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ABSTRACT
Recent years have seen interest in device tracking and lo-

calization using acoustic signals. State-of-the-art acoustic

motion tracking systems however do not achieve millimeter

accuracy and require large separation between microphones

and speakers, and as a result, do not meet the requirements

for many VR/AR applications. Further, tracking multiple

concurrent acoustic transmissions from VR devices today

requires sacrificing accuracy or frame rate. We present Mil-

liSonic, a novel system that pushes the limits of acoustic

based motion tracking. Our core contribution is a novel local-

ization algorithm that can provably achieve sub-millimeter

1D tracking accuracy in the presence of multipath, while

using only a single beacon with a small 4-microphone array.

Further, MilliSonic enables concurrent tracking of upto four

smartphones without reducing frame rate or accuracy. Our

evaluation shows that MilliSonic achieves 0.7mm median 1D

accuracy and a 2.6mm median 3D accuracy for smartphones,

which is 5x more accurate than state-of-the-art systems. Mil-

liSonic enables two previously infeasible interaction applica-

tions: a) 3D tracking of VR headsets using the smartphone

as a beacon and b) fine-grained 3D tracking for the Google

Cardboard VR system using a small microphone array.
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1 INTRODUCTION
Device localization and motion tracking has been a long-

standing challenge in the research community. It is a key

component in Virtual Reality and Augmented/Mixed Reality

applications and enables novel human-computer interactions

including gesture and skeletal tracking. Traditionally, spe-

cialized optical methods such as lasers and infrared beacons

have been used to localize VR headsets and controllers. This
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includes commercial systems like the HTC Vive VR, Ocu-

lus Rift and Sony PlayStation VR [3, 9, 14]. These optical

tracking solutions, however, require separate expensive bea-

cons to emit infrared signals and transceivers to receive and

process data. Existing devices like smartphones lack these

transceivers and hence are unsuitable for such techniques.

Acoustic-based localization and tracking methods have

recently emerged as an attractive alternative to optical sys-

tems [26, 35]. Speakers and microphones, used for emitting

and receiving acoustic signals, are cheap and easy to con-

figure. Furthermore, commodity smartphones and smart

watches already have built-in speakers and microphones,

which makes acoustic tracking an excellent fit for such de-

vices. As shown in Fig. 1(a), a simple microphone array could

act as a beacon to enable 3D location tracking for the Google

cardboard VR system. Conversely, instead of carrying around

additional devices (e.g., HTC IR beacons) to enable tracking

for VR headsets, one could reuse existing smartphones as

beacons to enable 3D localization and motion tracking.

State-of-the-art acoustic motion tracking systems [21, 34]

however do not adequately meet the requirements of VR/AR

applications for three main reasons.

• Tracking accuracy. Acoustic signals suffer from multi-path

where the signal reflects off nearby surfaces before arriving

at the receiver. Thus, existing 1D acoustic tracking accuracy

is 5-10 mm [21], which is much worse than optical systems

and may cause motion sickness with prolonged use [15].

• Microphone/speaker separation. 3D tracking requires trian-

gulation from multiple microphones/speakers, which when

placed close to each other limits accuracy. Prior work that

tracks smartphones uses multiple speakers separated by

90 cm [21], making them difficult to integrate into VR/AR

headsets. Conversely, using a 90 cm beacon for Google card-

board VR is unwieldy and limits portability.

• Concurrency. Tracking multiple headsets remains a chal-

lenge with existing designs. A naïve approach is to time mul-

tiplex the acoustic signals from each device. This however

reduces the frame rate linearly with the number of devices.

We present MilliSonic, a novel system that pushes the

limits of acoustic based motion tracking. Our core contri-

bution is a novel localization algorithm that can achieve

sub-millimeter 1D tracking accuracy in the presence of mul-

tipath, while using only a single beacon with a 4-microphone

array. To achieve this, like prior designs [16, 21], MilliSonic
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Figure 1: Application scenarios: a) tracking aGoogle cardboardVRusing a smallmicrophone array; b) Tracking the 3Dposition
of VR/AR headsets using a smartphone as a beacon. Using the transmissions from the smartwatch to then track it w.r.t. the
headset; c) Concurrently tracking multiple devices with a single microphone array at a high per-device frame rate.

uses FMCW (frequency modulated continuous wave) acous-

tic transmissions where the frequency linearly increases

with time. Prior designs use FMCW to separate reflections

arriving at different times by mapping time differences to

frequency shifts. However, given the limited inaudible band-

width on smartphones, the ability to differentiate between

close-by paths using frequency shifts is limited, thus, limiting

accuracy. Our algorithm instead leverages the phase of the

FMCW reflections to perform tracking. We prove that this

allows us to achieve sub-millimeter 1D tracking. These high

1D accuracies allow us to reduce the separation between mi-

crophones at the beacon and achieve millimeter-resolution

3D tracking and localization. Finally, we show that by have

devices intentionally introduce different time delays to their

FMCW signals, we can support concurrent acoustic transmis-

sions from multiple devices, without reducing the accuracy

or frame rate for each device.

