
47

Inferring Frame Conditions with Static Correlation Analysis

OANA F. ANDREESCU∗, Internet of Trust, France
THOMAS JENSEN∗, Inria, France and Prove & Run, France

STÉPHANE LESCUYER, Prove & Run, France

BENOÎT MONTAGU, Prove & Run, France

We introduce the abstract domain of correlations to denote equality relations between parts of inputs and

outputs of programs.We formalise the theory of correlations, and mechanically verify their semantic properties.

We design a static inter-procedural dataflow analysis for automatically inferring correlations for programs

written in a first-order language equipped with algebraic data-types and arrays. The analysis, its precision and

execution cost, have been evaluated on the code and functional specification of an industrial-size micro-kernel.

We exploit the inferred correlations to automatically discharge two thirds of the proof obligations related to

the preservation of invariants for this micro-kernel.

CCS Concepts: · Theory of computation → Program analysis; Program verification; · Software and its

engineering→ Formal software verification;

Additional Key Words and Phrases: Static analysis, Equality analysis, Function summaries, Frame conditions,

Correlations, Invariant preservation

ACM Reference Format:

Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu. 2019. Inferring Frame Conditions

with Static Correlation Analysis. Proc. ACM Program. Lang. 3, POPL, Article 47 (January 2019), 29 pages.

https://doi.org/10.1145/3290360

1 INTRODUCTION

In the context of the specification and verification of programs, a frame condition defines an upper
bound of the effect performed by a program. In other words, it specifies which parts of the state a
program does not modify. Frame conditions often occur in verification tools in the form of modify

clauses [Filliâtre and Paskevich 2013; Leavens et al. 2006]. Stating and maintaining those conditions
is referred to as the frame problem [Borgida et al. 1995; McCarthy and Hayes 1981; Meyer 2015].
While verifying a program, it is of prime importance to know when parts of an input state are

copied to the output, because properties of that part of the input can be directly transferred to
properties about the output. Stating and proving such equality relations between inputs and outputs,
however, can be tedious and time-consuming. This is particularly pronounced in the context of the
interactive verification of operating systems (OS). The state of an OS is indeed a large and complex
data-structure, equipped with dozens of invariants, but most operations of the OS only affect a

∗This work was developed while at Prove & Run.

Authors’ addresses: Oana F. Andreescu, Internet of Trust, Paris, France, oana.andreescu@internetoftrust.com; Thomas

Jensen, Inria, Rennes, France , Prove & Run, Paris, France, thomas.jensen@inria.fr; Stéphane Lescuyer, Prove & Run, Paris,

France, stephane.lescuyer@provenrun.com; Benoît Montagu, Prove & Run, Paris, France, benoit.montagu@provenrun.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART47

https://doi.org/10.1145/3290360

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3290360
https://doi.org/10.1145/3290360
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3290360&domain=pdf&date_stamp=2019-01-02

47:2 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

small part of this global state. The goal of this paper is to statically infer such equalities, in order to
assist the effort of interactive mechanised verification of large pieces of software.
We present a general-purpose static dataflow analysis [Nielson et al. 2010] for identifying

equalities between parts of the input and output states, for programs written in a language used in
the ProvenCore [Lescuyer 2015] development. ProvenCore is a project whose goal is the formal
verification of a micro-kernel, starting from a high-level functional specification and refining it
to an efficient implementation, that is eventually compiled to C. Starting from a set of atomic
equality relations between basic values, we construct the abstract domain of correlations that
describes relations between complex data-structures, including records, variants and arrays. For
each construct in the language, we define a transfer function over correlations. This provides
a compositional inter-procedural analysis for inferring input-output correlations in a modular
fashion. We have used ProvenCore as an industrial-size testbed for our analysis.
Our correlation analysis is designed with the aim of finding a compromise between precision,

scalability and trustworthiness. Our goal is to significantly alleviate the burden of interactive proof,
by the use of a provably correct analyser. Therefore, our correlations only track equalities to keep
the analyser simple. We leave more complex features such as arithmetic reasoning to the interaction
with the proof engineer.

Correlations were previously introduced in [Andreescu et al. 2016], also for the purpose of over-
approximating input-output relations. That previous work, however, included no formalisation, and
treated variants and arrays in an unsound way. The present work shares the same goal, but features
a domain of correlations that is original, radically different and proved sound. The present work
also distinguishes itself by its implementation, that has been thoroughly tested and experimentally
evaluated. Section 9 provides a detailed comparison with related approaches.

The contributions of this paper are the following:

• We introduce the general purpose abstract domain of correlations (ğ 2) as abstractions of
binary relations over values of algebraic data-types. To our knowledge, the domain of corre-
lations is the first relational domain that supports variants. We formally define the semantics
and algebraic operations (ğ 3) on correlations, and prove their soundness. Additionally, we
mechanised the soundness proofs in Coq [Inria 2017].

• We exploit correlations to define a static analysis that safely approximates the frames of
functions written in an intermediate representation language (ğ 4 and ğ 5) used in the code
and specification of ProvenCore. A salient fact of the analysis is that it computesÐby its
very natureÐsummary relations of functions (ğ 5) and hence is easily extended to a modular

inter-procedural analysis [Cousot and Cousot 2002]. We have proved the soundness of the
transfer functions that define the analysis. A worked example is given in ğ 6.

• We have added support for functional arrays (ğ 7), and proved this extension correct on paper.
• We have implemented the analysis and executed it on the ProvenCore development (ğ 8), a
sizeable example of approximately 58000 lines of code. We have exploited our correlation
analysis to automatically prove the preservation of invariants by the system calls of Proven-
Core. The experiment confirmed that the analysis has the desired precision, as we were able
to automatically prove 68% of all the preservation statements.

• Finally, we have thoroughly tested the implementation by randomly generating correlations
and values, so as to test the algebraic properties and the soundness of the operations on
correlations, and also to test the soundness of the transfer functions.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:3

type state = / / States

{ procs: procs; / / the table of processes

sched: sched } / / the scheduler s tate

type procs = / / Process table

array<int, option<proc>>

type proc = / / Process descr iptor

{ nr: int; / / process index

regs: regs; / / r eg i s t e r s

exe_name: string; / / name of executable

ipc_status: ipc_status } / / IPC status

type regs = / / Registers

{ r0: int; r1: int; r2: int; r3: int }

type ipc_status = / / Process IPC statuses

| Ready / / ready to run

| Sleeping / / sleeping process

| Sending (int dst) / / blocked sending

| Receiving (int src) / / blocked receiv ing

type option<A> = | Some (A x) | None

type bool = | T | F

type sched / / Scheduler s tate (impl i c i t)

Fig. 1. Type definitions for the state of a minimalist OS.

2 CORRELATIONS

2.1 Examples of Correlations

Consider as an example the type definitions of Fig. 1, that describe the state of some minimalist OS.
It comprises a table of processesÐan array of optional process descriptorsÐwhere unused slots are
set to None. Process descriptors are composed of an index, a bank of registers that are saved and
restored at context switches, an executable name, and an inter-process communication (IPC) status,
that describes whether the process is ready to run, or is sleeping, or is blocked sending a message
to another process, or is blocked waiting to receive a message from another process.
System calls can be modelled as functions that transform states into new ones. Sleep is one

system call. It makes the calling process sleep for a given amount of time and may only modify the
IPC status of the caller process and the scheduling state, so its modification of the state is very local.
Another more involved system call is Kill, that kills some process at index i. It removes the process
descriptor with index i from the process tableÐby setting its cell to NoneÐand removes i from
the scheduler stateÐbecause it will not be running anymore. It then clears any reference to i from
the whole state. In our simplified example, this amounts to replacing any IPC status of processes
of the form Receiving(i) or Sending(i) with Ready and then writing some error number in
their r0 register. Since this operation might make some blocked processes ready to run, they will
need to be registered as runnable processes in the scheduler state. Overall, the Kill system call
performs a fairly complex change of the state, but it keeps whole slices of the state unmodified.
For example, process indices (i.e., values of the nr field) are never modified by Kill, and registers
other than r0 are never modified either. Additionally, Kill never turns a non-sleeping process
into a sleeping one, it does not create new processes in the process table, and it only removes one
process from the table, namely the process at index i. All these properties might prove tedious to
formally verify manually. We will show that our correlation analysis indeed succeeds in inferring
them automatically, along with other properties (ğ 6 and ğ 7).
Our correlation analysis focuses on finding equality relations between input and output of a

function. Additionally, it is able to determine how the cases of variants may change, such as the
transition from Some to None for the process descriptor removed by the Kill example. To define
abstract domains of correlations we start with three basic relations: the equality relation Eqτ that
relates equal values of a given type τ , ⊤ that relates any value to any other one, and the empty
relation ⊥, that does not relate any values at all. We shall then extend correlations to inductive
data-typesÐstructures and variantsÐand to arrays.
Consider as an example a function that takes as input a value r of type regs and returns an

integer i , where r .r1 = i . Formally, the semantics of the function is described by the relation

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:4 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

Cregs =

r0 → {r0 → Eqint; r1 → ⊤; r2 → ⊤; r3 → Eqint}
R

r1 → {r0 → ⊤; r1 → Eqint; r2 → ⊤; r3 → ⊤ }R

r2 → {r0 → ⊤; r1 → ⊤; r2 → Eqint; r3 → ⊤ }R

r3 → {r0 → ⊤; r1 → ⊤; r2 → ⊤; r3 → Eqint}
R

L

Coption =

[
None → [None → ⊤ | Some → ⊥]R

Some → [None → ⊤ | Some → Eq{x:int}]
R

]L

Fig. 2. Some examples of correlations.

{({r0 = v0; r1 = v1; r2 = v2; r3 = v3} ,v ′) | v1 = v
′}. As a convention, we always consider relations

where inputs are on the left, and outputs on the right. This relation is denoted by the record correlation{
r0 → ⊤; r1 → Eqint; r2 → ⊤; r3 → ⊤

}L
. This notation reads as follows. The superscript LÐthe

side of the correlationÐspecifies that the record value is the left component in the relation. The
equality r .r1 = i is specified by the presence of Eqint that is associated to the r1 record field. The
other fields are unconstrained, as indicated by the presence of ⊤.

Similarly, the record correlation
{
r0 → ⊤; r1 → ⊤; r2 → Eqint; r3 → Eqint

}R
relates any integer

i with any value r of type regs such that i = r .r2 and i = r .r3, as required by Eqint that is bound
to the fields r2 and r3. The side R is used this time, to express that the record value is the right
component of the relation, i.e., the output.

To express relations between sub-structures, we can mix sides as in the correlation Cregs (Fig. 2).
This correlation relates two values r and r ′ of types regs such that r .ri = r ′.ri for every 0 ≤ i ≤ 3Ð
thanks to the presence of Eqint on the diagonal of the matrixÐand such that r .r0 = r ′.r3Ðas
required by Eqint in the top right corner. The typesetting as a matrix of this correlation is made on
purpose. We shall later see that there is indeed an analogy between correlations and matrices.

Finally, consider a correlation between two values of types option⟨int⟩. The variant correlation
Coption (Fig. 2) relatesNonewithNone, and Some(x)withNone, and Some(y)with Some(y). The pair
(None, Some(z)) is outside the correlation; this is stated by ⊥ in the upper right corner. Moreover,
when (Some(y1), Some(y2)) is in the correlation, it must necessarily be the case that y1 = y2,
as indicated by Eq{x:int} in the lower right corner. To summarise, the above correlation can be
interpreted as a transition, where options are either left unchanged, or are replaced with None.
In general, correlations may relate values of different types, and might be neither reflexive,

symmetric, nor transitive. In the rest of this section we define the types and values of our language
(ğ 2.2). We then give the syntax and semantics of (well-typed) correlations (ğ 2.3), and define a
pre-order on correlations that respects the standard order on relations based on set inclusion (ğ 2.4).

