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Signal temporal logic (STL) is a temporal logic formalism for specifying properties of continuous signals. STL
is widely used for analyzing programs in cyber-physical systems (CPS) that interact with physical entities.
However, existing methods for analyzing STL properties are incomplete even for bounded signals, and thus
cannot guarantee the correctness of CPS programs. This paper presents a new symbolic model checking
algorithm for CPS programs that is refutationally complete for general STL properties of bounded signals. To
address the difficulties of dealing with an infinite state space over a continuous time domain, we first propose
a syntactic separation of STL, which decomposes an STL formula into an equivalent formula so that each
subformula depends only on one of the disjoint segments of a signal. Using the syntactic separation, an STL
model checking problem can be reduced to the satisfiability of a first-order logic formula, which is decidable
for CPS programs with polynomial dynamics using satisfiability modulo theories (SMT). Unlike the previous
methods, our method can verify the correctness of CPS programs for STL properties up to given bounds.
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1 INTRODUCTION

Signal temporal logic (STL) is a temporal logic formalism for specifying linear-time properties of
continuous real-valued signals [Maler and Nickovic 2004], defined by extending metric temporal
logic (MTL) for real-time properties [Koymans 1990]. Just as linear temporal logic (LTL) is widely
used for formally analyzing conventional (discrete) programs, STL is widely used for analyzing
programs in cyber-physical systems (CPS) that interact with physical entities exhibiting continuous
dynamics. This kind of CPS programs includes automotive, avionics, robotics, and medical software
[Dokhanchi et al. 2015; Goldman et al. 2016; Jin et al. 2014; Raman et al. 2015; Roohi et al. 2018].
Since CPS programs are often safety-critical, formal analysis of STL is receiving growing attention,
and various techniques have been developed for STL [Annpureddy et al. 2011; Deshmukh et al.
2017; Donzé et al. 2013; Jakšić et al. 2016; Ničković et al. 2018; Roehm et al. 2016].
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However, model checking of STL properties is still very limited. Due to continuous signals,
STL model checking inherently takes into account an infinite number of states. Furthermore, a
state of a CPS program changes continuously over an uncountable time domain. For this reason,
existing methods for analyzing STL properties are incomplete, even for bounded signals. Specifically,
monitoring and falsification techniques analyze only a finite number of signals [Annpureddy et al.
2011; Deshmukh et al. 2017; Jakšić et al. 2016; Ničković et al. 2018], and a symbolic model checking
technique recently proposed in [Roehm et al. 2016] considers only a finite number of sampled time
points. This is in contrast to the case of discrete programs where model checking techniques can
typically be complete, at least up to a bound (e.g., [Biere et al. 2003; Cordeiro et al. 2012]).
In this paper we present a symbolic model checking algorithm for STL properties which is

complete for bounded signals. Our algorithm is based on a new foundational technique for STL,
called syntactic separation, proposed in this paper. The syntactic separation decomposes an STL
formula into an equivalent formula in which the satisfaction of each subformula only depends on a
specified time interval. Using this result, an STL model checking problem can be reduced to the
satisfiability of a first-order logic formula, which is decidable if the reachability of the underlying
CPS program is decidable. The satisfiability of the resulting formula can be determined using
satisfiability modulo theories (SMT) techniques [Biere et al. 2009]. Unlike the previous methods,
our method can verify the correctness of CPS programs for STL properties up to given bounds.

Syntactic Separation of STL. Generally, a temporal logic formula φ is called syntactically separated
if φ is a Boolean combination of formulas, each of which depends only on a disjoint part of the
underlying time domain (such as the past, present, or future).1 Syntactically separating STL formulas
is nontrivial, because temporal operators in STL are further constrained by time intervals. Consider
an STL formula □[0,3] (x ≥ 0→ ^[0.5,2) x < 0), which involves two temporal operators □[0,3] and
^[0.5,2) . Intuitively, this formula means that łduring the first 3 time units, whenever the value of

signal x is greater than or equal to 0, the value of x will be less than 0 after some time in the interval

[0.5, 2).ž For this kind of quantitative temporal logics, including STL and MTL, there has been no
generic method proposed for separating a formula into disjoint parts [Hunter et al. 2013].
To address this problem, we generalize the syntax of STL by adding extra time constraints. In

addition to existing intervals to denote łlocalž time constraints, the temporal operators of STL are
annotated with extra intervals to represent łglobalž time constraints. For example, by annotating

□[0,3] and ^[0.5,2) with the interval [0, 1), we obtain the formula □[0,1)
[0,3] (x ≥ 0 → ^[0,1)

[0.5,2)
x < 0),

which means that łduring the first 3 time units, whenever x ≥ 0 at a global time in [0, 1), after some

time in the interval [0.5, 2), x < 0 will hold at some global time in [0, 1).ž This makes it possible to
write a formula that only depends on a specified time interval. Adding such global intervals to STL
yields a more expressive temporal logic, namely, STL with global time (STL-GT).

In this paper we propose a syntactic separation procedure for STL-GT formulas at a chosen time
of separation. More precisely, an STL-GT formula φ is syntactically rewritten into an equivalent
formula in which every temporal operator is globally restricted, given a time τ , by one of the
disjoint time intervals [0,τ ), {τ }, or (τ ,∞). As a consequence, each subformula of the resulting
formula can depend only on one of the disjoint segments of a signal before τ , at τ , or after τ . We
show a number of equivalence laws that can globally separate any STL-GT formulas, including
the Until operator. We then identify a precise syntactic subclass of STL-GT that includes STL and
is closed under the separation operation. This separation procedure can be repeatedly applied to
obtain a formula separated at different time points τ1 < · · · < τn .

1For example, in a discrete time domain, an LTL formula □(p → ^q ) can be rewritten into the syntactically separated
formula (p → (q ∨ ⃝^q )) ∧ ⃝□(p → ^q ), using the equivalences □φ ≡ φ ∧ ⃝□φ and ^φ ≡ φ ∨ ⃝^φ . Observe that
p and q depend only on the present, and ⃝^q and ⃝□(p → ^q ) depend only on the future.
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Translation of STL to First-Order Logic. Using syntactic separation, we present a simple procedure
to translate STL formulas into first-order logic formulas for symbolic model checking. Because the
semantics of STL is definable in first-order logic, one can immediately translate STL into first-order
logic. However, the translation by the semantic definition gives no decision procedure, because
the satisfiability of STL is undecidable [Alur et al. 1996]; indeed, formulas with deeply nested
quantifiers can be generated by this approach. Instead, we translate STL formulas into a decidable
fragment of first-order logic for a signal with a finite number of variable points. A signal has a finite
number of variable points if the meaning of each proposition changes a finite number of times on
the signal, while the value of the signal may continuously change over time.

A key idea underlying our translation procedure is the notion of full stability. For a signal with a
finite number of variable points, a fully stable formula behaves like a propositional formula in the
sense that the truth value of every subformula is fixed to either true or false. We show that any
STL formula can be equivalently rewritten into a fully stable STL-GT formula using the syntactic
separation, given variable time points τ1 < · · · < τn . It is then straightforward to translate a fully
stable STL-GT formula into first-order logic. For fully stable STL-GT formulas, the time constraint
of each temporal operator can be expressed as a quantifier-free first-order logic formula in interval
arithmetic. The requirement that a signal has given variable points τ1 < · · · < τn can be encoded as
a first-order logic formula with universal quantification over time variables. The resulting first-order
logic formula can be decidable under reasonable assumptions.

Symbolic Model Checking Algorithm. Based on our translation method, we propose a symbolic
model checking algorithm for STL properties of CPS programs. The proposed algorithm constructs
a first-order logic formula that is satisfiable if and only if there exists a counterexample from an
initial set with a particular number k of variable points. By iteratively incrementing the number
k , this algorithm is refutationally complete for bounded signals with finite variability, where the
number of variable points is finite over a finite period. This condition is typically assumed when
analyzing realistic real-time and CPS programs [Ho et al. 2014; Maler and Nickovic 2004; Ouaknine
and Worrell 2008]. Our algorithm is related to the notion of bounded model checking [Biere et al.
2003], where the bound is the maximal number of variable points in a continuous signal.
In our algorithm, the behavior of a CPS program is encoded as a first-order logic formula,

following SMT-based approaches for reachability analysis of hybrid automata. The semantics of
CPS programs can be formalized as hybrid automata [Alur 2015]. Finding a signal with a given
number of variable points can be considered as a special case of the reachability problem. The
reachability problem can be reduced to the satisfiability of first-order logic formulas [Cimatti et al.
2012b], which is decidable if the continuous dynamics involves only linear functions or polynomials.
Together with our translation method, the satisfiability of the generated formula for symbolic
model checking can be decided using Z3 [De Moura and Bjùrner 2008]. If the continuous dynamics
involves transcendental functions, the satisfiability is undecidable. Nevertheless, we can still use a
specialized SMT solver based on approximation methods [Gao et al. 2012, 2013a].

Related Work. Separation is one of the foundational techniques in temporal logic. Theoretically,
separation has several important consequences [Hodkinson and Reynolds 2005]. Gabbay showed
that every LTL formula can be separated into the past, present, or future, and using this result he
proved the expressive completeness of LTL [Gabbay 1981], in a much simpler way than Kamp’s
original proof [Kamp 1968]. A separation plays an important role in formal analysis techniques.
Many tableau construction methods use a separation of a formula so that the constraints for
the current state can be separated from the constraints for the future states [Clarke et al. 1999;
Gerth et al. 1995]. SAT-based model checking [Biere et al. 2003] and rewriting-based monitoring
[Havelund and Roşu 2004] use a syntactic separation to translate LTL formulas.
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There are two syntactic separation methods for MTL that we are aware of. Hunter et al. proposed
a separation of MTL to prove the expressive completeness of MTL [Hunter et al. 2013]. Their
method separates a formula into a Boolean combination of subformulas that are either bounded or
unbounded; unlike our method, a specific time of separation cannot be chosen. Geilen presented
an on-the-fly tableau construction for a fragment of MTL, called MITL≤ , based on a separation of
MITL≤ in a logic extended with timers [Geilen 2003]. Geilen’s method considers only a fragment
of MTL, and how to separate a formula strictly in the extended logic, beyond MITL≤ , is not studied
in [Geilen 2003], whereas any STL-GT formula is separable by our method.
STL was first proposed by Maler and Nickovic for runtime monitoring of continuous signals

[Maler and Nickovic 2004]. A variety of techniques and tools have been developed for monitoring of
continuous signals, including [Deshmukh et al. 2017; Donzé 2010; Donzé et al. 2013; Ho et al. 2014;
Jakšić et al. 2016; Ničković et al. 2018; Nickovic and Maler 2007]. These techniques are combined
with temporal logic falsification of hybrid systems for finding counterexamples using Monte-Carlo
methods [Annpureddy et al. 2011]. As mentioned, monitoring and falsification techniques can
analyze only a finite number of bounded signals; they are quite useful for finding counterexamples
in practice, but cannot be used to verify STL properties of CPS programs.
Reachability analysis of hybrid automata has been studied for a long time. There are three

different approaches in general. Reachable-set computation methods calculate (approximate) sets
of reachable states by symbolic constraint solving, e.g., [Althoff 2013; Bak and Duggirala 2017;
Chen et al. 2013; Dang and Testylier 2012; Frehse et al. 2011]. Simulation-based methods attempt
to obtain approximate sets of reachable states by performing a finite number of simulations and
by bloating the simulated trajectories, e.g., [Abbas et al. 2013; Dang and Nahhal 2009; Duggirala
et al. 2013; Fan et al. 2016; Girard and Pappas 2006]. SMT-based approaches reduce the reachability
problem to the (approximate) satisfiability of first order logic over the real numbers, e.g., [Cimatti
et al. 2015; Eggers et al. 2015; Gao et al. 2013b; Ishii et al. 2011; Tiwari 2015]. These methods can
verify invariant properties, but cannot verify general STL properties of CPS programs.

Roehm et al. recently proposed a symbolic model checking method for STL properties using
reachable set computation [Roehm et al. 2016]. Given a finite number of sampled time points, their
method reduces the model checking problem of a łsampled timež STL formula into reachable-set
computation of bounded signals. But their method is inherently incomplete, because only a finite
number of sampled time points is considered. For MTL, Bersaní et al. proposed an SMT-based
satisfaction checking algorithm by translating MTL into a different temporal logic [Bersani et al.
2015, 2016]. Because their method lacks separation of MTL, the translation is very complex. Also, it
is not clear how to use their method for model checking of real-time (CPS) programs.

Summary. Our main contributions are as follows. (1) We present a foundational technique for
syntactically separating STL formulas. We define an extension of STL, called STL-GT, and a number
of equivalences laws to separate any STL-GT formula. (2) We present a simple procedure to translate
STL formulas into a decidable fragment of first-order logic by syntactic separation. This procedure
is based on novel ideas of finite variability and full stability. (3) We present a new model checking
algorithm for STL that is refutationally complete for bounded signals. This allows verifying STL
properties of CPS programs up to given bounds, which was previously not possible.
The rest of this paper is organized as follows. Section 2 provides some background on hybrid

automata and STL. Section 3 presents STL-GT, and a syntactic separation procedure for STL-GT.
Section 4 explains a translation method from STL formulas into first-order logic formulas using
the separation. Section 5 presents a symbolic model checking algorithm for STL properties of CPS
programs. Section 6 shows experimental results using a prototype implementation of our algorithm.
Finally, Section 7 presents conclusions and discusses future work.
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Fig. 1. A trajectory x⃗ of a hybrid automaton
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Fig. 2. The motion of an autonomous car

2 PRELIMINARIES ON HYBRID AUTOMATA AND STL

2.1 Hybrid Automata

Hybrid automata [Henzinger 2000] are widely used for formalizing the semantics of CPS programs.
In a hybrid automaton H , a set ofmodes Q specifies discrete states, and a set of real-valued variables
X = {x1, . . . ,xl } specifies continuous states. That is, a state of H is a pair ⟨q, v⃗⟩ of a discrete mode
q ∈ Q and a vector v⃗ = (v1, . . . ,vl ) ∈ R

l . There are two kinds of transitions in hybrid automata. A
jump condition jump(q, v⃗,q′, v⃗ ′) defines a discrete transition between two states ⟨q, v⃗⟩ −→ ⟨q′, v⃗ ′⟩.
A flow condition v⃗t = flow (q, v⃗0, t ) defines trajectories of X for duration t in mode q, describing
continuous changes ofX ’s values from v⃗0 to v⃗t . An invariant condition inv (q, v⃗ ) defines all possible
values of X in mode q, and an initial condition init (q, v⃗ ) defines a set of initial states in mode q.

Definition 2.1. A hybrid automaton is defined as a tuple H = (Q,X , init, inv,flow, jump).

