P and, furthermore, αpt(P) is the finest exact partition for P .4

12.8 Sound Transformer Decomposition
Assume that a concrete transformer F ∈ P −→ P is approximated by an abstract relational
transformer Fr ∈ Dr −→ Dr which is sound F◦ γr ⊆̇ γr ◦Fr.

When calculating with partitioned relational properties
∏

B∈π PB for a current partition π ∈

Part(R), we also need a partitioned abstract transformer JFrKπ−→π ′ ∈ Dr ↓ π −→ Dr ↓ π
′, where

π ′ is the new partition, which is a sound approximation ofFr, meaning that γr ◦Fr ◦γπ ⊆̇γr ◦γπ ′ ◦

JFrKπ−→π ′ . By soundness ofFr, this implies soundness with respect to the concrete transformerF,
namely, F◦ γr ◦ γπ ⊆̇ γr ◦ γπ ′ ◦ JFrKπ−→π ′ . Moreover, the new partition π ′ should be obtained as a
function of the old one, namely π ′ = FpJFrKπ .

It is preferable to define JFrKπ−→π ′ ∈ Dr ↓ π −→ Dr ↓ π
′ “blockwise” as follows:

JFrKπ−→π ′(
∏

B∈π PB) ≜
∏

B′∈π ′
d

rB∈π JFrKB−→B′(PB) (21)

for some suitable transformers JFrKB−→B′ ∈ Dr↓B −→ Dr↓B
′ depending on a pair ⟨B,B′⟩ ∈ π ×π ′

of blocks. If possible, JFrKB−→B′ should be defined by reusing Fr on the blocks B and B′ of the
partitions π and π ′. A sufficient condition for the soundness F◦ γr ◦ γπ ⊆̇ γr ◦ γπ ′ ◦ JFrKπ−→π ′ of
JFrKπ−→π ′ with respect to the collecting semantics F is:

∀B ∈ π .Fr(PB) ⊆
∪

B′∈π ′ JFrKB−→B′(PB) (22)

Also, soundness can be strengthened to precision by replacing ⊆ with =. If soundness (precision)
holds then the computation X 0, …, X k+1 = Fr(X

k ), …, of the abstract interpreter for Fr can be
soundly (precisely) replaced by a decomposed computation Y k = ⟨πk , P

k
⟩ ∈ Part(R) ×Dr ↓ π

k

defined on pairs as follows:

Y 0 ≜ ⟨π0 = {R}, P
0
= απ 0(X 0)⟩;

Y k+1 ≜ ⟨πk+1 = FpJFrKπk , P
k+1

= JFrKπ k−→π k+1(P
k
)⟩

Let us remark that the next partition is computed as a function of the current abstract value(s) and
of the current partition(s), as allowed by the general template of themeta-interpreterMAJPK given
4αpt(P) is called the finest permissible partition for P in [Singh et al. 2017] and the greatest common partition for P in
[Halbwachs et al. 2006].
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in (20). Of course, this general technique leaves the problem of computing the next partitions πk+1

and the corresponding blockwise transformers JFrKB−→B′ for these partitions. One naïve solution
would be to choose the next partition to be πk+1 = αpt ◦ Fr ◦ γπ k (P

k
) but, of course, we do not

want to use the transformer Fr to compute the decomposition of this transformer. The solution is
a meta-abstract interpretation.

12.9 Partition Meta-Analysis and Analysis
Given a pre-partition π which decomposes a pre- partitioned property

∏
B∈π PB , the meta-analysis

must compute a post-partition π ′which approximatesαpt◦Fr◦γπ (
∏

B∈π PB).We therefore design a
sound transformerFpJFrK ⪰̇ αpt◦Fr◦γπ , that is,FpJFrK(π) ⪰

b
{αpt(Fr(P)) | P ⊑r γπ (

∏
B∈π PB)},

by calculational design. Since the concrete transformer Fr is defined for primitive statements and
then applied inductively, we also inductively define the transformersFpJFrK and JFrKB−→B′ . Then,
the partitioned relational analysis JFrKπ−→π ′ can be based on JFrKB−→B′ , where B ∈ π and B′ ∈

π ′ ≜ FpJFrK(π), as shown in (21).