2.2 Types and Values

In the rest of the document, we assume the existence of countable sets of field names, constructors,
and value variables. Field names (f, g, etc.) are names bywhich record fields are accessed. Constructor
names (A, B, etc.) are names of head constructors of variant values. Value variables (x, y, z, i, j, etc.)
are names used in programs to refer to values. We also assume the existence of a special variable
⋆, named ghost variable, that is supposed to never occur in programs. The ghost variable will be
used at the intra-procedural level of the analysis (ğ 5) in order to deal with the evolution of variant
constructors. We write I to denote a finite set of integers.
Types and values are defined in Fig. 3. We assume pre-existing sets of basic types and basic

values, on which we build compound types and compound values. Record types are maps from
field names to types, whereas variant types are maps from constructor names to types.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:5

τ ::= · · · | {fi : τi
i ∈I

} | [Ai : τi
i ∈I

] (Types)

v ::= · · · | {fi = vi
i ∈I

} | A(v) (Values)

Record

∀i ∈ I , ⊢ vi : τi ∀i, j ∈ I , i , j ⇒ fi , fj

⊢ {fi = vi
i ∈I

} : {fi : τi
i ∈I

}

Variant

k ∈ I ⊢ v : τk ∀i, j ∈ I , i , j ⇒ Ai , Aj

⊢ Ak (v) : [Ai : τi
i ∈I

]

Fig. 3. Types, values and well-typed values. Typing rules for basic values are omitted.

In the example of Fig. 1, the option type does not directly fit in the grammar definition of
types, since the grammar expects that variant constructors have exactly one argument. In the
concrete syntax, constructors with no arguments are considered as expecting an empty record
as argument, and constructors with at least one argument are considered as expecting a record
of the arguments. Therefore, the abstract syntax for the concrete definition of the option type is
option⟨α⟩ = [None : {} | Some : {x : α }].
Values and their typing judgments are defined in Fig. 3. Basic values are extended with record

values and variant values. Record values are maps from field names to values, whereas variant
values are pairs of a constructor name and a value. Similarly, we assume typing rules for basic
values, which we extend with standard structural typing rules for records and variants.

2.3 Well-Typed Correlations and Their Matrix Representation

The purpose of our correlation analysis is to identify parts of input to a computation that appear
unaltered in the output. The analysis works by computing a relation between input and output
values, specifying which parts are equal. To this end, we shall define correlations to be a collection
of syntactic objects that denote relations on values.

Definition 2.1 (Correlations). Correlations are inductively defined as follows:

C ::= ⊤ | Eqτ | ⊥ | {fi → Ci
i ∈I

}S | [Ai → Ci
i ∈I

]S

There are three basic correlations: the full correlation ⊤ that relates any value to any other one,
the equality correlation Eqτ that relates equal values of a given type τ , and the empty relation ⊥,
that does not relate any value at all. On top of the basic correlations, we then build up compound
correlations over algebraic data-types.

We first explain the correlations for records. The notation {fi → Ci
i ∈I

}S is used to denote a
relation between values (vL,vR)where one of the values must be a record and where the other value
is related to the values of the fields of the record, as described by each Ci . It is the side superscript
(L or R) on the correlation that determines whether it is the first (vL) or the second (vR) of the
related values that is constrained to be a record. The sides are necessary in order to be able to
define correlations between structures of different types.

The correlations for variants can be understood similarly: we use the notation [Ai → Ci
i ∈I

]S to
denote a relation between a variant and another value, satisfying the condition that if the variant
value has constructor tag Ai then the tagged value is related to the other value as described by the
correlation Ci . Again, the side indicates which of the two values has to be a variant.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:6 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

Any

⊢ ⊤ : τ × τ ′

Eq

⊢ Eqτ : τ × τ

Impossible

⊢ ⊥ : τ × τ ′

RecordL

∀i ∈ I , ⊢ Ci : τi × τ ′

⊢ {fi → Ci
i ∈I

}L : {fi : τi
i ∈I

} × τ ′

RecordR

∀i ∈ I , ⊢ Ci : τ × τ ′i

⊢ {fi → Ci
i ∈I

}R : τ × {fi : τ ′i
i ∈I

}

VariantL

∀i ∈ I , ⊢ Ci : τi × τ ′

⊢ [Ai → Ci
i ∈I

]L : [Ai : τi
i ∈I

] × τ ′

VariantR

∀i ∈ I , ⊢ Ci : τ × τ ′i

⊢ [Ai → Ci
i ∈I

]R : τ × [Ai : τ ′i
i ∈I

]

Fig. 4. Well-typed correlations.

J⊤Kτ1×τ2 = {(v1,v2) | ⊢ v1 : τ1 and ⊢ v2 : τ2}

JEqτ Kτ×τ = {(v,v) | ⊢ v : τ }

J⊥Kτ1×τ2 = ∅
r
{fi → Ci

i ∈I
}L

z{fi :τ ′i
i∈I

}×τ

=

{
({fi = v ′

i

i ∈I
},v) | ∀i ∈ I , (v ′

i ,v) ∈ JCiKτ
′
i
×τ

∧ ⊢ v : τ
}

r
{fi → Ci

i ∈I
}R

zτ×{fi :τ ′i i∈I }
=

{
(v, {fi = v ′

i

i ∈I
}) | ⊢ v : τ ∧ ∀i ∈ I , (v,v ′

i) ∈ JCiKτ×τ
′
i

}

r
[Ai → Ci

i ∈I
]L

z[Ai :τ ′i
i∈I

]×τ

=

⋃
i ∈I

{
(Ai (v ′

i),v) | (v
′
i ,v) ∈ JCiKτ

′
i
×τ
}

r
[Ai → Ci

i ∈I
]R

zτ×[Ai :τ ′i i∈I]
=

⋃
i ∈I

{
(v,Ai (v ′

i)) | (v,v
′
i) ∈ JCiKτ×τ

′
i

}

Fig. 5. Semantics of correlations.

A correlation can be given a type τ1 × τ2 that describes the types of the values that it relates
(Fig. 4). The correlations ⊤ and ⊥ relate values of arbitrary types, whereas the equality correlation
Eq only relates values of the same types. The extension to records and variants is straightforward,
and uses the side exponent to determine which of the involved values should have a type that
matches the type imposed by the correlation.
Formally, the semantics of correlations is then defined as a type-indexed translation J Kτ1×τ2

from correlations to binary relations between values of types τ1 and τ2 (Fig. 5). The semantics is
defined so that the value inhabitants have the types that are specified by the indices given to the
translation function.

Lemma 2.2. If (v1,v2) ∈ JCKτ1×τ2 , then ⊢ v1 : τ1 and ⊢ v2 : τ2.

The semantic translation is a partial function. It is well-defined for well-typed correlations only.

Lemma 2.3. JCKτ1×τ2 is well-defined iff ⊢ C : τ1 × τ2.

The semantics collapses correlations of the empty record type to a two-point lattice, because of

the semantic equality JEq{}K{}×{} = J⊤K{}×{} = {({} , {})}. Similarly, the semantics for the empty

variant type collapses to a single point, because JEq[]K[]×[] = J⊤K[]×[] = J⊥K[]×[] = ∅.
It is instructive to write correlations using a matrix notation. In this matrix view of correlations,

the indices of the matrix are the paths for accessing the values being related and the entries are

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:7

p ::= ϵ | .fp | @Ap (Paths)

v ⇓ ϵ = v

{f1 = v1; . . . ; fn = vn} ⇓ .fkp = vk ⇓ p when 1 ≤ k ≤ n

A(v) ⇓ @Bp = v ⇓ p when A = B

τ ⇓ ϵ = τ

{f1 : τ1; . . . ; fn : τn} ⇓ .fkp = τk ⇓ p when 1 ≤ k ≤ n

[A1 : τ1 | . . . | An : τn] ⇓ @Akp = τk ⇓ p when 1 ≤ k ≤ n

Fig. 6. Paths (p), projections of values (v ⇓ p) and projections of types (τ ⇓ p).

C ⇓S ϵ = C

⊤ ⇓S p = ⊤

⊥ ⇓S p = ⊥

{f1 → C1; . . . ; fn → Cn}
S ⇓S

.fkp = Ck ⇓S p if 1≤k ≤n

{f1 → C1; . . . ; fn → Cn}
S′

⇓S p = {f1 → C1 ⇓
S p; . . . ; fn → Cn ⇓S p}S

′
if S , S′

[A1→ C1 | . . . |An→ Cn]
S ⇓S@Akp = Ck ⇓S p if 1≤k ≤n

[A1→ C1 | . . . |An→ Cn]
S′

⇓S p = [A1→ C1 ⇓
S p | . . . | An→ Cn ⇓S p]S

′
if S , S′

Eq{f1:τ1;...;fn :τn } ⇓
S
.fkp = {f1→⊤; . . . ; fk → Eqτk ⇓

Sp; . . . ; fn→⊤}S
−1
if 1≤k ≤n

Eq[A1:τ1 |... |An :τn] ⇓
S @Akp = [A1→⊥| . . . |Ak →Eqτk ⇓

Sp | . . . |An→⊥]S
−1
if 1≤k ≤n

Fig. 7. Projection of correlations (C ⇓S p).

basic correlations Eq, ⊤ or ⊥. For example, consider the following correlations, that relate values
of the same types {f : τ ; g : τ } :

C =

{
f →

{
f → ⊤; g → Eqτ

}R

g →
{
f → Eqτ ; g → ⊤

}R

}L

C′
=

{
f →

{
f → ⊤; g → Eqτ

}L

g →
{
f → Eqτ ; g → ⊤

}L

}R

C relates values v1 and v2 such that v1.f = v2.g and v1.g = v2.f. The order in which the L and R
sides are introduced does not matter, since the correlation C′ is semantically equivalent to C. One
can view those correlations as a matrix whose column indices are the paths of v1, and whose line
indices are the paths of v2, and whose cells contain ⊤ or Eqτ . We will see in ğ 3 that the matrix
analogy is strong. Comparison, join and meet can indeed be seen as pointwise operations on the
matrix, whereas composition is akin to matrix multiplicationÐwith some interesting differences.

2.4 A Pre-Order on Correlations

The definition of a static correlation analysis requires a pre-order on correlations which expresses
when one correlation is included in another (i.e., is more precise in identifying identical parts of
values). Our definition of a pre-order on correlations is based on the notion of projection which
allows us to restrict a correlation to a sub-part of a data-structure. This sub-part is identified by
an access path. Paths point deep inside values, types, or correlations. They are inductively defined
(Fig. 6) as the empty path ϵ , or a projection on a field followed by a path .fp, or a projection on a
variant constructor followed by a path @Ap. The definitions of projections of values and types on
a path are standard (Fig. 6).

We now define what it means to project a correlation on a path, on a given side (Fig. 7). It basically
amounts to selecting the correct line (or column) in the matrix interpretation of the correlation. To

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:8 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

make the definition more compact, we use the flip operation on sides, written S−1, that is defined
such that L−1 = R and R−1

= L. Projecting a correlation on the empty path is the identity, and
projecting from either ⊤ or ⊥ is also the identity. Projecting a record or variant correlation on
its side selects the corresponding correlation and projects it further on the rest of the path. To
project a record or variant correlation on its opposite side, it suffices to recursively project its
sub-parts on the same path. Projecting an equality correlation amounts to η-expanding the equality
correlation into a square matrix and then projecting using the other rules. The η-expansion of a
record equality is a matrix with equalities on the diagonal and ⊤ everywhere else. For a variant
equality, the η-expansion is a matrix with equalities on the diagonal and ⊥ everywhere else, since
the cases are pairwise incompatible.
Projection is a well-typed operation, which is formally stated by the next lemma.

Lemma 2.4. Assume that ⊢ C : τ1 × τ2.

(1) If τ1 ⇓ p = τ ′1 , then C ⇓L p = C′ is well-defined, and ⊢ C′ : τ ′1 × τ2.

(2) If τ2 ⇓ p = τ ′2 , then C ⇓R p = C′ is well-defined, and ⊢ C′ : τ1 × τ ′2 .

The next lemma relates the projection of a correlation to the projections of its inhabiting values.

Lemma 2.5. If (v1,v2) ∈ JCKτ1×τ2 , then (v1 ⇓ p1,v2) ∈
q
C ⇓L p1

y(τ1⇓p1)×τ2 and (v1,v2 ⇓ p2) ∈
q
C ⇓R p2

yτ1×(τ2⇓p2) when the projections are well-defined.

Using projections of correlations, we can define what we mean by comparing correlations.

Definition 2.6 (Pre-order on correlations).