A flow condition of a hybrid automaton is normally written as a system of ordinary differential
equations (ODEs). In practice, flow conditions are often restricted to a certain class of real functions.
Specifically, a hybrid automaton H is called a linear hybrid automaton if its flow conditions are
linear functions, and a polynomial hybrid automaton if its flow conditions are polynomials.

An l-dimensional signal x⃗ = (x1, . . . ,xl ) is a function D → Rl , where its domain D = dom(x⃗ ) is
a left-closed interval of nonnegative real numbers with left endpoint 0 ∈ D. A signal x⃗ : D → Rl

is bounded if its time domain is bounded (i.e., sup(D) < ∞). A signal x⃗ is called a trajectory of a
hybrid automaton H , if x⃗ describes a valid behavior of H over continuous time, as depicted in Fig. 1.
To be precise, consider a sequence of time points 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · . The initial condition holds
at time τ0. For each i-th step, the values of X change from x⃗ (τi−1) for duration τi − τi−1 according
to the flow condition, while satisfying the invariant condition. A discrete jump happens at time τi
from the final values of the current step to the starting values x⃗ (τi ) of the next step.

Definition 2.2. For a hybrid automaton H , a signal x⃗ is a trajectory of H , written x⃗ ∈ H , if there
exist sequences of modes q1,q2,q3, . . . and of times 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · such that for i ≥ 1:

(1) init (q1, x⃗ (τ0));
(2) inv (qi , x⃗ (t )) for t ∈ [τi−1,τi );
(3) x⃗ (t ) = flow (qi , x⃗ (τi−1), t − τi−1) for t ∈ [τi−1,τi ); and
(4) jump(qi , v⃗i ,qi+1, x⃗ (τi )), where v⃗i = flow (qi , x⃗ (τi−1),τi − τi−1).

Example 2.3. Consider an autonomous car that is controlled by a CPS program. As illustrated in
Fig. 2, the car can be thought of as a rigid body that moves in the plane, where its position is based
in the center of the rear axle. Let L be the distance between the front and rear axles. The position
(x ,y) and the direction θ of the car change according to the speed v and the steering angle ϕ. The
motion of the car can be modeled using the ODEs [LaValle 2006]:

ẋ = v cosθ , ẏ = v sinθ , θ̇ = v/L · tanϕ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 51. Publication date: January 2019.



51:6 Kyungmin Bae and Jia Lee

if (goal − θ > c):

setVelocity (vlow);

setSteering (α);

else if (goal − θ < −c):

setVelocity (vlow);

setSteering (−α);

else:

setVelocity (vhigh);

setSteering (0);

Straight

ẋ = vhigh cos θ,

ẏ = vhigh sin θ,

θ̇ = vhigh/L · tan 0

|goal − θ| < c

Right

ẋ = vlow cos θ,

ẏ = vlow sin θ,

θ̇ = vlow/L · tanα

goal − θ > c

Left

ẋ = vlow cos θ,

ẏ = vlow sin θ,

θ̇ = vlow/L · tan(−α)

goal − θ < −c

goal − θ > cgoal − θ < −c

|goal − θ| < c

Fig. 3. A CPS program and its hybrid automaton

We consider a simple CPS program to control the direction of the car, adapted from [Alur 2015].
Given a goal direction goal, the program determines the velocity θ and the steering angle ϕ based
on the difference between goal and the current direction θ . If the difference is greater than some
threshold c > 0, the program changes the velocity and the steering angle so that the vehicle turns
left or right at low speed. Otherwise, the program makes the vehicle go straight at high speed.
Fig. 3 shows the simple CPS program, and the hybrid automaton H that specifies its semantics

with respect to the physical states. There are three modes Left, Straight, and Right, and three
variables (x ,y,θ ). Eachmode has a flow condition specified as ODEs over (x ,y,θ ), where the velocity
and the steering angle are given as constants. The jump condition and the invariant condition
are basically given by the program logic. A trajectory of the hybrid automaton H describes the
behavior of the physical variables when the program runs on a controller of the car.

2.2 Signal Temporal Logic

Signal temporal logic formulas specify linear-time properties of continuous real-valued signals,
such as properties of trajectories for hybrid automata. The syntax of signal temporal logic (STL) is
defined as a simple extension of metric temporal logic (MTL).

Definition 2.4 (STL Syntax). The syntax of signal temporal logic (STL) is defined by

φ := true | f (x⃗ ) > 0 | ¬φ | φ ∧ φ | φ UI φ

where x⃗ : D → Rl is a signal, f : Rl → R is a real-valued function, and I ⊆ D is an interval of
nonnegative real numbers in the time domain D.

Untimed notations, such as U, are used as shorthand for U[0,∞) . Intervals in STL formulas are
often written using arithmetic expressions; for example, U=a for U{a } and U≤a for U[0,a]. We can
define other common Boolean and temporal operators as syntactic abbreviations; e.g.,

φ ∨ φ ′ ≡ ¬(¬φ ∧ ¬φ ′), ^I φ ≡ trueUI φ, □I φ ≡ ¬^I ¬φ, φRIφ
′ ≡ ¬((¬φ)UI (¬φ

′)).

Example 2.5. For the model of an autonomous car in Example 2.3, we can think about various
STL properties over a signal (x ,y,θ ,v,ϕ). For example:

• □[0,60] (v < 180 ∧ ϕ < 60): during the first 60 seconds, the speed of the vehicle will always be
less than 180 km/h, and the steering angle will always be less than 60◦.
• (ϕ > 30 ∧ ϕ < 30) U≤300 (x = 100 ∧ y = 100): the car will arrive at the position (100, 100)
within 300 seconds; until then the steering angle is within the range (−30◦, 30◦).
• □[0,120] (ϕ > 60 → ^[2,8) θ ≥ 30): during the first 120 seconds, whenever the steering angle
is greater than 60◦, the direction will exceed 30◦ sometime within 8 seconds after 2 seconds.
• ^[0,30] (v > 100∧□[0,20]v > 100): at some time in the first 30 seconds, the speed will go over
100 km/h and stay above 100 km/h for 20 seconds [Dokhanchi et al. 2015].
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The semantics of STL is defined as the satisfaction of a formula φ with respect to a signal x⃗
and a global time t ∈ D. Observe that the interval I in an STL formula φUIφ

′ defines the local
temporal context of its subformula φ ′, because the satisfaction of φUK

I φ
′ at global time t requires

the satisfaction of φ ′ at some łlocalž time t ′ − t in the interval I .

Definition 2.6 (STL Semantics). The satisfaction of an STL formula φ at a given time t over a
signal x⃗ , denoted by x⃗ , t |= φ, is inductively defined as follows:

x⃗ , t |= true

x⃗ , t |= f (x⃗ ) > 0 iff f (x⃗ (t )) > 0

x⃗ , t |= ¬φ iff x⃗ , t ̸ |= φ

x⃗ , t |= φ ∧ φ ′ iff x⃗ , t |= φ and x⃗ , t |= φ

x⃗ , t |= φUIφ
′ iff (∃t ′ ≥ t ) t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ

For an STL formula φ, the future-reach fr (φ) indicates how much of the future is required to
determine the satisfaction [Hunter et al. 2013]. Notice that the satisfaction x⃗ , t |= φ is well-defined
if the time horizon of x⃗ includes the future-reach of φ, i.e., t + fr (φ) ∈ dom(x⃗ ).

Definition 2.7. Given an STL formula φ, the future-reach fr (φ) is inductively defined by:

fr (true) = 0, fr (¬φ) = fr (φ), fr (φ ∧ φ ′) = max(fr (φ), fr (φ ′)),

fr ( f (x⃗ ) > 0) = 0, fr (φUIφ
′) = sup(I ) +max(fr (φ), fr (φ ′)).

The STL model checking problem, denoted by H ,τ0 |= φ, is to check whether an STL formula
φ is satisfied for every trajectory x⃗ of a hybrid automaton H at an initial time τ0 (i.e., x⃗ ,τ0 |= φ).
By definition, this is equivalent to finding a counterexample trajectory x⃗ that satisfies the negated
formula ¬φ. The STL model checking problem is undecidable in general. The reachability problem
for hybrid automata is already undecidable [Henzinger et al. 1998], which is a special case of STL
model checking. Further, the existing techniques for STL model checking are inherently incomplete,
as discussed in Sec. 1, and thus cannot guarantee the correctness for STL properties.
For a signal x⃗ : D → Rl , a time point τ ∈ D is called a variable point if the truth value of a

proposition changes at the time τ on the signal x⃗ . For example, the set of variable points with
respect to the proposition y > 2 for the signal y = |t − 3| is {1, 5}.

Definition 2.8. Given a signal x⃗ : D → Rl , a time point τ ∈ D is a variable point of x⃗ with respect
to a proposition p (x⃗ ) if for some neighborhood B ∋ τ , there are different truth values u and v such
that p (x⃗ (t )) = u for every t ∈ B ∩ [0,τ ) and p (x⃗ (t )) = v for every t ∈ B ∩ (τ ,∞).

In this paper we consider the STL model checking problem for bounded signals. There are two
bound parameters: the domain of a signal is bounded by a given time τmax ∈ R

+, and the number
of variable points in a signal is bounded by a given number k ∈ N.

Definition 2.9 (STL Bounded Model Checking). An STL formula φ is satisfied at a time τ0 on a
hybrid automaton H up to bounds τmax > τ0 + fr (φ) and k ∈ N, denoted by H ,τ0 |=k,τmax φ, iff
x⃗ ,τ0 |= φ for every trajectory x⃗ ∈ H with at most k variable points such that sup(dom(x⃗ )) ≤ τmax.

3 SYNTACTIC SEPARATION OF STL

We first introduce a syntactic separation procedure of an STL formula so that the satisfaction
of each subformula can be exclusively determined by disjoint parts of a signal. We argue that
this problem is quite nontrivial for STL, because there are usually overlaps between local time
constraints of different subformulas. For this reason, we define a more expressive temporal logic,
called STL-GT, and present a separation of STL-GT that meets this requirement.
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3.1 Local Separation of STL

Consider the STL formula φ = □[1,5] (x > 0→ ^[1,3] y < 10). The satisfaction of the formula φ (at
global time 0) depends on the segment of the signal (x ,y) over the time interval [1, 8]. Our goal is
to obtain an equivalent formula in which each subformula depends only on a disjoint segment of a
signal, say, before 2, at 2, or after 2. In principle, we can separate the formula φ according to its
local temporal contexts, given by the intervals [1, 5] and [1, 3] in φ. The following equivalence rule
in [Hunter et al. 2013] can be used to separate this formula:

φU[0,∞)φ
′ ≡ φU<τφ

′ ∨
(

□<τφ ∧ ^=τ ((φ ∧ φ ′) ∨ φU>0φ
′)
)

.

However, this kind of łlocal separationž does not exclusively separate the entire formula, allowing
overlaps between different segments. By the above equivalence, the formula φ can be rewritten
into the following STL formula that is separated at time 2:

□[1,2) (x > 0→ ^[1,3] y < 10) ∧ ^=2 (x > 0→ ^[1,3] y < 10) ∧ □(2,5] (x > 0→ ^[1,3] y < 10)

Observe that the subformula □[1,2) (x > 0 → ^[1,3] y < 10) depends on the segment over [1, 5),
and the subformula □(2,5] (x > 0→ ^[1,3] y < 10) depends on the segment over (2, 8]. There is an
unintended overlap (2, 5), because the local temporal context [1, 3] is not considered. As a matter
of the fact, combining such local temporal contexts in a proper way is very difficult, and thus there
has been no satisfactory way for separating STL formulas into disjoint parts.

3.2 STL with Global Time

We consider a simple extension of STL, called signal temporal logic with global time (STL-GT),
by also adding global time constraints. The only syntactic difference from STL is that temporal
operators of STL-GT contain extra global time intervals K , besides local time intervals I .

Definition 3.1 (STL-GT Syntax). The syntax of STL with global time (STL-GT) is defined by

φ := true | f (x⃗ ) > 0 | ¬φ | φ ∧ φ | φ UK
I φ

where x⃗ : D → Rl is a signal, f : Rl → R is a real-valued function, and I ,K ⊆ D are any intervals
of nonnegative real numbers in the time domain D.

Intuitively, φ UK
I φ
′ means that φ ′ will hold, simultaneously, at some łlocalž time in the interval I

and some łglobalž time in the interval K , and until then φ holds. Similarly, we define other common
temporal operators as syntactic abbreviations as follows:

^
K
I φ ≡ trueUK

I φ, □K
I φ ≡ ¬^

K
I ¬φ, φRK

I φ
′ ≡ ¬((¬φ)UK

I (¬φ
′))

The satisfaction of STL-GT formulas takes into account global time intervals as well as local time
intervals. The global interval K in φUK

I φ
′ defines the global temporal context of the subformula

φ ′, because the satisfaction of φUK
I φ
′ requires the satisfaction of φ ′ at some łglobalž time t ′ ∈ K .

Unlike STL, we can explicitly express the global temporal contexts of subformulas in STL-GT.

Definition 3.2 (STL-GT Semantics). The satisfaction of an STL-GT formula at time t over a signal
x⃗ , denoted by x⃗ , t |= φ, is inductively defined as follows:

x⃗ , t |= true

x⃗ , t |= f (x⃗ ) > 0 iff f (x⃗ (t )) > 0

x⃗ , t |= ¬φ iff x⃗ , t ̸ |= φ

x⃗ , t |= φ ∧ φ ′ iff x⃗ , t |= φ and x⃗ , t |= φ

x⃗ , t |= φUK
I φ
′ iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ
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3.2.1 Expressiveness of STL-GT. Any STL formula can be written in STL-GT. E.g., the STL formula

□≤5 (x > 0 → ^[1,3] y < 10) is written as the STL-GT formula □
[0,∞)
≤5 (x > 0 → ^[0,∞)

[1,3] y < 10).

Notice that UI and U
[0,∞)

I
have exactly the same meaning by definition. This implies that an STL-GT

formula with only global interval [0,∞) can be equivalently rewritten into an STL formula by

replacing each occurrence of U[0,∞)

I
by UI , and vice versa. Therefore, STL-GT with only global

interval [0,∞) has the same expressive power as STL.
STL-GT is related to timed propositional temporal logic (TPTL) [Alur and Henzinger 1994]. In

the same way that STL extends metric temporal logic, one may define a signal version of TPTL.
TPTL formulas can contain many clock variables. For example, the TPTL formula

x .(□y.(y ≤ 5→ (p → ^z.(z ≤ 2 ∧ x > 1 ∧ q))))

contains three clock variables x , y, and z. Any STL formula can be written using one clock variable
denoting each local time; e.g., the STL formula□≤5 (x > 0→ ^[1,3]y < 10) is written as the formula
□l .(l ≤ 5 ∧ x > 0 → ^l .(l ∈ [1, 3] ∧ y < 10)). Similarly, any STL-GT formula can be written in
TPTL using two clock variables, one for local times, and the other for global times.