We implement our design using speakers on Android

smartphones including Samsung Galaxy S6, S7 and S9. We

design 15cm × 15cm and 6cm × 5.35cm 4-microphone arrays

using commercial microphones and implement our real-time

tracking algorithms on a Raspberry Pi 3 Model B+ [12].

This paper makes the following contributions.

• We show for the first time how to achieve sub-mm 1D

tracking and localization accuracies using acoustic signals

on smartphones, in the presence of multipath. To achieve

this, we introduce algorithms that use the phase of FMCW

signals to disambiguate between multiple paths.

• We enable multiple smartphones to transmit concurrently

using time-shifted FMCW acoustic signals and enable con-

current tracking without sacrificing accuracy or frame rate.

• We present experimental results that show that MilliSonic

can achieve a median 1D accuracy of 0.7 mm up to distances

of 1 m from the smartphone. The median 1D accuracy is

1.7 mm for distances between 1 and 2 m. MilliSonic’s median

3d accuracy is around 2.6 mm. Further, we can concurrently

track up to four smartphones at a per-device frame rate of

40 frames/sec without sacrificing accuracy.

• Finally, we describe the limitations of our system and

outline additional work required to more comprehensively

evaluate the system in various use case scenarios.

2 APPLICATION SCENARIOS
MilliSonic enables three key application scenarios.

• Current smartphone-based VR headsets (e.g., Google Card-
board) do not have 6DoF motion tracking capability. This is

because of the lack of optical transceivers, which limits their

usage. MilliSonic enables 6DoF motion tracking capability

for smartphone-based VR headsets using only a cheap and

small microphone array as a beacon, without requiring any

hardware modifications at the smartphone.

• Millisonic can transform the smartphone into a portable

beacon for VR tracking. Specifically, instead of requiring the

user to carry optical beacons for VR headsets to enable use

in different environments, a smartphone can be used as a

portable beacon. To do this, manufacturer can integrate a

cheap microphone array into the VR/AR headset. Using this

microphone array, the VR headset can also track the motion

of other acoustic-enabled devices such as smart watches.

• MilliSonic can support concurrent tracking of an unlim-

ited number of microphone arrays (i.e., VR headsets) in the

vicinity of a single speaker (i.e., a smartphone). Furthermore,

it can also support up to four speakers (i.e., smartphone

VR headsets) in the vicinity of a microphone array without

sacrificing accuracy or frame rate.

3 MILLISONIC DESIGN
We first present background on existing FMCW tracking sys-

tems and showwhy they have a limited accuracy for acoustic

tracking. We then present our algorithm that uses the FMCW

phase to achieve sub-mm 1D tracking. We then describe how

2



MilliSonic: Pushing the Limits of Acoustic Motion Tracking CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk

to perform 3D tracking using the 1D locations using multiple

microphones. Finally, we address various practical issues.

FMCW Background
Acoustic tracking is traditionally achieved by computing the

time-of-arrival of the transmitted signals at the microphones.

At its simplest, the transmitted signal is a sine wave, x(t) =
exp(−j2π f t) where f is the wave frequency. A microphone

at a distance of d at the transmitter, has a time-of-arrival of

d = td × c where c is the speed of sound. The received signal
at this distance can now be written as, y(t) = exp(−j2πt(t −
td ). Dividing by x(t), we get ŷ(t) = exp(j2π f td ). Thus, the
phase of the received signal can be used to compute the time-

of-arrival, td . In practice, however, multipath significantly

distorts the received phase limiting accuracy.

To combat multipath, prior work [21, 23] uses Frequency

Modulated ContinuousWave (FMCW) chirpswhere as shown

in Fig. 2 the frequency of the signal changes linearly with

time. FMCW has good autocorrelation properties that al-

low the receiver to differentiate between multiple paths that

each have a different time-of-arrival. Further compared to

OFDM [24] and other waveforms [30], FMCW has high spec-

tral efficiency and is ease of demodulate. Mathematically,

the FMCW signal in Fig. 2 is, x(t) = exp(−j2π (f0 + B
2T t)t) =

exp(−j2π (f0t + B
2T t

2)), where f0, B and T are the initial fre-

quency, bandwidth and duration of the FMCW chirp respec-

tively. In the presence of multipath, the received signal can

be written as, y(t) = ∑M
i=1Aiexp(−j2π (f0(t − ti ) + B

2T (t2 +
t2i − 2tti ))), where Ai and ti =

di (t )
c are the attenuation and

time-of-flight of the ith path. Dividing this by x(t) we get,

ŷ(t) =
M∑
i=1

Aiexp(−j2π (
B

T
tit + f0ti −

B

2T
t2i )) (1)

The above equation shows that multipath with different

times-of-arrival fall into different frequencies. The receiver

uses Discrete Fourier Transform (DFT) to find the first peak

frequency bin, fpeak , that corresponds to the line-of-sight

path to the transmitter. It then computes the distance to the

receiver as, d(t) = cfpeak
B .