Bot

⊥ ⊑ C

Top

C ⊑ ⊤

Eq

Eqτ ⊑ Eqτ

Record

∀i ∈ I , (C′ ⇓S
.fi) ⊑ Ci

C′ ⊑ {fi → Ci
i ∈I

}S

Variant

∀i ∈ I , (C′ ⇓S @Ai) ⊑ Ci

C′ ⊑ [Ai → Ci
i ∈I

]S

The pre-order ⊑ on correlations is defined so that ⊥ is the smallest element in the pre-order, and
⊤ is a maximal element. Compound correlations are compared pointwise, using projections. So, for
example, if we want to compare a correlation C′ with a record-type correlation we project C′ onto
each field of the record, and compare that projection with the correlation specified for that field.
Formally, this gives the inference rule Record. For variants, we reason as follows. A correlation
C′ is smaller than (i.e., included in) a variant correlation, if when projecting C′ onto any of the
possible constructors for that variant, a correlation is obtained that is smaller than the one specified
for that constructor. This gives the rule Variant.

The comparison relation is not anti-symmetric. For example, several correlations are equivalent
to ⊤: record and variant correlation whose components are all set to ⊤ are equivalent to ⊤.

The relation ⊑ is a pre-order. While reflexivity is easily obtained, the proof of transitivity is more
involved, because of the use of projections in the definition of ⊑.

Lemma 2.7 (Reflexivity). For every correlation C, we have C ⊑ C.

Lemma 2.8 (Transitivity). Assume that ⊢ C1 : τ × τ ′ and ⊢ C2 : τ × τ ′ and ⊢ C3 : τ × τ ′. If

C1 ⊑ C2 and C2 ⊑ C3, then C1 ⊑ C3.

The proof of transitivity involves the following key lemma, stating that projections are monotonic.

Lemma 2.9 (Monotony of projection). Assume that ⊢ C1 : τ × τ ′ and ⊢ C2 : τ × τ ′. Assume that

C1 ⇓
S p = C′

1 and C2 ⇓
S p = C′

2 . Assume that τ ⇓ p is defined when S = L, and that τ ′ ⇓ p is defined

when S = R. If C1 ⊑ C2, then C′
1 ⊑ C′

2 .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:9

The pre-order is expected to respect the inclusion order on relations, i.e., if one correlation
is ⊑-smaller than another, then the semantics of the first is a subset of the latter. The following
theorem states that this is indeed the case.

Lemma 2.10 (Semantic correctness of pre-order). If C1 ⊑ C2, then JC1Kτ×τ
′

⊆ JC2Kτ×τ
′

.

Notice that the converse implication does not hold. For example, the correlation {f → ⊤; g → ⊥}L

is semantically equal to ⊥, but is nonetheless strictly larger than ⊥ for ⊑. The fact that the fields of
record correlations are examined independently of each other is indeed a source of incompleteness.

On a different note, the pre-order does not include extensional reasoning on records or variants.
For example, the equality correlation on a record type is strictly smaller than its η-expansionÐ
i.e., its square matrix representation. We found that supporting extensionality in the pre-order
was the source of technical issues on the formal side and induced extra execution costs on the
implementation side. We leave the support of extensionality to future work.

3 OPERATIONS ON CORRELATIONS

3.1 Unions and Intersections of Correlations

In this section, we define binary operators for approximating the union and the intersection of
two correlations. They shall be used in the correlation analysis. We first define the union of two
correlations whichÐwith slight abuse of common conventionsÐwe call the join of two correlations.
The join, written ⊔, will be an upper bound with respect to ⊑. In the presence of arrays or recursive
types, the least upper bound may not exist. The join of correlations is specified in Fig. 8.

Joining two basic correlations is straightforward. Joining any correlation C with ⊥ yields C, and
joining a correlation with ⊤ yields ⊤. Joining two correlations where one of them is a record or
variant correlation proceeds pointwise, i.e., by joining each sub-component of the structure with
the projection of the other correlation onto that sub-component. For example, we have the rule

{
fi → Ci

i ∈I
}L

⊔ C′
=

{
fi → Ci ⊔

(
C′ ⇓L .fi

) i ∈I
}L

Here, the projection C′ ⇓L .fi łunfoldsž the correlation C′ to obtain the relation concerning the
sub-structure in the field fi .
Interestingly, the problematic case is the join with the equality correlation which will require

the introduction of another, more approximate version of the projection operator. The problem lies
with the termination of the join, because projecting the equality creates a larger correlation. To join
with Eqτ , we expand the other correlation and perform the join pointwise on the sub-components.
The termination is guaranteed when the sizes of types strictly decrease, but this criterion does
not work for recursive types. To ensure termination even in the presence of recursive types, we
define a non-expansive version of path projection, written ↓, which is an over-approximation of the
projections defined in Fig. 7.

Definition 3.1 (Non-expansive projection of correlations (excerpts)).

C ↓S ϵ = C ⊤ ↓S p = ⊤ ⊥ ↓S p = ⊥ Eqτ ↓S .fp = ⊤ Eqτ ↓S @Ap = ⊤

The remaining rules for records and for variants are the same as the ones for regular projection.

The non-expansive projection works like the ordinary projection, except on equality correlations.
Instead of unfolding the equality relation and projecting it to an equality relation on sub-structures,
the non-expansive version of projection just returns the trivial relation ⊤. The non-expansive
projection turns a correlation into one whose height is smaller or equal. The join is then guaranteed
to terminate because the heights of its arguments strictly decrease.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:10 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

⊤ ⊔ C = ⊤

⊥ ⊔ C = C

{fi → Ci
i ∈I

}S ⊔ C′
= {fi → Ci ⊔ (C′ ⇓S .fi)

i ∈I
}S

[Ai → Ci
i ∈I

]S ⊔ C′
= [Ai → Ci ⊔ (C′ ⇓S @Ai)

i ∈I
]S

Eqτ ⊔ Eqτ = Eqτ

Eq
{fi :τi

i∈I
}
⊔ {fi → Ci

i ∈I
}S =

{

fi → {fj → C′
i j

j ∈I
}S

−1

i ∈I
}S

where C′
i j =

{
Eqτi ⊔ (Ci ↓

S−1
.fi) when i = j

⊤ when i , j

Eq
[Ai :τi

i∈I
]
⊔ [Ai → Ci

i ∈I
]S =

[

Ai → [Aj → C′
i j

j ∈I
]S

−1

i ∈I
]S

where C′
i j =

{
Eqτi ⊔ (Ci ↓

S−1
@Ai) when i = j

Ci ⇓
S−1

@Aj when i , j

Fig. 8. Join of correlations. The rules for the remaining cases are obtained by symmetry.

The next lemma states that the non-expansive projection is an over-approximation of the
projection. It is used in the proof of Lemma 3.3.

Lemma 3.2. Let C ⇓S p = C1 and C ↓S p = C2. Then, C1 ⊑ C2.

Lemma 3.3 (Join is an upper bound). Assume that ⊢ C1 : τ ×τ
′ and ⊢ C2 : τ ×τ

′. Let C12 = C1⊔C2.

Then, C1 ⊑ C12 and C2 ⊑ C12.

Then, the fact that join is a safe approximation of the union of relations follows from Lemma 2.10.

Lemma 3.4 (Semantic correctness of join). JC1Kτ×τ
′

∪ JC2Kτ×τ
′

⊆ JC1 ⊔ C2Kτ×τ
′

.

Similar to the join operator, it is possible to define a łmeetž operator ⊓ that takes two correlations
and computes an over-approximation of the intersection. The meet is defined in a way similar to
how the join is defined: ⊤ is a neutral element and ⊥ is absorbant. To compute the meet with
Eqτ , we use the non-expansive projection in the recursive call, to ensure termination, once again.
Computing the meet of compound correlations amounts to recursively computing the meet in a
pointwise manner. We leave out the formal definition of meet and just state its soundness result.

Lemma 3.5 (Semantic correctness of meet). JC1Kτ×τ
′

∩ JC2Kτ×τ
′

⊆ JC1 ⊓ C2Kτ×τ
′

.

3.2 Sequential Composition of Correlations

An essential operation in the correlation analysis is the (sequential) composition of two correlations,
written C1 # C2 (Fig. 9). The intended semantics is that of relational composition. In particular,
the equality correlation Eqτ is the identity for #: composing any relation C with Eqτ either to the
right or to the left yields C. The empty correlation ⊥ is absorbant, since anything composed with
the empty relation yields the empty relation. The remaining rules are of two kinds: contextual
rules, and combination rules. Contextual rules are of the form C1 # C2, where C1 is left-sided, or
C2 is right-sided. In such cases, the composition is defined recursively, in a pointwise manner.
Combination rules are however of the form C1 # C2, where C1 is either right-sided or ⊤, and C2 is
either left-sided or ⊤. The two key rules are the combination rules for records and for variant. The

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:11

⊥ # C = ⊥

C # ⊥ = ⊥

Eqτ # C = C

C # Eqτ = C

⊤ # ⊤ = ⊤

{f1 → C1; . . . ; fn → Cn}
L # C′

= {f1 → C1 # C′; . . . ; fn → Cn # C′}L

C′ # {f1 → C1; . . . ; fn → Cn}
R

= {f1 → C′ # C1; . . . ; fn → C′ # Cn}R
{f1 → C1; . . . ; fn → Cn}

R # {f1 → C′
1 ; . . . ; fn → C′

n}
L
=

d
1≤i≤n Ci # C′

i

{f1 → C1; . . . ; fn → Cn}
R # ⊤ =

d
1≤i≤n Ci # ⊤

⊤ # {f1 → C1; . . . ; fn → Cn}
L

=

d
1≤i≤n ⊤ # Ci

[A1 → C1 | . . . |An → Cn]
L # C′

= [A1 → C1 # C′ | . . . |An → Cn # C′]L

C′ # [A1 → C1 | . . . |An → Cn]
R

= [A1 → C′ # C1 | . . . |An → C′ # Cn]R
[A1 → C1 | . . . |An → Cn]

R # [A1 → C′
1 | . . . |An → C′

n]
L
=

⊔
1≤i≤n Ci # C′

i

⊤ # [A1 → C1 | . . . |An → Cn]
L

=

⊔
1≤i≤n ⊤ # Ci

[A1 → C1 | . . . |An → Cn]
R # ⊤ =

⊔
1≤i≤n Ci # ⊤

Fig. 9. Composition of correlations.

combination of records returns the meet of the pointwise compositions, i.e.,
d

1≤i≤n Ci # C′
i . Indeed,

the composition of the two record relations relates two valuesv1 andv3 that are transitively related
by every projection on .fi of some value v2 by Ci on the left-hand side and by C′

i on the right-hand
side. Therefore, v1 and v3 are related by every Ci # C′

i for every 1 ≤ i ≤ n, thus they are related by
their meet (Lemma 3.5). The combination of variants returns the join of the pointwise compositions,
i.e.,

⊔
1≤i≤n Ci # C′

i . Indeed, the composition of the two variant relations relates two values v1 and
v3 that are transitively related by some projection on @Ai of some value v2 by Ci on the left-hand
side and by C′

i on the right-hand side. Therefore, v1 and v3 are related by some Ci # C′
i for some

i ∈ I , thus they are related by their join (Lemma 3.4).
Interestingly, composing with the trivial (total) relation ⊤ might not necessarily give back ⊤: for

example composing ⊥ with ⊤ gives ⊥. More generally, composing with ⊤ only forgets one side
of the correlation: the remaining pieces of information are the possible variant cases of the other

side. For instance, ⊤ #
[
A → ⊥ | B → [C → ⊤ | D → ⊥]R

]L
= (⊤ #⊥)⊔ (⊤ # [C → ⊤ | D → ⊥]R) =

[C → ⊤ | D → ⊥]R. Every information about the left-hand side values has disappeared. The fact
that right-hand side values cannot be in the case D remains nevertheless present in the result of
the composition.
Let us examine how composition works with homogeneous record correlations, i.e., record

correlations that relate values of the same types:

{
f → { f → C11; g → C12 }R

g → { f → C21; g → C22 }R

}L
#
{
f → { f → C′

11; g → C′
12 }R

g → { f → C′
21; g → C′

22 }R

}L

=

{
f → { f → (C11 # C′

11) ⊓ (C12 # C′
21); g → (C11 # C′

12) ⊓ (C12 # C′
22) }R

g → { f → (C21 # C′
11) ⊓ (C22 # C′

21); g → (C21 # C′
12) ⊓ (C22 # C′

22) }R

}L

We observe that the composition acts as a matrix multiplication, where the scalar multiplication is
the composition and the scalar addition is the meet operation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:12 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

inst ::= nop() (Nop)
| y :=τ x (Assignment)
| x1 =τ x2 (Equality test)
| y :=τ {f1 = x1 ; . . . ; fn = xn} (Record creation)
| y :=τ x.f (Record access)
| y :=τ {x with f = z} (Record update)
| y :=τ A(x) (Variant creation)
| [A1: y1 | . . . | An : yn] :=τ switch(x) (Variant destruction)
| [λ1: y11, . . . y

1
n1

| . . . | λm : ym
1
, . . . ymnm] :=Γ callp(x1, . . . ,xn) (Call)

Fig. 10. Instructions of the CFG representation.