12.9.1 Skip. Consider the concrete transformer FJskipK ∈ P −→ P such that FJskipK(X ) =

X . Then, the relational transformer FrJskipK ∈ Dr −→ Dr is FrJskipK(P) ≜ P , which is ob-
viously sound. In this case, no update to a partition π is needed, hence FpJskipKπ ≜ π and
JskipKπ−→π (P) ≜ P .

For later use in Section 12.9.9, we can also define a partitioned transformer for a possibly coarser
post-partition π ′ ⪰ π by defining the blockwise transformer JskipKB−→B′(PB) ≜ (B ⊆ B′ ? PB :
∅ ) and the partitioned relational transformer JskipKπ−→π ′ as given by (21) in Section 12.8.

12.9.2 Inclusion and Emptiness Test. The relational domainDr implements the test P ⊑r P ′. Let us
consider two partitioned relations

∏
B∈π PB and

∏
B′∈π ′ P

′
B′
.We first compute the greatest common

partition π ⋎ π ′ and then we compare blockwise as follows:
∏

B∈π PB ⊑r
∏

B′∈π ′ P
′
B′

≜
∧

B∈π⋎π ′
( ∪

B1∈π ,B1⊆B PB1

)
⊑r

( ∪
B2∈π ′,B2⊆B P

′
B2

)
Domain-specific refinements are given in [Halbwachs et al. 2003; Singh et al. 2017, 2018] which
may be generalizable depending on the specific domain of constraints Cr. The emptiness test
P ⊑r ⊥r is handled analogously.

12.9.3 Meet. If π1, π2 are, resp., (finest) exact partitions for P1 and P2 then π1 ⋎ π2 is the (finest)
exact partition for their meet P1 ⊓r P2 since ⊓r is the union of sets of constraints and αp preserves
unions.
⊓r is a binary transformer, so that the abstract transformer is J⊓rKπ1×π2−→π1⋎π2

. This is given by
the blockwise meet

ḋ
r ∈ (Dr ↓π1×Dr ↓π2) −→ Dr ↓π1⋎π2 defined as follows (where ⊓r∅ = ⊤r):

ḋ
r(
∏

B1∈π1
PB1
,
∏

B2∈π2
PB2

) ≜
∏

B′∈π1⋎π2

⊓r{PB1
⊓r PB2

| ⟨B1,B2⟩ ∈ π1 × π2,B1 ∪ B2 ⊆ B′}

12.9.4 Conditional. Let “if C then stm” be a branching statement with a relational condition
C ∈ Dr. If P a relational pre-condition then the relational post-condition on the entry of the then
branch is FrJif C thenK(P) ≜ P ⊓r C .

Let π ′ be an exact partition for the conditionC , i.e., γπ ′(απ ′(C)) = C . The partition for the post-
condition is then π ′′ = FpJif C thenK(π) ≜ π ⋎ π ′. The partitioned relational transformer is
Jif C thenKπ−→π ′′(

∏
B∈π PB) ≜ (

∏
B∈π PB) ⊓̇r απ ′(C).
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12.9.5 Substitution. If P ∈ P and x, x ′ ∈ R thenFJ[x :=x ′]K ∈ P −→ P denotes the substitution
of a fresh reference x ′ for x in P , that is, FJ[x := x ′]KP ≜ {ρ ∈ (R \ {x}) ∪ {x ′} −→ V | ∃ρ ′ ∈

P . ∀y ∈ R \ {x} . ρ(y) = ρ ′(y) ∧ ρ(x ′) = ρ ′(x)}.
Substitution in relational properties P ∈ Dr is defined as FrJ[x := x ′]K(P) ≜ P [x := x ′] ≜
{C[x := x ′] | C ∈ P}, where C[x := x ′] is a given substitution primitive for constraints, which is
assumed to be sound: γr(C[x := x ′]) ⊇ FJ[x := x ′]Kγr(C). If x < ref(C) is not bound in C then its
substitution is assumed to have no effect, that is, C[x := x ′] = C . As a consequence, substitution
for relational properties P ∈ Dr is sound: γr(P [x := x ′]) ⊇ FJ[x := x ′]Kγr(P).