While this conventional FMCW processing is effective in

disambiguating multiple paths that is separated by large dis-

tances, it has a limited accuracy when the multiple paths are

close to each other. Specifically, the minimum distance reso-

lution for FMCW is in the order of
c
B when the separation

between frequencies is 1 Hz. Given that smartphones have

a limited inaudible bandwidth of 7 kHz between 17-24 kHz,

prior work cannot distinguish between paths that are close

to the direct line-of-sight path and hence have a limited ac-

curacy [21, 26]. Further, since DFT operations are performed

over a whole chirp duration, it limits the frame rate of the

system to
1

T , where T is the FMCW chirp duration.

frequency

time
f0

B+f0

T
Figure 2: FMCW signal structure.

Sub-mm 1D tracking using FMCW phase
We use phase of the FMCW signals to compute distance.

Thus, instead of using the first peak frequency of the FMCW

signal in the frequency domain to estimate the time-of-arrival,

our algorithms has two key steps: 1) we apply a dynamic

narrow band-pass filter in the time-domain to filter out most

multipath that has a distant time-of-arrival from the direct

path. This leaves us only a small portion of residual indirect

paths around the direct path. 2) We then extract the distance

information from the instantaneous FMCW phase.

Intuition.We provide the intuition for why FMCW phase

provides a better accuracy than existing FMCW approaches.

Traditional FMCW approaches. Let us first understand the

error in traditional peak estimation method for FMCW sig-

nals. Tracking error occurs when we have two paths that

are without a single frequency bin. Let us denote the time-

of-arrival of the direct path as t1 and its frequency in the

demodulated FMCW signal as ft1 . An indirect path with

a time-of-arrival of t2 lies at frequency ft2 in the demod-

ulated signal. When |ft1 − ft2 | < 1, the two peaks merge

together in the frequency domain resulting in a single peak

at approximately (A2ft2 + A1ft1 )/(A2 + A1), where A1 and

A2 are the amplitude of the direct path and the total am-

plitude of the residual indirect paths. Hence, the frequency

error is (A2ft2 + A1ft1 )/(A2 + A1) − ft1 which is equivalent

to a distance error given by, d
(peak )
e = (A2ft

2
+A1ft

1

A2+A1

− ft1 ) cB =
(ft2 − ft1 )/(1 +

A1

A2

) cB . This error increases linearly with ft2 − ft1
and proportionally increases with A2

A1

.
Our method. In contrast, the error in the phase of the

FMCW signal is significantly smaller. To see this, let us as-

sume that the amplitude of the residual indirect paths after

filters have a lower amplitude than the direct path. As shown

in Fig. 3, the complex representation of the direct path is

represented by the blue vector while that of the sum of indi-

rect paths is represented by the red vector. The sum of the

two vectors is the resulting signal at the receiver which is

represented by the green vector. The maximum phase error

occurs when the red vector is perpendicular to the green

vector and this corresponds to a phase error of sin−1(A2

A1

). The
key observation is that this error does not depend on ft2 − ft1
and increases much slower at sin−1(A2

A1

).
Fig. 4 shows that distance error as a function ofA2/A1 and

|ft2 − ft1 | for both traditional peak estimation techniques as

3
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well as our FMCW phase method. The plots show that the

distance errors using peak estimation is severely affected

by the time-of-flight of the indirect paths. In contrast, the

distance error using our FMCW phase technique is around

10x lower. We describe our algorithm and its theoretical

analysis in more detail in the Appendix.

3D tracking from 1D locations
The above FMCW phase technique allows us to achieve sub-

mm resolution in estimating 1D distances. To achieve 3D

tracking we use information from multiple microphones to

perform triangulation. We use multiple microphones instead

of speakers to reduce the power consumption as well as to

eliminate the complexity of multiplexing the multiple speak-

ers. Since our 1D resolution is high we can also reduce the

separation between the microphones while achieving a good

3D accuracy. Specifically, we place four microphones at four

corners of a rectangle. We have two pairs of microphones in

the vertical position and the other two pairs in the horizon-

tal position. Thus, by computing the intersection of all the

resulting 1D positions, we can compute the 3D location.

We note that the accuracy of triangulation is dependent

on the distance from the microphone array as well as the

separation between the microphones. Specifically, as the dis-

tance from the microphone array increases, the resulting 3D

accuracy become worse. Similarly, as the separation between

microphones increase the 3D accuracy improves, which is

why prior work uses a microphone separation of 90 cm [21].

In our solution, since we already achieve sub-mm 1D resolu-

tion, we can reduce the separation between microphones to

fit the form-factor of VR headset and still achieve good 3D

tracking accuracies upto 2 m. To improve the accuracy and

reduce jitters at larger distances, we average the 3D distance

measurements within each 10ms duration. Incorporating the

15ms latency of the band-pass filter, we get one distance

value every 25ms or a frame rate of 40 frames per second.

Addressing practical issues
We describe the practical issues in designing MilliSonic.

1) Phase ambiguity. Any phase tracking algorithm has to

address the problem of phase ambiguity. Specifically, we can

f

t
f

t

dB

Transmitted signals Demodulated signals
Transmitters

Receiver

Filter 1:

Filter 2:

f

Figure 5: Supporting concurrent transmissions using virtual
time-of-arrival offsets at each VR headset.
only extract the phase modulo 2π from the demodulated

chirp (
ˆϕ(t) = ϕ(t) mod 2π ). This leads to two problems: a)

how to detect any modulo 2π shifts during a single chirp; and

b) how to estimate the initial 2Nπ phase offset, i.e., ϕ(0) =
2Nπ + ˆϕ(0) at the beginning of each chirp.