Interestingly, composition behaves similarly, using join instead of meet, when it is called on
variant domains:

[
A → [A → C11 | B → C12]R

B → [A → C21 | B → C22]R

]L
#
[
A → [A → C′

11 | B → C′
12]R

B → [A → C′
21 | B → C′

22]R

]L

=

[
A → [A → (C11 # C′

11) ⊔ (C12 # C′
21) | B → (C11 # C′

12) ⊔ (C12 # C′
22)]R

B → [A → (C21 # C′
11) ⊔ (C22 # C′

21) | B → (C21 # C′
12) ⊔ (C22 # C′

22)]R

]L

We observe again that the composition acts as a matrix multiplication, where the scalar multiplica-
tion is the composition and the scalar addition is this time the join operation.
It is no surprise that the composition operator relates to matrix multiplication, and to paths

computations in graphs. Adjacency matrices and their products are indeed used in algorithms to
determine the existence of paths between vertices. Correlations can be understood as bipartite
graphs whose two parts are the input nodes and the output nodes, and whose edges are equality
relations. Then, the composition of correlations resembles the composition of bipartite graphs: the
(bi-)adjacency matrix of the composition of two bipartite graphs is the product of their adjacency
matrices. This simple analogy with graphs, however, does not account for the difference between
variant and record correlations. We defer the detailed study of the relationship between correlations
and graphs to future work.
The composition of correlations is sound, in the sense that it computes an over-approximation

of the composition of relations. We write R1;R2 to denote the composition of the relations R1 and
R2, defined as {(x ,y) | ∃z, (x , z) ∈ R1 ∧ (z,y) ∈ R2}.

Lemma 3.6 (Semantic correctness of composition). JC1Kτ×τ
′

; JC2Kτ
′×τ ′′

⊆ JC1 # C2Kτ×τ
′′

.

Wemechanised in Coq the proofs of the lemmas of ğ 2 and ğ 3, on a simpler version of correlations
that features binary pairs and sums instead of records and variants. Additionally, we proved in Coq
that all the functions we defined in those sections are total on well-typed inputs.

4 A LANGUAGE OF CONTROL FLOW GRAPHS

We develop a static correlation analysis for a control flow graph (CFG) representation of programs.
This representation is a stripped down version of a language used in the ProvenCore development,
that is close to a while language with immutable algebraic data-types, and no heap. There are no
pointers, references, or global variables. In other words, all the variables are local to functions,
i.e., the functions are pure. We found this combination of features convenient for both expressing
functional specifications, and supporting efficient code generation. We believe that the ideas
conveyed by our correlation abstract domain and the devised static analysis are general enough to
be useful for the analysis of other languages.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:13

CFG nodes contain atomic instructions (Fig 10). Edges are labelled to identify the outgoing edges
of a node (e.g., an equality test has two exit labels, true and false). Functions can have several exit
points, which are labelled too. Each instruction of a CFG is executed in an environment mapping
variables to values. An instruction transforms a value environment into a new one, possibly adding
or modifying bindings.

The no-operation nop() instruction transforms an environment into itself. The assignment y := x

instruction replaces the binding for y (or adds a new one if none is present) so that y now has the
value of x in the environment. If no binding for x is found in the environment, the semantics of the
instruction is undefined. The equality test x1 = x2 reads the values v1 and v2 of x1 and x2 in the
environment, does not modify the environment, and returns with the exit label true when v1 = v2,
or with the label false otherwise.

There are three instructions for creating, accessing and updating records, respectively. The record
creation instruction y := {f1 = x1 ; . . . ; fn = xn} reads the values vi for every xi and assigns to y

the record value {f1 = v1; . . . ; fn = vn} . The record access instruction y := x.f reads the value for x
in the environment, which must be a record value with a field f, and assigns to y the value that is
associated with the field f. The record update instruction y := {x with f = z} reads the value for x
in the environment, which must be a record value with a field f, and assigns to y the record value
for x where the field f has been updated to the value of z.

There are two instructions for creating and matching against variants. The instruction for variant
creation y := A(x) reads in the environment the value v for x and assigns to y the value A(v). The
instruction for variant destruction [A1: y1 | . . . | An : yn] := switch(x) reads the value of x in the
environmentÐwhich must be of the form Ai (v) with 1 ≤ i ≤ nÐand assigns the value v to yi and
returns with the label λAi .

Finally, the semantics of a function call is defined by building a fresh environment with the values
of the function’s inputs, and then evaluating the body of the function. This gives back an exit label
and an output environment, in which all the formal outputs must be defined. The environment of
the caller is then updated with the values that were computed for the outputs.

Fig. 11 depicts the CFGs of functions that we introduced in ğ 2, and which will be analysed in ğ 6.
Entry points are framed in a double rectangle node; exit points are denoted by double circle nodes
and are labelled with the output label. The output variables are underlined. The first graph of Fig. 11
defines the set_r0 function. It takes as input a process p and an integer v, and returns a process as
output. It has only one output label (true). The function sets the value of p.regs.r0 in process p
to the integer v. Since updates are functional, the execution of the program actually creates a new
process new_p such that new_p.regs.r0 equals v and such that p and new_p have equal values on
all other projection paths. The second graph of Fig. 11 defines the clear_proc_refs function. It
takes as input a process p and an integer i, and returns a process and a boolean as outputs. Again, it
has only one output label (true). The function removes from p any łreferencež to the process index
i. Such a reference can occur in its field p.ipc_status if it is in the case Sending and Receiving.
In such a case, the process is promoted to the Ready status, and p.regs.r0 is set to some error code
by a call to set_r0. Finally, unblocked is set to the boolean T. In all the other cases, the process is
not modified, and unblocked is set to the boolean F.

The concrete examples make use of variants whose cases may have zero or several argumentsÐas
was already the case for types of Fig. 1. For the sake of simplicity, we present instructions for
variants that support exactly one argument, following the same choice we made about types in ğ 2.
Adapting the theory to variants with zero or several arguments is straightforward.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:14 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

regs := {regs with r0 = v}

regs := p.regs

true

new_p := {p with regs = regs}

true

ipc_status := new_p.ipc_status

new_p := p

dst = i

[Ready:|Sleeping:|Receiving:src|Sending:dst] := switch (ipc_status)

ready := Ready

src = i

[true:new_p] := set_r0(new_p, #ABORTED_IPC)

new_p := {new_p with ipc_status = ready}

unblocked := F

unblocked := T

Sending

false

Ready Sleeping

false

Receiving

Fig. 11. Left: the set_r0 function, with signature (proc p, int v) -> [true: proc new_p]. Right: the
clear_proc_refs function, with signature (proc p, int i) -> [true: proc new_p, bool unblocked].
Edges with no labels are implicitly labelled with true.

5 CORRELATION ANALYSIS

The intra-procedural correlation analysis is a forward dataflow analysis that computes for each
program point correlations between the inputs to the procedure and the values at that program
point, by the means of the iterative computation of a post-fixpoint [Nielson et al. 2010]. The abstract
domain for program points consists of correlation maps, i.e., maps from pairs of program variables
to correlations. More formally, there are three kinds of intra-procedural abstract values:

• the Unreachable value denotes program points that could not be reached by the analysis;
• the Undef (undefined) value, denotes program points that result from undefined behaviour,
such as an instruction that reads uninitialised variables;

• reachable values, are correlation maps between input variables and variables defined in the
state of the current program point.

Intra-procedural abstract values are ranged over by K . The existence of a binding (x, y) 7→ C

between a variable x in the input state and a variable y in the current state denotes that x is defined
in the input state and y is defined in the current state and their values are related by the semantics
of C. We define a pre-order, written ⊑, on correlation maps such that Unreachable is the least
element, Undef is the maximal element, and such that a reachable correlation map K1 is smaller
than K2 when for every binding for the variables (x, y) in K2, there is also a binding in K1, and
K1(x, y) ⊑ K2(x, y). The join is the intersection of maps, using correlation join on the intersection
of domains. The meet is the union of maps, using correlation meet on the intersection of domains.

The transfer functions of instructions are label specific. For an exit label λ, they have the particular
formK 7→ K #Tλ , where the transformation Tλ is a syntactic description of the correlations induced
by the instruction when it exits with the label λ, and where # is a composition operation. Thus,
Tλ can be understood as a transformation of correlations. It describes how a finite number of
correlations are modified, and also specifies that the remaining correlationsÐof co-finite quantityÐ
are unchanged. For example, the summary for the instruction y := x should presumably change
correlations that involve the variables x or y, but must surely not change any other correlation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:15

K # T = Unreachable if K = Unreachable or T = (I,Unreachable,O)

K # T = Undef if K = Undef or T = (I,Undef,O)

K1 # (I,K2,O) =

⋃
{(x,z) |∃y0,(x,y0)∈domK1∧(y0,z)∈domK2 }{

(x, z) 7→
d

{y |(x,y)∈domK1∧(y,z)∈domK2 }
K1(x, y) # K2(y, z)

}

⊓
⋃

{(x,y)∈domK1 |(y,y)<domK2∧y∈O} {(x, y) 7→ K1(x, y) # ⊤}
⊓
⋃

{(x,y)∈domK1 |(y,y)<domK2∧y<O} {(x, y) 7→ K1(x, y)}

⊓
⋃

y∈O {(⋆, y) 7→ ⊤}

when ∀y ∈ I ∪ {⋆} ,∃x, (x, y) ∈ domK1

Undef otherwise

when K1 < {Undef,Unreachable} and K2 < {Undef,Unreachable}

Fig. 12. Intra-procedural composition.

This co-finite aspect of transformations indicates that an effect is localised on a finite number of
correlations. This aspect is specific to transformations, and is absent from intra-procedural values.

TransformationsT consist of three parts: a set of input variablesI that are read by the instruction,
a correlation mapK that denotes how correlations are transformed, and a set of output variables O
that are written by the instruction. Variables in the complement of O are assured not to be modified.
The composition of an intra-procedural value and a transformation is defined in Fig. 12. If one

of the two operands is Unreachable, so is the result. If one of the two operands is Undef, so is
the result. The remaining case is the crux of the definition. It builds a correlation map from the
intra-procedural correlation map K1 and the transformation correlation map K2, and distinguishes
two cases. Let us start with the second case: if some input of the transformation may not be defined
by K1, then the result is Undef. Otherwise, all the inputs are defined, and we are in the first case,
where the result is defined as the meet of four correlation maps. We review them one by one.