TPTL is strictly more expressive than MTL without past temporal operators. (MTL with past has
the same expressiveness power as TPTL [Hunter et al. 2013].) Bouyer et al. showed that the TPTL
formula x .^(p ∧ x ≤ 1 ∧ □(x ≤ 1→ ¬q)) has no equivalent formula in MTL [Bouyer et al. 2005].
However, it can be written as ^≤1

[0,∞)
(p ∧ □≤1

[0,∞)
¬q) using the STL-GT syntax. Since STL is a signal

version of MTL, this formula demonstrates that STL-GT is strictly more expressive than STL.

Proposition 3.3 (Expressiveness of STL-GT). STL-GT is strictly more expressive than STL.

STL-GT with only global interval [0,∞) is as expressive as STL.

Remark. It is worth noting that STL-GT captures a subclass of TPTL that is expressive enough
for separation of STL. The full expressiveness of TPTL is not needed in this paper. Moreover, the
greater expressiveness of TPTL makes it more difficult to define a separation of TPTL formulas,
because TPTL allows writing any quantifier-free constraint over multiple clock variables.

3.3 Separation of STL-GT

We first show a number of equivalences to obtain a separation of STL-GT. Usual equivalence laws
for STL, including distributive laws for the Until operator, also hold for STL-GT as follows.

Lemma 3.4. For nonnegative intervals I , J ,K ⊆ R+, we have the following equivalences:

φUK
I (φ

′ ∨ψ ′) ≡ φUK
I φ
′ ∨ φUK

I ψ
′(1) (φ ∧ψ )UK

I φ
′ ≡ φUK

I φ
′ ∧ ψUK

I φ
′(2)

φUK
I∪Jφ

′ ≡ φUK
I φ
′ ∨ φUK

J φ
′(3) φUK∪L

I φ ′ ≡ φUK
I φ
′ ∨ φUL

I φ
′(4)

In STL-GT, the zero interval {0} can be used to bound its global temporal context. If x⃗ , t |= φUK
=0φ

′,
the global time t must be in the interval K . From this we have the following equivalences.

Lemma 3.5. For nonnegative intervals I ,K ,L ⊆ R+, we have:

φUK
I (^

L
=0 φ

′) ≡ φUK∩L
I φ ′(1) ^

K
I (^

L
=0 φ) ≡ ^

K∩L
I φ(2) □K

I (□
L
=0 φ) ≡ □K∩L

I φ(3)

(□K
=0φ)U

L
I φ
′ ≡ ^L

I φ
′, if sup(L) ≤ inf (K ) and L ∩ K = ∅(4)

Consider the problem of separating an STL-GT formula φUK
I φ
′ at time τ that is earlier than the

global interval K . As depicted in Fig. 4, φUK
I φ
′ holds if and only if (i) the subformula φ holds until

τ , and (ii) the rest of the formula φUK
I φ
′ holds after τ . The first condition is written as the STL-GT

formula□≤τ
≥0 φ, and the second condition can be specified by restricting the global temporal context

to the interval (τ ,∞). Similarly, we can separate a formula with respect to the local interval I ,
where the second condition can be specified by shifting the local temporal context by time τ .
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0 Kτ

φ φ'

Fig. 4. Separation of φUK
I
φ ′ at time τ ≤ inf (K )

Lemma 3.6. For a time τ and nonnegative intervals I ,K ⊆ R+, we have:

(1) φUK
I φ
′ ≡ □≤τ

≥0 φ ∧ (□>τ
=0 φ)U

K
I φ
′, if 0 ≤ τ ≤ inf (K ).2

(2) φUK
I φ
′ ≡ □≥0<τ φ ∧ ^

≥0
=τ (φU

K
I−τφ

′), if 0 ≤ τ ≤ inf (I ).

We now present a separation of an STL-GT formula φUK
I φ
′ at an arbitrary time τ , based on the

equivalence explained above. Again, we fix either the local interval I or the global interval K , and
separate the other interval at time τ . Hence, there are two ways to separate STL-GT formulas:

• Global separation: the global interval K is separated into [0,τ ), {τ }, and (τ ,∞).
• Local separation: the local interval I is separated into [0,τ ), {τ }, and (τ ,∞).

Using the global separation of STL-GT, we can syntactically separate the entire STL-GT formula so
that the satisfaction of each subformula exclusively depends on disjoint segments of a signal. On
the contrary, the local separation of STL-GT has the same limitation as the STL case.

Theorem 3.7 (Separation of UK
I ). For a time τ :

(1) φUK
I φ
′ ≡ φU

K∩[0,τ )
I

φ ′ ∨ (□<τ
≥0 φ ∧ □=τ

≥0 φ ∧ (^
K∩{τ }
I

φ ′ ∨ (□>τ
=0 φ)U

K∩(τ ,∞)

I
φ ′))

(2) φUK
I φ
′ ≡ φUK

I∩[0,τ )φ
′ ∨ (□≥0<τ φ ∧ ((□≥0

=τ φ ∧ ^
K
I∩{τ }

φ ′) ∨ ^≥0
=τ (φU

K
I∩(τ ,∞)−τ

φ ′)))

Proof. (1) By applying Lemma 3.4, we haveφUK
I φ
′ ≡ φU

K∩[0,τ )
I

φ ′ ∨ φU
K∩{τ }
I

φ ′ ∨ φU
K∩(τ ,∞)

I
φ ′.

We still need to separate the formulas φUK∩{τ }
I

φ ′ and φUK∩(τ ,∞)

I
φ ′, because they depend on the

initial segment of a signal over the interval [0,τ ). For φUK∩{τ }
I

φ ′, we obtain the equivalence

φU
K∩{τ }
I

φ ′ ≡ ^
K∩{τ }
I

φ ′ ∧ □≤τ
≥0φ as follows. Since t ′ ∈ K ∩ {τ } implies [t , t ′] = [t ,τ ], we have:

x⃗ , t |= φU
K∩{τ }
I

φ ′iff (∃t ′ ≥ t ) t ′ ∈ K ∩ {τ }, t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t ,τ ]) x⃗ , t ′′ |= φ

iff x⃗ , t |= ^
K∩{τ }
I

φ ′, and x⃗ , t |= □≤τ≥0φ

ForφUK∩(τ ,∞)

I
φ ′, we obtain the equivalenceφUK∩(τ ,∞)

I
φ ′ ≡ □≤τ

≥0 φ ∧ (□>τ
=0 φ) U

K∩(τ ,∞)

I
φ ′ as follows.

If K ∩ (τ ,∞) , ∅, 0 ≤ τ ≤ inf (K ∩ (τ ,∞)) and so we apply Lemma 3.6. If K ∩ (τ ,∞) = ∅, both sides
are equivalent to false. Hence, by the distributive laws and □≥0≤τφ ≡ □≥0<τφ ∧□≥0

=τφ by Lemma 3.4:

φUK
I φ
′ ≡ φU

K∩[0,τ )
I

φ ′ ∨ (□≤τ≥0φ ∧ ^
K∩{τ }
I

φ ′) ∨ (□≤τ≥0 φ ∧ (□>τ
=0 φ) U

K∩(τ ,∞)

I
φ ′)

≡ φU
K∩[0,τ )
I

φ ′ ∨ (□<τ
≥0φ ∧ □=τ≥0φ ∧ (^

K∩{τ }
I

φ ′ ∨ (□>τ
=0 φ) U

K∩(τ ,∞)

I
φ ′))

(2) Similarly, by Lemma 3.4, φUK
I φ
′ ≡ φUK

I∩[0,τ )φ
′ ∨ φUK

I∩{τ }
φ ′ ∨ φUK

I∩(τ ,∞)
φ ′. By definition,

we can easily see the equivalence φUK
I∩{τ }

φ ′ ≡ □≥0≤τφ ∧ ^
K
I∩{τ }

φ ′. By Lemma 3.6, we obtain the

equivalence φUK
I∩(τ ,∞)

φ ′ ≡ □≥0<τ φ ∧ ^
≥0
=τ (φ U

K
I∩(τ ,∞)−τ

φ ′). Consequently:

φUK
I φ
′ ≡ φUK

I∩[0,τ )φ
′ ∨ (□≥0≤τφ ∧ ^

K
I∩{τ }φ

′) ∨ (□≥0<τ φ ∧ ^
≥0
=τ (φ U

K
I∩(τ ,∞)−τφ

′))

≡ φUK
I∩[0,τ )φ

′ ∨ (□≥0<τ φ ∧ ((□≥0
=τφ ∧ ^

K
I∩{τ }φ

′) ∨ ^≥0
=τ (φ U

K
I∩(τ ,∞)−τ φ

′))). □

2Notice that we use the zero interval {0} to restrict the global temporal context of the left operand φ to the interval (τ , ∞)

in the formula (□>τ

=0 φ )U
K

I
φ′, by applying Lemma 3.5.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 51. Publication date: January 2019.



Bounded Model Checking of Signal Temporal Logic Properties using Syntactic Separation 51:11

Example 3.8. Consider the STL-GT formula φ = □≥0[1,5] (x > 0 → ^≥0[1,3] y < 10) again. We can
separate each subformula at time 2 by the global separation as follows:

□<2
[1,5] (x > 0→ ϕ) ∧ □=2[1,5] (x > 0→ ϕ) ∧ □>2

[1,5] (x > 0→ ϕ),

where ϕ ≡ ^<2
[1,3]y < 10 ∨ ^=2[1,3]y < 10 ∨ ^>2

[1,3]y < 10. The satisfaction of each subformula
exclusively depends on one of the disjoint segments over [0, 2), {2}, and (2,∞).

3.4 Global Separation of STL and Restricted Operators

Theorem 3.7 allows separating STL-GT formulas at a given time τ . Because any STL formula can
be considered as an STL-GT formula with the global interval [0,∞) by Proposition 3.3, we can also
separate STL formulas by Theorem 3.7. This section shows the interesting result that the global
separation of STL needs only a subclass of STL-GT with restricted temporal operators.

Definition 3.9. The restricted Until operator ŨK
I is defined as the syntactic abbreviation:

φŨK
I φ
′ ≡ (□K

=0φ)U
K
I φ
′

The restricted Until operator ŨK
I also bounds the global temporal context of the left operand φ

to the interval K . Using Ũ
K
I instead of UK

I , we have the subclass of STL-GT, written STL-GT[Ũ].
Other temporal operators can also be defined as syntactic abbreviations in STL-GT[Ũ]:

^
K
I φ ≡ true ŨK

I φ, □K
I φ ≡ ¬^

K
I ¬φ, φR̃K

I φ
′ ≡ ¬((¬φ)ŨK

I (¬φ
′))

We can easily see that the operators □K
I and ^K

I have the same meaning in both STL-GT and
STL-GT[Ũ]. Applying Theorem 3.7 to the restricted Until operator, any STL-GT[Ũ] formula can be
globally separated at an arbitrary time τ , as stated in the following proposition.

Proposition 3.10 (Global Separation of ŨK
I ). For a time τ :

φŨK
I φ
′ ≡ φŨ

K∩[0,τ )
I

φ ′ ∨ (□
K∩[0,τ )
≥0 φ ∧ □

K∩{τ }
≥0 φ ∧ (^

K∩{τ }
I

φ ′ ∨ φŨ
K∩(τ ,∞)

I
φ ′))

Proof. Recall φŨK
I φ
′ ≡ (□K

=0φ)U
K
I φ
′. By Theorem 3.7, (□K

=0φ)U
K
I φ
′ is equivalent to:

(□K
=0φ)U

K∩[0,τ )
I

φ ′ ∨ (□<τ
≥0□

K
=0φ ∧ □=τ≥0□

K
=0φ ∧ (^

K∩{τ }
I

φ ′ ∨ (□>τ
=0 □

K
=0φ) U

K∩(τ ,∞)

I
φ ′))

Using the equivalence □K
I (□

L
=0 φ) ≡ □K∩L

I φ in Lemma 3.5, we can rewrite the formula as:

(□K
=0φ)U

K∩[0,τ )
I

φ ′ ∨ (□
K∩[0,τ )
≥0 φ ∧ □

K∩{τ }
≥0 φ ∧ (^

K∩{τ }
I

φ ′ ∨ (□
K∩(τ ,∞)
=0 φ) U

K∩(τ ,∞)

I
φ ′))

Because sup(K ∩ [0,τ )) ≤ inf (K ∩ [τ ,∞)), by Lemmas 3.4 and 3.5, we have the rewriting steps:

(□K
=0φ)U

K∩[0,τ )
I

φ ′ ≡ (□
K∩[0,τ )
=0 φ ∧ □

K∩[τ ,∞)
=0 φ)U

K∩[0,τ )
I

φ ′

≡ (□
K∩[0,τ )
=0 φ)U

K∩[0,τ )
I

φ ′ ∧ (□
K∩[τ ,∞)
=0 φ)U

K∩[0,τ )
I

φ ′

≡ (□
K∩[0,τ )
=0 φ)U

K∩[0,τ )
I

φ ′ ∧ trueU
K∩[0,τ )
I

φ ′ ≡ (□
K∩[0,τ )
=0 φ)U

K∩[0,τ )
I

φ ′

As a consequence, the formula (□K
=0φ)U

K
I φ
′ is equivalent to one in the desired form:

(□
K∩[0,τ )
=0 φ)U

K∩[0,τ )
I

φ ′ ∨ (□
K∩[0,τ )
≥0 φ ∧ □

K∩{τ }
≥0 φ ∧ (^

K∩{τ }
I

φ ′ ∨ (□
K∩(τ ,∞)
=0 φ) U

K∩(τ ,∞)

I
φ ′)). □

This proposition implies that STL-GT[Ũ] is precisely related to the global separation of STL.
Any STL formula can be written in STL-GT[Ũ] with the global interval [0,∞), because UI and

Ũ
[0,∞)

I
also have exactly the same meaning. STL-GT[Ũ] can be considered as the smallest syntactic

subclass of STL-GT that includes STL and is closed under the global separation. As a matter of fact,
STL-GT[Ũ] is used for symbolic model checking of STL in the rest of the paper.
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Example 3.11. Consider the STL formula ^≤1 (x ≤ 0 ∧ (y < 5)U≤2 (x > 0)). By separating each
subformula at time 1 using Proposition 3.10, we obtain the STL-GT[Ũ] formula:

^
<1
≤1 (x ≤ 0 ∧ ϕ) ∧ ^=1≤1 (x ≤ 0 ∧ ϕ) ∧ ^>1

≤1 (x ≤ 0 ∧ ϕ)

where ϕ ≡ (y < 5)Ũ<1
≤2 (x > 0) ∨ (□<1

≥0 (y < 5) ∧□=1≥0 (y < 5) ∧ (^=1≤2 (x > 0) ∨ (y < 5)Ũ>1
≤2 (x > 0))).