If π is an exact partition for P then FpJ[x := x ′]Kπ ≜ {(x ∈ B ? (B \ {x}) ∪ {x ′} : B ) | B ∈ π }
provides an exact partition for P [x :=x ′]. Given B ∈ π and B′ ∈ FpJ[x :=x ′]Kπ , the block relational
transformer is defined by J[x := x ′]KB−→B′(PB) ≜ (x ∈ B ? PB [x := x ′] : PB ). In turn, the
partitioned relational transformer J[x := x ′]Kπ−→π ′ is given blockwise by (21) in Section 12.8.

12.9.6 Variable Elimination. If P ∈ P and x ∈ R then FJ∃xK ∈ P −→ P is the elimination (or
existential quantification) of x in P defined by FJ∃xKP ≜ {ρ ∈ (R \ {x}) −→ V | ∃ρ ′ ∈ P . ∀y ∈

(R \ {x}) . ρ(y) = ρ ′(y)}.
We assume that Dr provides a sound elimination for relational properties FrJ∃xK(P) ≜ ∃x . P

(e.g. Fourier-Motzkin elimination for polyhedra), that is, γr(∃x . P) ⊇ FJ∃xKγr(P). In particular, we
assume that if x < ref(P) then ∃x . P = P .

If π is an exact partition for P thenFpJ∃x .PKπ ≜ {B \ {x} | B ∈ π }∪ {{x}} is an exact partition
for ∃x .P . Since x belongs to the block π(x) the analysis uses the relational elimination for that
block, leaves the other blocks unchanged, and the block {x} is assigned the abstract property ⊤r.
Thus, given B ∈ π and B′ ∈ FpJ∃xKπ , the block relational transformer is J∃xKB−→B′(PB) ≜ (B′ =
{x} ? ⊤r : ∃x . PB ). The partitioned relational transformer J∃xKπ−→π ′ is then given by (21) in
Section 12.8.

12.9.7 Assignment. Let x:=E be an assignment.We assume that there is a constraintCJx:=EK ∈ Cr
with references in ref(E) ∪ {x ′, x} relating the values of the references of E and the value x ′ of
x before the assignment to the value x of x after the assignment. If P ∈ Dr is a relational pre-
condition then the relational post-condition is simply ∃x ′.P [x := x ′] ⊓r CJx := EK. The partition
transformerFpJx:=EK and the block relational transformers Jx := EKB−→B′ follow by composition
of the previous primitives of substitution and variable elimination.

12.9.8 Widening. A simple solution for widening ∇r (and narrowing) is the blockwise application
for the greatest common partition π1 ⋎ π2 which, similarly to the meet, is defined as follows:

J∇rKπ1×π2−→π1⋎π2
(
∏

B1∈π1
PB1
,
∏

B2∈π2
PB2

) ≜∏
B′∈π1⋎π2

⊓r{PB1
∇r PB2

| ⟨B1,B2⟩ ∈ π1 × π2,B1 ∪ B2 ⊆ B′}

It must be checked that the widening is terminating (a coarser one would use
⊔

r). One can also
apply the technique of not using a widening when the dimensions of the relational properties
strictly increase (Section 11.3) as well as the widening for cofibred domains [Venet 1996].