The first map isÐagainÐreminiscent of a matrix product. It builds mappings between variables
of the input state and the output state by exploiting the correlations of the variables y in the middle
state such that K1(x, y) and K2(y, z) are defined, taking their composition K1(x, y) # K2(y, z), and
then iterating over all such ys and taking their meet. The use of meet is correct, since we know
that all the ys are defined in the middle state.
The second map keeps information about the variant cases of the inputs, while forgetting

information about the output variables, if nothing was specified in K2. These bindings allows the
analysis to track more changes of variant cases. The rule behaves as if K2 contained an implicit
binding (y, y) 7→ ⊤ for any y in the set of outputs O. Remember that in general, composing with ⊤

returns a correlation that is not ⊤ (cf. ğ 3).
The third map is the one that requires that non-output variables remain unchanged unless

specified otherwise. The rule behaves as if, for any variable y < O, there were an implicit binding
(y, y) 7→ Eqτ , where τ is the type of y. Here, we exploit (cf. ğ 3) that C # Eqτ = C.
Finally, the fourth map ensures that for every output variable y, there is a mapping with y on

the right-hand side. These mappings record that output variables have been defined. They are
important to check that the input variables of the next instruction to execute are all defined, and
avoid Undef of being returned later. To this end, we introduce the ghost variable⋆ on the left-hand
side of the binding, but any other defined variable would also work.
We can now define the transfer functions for instructions. Recall that they are all of the form

K 7→ K # Tλ . Hence, we only give their transformations Tλ in Fig. 13.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:16 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

Instruction Label Transformations (inputs, correlations, outputs)

nop() true (∅, {}, ∅)

y :=τ x true
(
{x} , {(x, y) 7→ Eqτ }, {y}

)

x1 =τ x2 true
(
{x1, x2} , {(x1, x2) 7→ Eqτ } ⊓ {(x2, x1) 7→ Eqτ }, ∅

)

false ({x1, x2} , {}, ∅)

y :=τ {f1 = x1 ; . . . ; fn = xn}

where τ = {f1 : τ1; . . . ; fn : τn}

true
(
{x1, . . . , xn} ,

d
i ∈{1, ...,n }{(xi , y) 7→ Ci }, {y}

)
where

Ci = {f1 → ⊤; . . . ; fi → Eqτi ; . . . ; fn → ⊤}R

y :=τ x.fk where k ∈ {1, . . . ,n}

and τ = {f1 : τ1; . . . ; fn : τn}

true ({x} , {(x, y) 7→ C}, {y})where
C = {f1 → ⊤; . . . ; fk → Eqτk ; . . . ; fn → ⊤}L

y :=τ {x with fk = z}

where k ∈ {1, . . . ,n}

and τ = {f1 : τ1; . . . ; fn : τn}

true ({x, z} , {(z, y) 7→ C} ⊓ {(x, y) 7→ C′}, {y}) where
C = {fi → ⊤; . . . ; fk → Eqτk ; . . . ; fn → ⊤}R

and C′
=

{

fi → {fj → C′′
i j

j ∈{1, ...,n }
}R

i ∈{1, ...,n }
}L

and C′′
i j = if i = j and i , k then Eqτi else ⊤

y :=τ Ak (x) where k ∈ {1, . . . ,n}

and τ = [A1 : τ1 | . . . | An : τn]

true ({x} , {(x, y) 7→ C} ⊓ {(⋆, y) 7→ C′}, {y}) where
C = [A1 → ⊥ | . . . | Ak → Eqτk | . . . | An → ⊥]R

and C′
= [A1 → ⊥ | . . . | Ak → ⊤ | . . . | An → ⊥]R

[A1: y1 |. . .| An : yn] :=τ switch(x)

where τ = [A1 : τ1 | . . . | An : τn]

λAk ({x} , {(x, yk) 7→ C} ⊓ {(x,⋆) 7→ C′}, {yk }) where
C = [A1 → ⊥ | . . . | Ak → Eqτk | . . . | An → ⊥]L

and C′
= [A1 → ⊥ | . . . | Ak → ⊤ | . . . | An → ⊥]L

Function call By instantiation of summaries.

Fig. 13. Transformations for instructions.

Nop. The transformation for nop() specifies no change at all. By unfolding the definition of
composition, one can check that the induced transfer function for nop() is the identityÐ as expected.

Assignment. The transformation for y := x defines x as input, y as output, and specifies that the
value of x in the input state is equal to the value of y in the output state.

Equality Test. Since the instruction x1 = x2 has two output labelsÐtrue and falseÐwe need to
define two transformations. Both define that x1 and x2 are the inputs and that there is no output.
In the true case, the transformation specifies that the value of x1 read in the input state must equal
the value of x2 read in the output state, and that the same must also be true when swapping x1 and
x2. In the false case, the transformation does not specify anything.

Record Creation. The transformation for y := {f1 = x1 ; . . . ; fn = xn} specifies that the inputs
are the variables xi and the only output is y. The correlation map uses R-sided record correlations
to require that the values xi in the input state equal the value of y.fi in the output state.

Record Access. The transformation for y := x.fk specifies x as the only input variable, and y as
the only output. The correlation map uses L-sided record correlations to require that the value of
x.fk in the input equals the value of y in the output.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:17

Record Update. The transformation for y := {x with fk = z} defines x and z as the input variables,
and y as the only output. The correlation map specifies two things. First, it uses an R-sided record
correlation to enforce that the value of z read in the input state equals the value of y.fk in the
output state. Second, it uses a record matrixÐencoded with L- and R-sided record correlationsÐto
specify that the values of x.fi in the input state equal the values of y.fi when i , k . The correlation
matrix is a square matrix that has Eq on the diagonal except at łindexž (fk , fk) which has ⊤ instead,
and contains ⊤ again everywhere outside the diagonal.

Variant Creation. The transformation for y := Ak (x) defines x as the only input and y as the only
output, and specifies two things. First, it uses an R-sided variant correlation to ensure that the value
of x in the input state equals the value of y@Ak , and that Ak is the only possible case for y. The
impossible cases are specified using the empty correlation ⊥. Second, the correlation map ensures
one more time that the value of y in the output state must be in the case Ak , by relating ⋆with y.
We will see later on that the use of ⋆ enables tracking constructor changesÐwhen combined with
the correlation of variant destructionÐby using ⋆ as an intermediary.

Variant Destruction. The instruction [A1: y1 | . . . | An : yn] := switch(x) has as many output
labels as there are constructors in the variant. We focus on one output label Ak . The transformation
defines x as the only input and yk as the only output, and specifies two correlations. First, it uses a
L-sided variant correlation to ensure that the value of x@Ak in the input state equals the value of
yk in the output state and that x must necessarily be in the case Ak . Second, the correlation map
asserts again that x must be in the case Ak by relating x with ⋆.

Inter-Procedural Analysis. Because correlations relate input to output, the extension from an intra-
procedural to an inter-procedural correlation analysis is rather simple. The łsummary correlationž
for a function is obtained from the correlation computed by the intra-procedural analysis for the exit
points of the function. The summary correlation is a mapping from exit labels to transformations
λ 7→ Tλ , where transformations Tλ are obtained from the intra-procedural correlation Kλ that was
computed at the exit node λ and from which we remove bindings that involve local variables. Thus,
the correlations that remain in summaries are between input variables of the function (or the ghost
variable) and the output variables of the function (or the ghost variable).

Given the summary correlations, we can now define how to analyse function calls. The trans-
formation for a call to the function f for the output label λ, amounts to instantiation: take in the
summary correlation for f the transformation for the label λ, rename the formal parameters of
each unary map into the actual parameters, and combine them using ⊓.

Soundness. The transformations defined in Table 13 are correct in the following sense:

Theorem 5.1 (Soundness). Let inst be an instruction in which the variable ⋆ does not occur. Let

(I,K,O) be the transformation for inst on output label λ. If executing inst on a state s produces a

state s ′ and the output label λ, then:

• for any x of type τx and any y of type τy, (s(x), s
′(y)) ∈ JK(x, y)Kτx×τy , and

• for any z < O, s(z) = s ′(z).

The soundness theorem makes explicit the fact that only the outputs of an instructionÐi.e., the
variables in OÐmight be modified by its execution. The relations between inputs and outputs
recorded in the correlation map K specify how the outputs are modified. We proved the soundness
theorem on paper. The proof is long but not difficult.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:18 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

6 EXAMPLES

Now that we have defined the main ingredients of the correlation analysis, we can return to our
examples from Fig. 11. In this section, for the purpose of making the reading of large correlations
easier, we adopt the following convention: we do not print the mappings of record fields to ⊤ in
record correlations, and we do not print mappings to ⊥ in variant correlations. Moreover, we do
not print the type subscript of Eq correlations either.

To run the analysis on the set_r0 function, we initialise the entry point with the intra-procedural
value {(p, p) 7→ Eq; (v, v) 7→ Eq; (⋆,⋆) 7→ ⊤}, that relates input variables with themselves. After
the projection p.regs, we have gained the new correlation (p, regs) 7→ {regs → Eq}L. Then,
after the update of regs.r0 with v, we gain the two correlations (v, regs) 7→ {r0 → Eq}R and
(p, regs) 7→ {regs → Cregs}

L where Cregs = {r1 → {r1 → Eq}R; r2 → {r2 → Eq}R; r3 → {r3 →

Eq}R}L. At this point of the program, the analysis has inferred that p.regs and regs only differ on
their r0 field, and that v equals regs.r0. Then, the code updates p.regs with regs, and we get
two correlations

(p, new_p) 7→

nr → {nr → Eq}R

regs → {regs → Cregs}
R

exe_name → {exe_name → Eq}R

ipc_status → {ipc_status → Eq}R

L

(v, new_p) 7→
{
regs → {r0 → Eq}R

}R

They constitute the final result of the analysis for set_r0. In the end, the analysis has inferred
that the input p and the result new_p have the same values everywhere but on the path .regs.r0,
and that new_p.regs.r0 has been set to the value of the input variable v. The analysis therefore
inferred for set_r0 a sound and complete relation between input and output.
Our next example clean_proc_refs illustrates the tracking of constructor casesÐenabled by

variant correlations. The analysis is again initialised with {(p, p) 7→ Eq; (i, i) 7→ Eq; (⋆,⋆) 7→ ⊤}

on the entry node. The entry node simply forwards the equality between p and new_p. Then, after
the projection new_p.ipc_status, the analysis infers (p, ipc_status) 7→ {ipc_status → Eq}L.
Then, a case analysis is performed on ipc_status. In the case of the Ready outgoing edge, the new
inferred correlation is (p,⋆) 7→ {ipc_status → [Ready → ⊤]L}L, denoting that p.ipc_status
is in the case Ready. Similar correlations are inferred on the other branches. All these branches
are eventually joined at the entrance of the instruction unblocked := F. At this join point, we
get (p,⋆) 7→ {ipc_status → [Ready → ⊤ | Sleeping → ⊤ | Receiving → ⊤ | Sending → ⊤]L}L

which provides no useful information on the variant case of p.ipc_status. This correlation is
however exploited by the transfer function for unblocked := F, which gives back

(p, unblocked) 7→

{

ipc_status →

[
Ready → [F → ⊤]R | Sleeping → [F → ⊤]R

Receiving → [F → ⊤]R | Sending → [F → ⊤]R

]L}L

That correlation was obtained by using ⋆ as a middle variable in the composition. It reads:
łwhichever is the case of p.ipc_status, the value of unblocked is necessarily in the case Fž.

Some more precise information about the cases of p.ipc_status is kept in the Receiving

and Sending branches of the case analysis, so that at the join point ready := Ready, we get
(p,⋆) 7→ {ipc_status → [Sending → ⊤ | Receiving → ⊤]L}L. Then, after the definition of
ready, the correlations (p, ready) 7→ {ipc_status → [Sending → [Ready → ⊤]R | Receiving →

[Ready → ⊤]R]L}L and (p,⋆) 7→ {ipc_status → [Sending → ⊤ | Receiving → ⊤]L}L are obtained,
meaning that p.ipc_status is either Sending or Receiving, and that ready is set to Ready.
The update of new_p.ipc_status will interestingly exploit two correlations: first, the compo-

sition of the former correlation for the pair (p, new_p) with the transfer correlation for the pair

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:19

(new_p, new_p), and second, the composition of the former correlation of the pair (p, ready) and
the transfer correlation of the pair (ready, new_p). The first composition is a correlation saying
that p and new_p may only differ on the path .ipc_status, whereas the second composition says
that between p.ipc_status and new_p.ipc_status, the only possible evolutions of constructors
are from Receiving to Ready, or from Sending to Ready. By taking their meet, we obtain

(p, new_p) 7→

nr → {nr → Eq}R; regs → {regs → Eq}R; exe_name → {exe_name → Eq}R

ipc_status →

{

ipc_status →

[
Receiving → [Ready → ⊤]R

Sending → [Ready → ⊤]R

]L}R

L

which is then transformed by the call to set_r0 into

(p, new_p) 7→

nr → {nr → Eq}R; regs → {regs → Cregs}
R; exe_name → {exe_name → Eq}R

ipc_status →

{

ipc_status →

[
Receiving → [Ready → ⊤]R

Sending → [Ready → ⊤]R

]L}R

L

The difference with the previous correlation is that the value at the path .regs.r0 might have
changed. The next instruction on this branch is unblocked := T. The analysis infers

(p, unblocked) 7→
{
ipc_status →

[
Receiving → [T → ⊤]R | Sending → [T → ⊤]R

]L}L

by exploiting one more time correlations that involve the ghost variable. Finally, at the exit point
we join the correlations that were computed in the two incoming branches and get

(p, new_p) 7→ Ccleared (p, unblocked) 7→

ipc_status →

Ready → [F → ⊤]R

Sleeping → [F → ⊤]R

Receiving → [F → ⊤ | T → ⊤]R

Sending → [F → ⊤ | T → ⊤]R

L

L

where

Ccleared =

nr → {nr → Eq}R; regs → {regs → Cregs}
R; exe_name → {exe_name → Eq}R

ipc_status →

ipc_status →

Ready →
[
Ready → Eq

]R

Sleeping →
[
Sleeping → Eq

]R

Receiving →
[
Ready → ⊤ | Receiving → Eq

]R

Sending →
[
Ready → ⊤ | Sending → Eq

]R

L

R

L

In the end, the analysis inferred the following pieces of information for clean_proc_refs:

(1) only the paths .regs.r0 and .ipc_status might have changed between p and new_p;
(2) between these two values, the field ipc_status was not modified if it was initially in the

cases Ready or Sleeping;
(3) the field ipc_status was either not modified, or was promoted to Ready if it was initially in

the cases Receiving of Sending;
(4) if the value p.ipc_status was either in the Ready or in the Sleeping case, then unblocked

is necessarily in the case F.