4 TRANSLATION OF STL TO FIRST-ORDER LOGIC

This section explains how to translate STL into first-order logic for symbolic model checking. We
first define fully stable STL-GT[Ũ] formulas that behave like propositional formulas with respect
to a signal with finite variable points. We then present a procedure to translate a fully stable
STL-GT[Ũ] formula into a quantifier-free first-order logic formula. We show that any STL formula
can be equivalently rewritten into a fully stable STL-GT[Ũ] formula by the syntactic separation.

4.1 Full Stability

Recall that a time point τ is a variable point of a signal if the truth value of a proposition changes
at the time τ . For a set of propositions AP , when a signal x⃗ has no variable point in a particular
interval L, the truth value of every proposition in AP is clearly fixed in L by definition. Such a
stability condition was previously studied for MTL, and has been extended to formulas with respect
to timed words [Alur et al. 1996]. Similarly, we define the stability condition for STL-GT formulas.

Definition 4.1. An STL-GT formula φ is called stable for an interval L with respect to a signal x⃗ ,
if for all time points u,u ′ ∈ L, x⃗ ,u |= φ iff x⃗ ,u ′ |= φ.

The stability condition is important for STL-GT, as a formula can be treated as a propositional
formula if every subformula is stable. Consider the formula φ1 = □<9

<4 (x > 0→ ^<9
[3,5] x > 0), and a

signal x with the single variable point 9, say, x (t ) > 0 for t ∈ [0, 9). In this case, every subformula
is stable, and the satisfaction can be easily determined like a propositional formula as follows:

x , 0 |= □<9
<4 (x > 0→ ^<9

[3,5] x > 0),

iff x , 0 |= □<9
<4 (true → ^

<9
[3,5] true), because x > 0 is stable for [0, 9)

iff x , 0 |= □<9
<4 (true → true), because ^<9

[3,5] true is stable for [0, 4)

iff x , 0 |= true

In STL-GT, the truth value of a formula may still vary according to its global temporal context,
even if all the propositions are stable. A formula φUK

I φ
′ can be vacuously falsified regardless of the

satisfaction of its subformulas φ and φ ′, when the time constraint imposed by the intervals K and I
cannot be satisfied. For example, consider another STL-GT formula

φ2 = □<4
<4 (x > 0→ ^<4

[3,5]x > 0),

obtained from the above formula φ1 by replacing the global interval [0, 9) by [0, 4). For the same
signal x with the single variable point 9, the subformula ^<4

[3,5]x > 0 is not stable in the interval [0, 4)

anymore. For example, x , 0 |= ^<4
[3,5]x > 0, but x , 3 ̸ |= ^<4

[3,5]x > 0. Specifically, x⃗ , t ̸ |= ^<4
[3,5]x > 0

for any t ≥ 1, since there exists no t ′ ≥ t such that t ′ − t ∈ [3, 5] and t ′ ∈ [0, 4) in this case.
This observationmotivates our definition of the full stability. It characterizes a sufficient condition

for STL-GT[Ũ] that all subformulas become stable with respect to their global temporal contexts.
(We will explain how to obtain a fully stable formula using the syntactic separation in Sec. 4.3.)
Let us first define some interval operations for nonnegative intervals: J − I = {j − i | j ∈ J , i ∈ I },
J .− I = (J − I ) ∩ R+, and (J .− I )∁ = R+ \ (J .− I ), for nonnegative intervals I , J ⊆ R+.
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Definition 4.2 (Full Stability). The full stability of an STL-GT[Ũ] formula φ for an interval J with
respect to a signal x⃗ , written stablex⃗ (φ, J ), is inductively defined as follows:

stablex⃗ (true, J )

stablex⃗ ( f (x⃗ ) > 0, J ) iff f (x⃗ ) > 0 is stable for J with respect to x⃗

stablex⃗ (¬φ, J ) iff stablex⃗ (φ, J )

stablex⃗ (φ ∧ φ
′, J ) iff stablex⃗ (φ, J ) and stablex⃗ (φ

′, J )

stablex⃗ (φŨ
K
I φ
′, J ) iff stablex⃗ (φ,K ), stablex⃗ (φ

′,K ), and (J ⊆ K .− I , or J ⊆ (K .− I )∁)

A simple but important idea is to express the satisfiability of the time constraint of an STL-GT[Ũ]
formula φŨK

I φ
′ as a quantifier-free expression in interval arithmetic as follows.

Lemma 4.3. For t ≥ 0 and nonempty intervals I ,K ∈ R+, t ∈ K .− I iff (∃t ′ ≥ t ) t ′ ∈ K and t ′−t ∈ I .

Proof. (⇒) By definition, t = k − i for some k ∈ K and i ∈ I . Let t ′ = k . Observe that t ′ ∈ K
and t ′ − t = i ∈ I . (⇐) Since t − t ′ ∈ −I , t ′ ∈ K , and t ≥ 0, we have t ∈ K .− I . □

For an interval J , if an STL-GT[Ũ] formula φ is fully stable, φ is also stable for J . If any point in J
cannot satisfy its time constraint, φŨK

I φ
′ will be vacuously falsified. If every point in J satisfy the

time constraint, the satisfaction of φŨK
I φ
′ will be entirely determined by its subformulas.

Lemma 4.4. If an STL-GT[Ũ] formula φ is fully stable for an interval J with respect to a signal x⃗ ,

then the formula φ is stable for the interval J with respect to the signal x⃗ .

Proof. The proof is by structural induction on φ. The only nontrivial case is φŨK
I φ
′, because

the other cases are immediate by definition and induction hypothesis. Suppose stablex⃗ (φŨ
K
I φ
′, J )

holds. Then, both stablex⃗ (φ,K ) and stablex⃗ (φ
′,K ) hold, and either J ⊆ K .− I or J ⊆ (K .− I )∁ holds.

If J = ∅, φŨK
I φ
′ is stable for J by definition. If I = ∅ or K = ∅, φŨK

I φ
′ is false and so is stable. Now

let us assume I , J ,K , ∅. Consider t1, t2 ∈ J . For ℓ = 1, 2, by definition,

x⃗ , tℓ |= φŨ
K
I φ
′ iff (∃t ′

ℓ
≥ tℓ ) t

′
ℓ
∈ K , t ′

ℓ
− tℓ ∈ I , x⃗ , t

′
ℓ
|= φ ′, and (∀t ′′ ∈ [tℓ, t

′
ℓ
] ∩ K ) x⃗ , t ′′ |= φ.

There are two cases. When J ⊆ K .− I , since tℓ ∈ J , by Lemma 4.3, there exists t ′
ℓ
≥ tℓ such that

t ′
ℓ
∈ K and t ′

ℓ
− tℓ ∈ I for ℓ = 1, 2. Also, [tℓ, t ′ℓ] ∩ K , ∅, because t

′
ℓ
≥ tℓ and t ′ℓ ∈ K . By induction

hypothesis, both φ and φ ′ are stable for the interval K . Therefore,

x⃗ , t ′1 |= φ
′ iff x⃗ , t ′2 |= φ

′, and (∀t ′′ ∈ [t1, t
′
1] ∩ K ) x⃗ , t

′′ |= φ iff (∀t ′′ ∈ [t2, t
′
2] ∩ K ) x⃗ , t

′′ |= φ.

Therefore, φŨK
I φ
′ is stable for J . When J ⊆ (K .− I )∁, by Lemma 4.3, there exists no t ′

ℓ
≥ tℓ such

that t ′
ℓ
∈ K and t ′

ℓ
− tℓ ∈ I . Therefore, x⃗ , tℓ ̸ |= φŨK

I φ
′, for ℓ = 1, 2. Thus, φŨK

I φ
′ is stable for J . □

Notice that if a formula φŨK
I φ
′ is fully stable for an interval J , then both φ and φ ′ are fully stable

for its global temporal context K . As a consequence of Lemma 4.4, if an STL-GT[Ũ] formula is
fully stable, then every subformula is stable for its global temporal context. Therefore, Lemma 4.4
provides a sufficient condition for each subformula to be stable for its global temporal context.

Remark. It is crucial in Def. 4.2 that only STL-GT[Ũ] formulas are taken into account. In the proof
of Lemma 4.4, to apply the induction hypothesis, it is necessary to restrict the global temporal
context of the left operand of φŨK

I φ
′ to the interval K . For the normal Until operator, the global

temporal context of φ also includes the initial segment [0, inf K], in addition to K .
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4.2 First-Order Logic Translation of Fully Stable Formulas

It is straightforward to translate a fully stable STL-GT[Ũ] formula into first-order logic. Because
each subformula of a fully stable formula is stable for its global temporal context, as mentioned
above, the satisfaction of the entire formula can be evaluated just like a propositional formula.
Using this fact, we present a simple procedure to translation a fully stable STL-GT[Ũ] formula φ
into a quantifier-free first-order logic formula of size O ( |φ |) as follows.

Definition 4.5 (First-Order Translation). For an STL-GT[Ũ] formula φ and a signal x⃗ , the first-order
translation fotr x⃗ (φ, J ) for a nonempty interval J is inductively defined by:

fotr x⃗ (true, J ) = true

fotr x⃗ ( f (x⃗ ) > 0, J ) = f (x⃗ (a)) > 0, for a ∈ J (e.g., a = (sup(J ) + inf (J ))/2)

fotr x⃗ (¬φ, J ) = ¬ fotr x⃗ (φ, J )

fotr x⃗ (φ ∧ φ
′, J ) = fotr x⃗ (φ, J ) ∧ fotr x⃗ (φ

′, J )

fotr x⃗ (φŨ
K
I φ
′, J ) = J ⊆ K .− I ∧ fotr x⃗ (φ,K ) ∧ fotr x⃗ (φ

′,K )

Example 4.6. Consider the formula φ = □
(2,4)
[0,2] (x > 0 → ^<5

[1,3] y < 5), and a signal with one

variable point {5}. The formula φ is fully stable for [1, 2], because (2, 4) ⊆ [0, 5) .− [1, 3] = [0, 4) and
[1, 2] ⊆ (2, 4) .− [0, 2] = (0, 4). The first-order translation of φ for [1, 2] is then:

fotr x⃗ (□
(2,4)
[0,2] (x > 0→ ^<5

[1,3] y < 5), [1, 2])

= [1, 2] ⊆ (2, 4) .− [0, 2]→ (fotr x⃗ (x > 0, (2, 4)) → fotr x⃗ (^
<5
[1,3] y < 5, (2, 4)))

= [1, 2] ⊆ (2, 4) .− [0, 2]→ (x (3) > 0→ ((2, 4) ⊆ [0, 5) .− [1, 3] ∧ y (2.5) < 5))

An STL-GT[Ũ] formulaφ is equisatisfiable to its first-order translation fotr x⃗ (φ, J ) over J , provided
that φ is fully stable for the interval J with respect to the signal x⃗ . (We will explain how to obtain a
fully stable formula in Sec. 4.3 and how to encode the requirements for the signal in Sec. 5.)

Theorem 4.7. Given an STL-GT[Ũ] formula φ, if φ is fully stable for a nonempty interval J with

respect to a signal x⃗ , then (∃t ∈ J ) x⃗ , t |= φ ⇐⇒ fotr x⃗ (φ, J ).

Proof. The proof is by structural induction on φ. The base cases are immediate by definition.

• (φ = ¬ϕ): Because ¬φ is fully stable for J , the formula φ is fully stable for J . By Lemma 4.4, φ
is also stable for J , ∅, and thus (∃t ∈ J ) x⃗ , t |= ϕ iff (∀t ∈ J ) x⃗ , t |= ϕ. By induction hypothesis,
(∃t ∈ J ) x⃗ , t |= ¬ϕ iff ¬(∀t ∈ J ) x⃗ , t |= ϕ iff ¬(∃t ∈ J ) x⃗ , t |= ϕ iff ¬fotr x⃗ (φ, J ).

• (φ = ϕ ∧ ϕ ′): Because ϕ ∧ ϕ ′ is fully stable for J , both ϕ and ϕ ′ are fully stable for J . First, if
(∃t ∈ J ) x⃗ , t |= ϕ ∧ ϕ ′, then (∃t ∈ J ) x⃗ , t |= ϕ and (∃t ∈ J ) x⃗ , t |= ϕ ′. By induction hypothesis,
fotr x⃗ (φ, J ) ∧ fotr x⃗ (φ

′, J ). Conversely, if fotr x⃗ (φ, J ) ∧ fotr x⃗ (φ
′, J ), by induction hypothesis, (∃t ∈

J ) x⃗ , t |= ϕ and (∃t ∈ J ) x⃗ , t |= ϕ ′. Since φ and φ ′ are stable for J , (∀t ∈ J ) x⃗ , t |= ϕ ∧ x⃗ , t |= ϕ ′.

• (φ = ϕŨK
I ϕ
′): Since ϕŨK

I ϕ
′ is full stable for J , stablex⃗ (φ,K ), stablex⃗ (φ

′,K ), and either (J ⊆ K .− I )

or (J ⊆ K .− I )∁. Further, by Lemma 4.4, ϕŨK
I ϕ
′ is stable for J . By definition, x⃗ , t |= ϕŨK

I ϕ
′ iff

(∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= ϕ ′, and (∀t ′′ ∈ [t , t ′] ∩ K ) x⃗ , t ′′ |= ϕ .

ś (⇒) If (∃t ∈ J ) x⃗ , t |= ϕŨK
I ϕ
′, since ϕŨK

I ϕ
′ is stable for J , ∅, (∀t ∈ J ) x⃗ , t |= ϕŨK

I ϕ
′. Therefore,

from (∀t ∈ J ) (∃t ′ ≥ t ) t ′ ∈ K ∧ t ′ − t ∈ I , by Lemma 4.3, we have J ⊆ K .− I . Since t ′ ∈ K and
[t , t ′] ∩ K , ∅, by induction hypothesis, we have fotr x⃗ (ϕ

′,K ) and fotr x⃗ (ϕ,K ).

ś (⇐) If fotr x⃗ (ϕU
K
I ϕ
′, J ), then J ⊆ K .− I , fotr x⃗ (ϕ,K ), and fotr x⃗ (ϕ

′,K ). Since ∅ , J ⊆ K .− I , by
Lemma 4.3. (∃t ∈ J ) (∃t ′ ≥ t ) t ′ ∈ K ∧ t ′− t ∈ I . Because ϕ and ϕ ′ are stable for K , by induction
hypothesis, x⃗ , t ′ |= ϕ ′ and (∀t ′′ ∈ [t , t ′] ∩ K ) x⃗ , t ′′ |= ϕ hold for any t ′ ∈ K . □
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1 3 5 62 4 7

P = {1,5,7}

Q = {1,3,5,6,7}

Fig. 5. Two partition P = {1, 5, 7} and Q = {1, 3, 5, 6, 7}, where P ⊆ Q

4.3 Full Separation

This section presents a separation procedure to obtain a fully stable STL-GT[Ũ] formula with
respect to a signal with finite variable points τ1 < · · · < τn . We first introduce some definitions that
are necessary to formally define our procedure. For a set of time points {τ1, · · · ,τn }, an interval
can be divided into a collection of disjoint subintervals, called a partition. For example, [0, 10) can
be divided into five subintervals [0, 1), {1}, (1, 3), {3}, and (3, 10), by two time points 1 and 3.