Because of the band-pass filter, adjacent samples does not

have a phase difference of more than π . The phase error

caused by residual indirect paths is bounded to (−π/2,π/2).
Thus, when the phase modulo 2π sees a sudden jump of

more than π /−π between adjacent samples at t and t − δt ,
there is a modulo 2π jump at that time, which we can correct

by adding or subtracting 2π to the computed phase.

To compute the initial 2Nπ phase offset at the beginning of

each chirp, we use the estimated distance and speed from the

end of the previous chirp. Instantaneous speed is computed

by performing least square linear regression (which is a linear

algorithm in 1D domain) over the distance values in a 10 ms

window to reduce the effects of noise and residual multipath.

Specifically, for the i + 1th received chirp, given the dis-

tance d (i)end and speed v(i)
end estimated from the end of the

ith chirp, we can infer the distance of the beginning of the

current chirp
ˆd (i+1)star t = d (i)end + v

(i)
endδT where δT is the gap

between two chirps. We then find the 2Nπ offset in addition

to the ambiguous initial phase
ˆϕ(0) that minimize the differ-

ence |d (i+1)(0, ˆϕ(0) + 2Nπ ) − ˆd (i+1)star t |. Note that this relaxes
the constraints on speed imposed by prior work [21] and

instead has a constraint on acceleration. Specifically, prior

work [21] had a constraint on the maximum speed of 1 m/s.

In our algorithm, since each 2π difference of the phase corre-

sponds to around 2 cm distance difference, any error smaller

than 1cm will not cause an erroneous 2Nπ estimate. The

gap between two adjacent chirp is 5 ms and the delay of the

band-pass filter is 15 ms. Hence, as long as the acceleration

does not exceed
1cm

20ms×20ms = 25m/s2, our algorithm does

not introduce erroneous phase offsets.

2) Clock synchronization. Clock differences exist in prac-

tice which we need to calibrate to achieve tracking. Specif-

ically, we need to calibrate for the initial phase as well as

any drift due to clock differences. To achieve this, at the

beginning of the session, the user touches the smartphone

speaker with a microphone at the receiver. The receiver

meanwhile starts recording the chirp for five seconds and

runs the above tracking algorithm. Using this setup, we use

4
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autocorrelation to determine a starting time for the chirp at

the receiver. Because in this setup, at zero distance, the signal

has a high SNR, there is no motion and little indirect path,

the estimate of the distance from the peak of the FFT result,

denoted by D, is accurate. As a result, we can find the initial

2Nπ phase offset from D. Specifically, we find the best 2Nπ
which minimizes the differences of the two measurements

|D −d(0, ˆϕ(0)+ 2Nπ )|. Finally, to address the clock drift, the

receiver detects a constant drift in the distance measurement

within the five seconds which is linear to the clock difference.

We then compensate the clock difference by removing this

drift for the following measurements at the receiver side.

3) Failure detection and recovery. Our algorithms relies on

continuous tracking. When tracking failure occurs, the sub-

sequent measurements are also prone to errors. In practice,

failures occur due to occlusions and noise.

While acoustic signal can penetrate some occlusions like

fabrics, for other occlusions like wood and human limbs,

refraction between different transmission mediums causes a

dense multipath around the direct path which is also greatly

attenuated. Therefore, the above algorithm fails because it

doesn’t satisfy the premise that the direct path dominates

the filtered demodulated signal. When such error happens

during a chirp, it will cause fluctuations in phase. Thus, there

would be multiple 2π phase tracking error during the chirp,

leading to a larger than 2cm distance error at the end of the

chirp. When the error happens between two chirps, it will

lead to wrong 2Nπ estimate that causes larger than 2cm
error for the subsequent chirps. Similarly at longer ranges the

signal attenuates which results in noisy phase measurements

which can also lead to wrong 2Nπ estimates.

To detect these failures, we utilize the redundancy across

the microphones. It is unlikely that all the four microphone

encounter the same extra phase error at the same time be-

cause of their different locations. Hence, if the measurements

from some of the four microphones are outliers with at least

2cm measurement errors from the others, it indicates an er-

ror. When such a failure is detected, if the anomaly is only

in one microphone, the receiver compensates the 2π offset

until it is in the similar range of the other three microphones.

If sustained failures occurs (which rarely happens), our algo-

rithms fall back to the traditional peak estimation method

for FMCW signals and notify the user.

4 TRACKING MULTIPLE DEVICES
The algorithm described above is unidirectional in that sig-

nals can only propagate from the speaker to the microphones.

Because of this, MilliSonic can support tracking of an un-

limited number of microphone arrays in the vicinity using a

one single smartphone speaker. Thus a single speaker can

be used as a beacon to support tracking for multiple VR

headsets that integrate our microphone array.

(a) 6cm × 5.35cm (b) 15cm × 15cm

Figure 6: Prototypes of MilliSonic microphone arrays.