The correlation for the pair (p, unblocked) is ⊑-equivalent to the correlation (p, unblocked) 7→

[T → {ipc_status → [Receiving → ⊤ | Sending → ⊤]L}L | F → ⊤]R which reads: łif unblocked
was eventually set to T, then p.ipc_status was initially Receiving or Sendingž.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:20 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

7 EXTENDING THE ANALYSIS TO FUNCTIONAL ARRAYS

The analysis has been extended to work with functional arrays. We have proved on paper the
soundness of the whole analysis, including the support for arrays. The proof covers the order
theoretic properties, the semantic soundness of the operations on correlations, and the soundness
of all the transfer functions. Due to space limitations, we only give the main ideas behind the array
extension. The proposed solution is not straightforward but it is necessary in order to maintain an
acceptable precision for the analysis of our OS case study. Our solution for arrays is on purpose not
the most expressive: we restricted the expressiveness to keep the analysis theoretically simple and
computationally reasonable.

Types and Values. Types are extended with array types ⟨τ1 → τ2⟩ whose indices have type τ1
and cells have type τ2. Values are extended with array valuesÐi.e., finite maps from values to
valuesÐand the syntax of paths is extended with an array access path [i]p. The projection of values
on paths now takes an environment as extra parameter, in order to evaluate the indices in paths.

Instructions. We add two new instructions to the language.

inst ::= . . .

| y :=τ x[z] (Array access)
| y :=τ [x with z = x′] (Array update)

The array access instruction y := x[i] reads the value v1 of xÐwhich must be an arrayÐand the
value v2 of iÐwhich must be a value whose type is the type of the indices of v1Ðand then defines y
to be the value extracted fromv1 at the indexv2. If there is no such value, then the instruction raises
the label false. The array update instruction y := [x with i = x′] reads the value v1 of xÐwhich
must be an arrayÐand the value v2 of iÐwhich must be a value whose type is the type of indices
of v1Ðand also reads the value v3 of x

′. Then, the value for y is defined to be the array v1 in which
the value at index v2 has been replaced with v3. If v2 is an invalid index, then the instruction raises
the label false.

Correlations. We extend the syntax of correlations with three new cases.

C ::= . . . | ⟨i → C⟩S | ⟨i ⇒ C; ∗ ⇒ C⟩ | ⟨∗ ⇒ C⟩

The array access ⟨i → C⟩S specifies that the value on the S side must be an array value, and that
the value of the variable i must be a valid index in that array, and the value of the array at this
index must be related by C to the value on the other side. This correlation is typically used with
the L side in the transformation for the array access instruction for the true label, and with the R
side in the transformation for the array update instruction for the true label.

The pointwise correlation ⟨i ⇒ Cexn; ∗ ⇒ Cdef⟩ denotes a relation between two arrays with the

same domains, such that the two arrays are pointwise related by the default correlation Cdef , except
at the index that is equal to the value of iÐif it ever is a valid indexÐwhere the two cells must be
related by the exceptional correlation Cexn. This correlation is used in the transformation for the
array update instruction to specify that the value at only one index might have changed.
Finally, the correlation ⟨∗ ⇒ C⟩ is an over-approximation of the previous one, that appears

during joins. It again relates two arrays with the same domains, that are pointwise related by C.
It is a design choice to track correlations about at most one index in arrays. Though it restricts

the expressiveness and the precision of the analysis, it has the advantage of keeping the theory
tractable. Supporting several array indices would indeed require to determine precisely, at every
program point, which indices have identical or distinct values. Moreover, handling several indices
in the definition of ⊑ would require that we quantify over all the equality classes of variables that

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:21

Instruction Label Transformations (inputs, correlations, outputs)

y :=⟨τ→τ ′⟩ x[i] true ({x, i} , {(x, y) 7→ ⟨i → Eqτ ′⟩
L}, {y})

false ({x, i} , {} , ∅)

y :=⟨τ→τ ′⟩ [x with i = x′] true ({x, i, x′} , {(x, y) 7→ C} ⊓ {(x′, y) 7→ C′} , {y})

where C = ⟨i ⇒ ⊤; ∗ ⇒ Eqτ ′⟩ and C′
= ⟨i → Eqτ ′⟩

R

false ({x, i, x′} , {} , ∅)

Fig. 14. Transformations for array instructions.

occur in correlations. This could be prohibitively costly. Our experimental results show that we
obtain satisfactory precision in spite of the limitation to one index per array (ğ 8).

Transformations. Array-related transformations are shown in Fig. 14. As expected, the transfor-
mation for array access y := x[i] specifies that x[i] = y, while the transformation for the array
update y := [x with i = x′] specifies that x′ = y[i] and that x and y may only differ at index i.

Pre-Order. We give only two representative rules for arrays in the pre-order definition. Paths
are extended with array accesses [i]p and the definitions for projections are extended as well. The
Array rule follows the same projection-based style that was already used in the definition of ⊑, but
has a new premise C′ ⊢S [i] valid that checks that [i] is a valid access path for every value on the S
side of C′. The judgement C′ ⊢S [i] valid is defined by looking at the presence of a sub-correlation
⟨i → C′′⟩S in C′. This check is mandatory to ensure that the pre-order is sound with respect
to the semantics of correlations. For example, neither ⊤ nor Eq are more precise than ⟨i → ⊤⟩L,
because none of them ensures that array values on their left-hand sides enjoy [i] as a valid access
path. A second representative rule is the rule that forgets an index in a pointwise array correlation.
It says that an array correlation with default C′

def and exception C′
exn is more precise than an array

correlation with default Cdef when both the default and the exceptional correlations are more
precise than Cdef . Interestingly, Eq⟨τ→τ ′⟩ is strictly more precise than ⟨∗ ⇒ Eqτ ′⟩Ðmeaning that
the pre-order does not include extensionality on arrays. Note also that ⊤ is not more precise than
⟨∗ ⇒ ⊤⟩ , because ⊤ does not ensure that the related array values have the same domains.

Array

C′ ⊢S [i] valid C′ ⇓S [i] ⊑ C

C′ ⊑ ⟨i → C⟩S

ArrayDiagForget

C′
exn ⊑ Cdef C′

def ⊑ Cdef

⟨i ⇒ C′
exn; ∗ ⇒ C′

def⟩ ⊑ ⟨∗ ⇒ Cdef⟩

Join. We present a few selected rules for the extension of join with arrays. The join of two single-

sided array correlations ⟨i → C⟩S and ⟨j → C′⟩S , for example, is defined as ⟨i → C ⊔ C′⟩S when
the two variables i and j are equal. This is correct, because both sides of the join ensure that the
access at index i is valid. When the variables are different, however, the join is defined to be ⊤, and
there is no better correlation. In particular, the result cannot be an array correlation, because it
would require the array access at index i (or j) to be valid in both sides of the join.

⟨i → C⟩S ⊔ ⟨j → C′⟩S = if i = j then ⟨i → C ⊔ C′⟩S else ⊤

⟨i → C⟩S ⊔ ⟨∗ ⇒ C′⟩ = ⊤

⟨i ⇒ Cexn; ∗ ⇒ Cdef⟩

⊔⟨j ⇒ C′
exn; ∗ ⇒ C′

def⟩
=

{
⟨i ⇒ Cexn ⊔ C′

exn; ∗ ⇒ Cdef ⊔ C′
def⟩ if i = j

⟨∗ ⇒ (Cexn ⊔ Cdef) ⊔ (C′
exn ⊔ C′

def)⟩ otherwise

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:22 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

The join of a single-sided and a pointwise array correlation also results in ⊤. Indeed, it cannot be a
single-sided array correlation, because only one side ensures the validity of the array access, and
it cannot be a pointwise correlation, since only one side ensures that the related arrays have the
same domains. The join of two pointwise correlations with exceptions is recursively defined on
each component when the two exceptions deal with the same variable. Otherwise, both pointwise
correlations are over-approximated to forget their exceptional correlation, before being joined.

Composition. The rule for composing an R-sided array correlation with an L-sided one is reminis-
cent of the composition of record correlations when the two indices are the same. For this rule to be
sound, it is crucial that the index be a valid access in the arrays, which is precisely why we enforced
the validity of indices in single-sided correlations. When the indices are different, composition with
⊤ is used: C # ⊤ exploits the correlation for the index i, whereas ⊤ # C′ exploits the correlation of
j. Finally, composing two pointwise correlations is the pointwise correlation of their composition.

⟨i → C⟩R # ⟨j → C′⟩L = if i = j then C # C′ else (C # ⊤) ⊓ (⊤ # C′)

⟨∗ ⇒ C⟩ # ⟨∗ ⇒ C′⟩ = ⟨∗ ⇒ C # C′⟩

Transfer Functions. With the array extension, the transfer functions become of the form K 7→

eraseO (K # T) where O is the set of outputs in T , and the erasure operator is responsible for
removing a set of indices from all the array correlations of an intra-correlation. The erasure is
necessary for the analysis to remain sound. The reason is that the values of indices might have
been modified, but the indices in array correlations could refer to the values before the update
of indices. The erasure operator forgets the pieces of information about array indices that were
possibly modified, since they might be out of sync. Erasure is defined on array correlations as
follows, and is naturally extended to other correlations.

eraseV (⟨i ⇒ Cexn; ∗ ⇒ Cdef⟩) =

{
⟨i ⇒ eraseV (Cexn) ; ∗ ⇒ eraseV (Cdef)⟩ when i < V

⟨∗ ⇒ eraseV (Cexn) ⊔ eraseV (Cdef)⟩ when i ∈ V

eraseV
(
⟨i → C⟩S

)
=

⟨i → eraseV (C)⟩S when i < V

⊤ # eraseV (C) when i ∈ V and S = L

eraseV (C) # ⊤ when i ∈ V and S = R

Erasure removes offending variables from pointwise array domains by joining the exceptional
and default domains, thereby creating an exceptionless pointwise correlation. For array access
correlations, erasure removes the offending variables by unboxing the inner correlation, and
composing with ⊤ so as to keep the operation well-typed.

Summaries. Turning intra-procedural correlations into transfer summaries now requires per-
forming erasure too, in order to only keep occurrences of input variables in the correlations. For
this operation to be sound, the input variables must never have been written by any instruction.
This amounts to an easy syntactic check.