Definition 4.8. A finite set of time points P = {τ1, . . . ,τn } is called a partition of an interval D if
inf (D) ≤ τ1 < · · · < τn ≤ sup(D). A partition P divides D into a set of disjoint subintervals:

JPKD = {{τi }, (τi ,τi + 1) ⊆ D | 1 ≤ i < n} ∪ {D ∩ [0,τ1),D ∩ (τn ,∞)}

For two partitions P and Q of the same interval D, the partition P is called finer than Q if P ⊇ Q . A
restriction P ↾ E by a subinterval E ⊆ D is the partition P ∩ E.

For two partitions P1 and P2 of an intervalD, the union P1∪P2 is also a partition ofD, which is finer
than both of P1 and P2. An interval in a finer partitionQ ⊇ P is a subset of one in the coarser partition
P . For example, consider two partitions P = {1, 5, 7} and Q = {1, 3, 5, 6, 7} of the interval [1,∞). As
depicted in Fig. 5, any interval in JQK[1,∞) = {{1}, (1, 3), {3}, (3, 5), {5}, (5, 6), {6}, (6, 7), {7}, (7,∞)} is
a subset of some interval in JPK[1,∞) = {{1}, (1, 5), {5}, (5, 7), {7}, (7,∞)}.

Lemma 4.9. For two partitions P and Q of an interval D:

(1) if Q ⊇ P , for any interval L ∈ JQKD , there exists L
′ ∈ JPKD such that L ⊆ L′; and

(2) if E ⊆ D, for any interval L ∈ JP ↾ EKE , there exists L
′ ∈ JPKD such that L ⊆ L′.

We ready to define our full separation procedure. First, we assign to each subformula ϕ a partition
I (ϕ). The base partition for propositions is a set of variable points, and a partition of φŨK

I φ
′ is

inductively built using the partitions for their subformulas. The intuition behind the construction
is to make I (φŨK

I φ
′) fine enough to satisfy the full stability condition in Def. 4.2, by adding all the

points obtained by subtracting I ’s endpoints from the partitions for the subformulas.

Definition 4.10 (Partition Construction). For an STL-GT[Ũ] formula φ and a base partition B, a
partition mapping I assigns to each subformula ϕ a partition I (ϕ) of [0,∞), inductively constructed
as follows, where e (I ) denotes the set of endpoints (e.g., inf (I ) and sup(I )) of an interval I :

I ( f (x⃗ ) > 0) ⊇ B,

I (¬φ) ⊇ I (φ),

I (φ ∧ φ ′) ⊇ I (φ) ∪ I (φ ′),

I (φŨK
I φ
′) ⊇
⋃

τ ∈P

{τ − e ∈ [0,∞) | e ∈ e (I )}, for P = (I (φ) ∪ I (φ ′) ∪ e (K )) ↾ (K ∪ e (K )).

A partition mapping I is minimal if every ⊇ is an equality in the definition. In this case, the size of
I (φŨK

I φ
′) is at most 2|(I (φ) ∪ I (φ ′) ∪ e (K )) ↾ (K ∪ e (K )) |. In total, the size of I is O (k · 2h (φ ) ),

where k is the size of the base partition B, and h(φ) is the height of the formula φ.
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Example 4.11. Consider the STL-GT[Ũ] formula φ = □≥0[0,2] (x > 0→ ^≥0[1,3] y < 5) and the base
partition {0, 5, 7}. A partition mapping I is then given by:

I (x > 0) = I (y < 5) = {0, 5, 7} I (x > 0→ ^≥0[1,3] y < 5) = {0, 2, 4, 5, 6, 7}

I (^≥0[1,3] y < 5) = {2, 4, 6} I (□≥0[0,2] (x > 0→ ^≥0[1,3] y < 5)) = {0, 2, 3, 4, 5, 6, 7}

We describe the global separation procedure for φŨK
I φ
′, given multiple time points τ1 < · · · < τn ,

based on Proposition 3.10. Let T = (τ1, . . . ,τn ) be an increasing sequence of time points. We denote
the empty sequence by ∅, and (τ1,τ2, . . . ,τn ) by (τ1,T

′) with the suffix T ′ = (τ2, . . . ,τn ).

Definition 4.12 (Global Separation Procedure). For an STL-GT[Ũ] formula φŨK
I φ
′ and a sequence

T , the global separation sep(φŨK
I φ
′,T ) is the STL-GT[Ũ] formula inductively defined by:

sep(φŨK
I φ
′,∅) ≡ φŨK

I φ
′

sep(φŨK
I φ
′, (τ ,T )) ≡ φŨ

K∩[0,τ )
I

φ ′ ∨ (□
K∩[0,τ )
≥0 φ ∧□

K∩{τ }
≥0 φ ∧ (^

K∩{τ }
I

φ ′ ∨ sep(φŨ
K∩(τ ,∞)

I
φ ′,T )))

We then apply the global separation procedure to separate each subformula φŨK
I φ
′ by the

partition for its subformulas, i.e., (I (φ)∪I (φ ′)∪e (K )) ↾ (K ∪e (K )), so that the resulting separated
formulas of φŨK

I φ
′ are fully stable for each interval in the partition I (φŨK

I φ
′).

Definition 4.13 (Full Separation Procedure). For an STL-GT[Ũ] formula φ and a partition mapping
I, the full separation fsepI (φ) is an STL-GT[Ũ] formula inductively defined as follows:

fsepI (true) ≡ true

fsepI ( f (x⃗ ) > 0) ≡ f (x⃗ ) > 0

fsepI (¬φ) ≡ ¬fsepI (φ)

fsepI (φ ∧ φ
′) ≡ fsepI (φ) ∧ fsepI (φ

′)

fsepI (φŨ
K
I φ
′) ≡ sep

(

fsepI (φ) Ũ
K
I fsepI (φ

′), (I (φ) ∪ I (φ ′) ∪ e (K )) ↾ (K ∪ e (K ))
)

The size of fsepI (φ) can be linear with respect to the size of a partition mappingI, if subterms are
shared as usual. The full separation fsepI (φ) is equivalent to the original formula φ by Theorem 3.7.
Moreover, fsepI (φ) is fully stable with respect to a signal with finite variable points.

Theorem 4.14. Consider an STL-GT[Ũ] formula φ, a signal x⃗ with finite variable points, and a

partition mapping I. The full separation fsepI (φ) is fully stable for any interval J ∈ JI (φ)K[0,∞) ,

provided that the base partition of I contains all the variable points of x⃗ .

Example 4.15. For the STL-GT[Ũ] formula φ = □≥0[0,2] (x > 0 → ^≥0[1,3] y < 5) and the partition

mapping I in Example 4.11, we separate ^≥0[1,3] y < 5 by the partition I (y < 5) = {0, 5, 7}, and

separate φ by I (x > 0→ ^≥0[1,3] y < 5) = {0, 2, 4, 5, 6, 7}. The full separation fsepI (φ) is then:

fsepI (φ) =
∧

I ∈J{0,2,4,5,6,7}K[0,∞)

□I
[0,2] (x > 0→

∨

J ∈J{0.5.7}K[0,∞)

^
J
[1,3] y < 5).

Thanks to Theorem 4.14, the formula fsepI (φ) is fully stable for any interval in JI (φ)K[0,∞) with
respect to any signal with the variable points {0, 5, 7}. By Theorem 3.7, fsepI (φ) ≡ φ.

4.3.1 Proof of Theorem 4.14. We first state some lemmas that are necessary to prove the theorem. If
a formula φ is stable for an interval L, then φ is clearly stable for any subinterval J of L by definition.
We can easily see that the same property also holds for the full stability.

Lemma 4.16. If φ is fully stable for an interval L, then φ is fully stable for any subinterval of L.
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The global separation sep(φŨK
I φ
′,T ) is a Boolean combination of its top-level subformulas of

the forms: φŨL
I φ
′, □L

≥0φ, □
L
≥0φ, ^

L
I φ
′, and φŨL

I φ
′. For the temporal operators of these top-level

subformulas, the global intervals are in the partition T of the interval K .

Lemma 4.17. Given an STL-GT[Ũ] formula φ and a partition P of K , for a top-level subformula of

sep(φŨK
I φ
′,T ), every nonempty global interval of its top-level temporal operator is in JT KK .

To build a partition I (φŨK
I φ
′) in Def. 4.2, we add all the points obtained by subtracting I ’s

endpoints e (I ) from the partitions for the subformulas to make I (φŨK
I φ
′) fine enough to satisfy

the full stability condition. The following proves that this is indeed the case.

Lemma 4.18. Given intervals K , I ,D ⊆ R+ and a partition P of K that includes K ’s endpoints, for

any interval L ∈ J
⋃

τ ∈P {τ − e ∈ D | e ∈ e (I )}KD , either L ⊆ J .− I or L ⊆ (J .− I )∁ for each J ∈ JPKK .

Consider an STL-GT[Ũ] formula φ, a signal x⃗ with a finite set B of variable points, and a partition
mapping I, where the base partition of I includes B. Theorem 4.14 states that stablex⃗ (fsepI (φ), J )
holds for any interval J ∈ JI (φ)K[0,∞) . The proof is by structural induction on φ as follows.

• (φ = true): fsepI (true) = true, which is always fully stable by definition.

• (φ = f (x⃗ ) > 0): For any subinterval of J ∈ JI ( f (x⃗ ) > 0)K[0,∞) , f (x⃗ ) > 0 is stable, because
I ( f (x⃗ ) > 0) ⊇ B and thus J includes no variable point. Therefore, stablex⃗ ( f (x⃗ ) > 0, J ). Since
fsepI ( f (x⃗ ) > 0) = f (x⃗ ) > 0, stablex⃗ (fsepI ( f (x⃗ ) > 0), J ) holds.

• (φ = ¬ϕ): Consider an interval J ∈ JI (¬ϕ)K[0,∞) . Because I (¬ϕ) is finer than I (ϕ) by Def. 4.10,
J is a subinterval of some interval J ′ ⊆ JI (ϕ)K[0,∞) by Lemma 4.9. By induction hypothesis,
stablex⃗ (fsepI (ϕ), J

′), and by Lemma 4.16, stablex⃗ (fsepI (ϕ), J ) holds. Therefore, by definition:

stablex⃗ (fsepI (ϕ), J ) iff stablex⃗ (¬fsepI (ϕ), J ) iff stablex⃗ (fsepI (¬ϕ), J ).

• (φ = ϕ1 ∧ ϕ2): Consider an interval J ∈ JI (ϕ1 ∧ ϕ2)K[0,∞) . Similarly, since I (ϕ1 ∧ ϕ2) is finer
than both of I (ϕ1) and I (ϕ2), by Lemma 4.9, J is a subinterval of some J1 ⊆ JI (ϕ1)K[0,∞)

and of some J2 ⊆ JI (ϕ2)K[0,∞) . By induction hypothesis and Lemma 4.16, stablex⃗ (fsepI (ϕ1), J )
and stablex⃗ (fsepI (ϕ2), J ). Therefore, by definition, stablex⃗ (fsepI (ϕ1), J ) ∧ stablex⃗ (fsepI (ϕ2), J ) iff
stablex⃗ (fsepI (ϕ1) ∧ fsepI (ϕ2), J ) iff stablex⃗ (fsepI (ϕ1 ∧ ϕ2), J ).

• (φ = ϕ1ŨK
I ϕ2): Consider an interval J ∈ JI (ϕ1Ũ

K
I ϕ2)K[0,∞) . Let

P = (I (ϕ1) ∪ I (ϕ2) ∪ e (K )) ↾ (K ∪ e (K )), Q =
⋃

τ ∈P {τ − e ∈ [0,∞) | e ∈ e (I )}.

Since I (ϕ1ŨK
I ϕ2) is finer than the partition Q by Def. 4.10, J is a subinterval of some interval

J ′ ∈ JQK[0,∞) . It suffices to show stablex⃗ (fsepI (ϕ1Ũ
K
I ϕ2), J

′), since then stablex⃗ (fsepI (ϕ1Ũ
K
I ϕ2), J )

by Lemma 4.16. By definition, fsepI (ϕ1Ũ
K
I ϕ2) = sep(fsepI (ϕ1)Ũ

K
I fsepI (ϕ2), P ), which is a Boolean

combination of top-level subformulas of the forms:

fsepI (ϕ1)Ũ
L
I fsepI (ϕ2), □

L
≥0fsepI (ϕ1), □

L
≥0fsepI (ϕ1), ^

L
I fsepI (ϕ2), fsepI (ϕ1)Ũ

L
I fsepI (ϕ2)

By Lemma 4.17, for each global interval L for these top-level subformulas, L ∈ JPKK . Observe
that L ∈ JPK[0,∞) also holds, since e (K ) ⊆ P . Because P = (I (ϕ1) ∪ I (ϕ2) ∪ e (K )) ↾ (K ∪ e (K )) is
more restrictive and finer than both of I (ϕ1) and I (ϕ2), by induction hypothesis, Lemma 4.9, and
Lemma 4.16, stablex⃗ (fsepI (ϕ1),L) and stablex⃗ (fsepI (ϕ2),L) hold. By Lemma 4.18, for J ′ ∈ JQK[0,∞) ,

either J ′ ∈ (L .− I ) or J ′ ∈ (L .− I )∁ holds. Therefore, each top-level subformula is fully stable for J ′

by Def. 4.2, and consequently, stablex⃗ (fsepI (ϕ1Ũ
K
I ϕ2), J

′). □
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∃q1, . . . ,qk ∃x⃗
0
1 , . . . , x⃗

0
k ∃x⃗

t
1 , . . . , x⃗

t
k ∃τ0,τk+1. 0 = τ0 < τ1 < · · · < τk < τk+1 = τmax ∧

init (q1, x⃗
0
1 ) ∧ x⃗

t
1 = flow (q1, x⃗

0
1 ,τ1 − τ0) ∧ ∀t ∈ [0,τ1 − τ0). inv (q1,flow (q1, x⃗

0
1 , t )) ∧

k
∧

i=2

jump(qi−1, x⃗
t
i−1,qi , x⃗

0
i ) ∧ x⃗

t
i = flow (qi , x⃗

0
i ,τi − τi−1) ∧ ∀t ∈ [0,τi − τi−1). inv (qi ,flow (qi , x⃗

0
i , t )) ∧

n
∧

j=1

k+1
∧

i=1

(∀t ∈ (0,τi − τi−1). pj (flow (qi , x⃗
0
i , t ))) ∨ ¬(∀t ∈ (0,τi − τi−1). pj (flow (qi , x⃗

0
i , t )))

Fig. 6. The encoding Ψ
k,τmax
H

(τ1, . . . ,τk ) of a bounded trajectory with variable points in {τ1, . . . ,τk }

5 SYMBOLIC MODEL CHECKING OF STL

In this section we present a symbolic model checking procedure for STL properties. We explain
how to encode the STL model checking problem of hybrid automata as first-order logic formulas
over the real numbers, up to bound k of variable points, based on our translation method. We then
describe our STL model checking algorithm for hybrid automata, which is refutationally complete
for bounded signals with finite variability, and discuss its complexity.