On the other hand, tracking multiple smartphone-based

VR headsets like the Google cardboard using a single micro-

phone array is challenging since it involves transmissions

from multiple smartphones. Traditionally, wireless systems

support multiple transmissions using either time-division

multiplexing or frequency-division multiplexing. In time-

division multiplexing, since each smartphone speaker is only

allowed to use a fraction of the time, it translates to a lower

refresh rate that is inversely proportional to the number

of smartphones. Using frequency-division multiplexing is

challenging given the limited inaudible bandwidth on smart-

phones and since the accuracy depends on the bandwidth.

To achieve concurrent transmissions from all the smart-

phone speakers, we note that from Eq. 1, any two received

FMCW paths with a time-of-arrival difference of δt , would
lie in a different FFT bin. This indicates that two devices that

have significantly different time-of-arrivals are at distant

FFT bins and hence can be concurrently decoded.

We utilize this to support concurrent transmissions from

multiple speakers. The challenge is that two devices can

have similar time-of-arrivals. To address this issue, we in-

troduce virtual time-of-arrival offsets at each device. Specifi-

cally, at the beginning, the N smartphones transmit FMCW

chirps using time division. The receiver computes their time-

of-arrivals using our algorithm, denoted by t (i)d for the ith

smartphone and sends back
iT
2N − t (i)d to each transmitter i ,

which is the virtual offset for transmitter i , using a Wi-Fi

connection. The transmitter i then intentionally delays its

transmission by its virtual offset. The receiver picks these

offsets to ensure that they are equally separated across all

the FFT bins. This allows concurrent speaker transmissions.

Now at the receiver, there exist N separate peaks evenly

distributed in the frequency domain, which corresponds to

N evenly distributed time-of-arrivals, where the ith time-of-

arrival is from the ith transmitter. The receiver can regard

transmissions from other transmitters as multipath. Because

of the orthogonality, they are filtered out by the band-pass

filter at the first step. It can then track the phase of each

of them using five different band-pass filters without losing

accuracy nor frame rate. After calculating the time-of-arrival

5
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Figure 7: 1D accuracy compared with CAT and SoundTrak.

of the signal from each speaker, it subtracts the virtual offset

from it and obtains the final distance computation.

We note that because of motion, over time, the time-of-

arrivals for multiple speakers canmerge together. This would

prevent the receiver from tracking all the devices concur-

rently. To prevent this, the receiver sends back a new set of

virtual delays using Wi-Fi whenever the peaks between any

two devices get close to each other in the FFT domain. When

the virtual delays get updated, which happens infrequently,

there is an additional delay of at most one chirp duration (45

ms), divided by the number of transmitters.

5 IMPLEMENTATION
We implement MilliSonic using Android smartphones. We

build an app that emits 45 ms 17.5-23.5 kHz FMCW acoustic

chirps through the smartphone speaker. We tested it us-

ing Samsung Galaxy S6, Samsung Galaxy S9 and Samsung

Galaxy S7 smartphones. We build our microphone array us-

ing off-the-shelf electronic elements shown in Fig. 5. We

use an Arduino Due connected to four MAX9814 Electret

Microphone Amplifiers [1]. We attach the elements to a

20cm×20cm×3cm cardboard and place the four microphone

on four corners of a 15cm × 15cm square on one side of the

cardboard. We also create a smaller 6 cm × 5.35 cm × 3cm
microphone array. We connect the Arduino to a Raspberry

Pi 3 Model B+ [12] to process the recorded samples. The

software is implemented in the Scala programming language

so that it can run on both a Raspberry Pi and a laptop with-

out modification. It utilize multithreading to improve the

performance. In our test, it requires 40ms and 9ms to process

a single 45ms chirp on the Raspberry Pi and PC, respectively.

Hence, it support real-time tracking on both platforms.

6 EVALUATION
We first evaluate the 1D and 3D tracking accuracy in a con-

trolled lab environment. We then recruited ten participants

to evaluate the real-world performance of MilliSonic.

1D Localization Accuracy. To get an accurate ground

truth, we use a linear actuator with a PhidgetStepper Bipo-

lar Stepper Motor Controller [10] which has an movement

resolution of 0.4µm to precisely control the location of the
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Figure 10: Effect of environmental motion, noise, and drift.

platform. We place a Galaxy S6 smartphone on the platform

and place our microphone array on one end of the linear

actuator. At each distance location, we repeat the algorithm

ten times and record the measured distances. We also imple-

ment CAT [21] and SoundTrak [34]. CAT combines FMCW

with Doppler effect that is estimated using an additional car-

rier wave and SoundTrak uses phase tracking. To achieve a

fair comparison, we implement CAT using the same 6kHz
bandwidth for FMCW and an additional 16.5kHz carrier. We

implement SoundTrak using a 20kHz carrier wave. We do

not use IMU data for all three systems.

Fig 7(a) and (b) plot the CDF of the 1D errors for two

different distance ranges. We show the results for MilliSonic,

CAT as well as SoundTrak. The plots show that our system

achieves a median accuracy of 0.7 mm up to distances of 1 m.

In comparison, the median accuracy was 4 and 4.8 for CAT

and SoundTrak respectively. When the distance between the

smartphone and the microphone array is between 1–2 m,

the median accuracy was 1.74 mm, 6.89 mm and 5.68 mm for

MilliSonic, CAT and SoundTrak respectively. This decrease

in accuracy is expected since with increased distance the SNR

of the acoustic signals reduces. We also note that at closer

distances, the error is dominated by multipath which our

algorithm is designed to disambiguate multipath accurately.