Examples, Continued. Using the examples from ğ 6 we can finally complete the code of kill_proc,
that we introduced in ğ 2.1. First, Fig. 15 defines some basic building blocks: the function get_procÐ
that extracts from the process table the process descriptor at a given index if there is any, or raises
absent otherwiseÐand the function rm_procÐthat puts None at some index of the process tableÐ
and also the function set_procÐthat sets a process descriptor at some index of the process table.
We assume the existence of two functions enqueue and dequeue that might only modify the field
sched of the state, i.e., the scheduler state. Then, we define clear_all_refs in Fig. 16 by iterating
over all present processes and applying clear_proc_refs on each of them andÐif the process was

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:23

procs := s.procs

op := procs[i]

true

[None:|Some:p] := switch (op)fail

absent

SomeNone

false

procs := s.procs

op := None

new_s := {s with procs = procs}

procs := [procs with i = op]

fail

true

false

procs := s.procs

op := Some(p)

new_s := {s with procs = procs}

procs := [procs with i = op]

fail

true

false

Fig. 15. Left: the function get_proc with signature (state s, int i) -> [true:proc p|absent|fail].
Center: the function rm_proc with signature (state s, int i) -> [true:state new_s|fail]. Right: the
set_proc function, with signature (state s, int i, proc p) -> [true:state new_s|fail].

fail

t := s

curr := #ZERO

[absent|fail|true:p] := get_proc(t, curr)

[false|true] := lt(curr, #NR_PROCS)

[fail|true:t] := set_proc(t, curr, p)

[true:p,unblocked] := clear_proc_refs(p, i)

[fail|true:t] := enqueue(t, curr)

[T|F] := switch (unblocked)

true

succ(curr)[true: curr]

absent

T
fail

false

fail

fail

F

[fail|true:t] := dequeue(t, i)

[fail|true:t] := rm_proc(s, i)

true

[fail|true:t] := clear_all_refs(t, i)

fail

fail
fail

fail

Fig. 16. Left: the clear_all_refs function, with signature (state s, int i) -> [true:state t|fail].
Right: the kill_proc function, with signature (state s, int i) -> [true:state t|fail].

unblockedÐcalling enqueue, thereby inserting that process in the scheduling queue. Registering
the processes that were unblocked is performed in order to preserve an invariant that is often
found in an OS: the scheduling queue contains exactly the processes that are ready to run. Finally,
kill_proc is defined by removing the process that ought to be killed, then by calling dequeue and
finally by calling clear_all_refs to remove any reference to the killed process. The analysis in-
fers for the function clear_all_refs the summary (s, t) 7→ {procs → {procs → ⟨∗ ⇒ Copt⟩}

R}L

where Copt =
[
None → [None → Eq]R | Some → [Some → {x → {x → Ccleared}

R}L]R
]L
. The cor-

relation Ccleared was inferred between the variables p and new_p for clear_proc_refs in ğ 6. The
result of the analysis ensures that no process has been deleted or created and also that every process
was changed according to the correlation Ccleared. It also specifies that the sched field might have
been modified in an arbitrary way.
Finally, the result of the analysis for kill_proc is

(s, t) 7→{procs →{procs →⟨i ⇒ ⊤; ∗ ⇒ Copt⟩}
R}L (⋆, t) 7→{procs →⟨i →[None → ⊤]R⟩R}R

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:24 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

which says that the field sched arbitrarily changed, and that the value at index i in the table of
processes was set to None, and that no other process was removed or created, and all of them
possibly changed as specified by Ccleared. This result is precise enough to be exploited for proof
purposes. For instance, it becomes easy to prove that kill_proc preserves the invariant that
get_proc(s, i).nr = i for any index where get_proc succeeds.

8 EXPERIMENTAL RESULTS

Implementation. We implemented the analysis in OCaml [Leroy et al. 2017]. In order to reduce
memory usage, we used a sparse encoding of correlations, following the same convention that we
used in ğ 6: we ensure there are no bindings to ⊤ in record correlations, and no binding to ⊥ in
variant correlations. We used Kildall’s algorithm [Kildall 1973] to solve the dataflow constraints by
computing a post-fixpoint. We usedwidening to ensure termination in the presence of loops. We also
implemented support for recursive functions by iterating until an inter-procedural post-fixpoint is
reached. Our implementation also features some simplifications of correlations that are semantically

equivalent but not necessarily equivalent in the sense of ⊑. For example, any record correlation
that contains a mapping to ⊥ is simplified to ⊥ because the two correlations are semantically equal.
The latter is however strictly smaller than the former. Therefore, we never perform simplification
during the computation of ⊑ or ⊔ since that might break the pre-order and upper-bound properties,
which are required by the dataflow solver. Everywhere else, performing these simplifications is
sound, since correctness does not rely on order-theoretic properties.
The inferred correlations can be quite large. An upper bound of the size of a correlation is the

product of the size of its input type and of the size of its output type. We adopted two strategies
to reduce the size of correlations while preserving their semantics, that we found satisfying in
practice. A first strategy is to rebalance homogeneous correlationsÐthat relate values of the same
typesÐusing an alternation of Ls and Rs. This is the strategy we applied in all the examples of this
paper. A noteworthy property is its ability to materialise diagonal matrices, which are especially
compact in our sparse encoding. We applied a second strategy for heterogeneous correlations, that
attempts to reduce the sizes of correlations by consecutive swaps of L and R correlations. Using
these two strategies, we gained a few percents on the running time and memory consumption of
the analysis, but also we substantially improved the readability of the inferred correlations.

Paper Examples. The full example used throughout the paper takes in total about 200 lines of
code, structured in 15 function definitions. It is fully analysed in less than 6ms on a recent computer
equipped with a 64-bit 2.80GHz quad-core CPU and running LinuxÐa negligible time.

Real-World Example. We ran the analysis on a larger scale example, extracted from the Proven-
Core [Lescuyer 2015] development. It comprises about 58000 lines of code, split over about 2900
functions and 500 type definitions. Those declarations define the actual low-level code of the OS,
as well as a more abstract version of that code, that uses functional data-structures such as listsÐas
opposed to low-level encodings of linked lists using arrays. The type of the low-level OS state is a
large record with nesting of arrays, records and variants which, when seen as a tree, counts about
240 leaves. The type of the higher-level OS state is twice smaller. The invariants of both systems as
well as other proof-related definitions are also part of this considerably large example. On the same
machine we used before, the whole artefact is analysed in approximately 14s. The actual version
of Kill is of course much more complex than the one described in the article. Still, the inferred
correlations remain precise enough to show that at most one process has been removed, and to
show which fields of process descriptors were possibly modified and how they were modified.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:25

System call % Preserved # Preserved # Remaining

ipc_send 56% 28 22
ipc_notify 52% 26 24
ipc_receive 48% 24 26
ipc_sendrec 48% 24 26
ipc_sleep 80% 40 10
authorize 94% 47 3
revoke 94% 47 3
change_effector 96% 48 2
change_target 96% 48 2
change_revoker 96% 48 2
brk 72% 36 14
copy 78% 39 11
exec 8% 4 46
exit 12% 6 44
fork 14% 7 43

System call % Preserved # Preserved # Remaining

getinfo 100% 50 0
kill 12% 6 44
iomap 66% 33 17
iounmap 70% 35 15
shm_alloc 58% 29 21
shm_register 58% 29 21
shm_unregister 62% 31 19
shm_transfer 80% 40 10
smc 98% 49 1
irq_acquire 98% 49 2
irq_release 98% 49 2
irq_rmpolicy 86% 43 7
irq_setpolicy 92% 46 4

Total 68% 961 439

Fig. 17. Experimental results. Min: 8% (exec). Max: 100% (getinfo). Median: 72% (brk). Mean: 68%.

Measuring the Precision of Results. We could not reasonably compare our analysis to existing
ones with similar features, becauseÐto our knowledgeÐcorrelations are the first relational domain
that supports variants. Analysing ProvenCore using domains that do not support records and
variants would give poor results, because most of ProvenCore deals with such structures. For lack
of a reasonable baseline for comparison, we looked at quantitative measures (size of correlations,
number of inferred equalities...) to estimate the precision, but they are not very informative. Instead,
to assess the precision of our analysis, we tested whether the correlation analysis actually lowered
the proof effort, by designing a simple procedure that decides whether a property P is preserved
by a program f . The procedure computes a correlation for f , which gives an upper bound of f ’s
effect. Then, it runs a dependency analysis [Andreescu et al. 2015] for P , which gives a relation on
states that preserves P . Finally, the procedure performs an inclusion test between the two relations
using ⊑, to check that the changes performed by f preserve P . We considered the 28 system calls
of ProvenCore and its 50 invariants (Fig. 17). The decision procedure automatically proved 68% of
the 1400 preservation lemmas. Half of the system calls automatically preserve more than 70% of
the invariants, and only 4 of the system calls preserve less than 50% of the invariants automatically.
Those 4 system calls indeed required most of the mechanisation effort in the proof of ProvenCore:
they either change large parts of the state (exit, kill), or almost completely modify one process
(exec) or two processes (fork). We conclude that our correlation analysis effectively helps focusing
the proof effort on the hard parts.

Verification. The entire meta-theoryÐincluding the extension with arraysÐwas formalised and
proved sound on paper. We also completed the mechanised verification in Coq of ğ 2 and ğ 3 for a
simpler definition of correlations with binary products and sums instead of records and variants.

Testing. In addition to proving the soundness of the analysis, we spent time to devise tests for
the actual implementation. Using random generation à la QuickCheck [Hughes 2007], we tested
two kinds of properties. We first tested algebraic properties, like the pre-order and upper-bound
properties. Generating well-typed correlations was not much of an issue, and the tests reported
for example that the simplification rules that we wrote about at the beginning of the current
section broke the transitivity property of ⊑. By removing uses of simplifications in the definitions
of comparison and join, the code more closely followed the formalisation, and the tests indeed
never found any counter-example. The second family of properties that we tested are the semantic
ones. By generating pairs of values (or pairs of states) in the semantics of correlations, we were
able to test the soundness lemmas for the operations of comparison, join, meet, compose, and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

47:26 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

we even tested the soundness of the transfer functions. Devising the tests themselves was not
problematic. Generating pairs of values in correlations, however, turned out to be quite difficult.
This required solving disjunctions of conjunctions of equality constraints. We put these constraints
in disjunctive normal form (DNF), to represent them as lists of unification problems [Knight 1989],
which we solved using persistent union-find data-structures [Conchon and Filliâtre 2007]. We put
an explicit upper bound on the number of handled disjunctions, to cut the exponential blow-up of
DNF normalisation.

9 RELATED WORK

Correlation analysis of input-output relations in functional specifications was introduced by An-
dreescu et al. [Andreescu et al. 2016; Andreescu 2017] who present a static analysis that computes
a safe approximation of what part of an input state of a function is copied to the output state, for a
functional language similar to ours. That work has the shortcoming that the analysis is unable to
track the possible cases of variants which leads to the analysis being unsound. More precisely, the
comparison and composition operators are unsound in the presence of variants, and comparison is
not transitive. The present abstract domains differ considerably: their vector-like nature is original,
and they can express transitions between different cases of variantÐan essential feature for the
composition operator. Moreover, our machine-checked proof of semantic soundness is an additional
difference compared to the previous work which provided no formal account. On a different note,
that previous work described a backward analysis, whereas we present a forward analysis. We
made this change because a forward analysis seemed easier to model and more natural to explain.

Illous et. al. [Illous et al. 2017] describe a relational shape abstract domain for inferring properties
about memory structures in imperative programs. One of their goals is shared with our analysis:
infer when parts of memory have not changed. Also, their analysis computes a relation between
input structures and output structures. Different from ours, their analysis is based on separation
logic and is limited to lists and trees. The experimental evaluation does not report results about
applying this approach to a substantial example such as a micro-kernel.
Dietsch et. al. [Dietsch et al. 2018] use abstract interpretation to infer relations between array

values at a given program point. Their analysis is based on the map equality domain, that can
express "up-to" equalities and disequalities between expressions involving map variables. Their
domain is geared towards expressiveness rather than scalability.
Our analysis can be seen as a (partial) solution to the framing problem: a general challenge in

software engineering and verification [Meyer 2015]. Other approaches to verify framing conditions
include the congruence closure abstract domain defined by Chang and Leino [Chang and Leino
2005], which is used to infer relations between fields of variables in object-oriented languages.
Using a graph representation that is reminiscent of the eDAGs structures found in congruence
closure [Gulwani et al. 2005; Nelson and Oppen 1980], they combine base domains with congruences.
They support only conjunctions of constraints, whereas we support disjunctions by the means of
variant correlations, which are essential to precisely analyse programs like ProvenCore. However,
we only support equality as a base domain. This suggests the possibility of extending correlations
to relational arithmetic domains, for example.

Points-to analyses [Das 2000; Lhoták and Hendren 2003; Steensgaard 1996;Whaley and Lam 2002]
use graph-based representations to express sharing in memory heaps, whereas our correlations
define equality graphs with disjunctions. Notice though that points-to analysis is about relating
structures in the same state, whereas we are aiming at relating structures in different states.