12.9.9 Join. The concrete join FJ⊔K ∈ P ×P −→ P is FJ⊔K(X1,X2) = P1 ∪ P2. We assume that
the relational domain Dr provides a sound abstract join ⊔r = FrJ⊔K ∈ Dr × Dr −→ Dr, namely,
∀P1, P2 ∈ Dr.γr(P1) ∪ γr(P2) ⊆ γr(P1 ⊔r P2). We have to define a partitioned join J⊔rKπ×π ′−→ ¯̄π ∈

(Dr ↓ π × Dr ↓ π
′) −→ Dr ↓ ¯̄π which is sound. The blockwise join of P =

∏
B∈π PB and P ′ =∏

B′∈π ′ P
′
B′

for the greatest common partition ¯̄π = π ⋎ π ′ is usually imprecise as shown by [Halb-
wachs et al. 2006, Section 5.2] for polyhedra.We therefore follow the technique in [Singh et al. 2017,
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2018]. We first express the partitioned properties P and P ′ using the greatest common partition
π̄ ≜ π ⋎ π ′ by defining P ≜ JskipKπ−→π̄ (P) and P ′ ≜ JskipKπ ′−→π̄ (P

′). Then, for P =
∏

B̄∈π̄ P B̄

and P ′ =
∏

B̄∈π̄ P
′
B̄
, we consider the partition

¯̄π ≜ {B̄ ∈ π̄ | P B̄ =r P
′
B̄
} ∪ {

∪
{B̄ ∈ π̄ | P B̄ ,r P

′
B̄
}}.

Hence, ¯̄π preserves the blocks of semantically equal components and merges the blocks of seman-
tically different components. P and P ′ are further decomposed according to the partition ¯̄π by
defining P ≜ JskipKπ̄−→ ¯̄π (P ) and P ′ ≜ JskipKπ̄−→ ¯̄π (P

′). The block relational transformer is the
join on the relational domain defined by J⊔rK⟨B, B ⟩−→B(P B, P

′
B) ≜ P B ⊔r P

′
B where B ∈ ¯̄π . The

partitioned relational property transformer J⊔rKπ×π ′−→ ¯̄π is then defined componentwise:

J⊔rKπ×π ′−→ ¯̄π (P, P
′) ≜

∏
B∈ ¯̄π J⊔rK⟨B, B ⟩−→B(P B, P

′
B).

12.9.10 Examples. [Halbwachs et al. 2006, 2003; Singh et al. 2015, 2017, 2018] are all instances of
the dynamic partitioning of relational numerical domains by online A2I. Of course, when consid-
ering a particular relational domainDr, the partitioned transformers can be made more precise by
taking specific features of Dr into account (e.g. [Halbwachs et al. 2006, Proposition 1]).

13 CONCLUSION
We introduced the notion of abstract2 interpretation, or meta-abstract interpretation, as a gen-
eral method for lifting standard abstract interpretation from properties of a program to properties
of a program analyser. In our view, analysing program analyses, or meta-analysis, corresponds
precisely to analyse the collection of (partial) program properties that the analyser generates in
order to supply an approximate program semantics as result. This can be modeled by abstract in-
terpreting the analyser, i.e., by abstracting the properties of the traces produced by a collecting
semantics of the program analyser. We allow finite, infinite and transfinite (up to the ordinal ω+1)
traces in the collecting semantics of the analyser in order to let the meta-analysis observe the full
behaviour (possibly including nontermination) of the analyser. The whole framework of abstract
interpretation can be lifted from program properties to properties of the analyser, thus providing
the possibility of designing meta-abstract interpreters in a calculational way as it is already done
for standard program analyses. We distinguish between offline and online meta-analyses. An of-
fline meta-analysis extracts properties of the analyser before (or after) its execution on a given
input program. As an example, we showed that offline meta-analysis allows us to design widening
operators for the standard interval program analysis by detecting unstable bounds of the inter-
vals computed by the analyser. On the other hand, an online meta-analysis is performed during
program analysis in order to optimise its precision/cost ratio. This allows us to view the dynamic
variable partitioning techniques for polyhedra by Halbwachs et al. [2003] and Singh et al. [2017]
as an instance of an online meta-analysis.
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