Effect of environmental motion and noise. We place

the smartphone at 40cm on the linear actuator. We invite a

participant to randomlymove their body at a distance of 0.2m
away from linear actuator. We also introduce acoustic noise

by randomly pressing a keyboard and playing pop music

using another smartphone that is around 1m away from the

linear actuator. Fig 10a shows the error. We can see that

6
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MilliSonic is resilient to random motion in the environment

because of multipath resilience properties. Further, since

we filter out the audible frequencies, music playing in the

vicinity of our devices, does not affect its accuracy.

Distance drift over time. Tracking algorithms typically

can have a drift in the computed distance over time. We next,

measure the drift in the location as measured by our system

as a function of time. We also repeat the experiment for both

CAT and SoundTrak. Specifically, We place the smartphone

at 40cm on the linear actuator for 10 minutes. We place the

microphone array at the end of the actuator. We measure

the distance as measured by each of these techniques over a

duration of 10 minutes which we plot in Fig. 10b. SoundTrak

and MilliSonic uses phase to precisely obtain the clock dif-

ference of the two devices, while CAT relies on detecting the

drift of peak frequencies, which results in a larger drift. With

a few millimeter drift at 10 minutes, MilliSonic has better

stability than state-of-the-art acoustic tracking systems.

Effect of Environments. To verify the robustness to dif-

ferent environments, we additionally evaluate the 1D accu-

racy in a) an anechoic chamber; b) a 200m2
lobby; and c)

an outdoor open balcony; the median error was 0.75mm,

1.11mm and 0.94mm, respectively, at a distance of 0.6m.

Tracking through occlusions. Unlike optical signals,

acoustic signals can traverse through occlusions like cloth.

To evaluate this, we place the smartphone on a linear actuator

and change its location between 0 to 1 m away from the

microphone array. We place a cloth on the smartphone that

occludes it from the microphone array. We then run our

algorithm and compute the distance at each of the distance

values.We repeat the experiments without the cloth covering

the smartphone speaker. Fig. 8 plots the CDF of the distance

error across all the tested locations both in the presence and

absence of the cloth. The plots show that themedian accuracy

is 0.74 mm and 0.95 mm in the two scenarios, showing that

MilliSonic can track devices through cloth. This is beneficial

when the phone is in the pocket and the microphone array

is tracking its location through the fabric.

3D Localization Accuracy Next, we measure the 3D lo-

calization accuracy of MilliSonic. To do this we create a

working area of 0.6m × 0.6m × 0.4m. We then print a grid of

fixed points onto a 0.6m × 0.6m wood substrate. We place

the receiver on one side of the substrate, and place the smart-

phone’s speaker at each of the points on the substrate. We

also change the height of the substrate across the working

area to test the accuracy along the axis perpendicular to the

substrate. To compare with prior designs, we run the same

implementation of CAT as in our 1D experiments. Note that

while CAT [21] uses a separation of 90 cm, we still use 15cm
microphone separation for CAT. This allows us to perform a

head-to-head comparison as well as evaluate the feasibility

of using a small microphone array.

Fig 9 shows the CDF of 3D location errors for MilliSonic

and CAT in a working area across all the tested locations in

our working area. The plots show that MilliSonic achieves a

median 3D accuracy of 2.6 mm while CAT has a 3D accuracy

of 10.6 mm. The larger errors for CAT is expected since it is

designed for microphone/speaker separations of 90 cm.

To understand the limits of the microphone separation, we

further reduce the microphone separation to 5.35cm using

a breadboard hardware prototype as shown in Fig 5. This

reduces the dimensions of the microphone array to approxi-

mately 6cm × 6cm × 3cm. We show the 3D error results in

Fig. 9 labelled as MilliSonic Mini. We can see that there is

little accuracy degradation. This shows that MilliSonic can

enable a portable beacon design that uses microphone arrays

to track smartphone based Google cardboard VR systems.

Similarly, given these dimensions, the microphone array can

be integrated into a VR headset which can then be tracked

in 3D using a commodity smartphone as a beacon.

Free Motion Tracking with Participants. We build a

simple draw-over-the-air interface based on MilliSonic. We

put our microphone array hardware on the table to act as the

beacon. We implement a software app on Android platforms

where participants can move the smartphone and touch the

screen to draw 2D images on the y − z plane over the air.

Meanwhile, the strokes are rendered on an external screen

in real-time. We use a Samsung S6 smartphone for this study.

We compare MilliSonic to a HTC Vive Controller which is

tracked using the HTC Lighthouse positioning system [3].

Specifically we put two Lighthouse base stations on two

tables with a distance of 2.5m. We attach the HTC Vive

controller to the smartphone using tape and use the HTC

Lighthouse positioning system to track its motion. Since the

Lighthouse positioning system has an accuracy of around

1mm [25], we still use it as the ground truth.