5.1 Encoding of STL Model Checking

5.1.1 Time Bound of Signals. We first choose a time bound τmax to determine the satisfaction of
an STL formula φ. For an STL formula φ and a chosen bound τmax ≥ 0, we can easily obtain the
bounded restriction φ |τmax using the global separation. The formula φ |τmax is an STL-GT[Ũ] formula
where every global interval is bounded by τmax. Simply, φ |τmax can be built by separating every
subformula at the bound τmax, and by replacing each subformula that refers to the unknown future,
i.e., (τmax,∞), by a Boolean constant. If the time bound τmax is less than the future-reach fr (φ), then
φ |τmax is a bounded under-approximation of φ. If τmax ≥ fr (φ), both φ and φ |τmax are equivalent.

Lemma 5.1. For an STL formula φ and τmax ≥ 0, there is an STL-GT[Ũ] formula φ |τmax such that:

(1) each global interval in φ |τmax is bounded by τmax;

(2) x⃗ , t |= φ |τmax =⇒ x⃗ , t |= φ, for t ≥ 0; and

(3) x⃗ , t |= φ |τmax ⇐⇒ x⃗ , t |= φ, for 0 ≤ t < τmax − fr (φ).

5.1.2 Encoding of Signals. In order to encode the existence of a bounded trajectory, we apply
SMT-based techniques for reachability of hybrid automata. The reachability of a hybrid automaton
H , involving a finite number of jumps, can be reduced to the satisfiability of a first-order logic
formula over the real numbers, provided that the init, inv, jump, and flow conditions are encoded
in first-order logic [Cimatti et al. 2012b]. Nonlinear functions, such as polynomials and solutions
of Lipschitz-continuous ODEs, can also be used to specify flow conditions in these approaches
[Eggers et al. 2015; Fränzle and Herde 2007; Jovanović and de Moura 2012; Kong et al. 2015].
Given a set of propositions AP = {p1 (x⃗ ), . . . .pn (x⃗ )}, finding a signal x⃗ ∈ H containing up to

k variable points is a special case of reachability. Without loss of generality, assume that jumps
can happen at any time without state changes. Consider k first-order variables τ1 < · · · < τk with
linear order constraints. The k variability of x⃗ is equivalent to say that every proposition is stable
for each interval (τi ,τi+1), 0 ≤ i ≤ k , where τ0 = 0 and τk+1 = τmax. This condition can easily be
encoded in the form of invariant conditions. As a consequence, the problem of finding a trajectory
with at most k variable points can be reduced to the reachability up to k mode changes.
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J ( f (x⃗ ) > 0) = {τ1, . . . ,τk } J (¬φ) = J (φ) J (φ ∧ φ ′) = J (φ) ∪ J (φ ′)

J (φŨK
I φ
′) = {w1, . . . ,wN }, for P = J (φ) ∪ J (φ ′) ∪ e (K ), and N = |e (I ) | · |P |

Ψ
J

f (x⃗ )>0
= true ΨJ¬φ = ΨJφ Ψ

J

φ∧φ′ = ΨJφ ∧ Ψ
J

φ′

Ψ
J

φŨK
I
φ′
= ΨJφ ∧ Ψ

J

φ′ ∧

N−1
∧

i=1

wi ≤ wi+1

∧
∧

τ ∈P

∧

e ∈e (I )

(

(τ ∈ K ∪ e (K ) ∧ τ − e ≥ 0) →
∨

w ∈W

w = τ − e
)

∧
∧

w ∈W

(

w = 0 ∨
∨

τ ∈P

∨

e ∈e (I )

(τ ∈ K ∪ e (K ) ∧ τ − e ≥ 0 ∧ w = τ − e )
)

Fig. 7. A symbolic partition J and its partition constraint Ψ
J
φ (τ1, . . . ,τk )

Using this idea, the existence of a bounded signal x⃗ ∈ H with variable points in the set {τ1, . . . ,τk }
can be encoded as a first-order logic formula Ψ

k,τmax
H

(τ1, . . . ,τk ) in Fig. 6. This formula encodes
the definition of the trajectory in Def. 2.2, together with the stability condition. Each i-th step is
in mode qi , and the values of X begin with x⃗0i (at time τi−1) and end with x⃗ ti (at time τi ). At the
beginning of the first step, the initial condition init (q1, x⃗

0
1 ) holds, and at the beginning of each i-th

step, for 2 ≤ i ≤ k , the jump condition holds from the final values x⃗ ti−1 of the previous step to the
starting values x⃗0i of the current step. The invariant and the stability conditions are encoded as

formulas with a universal quantifier over time. The size of Ψk,τmax
H

(τ1, . . . ,τk ) is O (k ).

5.1.3 Encoding of Partitions. Consider a set of symbolic variable points τ1 < · · · < τk , given
by first-order variables. We construct a symbolic partition mapping J , where each partition is
a set of first-order variables. The constraint for the variables to be a partition mapping for the
full separation is encoded as a quantifier-free first-order logic formula. As Def. 4.10 for concrete
partitions, the base partition for propositions is given by the set {τ1, . . . ,τn }, and a partition for
Boolean connectives is given by J (¬φ) = J (φ) and J (φ ∧ φ ′) = J (φ) ∪ J (φ ′).
A symbolic partition J (φŨK

I φ
′) is defined as a set of fresh first-order variables {w1, . . . ,wN },

with linear order constraints w1 ≤ w2 ≤ · · · ≤ wN . The number N is the maximum size of the
partition that is determined by the size of the subformulas’ partitions J (φ) and J (φ ′). As explained
in Sec. 4.3, the partition of φŨK

I φ
′ contains all the points obtained by subtracting the local interval

I ’s endpoints from the partition for the subformulas P = (J (φ) ∪ J (φ ′) ∪ e (K )) ↾ (K ∪ e (K )).

Therefore, the number N is |J (φ) ∪J (φ ′) ∪ e (K ) | multiplied by the number of I ’s endpoints |e (I ) |.
For example, the interval [0, 5) has two endpoints, but [1,∞) has one endpoint.

It is straightforward to construct the quantifier-free first-order logic formula ΨJφ (τ1, . . . ,τk ) that

includes every partition constraint of J . The only nontrivial case is J (φŨK
I φ
′) = {w1, . . . ,wN }.

The encoding includes the linear order constraintsw1 ≤ · · · ≤ wN , which are non-strict because the
size of the partition can be smaller than the maximal case. For the constraint between J (φŨK

I φ
′)

and the partition for the subformulas P , we encode the following set inclusion relations:
⋃

τ ∈P

{τ − e ∈ [0,∞) | e ∈ e (I )} ⊆ J (ϕŨK
I ϕ
′) ⊆ {0} ∪

⋃

τ ∈P

{τ − e ∈ [0,∞) | e ∈ e (I )},

Notice that J (ϕŨK
I ϕ
′) may not be minimal, because 0 can be a redundant element. This condition

is necessary to deal with the case when the minimal partition is empty.
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Given an STL-GT[Ũ] formula φ and a symbolic base partition {τ1, . . . ,τk }, Fig. 7 summarizes
how to construct a symbolic partition J and its partition constraint ΨJφ (τ1, . . . ,τk ). If the size of

the base partition is k , the size of the top partition J (φ) is O (k · 2h (φ ) ). Because the size of the set
inclusion constraint for φŨK

I φ
′ is O (2( |J (φ) | + |J (φ ′) | + 2)2), the size of the top-level constraint

is O (k2 · 4h (φ ) ). The accumulated size of the entire formula ΨJφ is O ( |φ | · k2 · 4h (φ ) ).

5.1.4 Encoding of STL Counterexamples. For a hybrid automaton H , a counterexample of an STL
formula φ can be encoded as follows, given a number k and a time bound τmax. First, we build a
first-order logic formula Ψk,τmax

H
(τ1, . . . ,τk ) with free variables {τ1, . . . ,τk }. Second, we construct a

symbolic partition mapping J for the negated formula¬φ |τmax , together with its partition constraint

Ψ
J

¬φ |τmax
(τ1, . . . ,τk ). Third, we obtain the translation Ψ

k,τmax
¬φ (τ0) = fotr x⃗ (fsepJ (¬φ |τmax ), {τ0}) of the

full separation fsepJ (¬φ |τmax ), as explained in Sec. 4. Consider the conjunction:

Ψ
k,τmax
H,¬φ

(τ0) = Ψ
k,τmax
H

∧ Ψk,τmax
¬φ (τ0) ∧ Ψ

J

¬φ |τmax

We claim that this formula is unsatisfiable iff every trajectory of H with at most k variable points
satisfies the STL formula φ, up to the time bound τmax, If Ψ

k,τmax
H,¬φ

(τ0) is satisfiable, by construction,

there exists a bounded trajectory x⃗ ∈ H with a time bound τmax, where its variable points are in
{τ1, . . . ,τn }. A concrete partition mapping can be built from the base partition {τ1, . . . ,τn }, and
the translation of the full separation of ¬φ |τmax is satisfiable. By Theorem 3.7, Theorem 4.7, and
Theorem 4.14, ¬φ |τmax is satisfied by the signal x⃗ at time τ0. Conversely, suppose that there exists
such a counterexample x⃗ ∈ H such that x⃗ ,τ0 |= ¬φ |τmax . By construction, there exists a set of time

points {τ1, . . . ,τn } that contains all variable points of x⃗ and satisfies Ψk,τmax
H

. Based on {τ1, . . . ,τn },

we can construct a partition mapping I that satisfies ΨJ
¬φ |τmax

. By the above theorems again, the

translation Ψ
k,τmax
¬φ (τ0) is satisfiable, because x⃗ ,τ0 |= ¬φ |τmax . Consequently:

Theorem 5.2. Given a hybrid automaton H , an STL formula φ, a time bound τmax, a variability

bound k , and an initial time τ0, Ψ
k,τmax
H,¬φ

(τ0) is unsatisfiable iff H ,τ0 |=k,τmax φ |τmax (i.e., x⃗ ,τ0 |= φ |τmax

for every trajectory x⃗ ∈ H with at most k variable points such that sup(dom(x⃗ )) ≤ τmax).

5.2 SMT-Based Bounded Model Checking

Our bounded model checking algorithm for STL is summarized in Alg. 1. For a hybrid automatonH ,
an STL formula φ, a time bound τmax, and a maximum bound N , the algorithm builds a first-order
logic formula that encodes a counterexample of φ up to k variable points, where 0 ≤ k ≤ N . The
correctness of the algorithm is given by Theorem 5.2. If the encoding is satisfiable, there exists a
counterexample of φ with up to k variable points (i.e., H ,τ0 ̸ |= φ |τmax ), and the algorithm reports the
counterexample using the satisfiable assignment (line 9). If the encoding is not satisfiable, we can
guarantee that there is no counterexample of φ up to the bounds τmax and k (i.e.,H ,τ0 |=k,τmax φ |τmax ).
We can repeat this procedure by incrementing the number k until k = N .

Our algorithm uses an SMT solver to check the satisfiability of the encoding (i.e., checkSat in
line 8). The universal quantification in the encoding is introduced to express invariant and stability
conditions. For linear and polynomial hybrid automata, because these conditions can be encoded as
quantifier-free formulas [Cimatti et al. 2012a], the entire encoding can be quantifier-free. In this case,
the satisfiability is decidable, and an SMT solver, such as Z3 [De Moura and Bjùrner 2008], provides
a decision procedure for the encoding [Jovanović and de Moura 2012]. If the continuous dynamics
involves transcendental functions, such as solutions of ODEs, the satisfiability is undecidable; but
there exist various tools based on approximation methods, such as dReal [Gao et al. 2013a].
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Algorithm 1: Bounded Model Checking Algorithm of STL

Input: Hybrid automaton H , STL formula φ, time bound τmax, maximum bound N
Output: True, or a counterexample of φ

1 ¬φ ←− ¬φ |τmax ; // Lemma. 5.1

2 for k = 0 to N do

3 B ←− {τ1,τ2, . . . ,τk };

4 ΨH ←− encoding of H ’s trajectory with variable points B ; // Fig. 6

5 J ←− symbolic partition for ¬φ with base partition B ; // Fig. 7

6 ΨJ ←− partition constraint for J with respect to ¬φ ; // Fig. 7

7 Ψ¬φ ←− fotr x⃗ (fsepJ (¬φ), {0}) ; // Def. 4.5 and Def. 4.13

8 if checkSat(ΨH ∧ ΨJ ∧ Ψ¬φ) is Sat then

9 return counterexample(result.satisfiableAssignment);

10 return True;

Our algorithm is refutationally complete for bounded signals with finite variability. A signal has
finite variability if there is only a finite number of variable points between any two time points.
Consider a time bound τmax ≥ 0 and an STL formula φ. Suppose that there exists a counterexample
x⃗ that has finite variability. Then, in the interval [0,τmax), the signal x⃗ has a finite number of
variable points, say n ∈ N. By running our algorithm up to the bound n, a formula that encodes a
counterexample of φ with at most n variable points is constructed. By Theorem 5.2, the encoding is
satisfiable because x⃗ is such a counterexample, and a counterexample of φ is reported.
The complexity of the algorithm is determined by two factors: the size of the encoding and

the complexity of the underlying decision procedure. Consider a bound k for one iteration. As
mentioned, the size of the formula ΨH is O (k ), the size of the symbolic partition J is O (k · 2h (φ ) ),
the size of the partition constraint ΨJ isO ( |φ | · k2 · 4h (φ ) ). Because the size of the full separation is
linear in both the size of the partition and the size of the formula, the size of Ψ¬φ isO ( |φ | ·k · 2h (φ ) ),
provided that common subterms are shared. In order to share a subformula ϕ, we introduce an
extra variable χϕ with constraint χϕ ↔ ϕ, and replace each occurrence of ϕ by χϕ . Therefore:

Proposition 5.3. In Alg. 1, the size of the encoding for k (line 8) is O ( |φ | · k2 · 4h (φ ) ).

Checking the satisfiability of SMT constraints is NP-hard [Biere et al. 2009], and the worst-case
complexity is often very high. Specifically, typical algorithms for solving polynomial constraints
are doubly exponential [Jovanović and de Moura 2012]. This implies that for polynomial hybrid
automata, the complexity of SMT-based algorithms, including ours, is also doubly exponential in k .
(This high complexity is unavoidable, because the reachability problem is already quite difficult.)
Despite that, the computation is often feasible in practice, as shown in Sec. 6.