A framework to infer and check relational abstractions of ML programs was introduced by [Kaki
and Jagannathan 2014]. From a few domain-specific primitive relations, they (recursively) define
complex relations by means of pattern matching. By comparison, our variant correlations enable

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

Inferring Frame Conditions with Static Correlation Analysis 47:27

case analysis but are less expressive, and do not support recursively defined relations. Their approach
requires annotations on recursive functions, and delegates the checking of constraints to an SMT
solver, while our correlations are completely inferred, and are solely based on dataflow analysis.

Function summaries are essential to build scalable compositional static analyses. While we have
defined function summaries for an equality analysis supporting algebraic data types, function
summaries were also successfully developed, for instance, in the context of pointer analysis [Das
2000], shape analysis [Illous et al. 2017; Jeannet et al. 2004], and arithmetic analysis [Farzan and
Kincaid 2015; Kincaid et al. 2017].
Liquid types [Rondon et al. 2008; Vazou et al. 2017] express rich specifications of higher-order

programs in refinement types. Using SMT solvers, proofs are inferred from user-written specifica-
tions. By contrast, correlation analysis infers both specifications and proofs, for a more restricted
subset of specifications based on partial equalities. Because our specifications might be large, the
fact they are inferred is essential. Moreover, our analysis does not require us to trust a complex
solver.

10 CONCLUSIONS

We have designed, implemented and proved sound a static analysis for inferring equalities between
parts of input and output of functions over algebraic data-types and arrays. To this end, we
have defined an abstract domain of correlations, with a pre-order relation, union, intersection and
sequential composition operations. This structure allows defining an inter-procedural correlation
analysis in a compositional way. The analysis has been implemented and has been shown to be
sufficiently precise and efficient to be able to infer correlations and discharge a large number of
proofs of invariant preservation in the code of an industrial-size micro-kernel. We conclude that a
relatively simple equality analysis greatly helps the interactive verification of programs.

There are several avenues for further research. First, the analysis is not intended to be guided by
human intervention. In the context of a proof IDE, we can nevertheless wish that a programmer
could feed the analyser with a manually proven correlation, which could be further exploited by
the analyser to increase the precision for the remaining functions. The exploration of such analyser-
user interaction is ongoing. Second, the analysis is so far only concerned with inferring relations
łin timež, i.e., between different program points. Inferring correlations łin spacež, i.e., between
different sub-structures of a same state, could further improve the precision of the analysis. Third,
a shortcoming of array correlations is their ability to single out at most one index in the array. We
intend to support several łexceptionalž indices in array correlations. This could render the analysis
more costly, so there are both logical and algorithmic issues to be investigated. Fourth, we have
restricted ourselves from considering higher-order functions, recursive correlations, or side effects.
These restrictions are mainly motivated by the intended application, as the targeted OS specification
has been constructed without these features. Finally, we intend to enhance the decision procedure
sketched in the experiment section and lower the proof burden in large interactive proof projects.

ACKNOWLEDGMENTS

This material is based upon work developed at Prove & Run, and funded by Prove & Run. We thank
the anonymous reviewers, and Olivier Delande, whose questions and remarks helped improve the
presentation of this work.

REFERENCES

Oana Andreescu, Thomas Jensen, and Stéphane Lescuyer. 2015. Dependency analysis of functional specifications with

algebraic data structures. In Formal Methods and Software Engineering (LNCS), Michael Butler, Sylvain Conchon, and

Fatiha Zaïdi (Eds.), Vol. 9407. Springer International Publishing, 116ś133. https://doi.org/10.1007/978-3-319-25423-4_8

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

https://doi.org/10.1007/978-3-319-25423-4_8

47:28 Oana F. Andreescu, Thomas Jensen, Stéphane Lescuyer, and Benoît Montagu

Oana Andreescu, Thomas Jensen, and Stéphane Lescuyer. 2016. Correlating structured inputs and outputs in functional

specifications. In Software Engineering and Formal Methods (LNCS), Rocco De Nicola and Eva Kühn (Eds.), Vol. 9763.

Springer International Publishing, 85ś103. https://doi.org/10.1007/978-3-319-41591-8_7

Oana Fabiana Andreescu. 2017. Static analysis of functional programs with an application to the frame problem in deductive

verification. Theses. Université Rennes 1. https://tel.archives-ouvertes.fr/tel-01677897

Alexander Borgida, John Mylopoulos, and Raymond Reiter. 1995. On the frame problem in procedure specifications. IEEE

Transactions on Software Engineering 21, 10 (1995), 785ś798.

Bor-Yuh Evan Chang and K. Rustan M. Leino. 2005. Abstract Interpretation with Alien Expressions and Heap Structures.

In Verification, Model Checking, and Abstract Interpretation (LNCS), Radhia Cousot (Ed.), Vol. 3385. Springer Berlin

Heidelberg, Berlin, Heidelberg, 147ś163. https://doi.org/10.1007/978-3-540-30579-8_11

Sylvain Conchon and Jean-Christophe Filliâtre. 2007. A persistent union-find data structure. In Proceedings of the 2007

Workshop on Workshop on ML (ML ’07). ACM, New York, NY, USA, 37ś46. https://doi.org/10.1145/1292535.1292541

Patrick Cousot and Radhia Cousot. 2002. Modular static program analysis. In Compiler Construction (LNCS), R. Nigel

Horspool (Ed.), Vol. 2304. Springer Berlin Heidelberg, Berlin, Heidelberg, 159ś179.

Manuvir Das. 2000. Unification-based pointer analysis with directional assignments. In Proceedings of the ACM SIGPLAN

2000 Conference on Programming Language Design and Implementation (PLDI ’00). ACM, New York, NY, USA, 35ś46.

https://doi.org/10.1145/349299.349309

Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz, and Andreas Podelski. 2018. The Map Equality

Domain. In VSTTE 2018, Proceedings of the 10th Working Conference on Verified Software: Theories, Tools, and Experiments

(LNCS), Vol. 11294. Springer.

Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In Proceedings of the 15th Conference on

Formal Methods in Computer-Aided Design (FMCAD ’15). FMCAD Inc, Austin, TX, 57ś64. http://dl.acm.org/citation.cfm?

id=2893529.2893544

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 Ð Where Programs Meet Provers. In Programming Languages

and Systems (LNCS), Matthias Felleisen and Philippa Gardner (Eds.), Vol. 7792. Springer Berlin Heidelberg, Berlin,

Heidelberg, 125ś128.

Sumit Gulwani, Ashish Tiwari, and George C. Necula. 2005. Join Algorithms for the Theory of Uninterpreted Functions. In

FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science (LNCS), Kamal Lodaya and Meena

Mahajan (Eds.), Vol. 3328. Springer Berlin Heidelberg, Berlin, Heidelberg, 311ś323.

John Hughes. 2007. QuickCheck testing for fun and profit. In Practical Aspects of Declarative Languages (LNCS), Michael

Hanus (Ed.), Vol. 4354. Springer Berlin Heidelberg, Berlin, Heidelberg, 1ś32.

Hugo Illous, Matthieu Lemerre, and Xavier Rival. 2017. A Relational Shape Abstract Domain. In NASA Formal Methods

(LNCS), Clark Barrett, Misty Davies, and Temesghen Kahsai (Eds.), Vol. 10227. Springer International Publishing, 212ś229.

Inria 2017. The Coq proof assistant reference manual. Inria. https://coq.inria.fr/distrib/current/refman/

Bertrand Jeannet, Alexey Loginov, Thomas Reps, and Mooly Sagiv. 2004. A Relational Approach to Interprocedural Shape

Analysis. In Static Analysis (LNCS), Roberto Giacobazzi (Ed.), Vol. 3148. Springer Berlin Heidelberg, Berlin, Heidelberg,

246ś264.

Gowtham Kaki and Suresh Jagannathan. 2014. A relational framework for higher-order shape analysis. In Proceedings of the

19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York, NY, USA, 311ś324.

https://doi.org/10.1145/2628136.2628159

Gary A. Kildall. 1973. A unified approach to global program optimization. In Proceedings of the 1st Annual ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages (POPL ’73). ACM, New York, NY, USA, 194ś206. https:

//doi.org/10.1145/512927.512945

Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas Reps. 2017. Compositional Recurrence Analysis

Revisited. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI 2017). ACM, New York, NY, USA, 248ś262. https://doi.org/10.1145/3062341.3062373

Kevin Knight. 1989. Unification: a multidisciplinary survey. Comput. Surveys 21, 1 (March 1989), 93ś124. https://doi.org/10.

1145/62029.62030

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. 2006. Preliminary Design of JML: A Behavioral Interface Specification

Language for Java. SIGSOFT Softw. Eng. Notes 31, 3 (May 2006), 1ś38. https://doi.org/10.1145/1127878.1127884

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2017. The Objective Caml system,

documentation and user’s manual ś release 4.06. INRIA. http://caml.inria.fr/pub/docs/manual-ocaml-4.06/

Stéphane Lescuyer. 2015. ProvenCore: towards a verified isolation micro-kernel. In International Workshop on MILS:

Architecture and Assurance for Secure Systems.

Ondvrej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using Spark. In Compiler Construction (LNCS),

Görel Hedin (Ed.), Vol. 2622. Springer Berlin Heidelberg, Berlin, Heidelberg, 153ś169.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

https://doi.org/10.1007/978-3-319-41591-8_7
https://tel.archives-ouvertes.fr/tel-01677897
https://doi.org/10.1007/978-3-540-30579-8_11
https://doi.org/10.1145/1292535.1292541
https://doi.org/10.1145/349299.349309
http://dl.acm.org/citation.cfm?id=2893529.2893544
http://dl.acm.org/citation.cfm?id=2893529.2893544
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.1145/2628136.2628159
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/62029.62030
https://doi.org/10.1145/62029.62030
https://doi.org/10.1145/1127878.1127884
http://caml.inria.fr/pub/docs/manual-ocaml-4.06/

Inferring Frame Conditions with Static Correlation Analysis 47:29

J. McCarthy and P. J. Hayes. 1981. Some Philosophical Problems from the Standpoint of Artificial Intelligence. In

Readings in Artificial Intelligence, Bonnie Lynn Webber and Nils J. Nilsson (Eds.). Morgan Kaufmann, 431ś450. https:

//doi.org/10.1016/B978-0-934613-03-3.50033-7

Bertrand Meyer. 2015. Framing the frame problem. In Dependable Software Systems Engineering. 193ś203. https://doi.org/

10.3233/978-1-61499-495-4-193

Greg Nelson and Derek C. Oppen. 1980. Fast decision procedures based on congruence closure. J. ACM 27, 2 (April 1980),

356ś364. https://doi.org/10.1145/322186.322198

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of Program Analysis. Springer Publishing Company,

Incorporated.

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’08). ACM, New York, NY, USA, 159ś169.

https://doi.org/10.1145/1375581.1375602

Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’96). ACM, New York, NY, USA, 32ś41. https://doi.org/10.

1145/237721.237727

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala. 2017.

Refinement Reflection: Complete Verification with SMT. Proceedings of the ACM on Programming Languages 2, POPL,

Article 53 (Dec. 2017), 31 pages. https://doi.org/10.1145/3158141

John Whaley and Monica S. Lam. 2002. An efficient inclusion-based points-to analysis for strictly-typed languages. In

Static Analysis (LNCS), Manuel V. Hermenegildo and Germán Puebla (Eds.), Vol. 2477. Springer Berlin Heidelberg, Berlin,

Heidelberg, 180ś195.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 47. Publication date: January 2019.

https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.3233/978-1-61499-495-4-193
https://doi.org/10.3233/978-1-61499-495-4-193
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/3158141

	Abstract
	1 Introduction
	2 Correlations
	2.1 Examples of Correlations
	2.2 Types and Values
	2.3 Well-Typed Correlations and Their Matrix Representation
	2.4 A Pre-Order on Correlations

	3 Operations on correlations
	3.1 Unions and Intersections of Correlations
	3.2 Sequential Composition of Correlations

	4 A language of control flow graphs
	5 Correlation analysis
	6 Examples
	7 Extending the analysis to functional arrays
	8 Experimental results
	9 Related work
	10 Conclusions
	Acknowledgments
	References