We recruit ten participants (2 female and 8 male) between

the ages of 22-29 to draw on the air using MilliSonic. None of

them were provided any monetary benefits. The participants

were free to draw whatever they like and see the motion on

the screen in real-time.We added a draw button on the screen,

so that when a user pushes the button, the app uses TCP to

send the action to another server which records the traces

and renders them on the screen in real-time. Each participant

had to draw at least one figure of their choosing but could

draw multiple figures if they wanted. The participants in

total drew 14 images. Fig. 11 shows five samples and the

corresponding ground truth captured by a HTC Lighthouse.

We compare MilliSonic’s accuracy with the ground truth

from the HTC Lighthouse system. Because of frame rate

differences, we linearly interpolate the ground truth result,

find the point at the ground truth that is nearest to each point

in our tracking result, and compute their difference. We show

the CDFs of 3D accuracy in Fig. 12 for each of the 14 drawings

7
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(a) Infinity (b) Pac-Man (c) Heart (d) Peppa Pig
Figure 11: Sample drawings by participants. Green and red traces are captured by HTC Lighthouse andMilliSonic respectively.
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Figure 12: The CDF of absolute 3D error across participants.
The black curve corresponds to the Infinity in Fig. 11.

which show accurate tracking capabilities using acoustic

signals. The outlier orange curve corresponds to the infinite
drawing in Fig. 11 which shows that the practical accuracies

are high. There were a few instances when a wrong 2Nπ
phase offset was estimated in the phase ambiguity removal

algorithm on one of the microphones. This was however

detected and successfully recovered by our failure recovery

mechanism and did not affect the following chirp.

We also measure the free motion speed distribution, ac-

celeration distribution and distance distribution across the

participants, which we plot in a Fig. 13. We see a range of

speeds and distances during this user study. We also note

that the maximum acceleration was 21 m/s2 with only 1

occurrence which was below our 25m/s2 limit.

Enabling concurrent transmissions. Finally, to evalu-
ate concurrent transmissions with MilliSonic, we use five

smartphones (3 Galaxy S6, 1 Galaxy S7, 1 Galaxy S9) as trans-

mitters and one single microphone array to track all of them.

We use the same experimental setup as the 1D tracking, but

place all five smartphones on the linear actuator platform.

We repeat experiments with different number of concurrent

smartphones ranging from one to five. Fig. 14 shows the 1D

tracking error of each of the smartphones in the range of

0-1m with different number of concurrent smartphones. We

see that our system can support up to 4 concurrent transmis-

sions without affecting the accuracy. With five concurrent

smartphones, nearby peaks start to interfere with each other,

resulting a slightly worse accuracy.

7 RELATEDWORK
Prior work can be categorized as follows.

Tracking using IMUs. Inertial measurement units (IMUs)

are a frequently used hardware to enable device tracking.

IMUs sense 3D linear acceleration, rotational rate and head-

ing reference which can all be fused together [18]. Gaming

controllers [6, 7] as well as many low-end VR systems [2,

8, 13] use IMUs to support motion tracking. However IMUs

do not accurately provide absolute positioning information.

This is because position requires double integration of accel-

eration, which introduces a large drift error [17].

Tracking using IR/visible light. The HTC Vive VR [3] sys-

tem uses a laser Lighthouse beacon emitting coherent IR

signal to localize the headset as well as the controllers. Here,

a laser emitter sweeps coherent IR light spatially and the 3D

location is computed using the time it takes for the IR signals

to hit the photo-diodes on the receivers. Incoherent, infrared

and visible light from LEDs can also be used for localiza-

tion by cameras using specific colors. The Sony PlayStation

VR (PSVR) [14] system uses special visible colors that are

tracked by a standalone camera located in a fixed position.

Oculus Rift[9] VR system employs a separate IR camera. The

headset and controller are marked with IR LED markers cap-

tured by the IR camera. Despite being accurate enough for

VR/AR applications, these techniques work poorly in bright

environments [11]. More importantly, they require a ded-

icated beacon hardware. In contrast, our design can use a

smartphone as a basestation for tracking the VR headset.

Tracking using cameras. Unlike previous methods, Simul-

taneous Localization and Mapping (SLAM) techniques have

also been used to enable tracking without relying on any

beacon infrastructure. Using SLAM, devices can locate them-

selves solely based on the environment captured by its cam-

era. AR systems such as Microsoft Hololens[5] and Magic

Leap One[4] headsets use SLAM to achieve such tracking

capabilities. SLAM performance however highly depends on

the environment including light conditions and variety of vi-

sual features [22, 28]. Hence, it is not as robust as outside-in

8
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Figure 13: Speed, acceleration and distance distribution during the user study.

tracking methods. SLAM is also a computational intensive

algorithm that often requires specialized hardware acceler-

ators to support real-time tracking. As a result, SLAM is

unlikely to be appropriate for tracking tiny controllers.