6 EXPERIMENTAL EVALUATION

To experimentally evaluate our methods, we have developed a prototype tool that implements our
STL model checking algorithm of Alg. 1. We have defined a simple API to specify hybrid automata
and STL formulas in Python, and implemented functionality to perform STL model checking. In our
tool, we use the Z3 solver [De Moura and Bjùrner 2008] as a subroutine to check the satisfiability
of the generated formulas. Because Z3 can deal with nonlinear real arithmetic [Jovanović and
de Moura 2012], STL properties of polynomial hybrid automata can be verified using our tool up to
given bounds. We apply the quantifier-free encoding [Cimatti et al. 2012a] to eliminate universal
quantification from the encoding. The benchmark models and the prototype implementation are
available at https://github.com/cee5539/stlMC/tree/popl2019.
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Table 1. Hybrid automata models and their STL formulas

Model STL Formulas

Cars
f1 : □[0,100] (dist > 0.1)
f3 : ^[12,20] (dec2 → ^[3,18]acc2)

f2 : □[0,20] (dist < 6→ ^[0,15]acc2)
f4 : ^[4,40] (dec2U[10,20] ( |x1−x2 | ≤ 0.5∧ |y1−y2 | ≤ 0.5))

Thermostats
f1 : □[0,40] (x1 ≤ 21)
f3 : □[0,10] ((x2 > 20)U[0,5]on1)

f2 : □[0,20] ((x2 > 20)R[2,12) (x1 ≤ 10))
f4 : ^[0,20] (off 1 ∧ off 2 → □[0,5] (on1 ∨ on2))

Watertanks
f1 : □[0,50] (0 < x1 ≤ 9 ∧ 0 < x2 ≤ 9)
f3 : □[0,10] (x1 < 4.9→ ^[0,10] (x1 ≥ 5.1))

f2 : ^[5,15) (off 1 → ^[0,7] (on1 ∧ x1 > 5.5))
f4 : □[0,20] ((on1 ∧ on2) → ^[0,5] (off 1 ∨ off 2))

Railroad
f1 : ^(0,50) (pos ≤ 0)
f3 : □[3,50] (^[5,20] (angle ≥ 80))

f2 : □[20,40] (angle ≥ 80→ ^[1,20] (pos ≤ 0))
f4 : □[10,60] (angle ≥ 80→ □[20,40] (angle < 60))

Batteries
f1 : □(0,20.5) (^[3,14] (d1 ≥ 1.4))
f3 : □(0,50) (d1 > 0.5 ∧ d2 > 0.5)

f2 : ^(5,30] ((live1 ∧ live2) → □[7.5,25) (live1 ∧ live2))

f4 : □(10,50] ((д1 ≥ 0 ∨ д2 ≥ 0)U(1,15) (dead1 ∧ dead2))

Model |Q | |X | Model |Q | |X | Model |Q | |X |

Cars (Linear) 6 2 Thermostats 4 2 (linear) / 4 (poly) Railroad 4 2 (linear) / 4 (poly)
Cars (Poly) 3 17 Watertanks 4 2 (linear) / 4 (poly) Batteries 6 4 (linear) / 6 (poly)

We have conducted experiments on STL model checking of various polynomial hybrid automata.
As summarized in Table 1, five different models are considered: (i) autonomous driving of two
cars, (ii) two networked thermostat controllers, (iii) two networked water tank controllers, (iv) a
controller for a railroad gate, and (v) a load management controller for two batteries. These examples
are adapted from existing benchmarks on nonlinear hybrid systems [Alur 2015; Bae and Gao 2017;
Fox et al. 2012; Platzer 2008; Raisch et al. 1999]. For each model, we consider two variants: a
polynomial hybrid automaton with nonlinear functions, and a simplified model with only linear
functions, where (transcendental) flows are approximated using Taylor series and discretization.
Therefore, total 10 different models have been used in the experiments.

We consider four STL properties for each model, including nontrivial formulas with nested
temporal operators. For example, the formula □(10,50] ((д1 ≥ 0 ∨ д2 ≥ 0)U(1,15) (dead1 ∧ dead2))

includes the Until operator inside another temporal operator, and various types of intervals with
non-zero left endpoints. We have performed bounded model checking of these STL properties up
to k = 50 for linear models, and k = 20 for polynomial models. For time bounds τmax, different
time bounds are assigned to different models, since τmax depends on model parameters. We have
measured the size of the encoding and the running time, including SMT solving by Z3, for each
case of (model, formula,k ). All the experiments in this section were conducted on Intel Xeon 2.6
GHz with 512 GB memory, where we set a timeout of 150 minutes.

The experimental results, summarized in Table 2, show that our model checking algorithm can
deal with nontrivial STL properties of complex models. For linear models, all the experiments
up to k = 50, except for the formulas f1 and f3 of Cars, were terminated within 5 minutes. The
nonlinear models show more unpredictable results. E.g., for Watertanks, the analysis of the formula
f1 took 17.45 seconds for k = 8, but took 16.06 seconds for k = 12. This unpredictability is due to
the underlying algorithms and heuristics for Z3, which try to find satisfiable assignments for the
encoding. It is possible that a satisfiable assignment or a contradiction can be found earlier for a
bigger k , depending on branching heuristics, learned clauses, restarting policies, etc. It is worth
noting that our method can guarantee the correctness for STL up to given bounds, but existing
łincompletež methods cannot provide any assurance even for k = 1.
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Table 2. STL bounded model checking

(a) Linear models (up to k ≤ 50)

k = 10 k = 20 k = 30 k = 40 k = 50

Size Time (s) Size Time (s) Size Time (s) Size Time (s) Size Time (s)

Cars

f1 81,481 6.83 251,311 21.65 512,341 45.73 864,571 79.62 1,308,001 128.55
f2 132,508 12.75 438,958 60.59 922,208 376.07 1,582,258 475.93 2,419,108 1,085.60
f3 23,575 1.97 62,565 5.25 117,555 9.93 188,545 16.14 275,535 24.16
f4 139,259 13.19 455,619 60.74 952,379 195.63 1,629,539 639.49 2,487,099 1,582.02

Themo

f1 18,258 1.62 52,038 4.37 101,818 8.50 167,598 13.97 249,378 21.07
f2 91,078 7.73 294,118 24.72 611,958 52.77 1,044,598 92.17 1,592,038 145.25
f3 90,526 7.62 293,066 25.06 610,406 52.76 1,042,546 92.38 1,589,486 146.99
f4 138,048 11.98 464,268 39.93 981,688 87.71 1,690,308 159.39 2,590,128 275.19

Water

f1 27,159 2.25 80,249 6.72 160,139 13.49 266,829 22.27 400,319 33.28
f2 129,895 10.99 437,265 37.88 925,035 84.57 1,593,205 154.50 2,441,775 249.84
f3 127,589 10.67 429,089 37.12 907,389 81.35 1,562,489 146.01 2,394,389 234.13
f4 135,166 11.47 458,666 40.47 973,366 87.88 1,679,266 159.17 2,576,366 292.58

Railroad

f1 16,859 1.47 49,289 4.13 97,719 8.22 162,149 13.87 242,579 20.84
f2 127,333 10.89 428,623 38.04 906,713 84.54 1,561,603 153.86 2,393,293 257.33
f3 74,237 6.29 237,027 20.48 491,017 43.70 836,207 76.97 1,272,597 120.32
f4 127,333 10.83 428,623 37.84 906,713 83.67 1,561,603 150.02 2,393,293 243.20

Battery

f1 83,621 6.85 255,571 21.13 518,721 42.85 873,071 72.85 1,318,621 110.27
f2 135,287 11.24 444,437 37.17 930,387 77.79 1,593,137 133.94 2,432,687 200.94
f3 30,529 2.60 79,789 6.62 148,649 12.22 237,109 19.43 345,169 28.48
f4 100,733 8.40 313,103 26.06 640,273 53.70 1,082,243 90.54 1,639,013 141.68

(b) Nonlinear models (up to k ≤ 20)

k = 4 k = 8 k = 12 k = 16 k = 20

Size Time(s) Size Time(s) Size Time(s) Size Time(s) Size Time(s)

Cars

f1 9,091 0.78 19,759 1.69 32,987 2.76 48,775 4.10 67,123 5.64
f2 35,183 2.95 95,307 7.92 183,719 15.34 300,419 25.33 445,407 37.53
f3 34,238 2.86 93,606 7.77 181,262 15.17 297,206 25.09 441,438 37.33
f4 27,777 2.33 70,581 5.86 131,753 11.01 211,293 17.82 309,201 26.22

Themo

f1 6,349 14.42 14,613 16.18 25,437 17.08 38,821 24.62 54,765 22.41
f2 25,037 16.58 65,437 19.81 124,205 26.78 201,341 - 296,845 -
f3 24,785 5.78 64,985 - 123,553 - 200,489 - 295,793 -
f4 34771 19.39 96,939 21.85 189,699 29.90 313,051 44.34 466,995 59.61

Water

f1 9,326 14.52 21,898 17.45 38,758 16.06 59,906 18.40 85,342 20.47
f2 33,222 17.23 92,210 2,397.67 180,062 - 296,778 - 442,358 -
f3 32,710 17.68 90,646 24.45 176,870 - 291,382 - 434,182 -
f4 33,999 2.92 95,551 26.44 187,695 8,684.17 310,431 - 463,759 -

Railroad

f1 5,469 0.48 13,061 2.68 23,213 13.57 35,925 19.02 51,197 20.28
f2 31,811 3.42 89,059 23.90 174,595 32.73 288,419 44.42 430,531 59.78
f3 20,727 17.06 53,391 20.33 100,647 25.08 162,495 31.53 238,935 39.44
f4 31,811 18.61 89,059 24.41 174,595 32.99 288,419 45.21 430,531 60.43

Battery

f1 24,601 2.00 60,805 4.90 111,601 9.00 176,989 14.35 256,969 20.87
f2 35,035 2.93 95,303 7.66 183,859 14.76 300,703 24.23 445,835 36.01
f3 10,755 0.96 23,659 2.02 39,699 3.35 58,875 4.80 81,187 6.69
f4 28,789 2.35 72,665 5.89 134,909 11.02 215,521 17.39 314,501 25.66
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7 CONCLUSIONS AND FUTURE WORK

In this paper we have presented symbolic techniques for formally verifying STL properties of CPS
programs. Previous methods for analyzing STL properties are inherently incomplete, due to the
difficulties of dealing with an infinite state space over a continuous time domain. To address this
problem, we have proposed a new foundational technique, namely, syntactic separation of STL,
that allows decomposing a formula so that each subformula depends only on one of the disjoint
segments of a time domain. For this purpose, we have defined a more expressive temporal logic,
called STL-GT, and studied a number of equivalences rules for separating STL-GT formula. Then,
we have developed a separation-based procedure to translate STL into a decidable fragment of
first-order logic. Our procedure is based on the notion of full stability that characterizes a sufficient
condition for STL formulas to behave like propositional formulas. Based on the translation method,
we have presented the first symbolic model checking algorithm for STL properties of hybrid
automata that is refutationally complete for bounded signals under reasonable assumptions. Using
state-of-the-art SMT technology for linear and nonlinear real arithmetic, this allows verifying
general STL properties of CPS programs, which was previously not possible.

There are several directions for future research for improving the proposed techniques. Because
hybrid automata are infinite-state systems, there exists no completeness threshold for STL bounded
model checking; that is, our algorithm cannot verify STL properties of unbounded signals. For
reachability analysis of hybrid automata, there exist many techniques to verify invariant properties
for unbounded time horizon, such as [Gulwani and Tiwari 2008; Platzer and Clarke 2009; Prajna
et al. 2007]. Combining our techniques with these approaches will make it possible to verify STL
properties for unbounded time horizon. Other immediate next steps are to optimize the encoding
to build a smaller size of the formula for better performance, and to apply our algorithm to hybrid
automata with nonlinear ODEs by using a specialized solver for this purpose [Eggers et al. 2015;
Gao et al. 2013a]. Besides SMT-based approaches, reachable-set computation and simulation-based
methods are widely used for analyzing of hybrid automata, as discussed in Sec. 1. Extending our
techniques with these approaches is also one of the important research directions.
A syntactic separation of STL opens a number of possibilities for analyzing continuous-time

temporal logics. As mentioned in Sec. 1, separation is widely used in formal analysis techniques
for discrete programs, including model checking, monitoring, and tableau construction. Similarly,
the syntactic separation techniques for STL also have a wide range of applications for analyzing
real-time and CPS programs. For example, the first-order translation procedure in Sec. 4 already
gives an online monitoring algorithm for STL formulas, if the construction is optimized to remove
redundant computation. The bounded restriction for STL formulas in Lemma 5.1 can be used to
identify the future fragment of a formula given by a partial signal, which is usually a key problem
to address for online monitoring of STL and MTL [Deshmukh et al. 2017; Ho et al. 2014]. Separation
was applied for an on-the-fly tableau construction for MITL≤ , which is a fragment of MTL where
every interval has the form [0,d ) [Geilen 2003]. Similarly, it can be possible to construct a hybrid
automaton for (a decidable fragment) of STL using the syntactic separation.

A PROOFS OF LEMMAS

Lemma 3.4. For nonnegative intervals I , J ,K ⊆ R+, we have the following equivalences:

φUK
I (φ

′ ∨ψ ′) ≡ φUK
I φ
′ ∨ φUK

I ψ
′(1) (φ ∧ψ )UK

I φ
′ ≡ φUK

I φ
′ ∧ ψUK

I φ
′(2)

φUK
I∪Jφ

′ ≡ φUK
I φ
′ ∨ φUK

J φ
′(3) φUK∪L

I φ ′ ≡ φUK
I φ
′ ∨ φUL

I φ
′(4)

Proof. (1) By definition. x⃗ , t |= φUK
I (φ

′ ∨ ψ ′) iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and
(∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ. Notice that x⃗ , t ′ |= φ ′ ∨ψ ′ iff x⃗ , t ′ |= φ ′ or x⃗ , t ′ |= ψ ′.
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(2) Suppose that x⃗ , t |= (φ ∧ ψ )UK
I φ
′ holds. Then, (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and

(∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= (φ ∧ψ ). Observe that using the same t ′, both (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ and
(∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= ψ hold. Therefore, x⃗ , t |= φUK

I φ
′ ∧ ψUK

I φ
′. Now suppose that x⃗ , t |= φUK

I φ
′

and x⃗ , t |= ψUK
I φ
′ hold. Then, there exist t ′1, t

′
2 ≥ t such that:

t ′1 ∈ K , t
′
1 − t ∈ I , x⃗ , t

′
1 |= φ

′, and (∀t ′′ ∈ [t , t ′1]) x⃗ , t
′′ |= φ

t ′2 ∈ K , t
′
2 − t ∈ I , x⃗ , t

′
2 |= φ

′, and (∀t ′′ ∈ [t , t ′2]) x⃗ , t
′′ |= ψ

For t ′ = min(t ′1, t
′
2), t

′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= (φ ∧ψ ).

(3) x⃗ , t |= φUK
I∪J φ

′ iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I ∪ J , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ. Since

t ′ − t ∈ I ∪ J iff t ′ − t ∈ I or t ′ − t ∈ J , we have x⃗ , t |= φUK
I φ
′ ∨ φUK

J φ
′

(4) x⃗ , t |= φUK∪L
I φ ′ iff (∃t ′ ≥ t ) t ′ ∈ K ∪ L, t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ.

Because t ′ ∈ K ∪ L iff t ′ ∈ K or t ′ ∈ L, we have x⃗ , t |= φUK
I φ
′ ∨ φUK

J φ
′. □

Lemma 3.5. For nonnegative intervals I ,K ,L ⊆ R+, we have:

φUK
I (^

L
=0 φ

′) ≡ φUK∩L
I φ ′(1) ^

K
I (^

L
=0 φ) ≡ ^

K∩L
I φ(2) □K

I (□
L
=0 φ) ≡ □K∩L

I φ(3)

(□K
=0φ)U

L
I φ
′ ≡ ^L

I φ
′, if sup(L) ≤ inf (K ) and L ∩ K = ∅(4)

Proof. (1) By definition, x⃗ , t |= φUK
I (^

L
=0 φ

′) iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= ^L
=0 φ

′, and
(∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ. Notice x⃗ , t ′ |= ^L

=0 φ
′ iff t ′ ∈ L and x⃗ , t ′ |= φ ′. Therefore, x⃗ , t |= φUK∩L

I φ ′.

(2) and (3) are immediate by ^K
I φ ≡ trueUK

I φ and □K
I φ ≡ ¬^

K
I ¬φ.

(4) x⃗ , t |= (□K
=0φ)U

L
I φ
′ iff (∃t ′ ≥ t ) t ′ ∈ L, t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= □K

=0φ.
Notice that by definition, (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= □K

=0φ iff (∀t ′′ ∈ [t , t ′]) t ′′ ∈ K → x⃗ , t ′′ |= φ. By
the assumption, t ′ < inf (K ), and therefore t ′′ < K for any t ′′ ∈ [t , t ′]. This immediately means
that (∀t ′′ ∈ [t , t ′]) t ′′ ∈ K → x⃗ , t ′′ |= φ is equivalent to true. Therefore, x⃗ , t |= (□K

=0φ)U
L
I φ
′ iff

x⃗ , t |= trueUL
I φ
′, where trueUL

I φ
′ ≡ ^L

I φ
′ by definition. □

Lemma 3.6. For a time τ and nonnegative intervals I ,K ⊆ R+, we have:

(1) φUK
I φ
′ ≡ □≤τ

≥0 φ ∧ (□>τ
=0 φ)U

K
I φ
′, if 0 ≤ τ ≤ inf (K ).

(2) φUK
I φ
′ ≡ □≥0<τ φ ∧ ^

≥0
=τ (φU

K
I−τφ

′), if 0 ≤ τ ≤ inf (I ).

Proof. (1) We prove a series of semantic equivalences as follows. By definition, x⃗ , t |= φUK
I φ
′

iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ

Because either t ′′ ∈ [0,τ ] or t ′′ ∈ (τ ,∞) always holds, the statement can be rewritten as:

iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and
(∀t ′′ ∈ [t , t ′]) (t ′′ ∈ [0,τ ]→ x⃗ , t ′′ |= φ) and (t ′′ ∈ (τ ,∞) → x⃗ , t ′′ |= φ)

Observe that x⃗ , t ′′ |= □>τ
=0 φ iff t ′′ ∈ (τ ,∞) → x⃗ , t ′′ |= φ for any t ′′ ∈ R by definition. Therefore:

iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and
(∀t ′′ ∈ [t , t ′]) (t ′′ ∈ [0,τ ]→ x⃗ , t ′′ |= φ) and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= □>τ

=0 φ)

Since τ ≤ inf (K ), if t ′ ∈ K , then τ ≤ t ′. In this case, t ′′ ≤ τ implies t ′′ ≤ t ′. Therefore:

iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and
(∀t ′′ ∈ [t ,∞)) (t ′′ ∈ [0,τ ]→ x⃗ , t ′′ |= φ) and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= □>τ

=0 φ)
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Now the condition (∀t ′′ ∈ [t ,∞)) (t ′′ ∈ [0,τ ] → x⃗ , t ′′ |= φ) does not depend on t ′. Hence, the
above statement can be equivalently rewritten as the following statement:

iff (∀t ′′ ∈ [t ,∞)) (t ′′ ∈ [0,τ ]→ x⃗ , t ′′ |= φ), and
(∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′ and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= □>τ

=0 φ)

which is exactly by definition x⃗ , t |= □≤τ
≥0 φ ∧ (□>τ

=0 φ) U
K
I φ
′.

(2) Similarly, we show a series of semantic equivalences as follows. By definition, x⃗ , t |= φUK
I φ
′

iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − t ∈ I , x⃗ , t ′ |= φ ′, and (∀t ′′ ∈ [t , t ′]) x⃗ , t ′′ |= φ

Because 0 ≤ τ ≤ inf (I ), if t ′ − t ∈ I , then t ≤ t + τ ≤ t + inf (I ) ≤ t ′. By subtracting τ from both
sides of t ′ − t ∈ I , and using [t , t ′] = [t , t + τ ) ∪ [t + τ , t ′], we have:

iff (∃t ′ ≥ t ) t ′ ∈ K , t ′ − (t + τ ) ∈ I − τ , x⃗ , t ′ |= φ ′, (∀t ′′ ∈ [t , t + τ )) x⃗ , t ′′ |= φ,
and (∀t ′′ ∈ [t + τ , t ′]) x⃗ , t ′′ |= φ

Observe that the condition (∀t ′′ ∈ [t , t + τ )) x⃗ , t ′′ |= φ does not depend on t ′. Therefore:

iff (∀t ′′ ∈ [t , t + τ )) x⃗ , t ′′ |= φ, and
(∃t ′ ≥ t ) t ′ ∈ K ∧ t ′ − (t + τ ) ∈ I − τ , x⃗ , t ′ |= φ ′, (∀t ′′ ∈ [t + τ , t ′]) x⃗ , t ′′ |= φ

Because 0 ≤ τ ≤ inf (I ), t ′ − (t + τ ) ∈ I − τ implies t ′ ≥ (t + τ ). By introducing a new variable
u = τ + t with an existential quantifier, the above statement can be equivalently rewritten as:

iff (∀t ′′ ∈ [t , t + τ )) x⃗ , t ′′ |= φ, and (∃u ≥ t )u ∈ [0,∞), u − t = τ , and
(∃t ′ ≥ u) t ′ ∈ K , t ′ − u ∈ I − τ , x⃗ , t ′ |= φ ′, (∀t ′′ ∈ [u, t ′]) x⃗ , t ′′ |= φ

which is exactly by definition x⃗ , t |= □≥0<τ φ ∧ ^
≥0
=τ (φU

K
I−τφ

′). □

Lemma 4.17. Given an STL-GT[Ũ] formula φ and a partition P of K , for a top-level subformula of

sep(φŨK
I φ
′,T ), every nonempty global interval of its top-level temporal operator is in JT KK .

Proof. Let T = (τ1, . . . ,τN ). We claim that for each separated subformula of sep(φUK
I φ
′,T ),

the global interval of its top-level temporal operator is one of the following:

K ∩ [0,τ1), K ∩ (τN ,∞), K ∩ {τi }, K ∩ (τi ,τi+1), for 1 ≤ i ≤ N

For a partition P = {τ1, . . . ,τN } of K , these intervals are in JPKK by definition. When N = 1, it is
immediate by definition. Suppose that the claim holds for any increasing sequence of length N − 1,
say, T ′ = (τ2, . . . ,τN ). For T = (τ1,T

′), consider the formula sep(φUK
I φ
′,T ). All the top-level

global intervals are by definition, K ∩ [0,τ1), K ∩ {τ1}, and by induction hypothesis:

K ∩ (τ1,∞) ∩ [0,τ2), K ∩ (τ1,∞) ∩ (τN ,∞), K ∩ (τ1,∞) ∩ (τi ,τi+1), K ∩ (τ1,∞) ∩ {τi },

for 2 ≤ i ≤ N . Thus, the top-level global intervals for sep(φUK
I φ
′,T ) are K ∩ [0,τ1), K ∩ (τN ,∞),

K ∩ (τi ,τi+1), K ∩ {τi }, for 1 ≤ i ≤ N . □

Lemma 4.18. Given intervals K , I ,D ⊆ R+ and a partition P of K that includes K ’s endpoints, for

any interval L ∈ J
⋃

τ ∈P {τ − e ∈ D | e ∈ e (I )}KD , either L ⊆ J .− I or L ⊆ (J .− I )∁ for each J ∈ JPKK .

Proof. Let Q =
⋃

τ ∈P {τ − e ∈ D | e ∈ e (I )} = {µ1, µ2, . . . , µm }, where µ1 < · · · < µm . Consider
an interval L ∈ JQKD . Suppose that the lemma does not hold for J ∈ JPKK . For L ⊆ D to intersect
both J .− I and (J .− I )∁, L must include an endpoint of J .− I in D, andQ contains all such endpoints.
By definition, L has one of the forms {µi }, (µi , µi+1), D ∩ [0, µ1), and D ∩ (µm ,∞), but only L = {µi }
can include an endpoint inQ . But {µi } ⊆ J .− I and {µi } ⊆ (J .− I )∁ cannot hold at the same time. □
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Lemma 4.9. For two partitions P and Q of an interval D:

(1) if Q ⊇ P , for any interval L ∈ JQKD , there exists L
′ ∈ JPKD such that L ⊆ L′; and

(2) if E ⊆ D, for any interval L ∈ JP ↾ EKE , there exists L
′ ∈ JPKD such that L ⊆ L′.

Proof. (1) Let Q = {τ1, . . . ,τn }, where τ1 < · · · < τn . Suppose that the lemma does not hold for
some L ∈ JQKD . The interval L intersects with at least two different intervals in JPKD , because
otherwise, L is a subset of some interval in JPKD . Let µ, µ ′ ∈ L be these intersect points. There exists
an endpoint τ ∈ P between µ and µ ′. Since L is an interval, τ ∈ L, and sinceQ ⊇ P , τ is an endpoint
inQ . By definition, L has one of the forms: {τi }, (τi ,τi+1), D ∩ [0,τ1), D ∩ (τm ,∞). Thus, to include
an endpoint, L has to be {τ }. Because τ is an endpoint in P , {τ } ∈ JPKD , which is a contradiction.

(2) Let P = {τ1, . . . ,τn }, where τ1 < τ2 < · · · < τn . For 1 ≤ j ≤ n − m and 0 ≤ m < n, let
P ↾ E = {τj ,τj+1, . . . ,τj+m }. Consider L ∈ JP ↾ EKE . Clearly, if L has one of the forms {τi } and
(τi ,τi+1), then L ∈ JPKD . There are now two cases: L = E ∩ [0,τj ) or L = E ∩ (τj+m ,∞).
• For L = E ∩ [0,τj ): when j = 1, E ∩ [0,τ1) ⊆ D ∩ [0,τ1), since E ⊆ D. When j > 1, since τj−1 is
smaller than any element of E (otherwise, τj−1 ∈ E), E ∩ [0,τj ) ⊆ (τj−1,τj ).
• For L = E ∩ (τj+m ,∞): when j +m = n, E ∩ (τn ,∞) ⊆ D ∩ (τn ,∞). When j +m < n, since τj+m+1
is greater than any element of E (otherwise, τj+m+1 ∈ E), E ∩ (τj+m ,∞) ⊆ (τj+m ,τj+m+1). □

Lemma 5.1. For an STL formula φ and τmax ≥ 0, there is an STL-GT[Ũ] formula φ |τmax such that:

(1) each global interval in φ |τmax is bounded by τmax;

(2) x⃗ , t |= φ |τmax =⇒ x⃗ , t |= φ, for t ≥ 0; and

(3) x⃗ , t |= φ |τmax ⇐⇒ x⃗ , t |= φ, for 0 ≤ t < τmax − fr (φ).

Proof. With out loss of generality, we assume that an STL formula φ is in negation normal form

with the temporal operators UI and RI . By Proposition 3.10, we immediately have:

x⃗ , t |= ϕŨ
<τmax
I

ϕ ′ =⇒ x⃗ , t |= ϕŨ≥0I ϕ ′, x⃗ , t |= ϕR̂
<τmax
I

ϕ ′ ∧ ^
<τmax
≥0 ϕ =⇒ x⃗ , t |= ϕR≥0I ϕ ′.

Therefore, we obtain an STL-GT[Ũ] formula φ |τmax from the formula φ by replacing each subformula
ϕUIϕ

′ by ϕŨ<τmax
I

ϕ ′, and each subformula ϕRIϕ ′ by ϕR̂
<τmax
I

ϕ ′ ∧ ^
<τmax
≥0 ϕ, where every global

interval is bounded by τmax. Because φ is in negation normal form, x⃗ , t |= φ |τmax implies x⃗ , t |= φ.
It remains to prove x⃗ , t |= φ ⇐⇒ x⃗ , t |= φ |τ , for 0 ≤ t < τ − fr (φ). The proof is by structural
induction. The only nontrivial case is φUIφ

′. First, because t < τ − fr (φUIφ
′), t ′ − t ∈ I implies

t ′ ≤ t + sup(I ) < τ + sup(I ) − fr (φUIφ
′) = τ −max(fr (φ), fr (φ ′)).

That is, t ′ < τ − fr (φ) and t ′ < τ − fr (φ ′). By induction hypothesis, x⃗ , t ′ |= φ iff x⃗ , t ′ |= φ |τ , and
x⃗ , t ′ |= φ ′ iff x⃗ , t ′ |= φ ′ |τ . Hence, x⃗ , t |= φUIφ

′ iff x⃗ , t |= (φ |τ )UI (φ
′ |τ ) iff, by Proposition 3.10,

x⃗ , t |= (φ |τ )Ũ
<τ
I (φ ′ |τ ) ∨ (□<τ

≥0 (φ |τ ) ∧ □=τ≥0 (φ |τ ) ∧ (^=τI (φ ′ |τ ) ∨ (φ |τ )Ũ
>τ
I (φ ′ |τ )))

Since t < τ − sup(I ), the time constraints for x⃗ , t |= ^=τ
I

(φ ′ |τ ) and x⃗ , t |= (φ |τ )Ũ
>τ
I

(φ ′ |τ ) cannot be

satisfied. Therefore, x⃗ , t |= (φ |τ )UI (φ
′ |τ ) iff x⃗ , t |= (φ |τ )Ũ

<τ
I

(φ ′ |τ ) iff x⃗ , t |= (φŨIφ
′) |τ . □
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