Device tracking using acoustic signals. Table. 1 shows recent
work on acoustic localization and tracking. BeepBeep [26]

and Swordfight [35] track 1D distances between phones

but do not achieve 3D localization. Sonoloc[16] realizes dis-

tributed localization and requires 10+ devices to achieve rea-

sonable accuracies. Prior work [33] also achieves 2D tracking

by assuming that there is no significant multipath. ALPS [20]

and Tracko [19] achieve centimeter-level accuracy using a

combination of Bluetooth and ultrasonic. The closest to our

work are CAT [21] and SoundTrak [34]. CAT achieves a me-

dian 3D error of 9mm using a combination of IMU sensor

data and FMCW localization to address multipath. It requires

a separation of 0.9m and 0.7m between its horizontal and ver-

tical speaker pairs respectively. As a result, we cannot have

a smartphone track the position of a VR headset, since both

the devices have much smaller dimensions. SoundTrak[34]

achieves an average 3D error of 1.3cm between a smart watch

and a customized finger ring using phase tracking where the

area of movement is limited to a 20cm × 16cm × 11cm space.

Our work builds on this foundational work but is the first to

1) achieve sub-millimeter 1D resolution, 2) do so without re-

quiring large separation between microphones/speakers and

3) enable for the first time concurrent transmissions where all

the acoustic devices transmit at the same time; thus allowing

for high refresh rate in the presence of multiple trackers.

Device-free tracking using acoustic signals. VSkin [27] tracks
gestures on the surface of mobile devices with a 2D accuracy

of 3mm. Strata [32], LLAP [29] and FingerIO [24] track mov-

ing fingers in the proximity of a mobile device with a 2D

accuracy of 1cm, 1.9cm and 1.2cm respectively. Toffee [31]
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Figure 14: Tracking error with concurrent smartphones.

localizes the direction of a touch around a mobile device of

an angular error of 4.3°. While device-free finger tracking

is challenging because of noisy measurements, it benefits

from lack of synchronization issues and relies on more strict

multipath assumptions. This line of work however is com-

plimentary to our work on acoustic device tracking.

8 CONCLUSION AND DISCUSSION
We present MilliSonic, a novel system that pushes the lim-

its of acoustic based motion tracking and localization. We

show for the first time how to achieve sub-mm 1D tracking

and localization accuracies using acoustic signals on smart-

phones, in the presence of multipath. To achieve this, we

introduce algorithms that use the phase of FMCW signals to

disambiguate between multiple paths. We also enable multi-

ple smartphones to transmit concurrently using time-shifted

FMCW acoustic signals and enable concurrent tracking with-

out sacrificing accuracy or frame rate.

While this paper presents multiple benchmarks, user stud-

ies and evaluation in indoor and outdoor environments, more

extensive evaluation is required to understand its behavior in

various edge cases as well as in rooms with significant mul-

tipath that can adversely affect accuracy. Here, we discuss

the limitations of our current system design.

First, we support simple occlusions such as fabric and

paper, but do not support human limbs or the device itself.

Additional algorithmic development is required to support

these practical occlusion scenarios. Second, while our design

has better drift characteristics than prior work on acoustic

tracking, further work is required to make it comparable to

optical based systems. One approach is to perform sensor

fusion with IMU data and achieve better accuracy, lower

latency and more resilience to clock drifts. This could also

enable VR headset tracking while using a mobile beacon (i.e.,

smartphone) in the hand instead of placing it on a table.

Our current range is limited to 2 m. This is because the

microphones in our array prototype are not optimized for

performance and are not designed to have optimal response

in the 17.5–23.5 kHz frequencies. Finally, we support upto

4–5 concurrent smartphone acoustic transmissions without

affecting the frame rate per device. One way to increase

the number of concurrent devices is to use longer chirps so

as to support more time-shifted FMCW chirps that can be

9
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System Setup

Ranging

technique

Need

IMU

Audible Dimension Accuracy Latency

Refresh

rate

Range

Concurrent

transmission

Mic/speaker

Separation

BeepBeep Phone-Phone Autocorrelation N Y 1D 2cm 50ms 20Hz 12m N -

Swordfight Phone-Phone Autocorrelation N Y 1D 2cm 46ms 12Hz 3m N -

CAT Speaker-Phone FMCW Y N 3D 9mm 40ms 25Hz 7m N 90cm

SoundTrak Speaker-Watch Phase tracking N Y 3D 13mm 12ms 86Hz 20cm N 4cm

Sonoloc Phone-Phone Autocorrelation N Y 2D 6cm 3.2-48s - 17m N -

MilliSonic

Microphone-

Phone

FMCW+

Phase tracking

N N

3D 2.6mm 25-40ms ≥40Hz 3m Y 6-15cm

1D 0.6mm 15-30ms

Table 1: Prior works on acoustic device tracking.

allocated to different smartphones. This however comes at

the expense of the frame rate per device.

9 APPENDIX: 1D TRACKING DETAILS
Our 1D tracking algorithm has two main components.

1) Adaptive band-pass filter to remove distant multipath.
For the first FMCW chirp, we extract the first peak of the

demodulated signal in the frequency domain using an DFT

similar to prior designs from Eq. 1. We then apply a Finite

Impulse Response (FIR) filter that only leaves a narrow range

of frequency bands around the peak. We adaptively set the

delay of the FIR filter from the SNR of the acoustic signals.

Specifically, when SNR > 10dB, we use a 15ms delay; other-

wise, we double the delay to 30ms .
For subsequent FMCW chirps we no longer use the DFT

to extract the peak frequency. Instead, for the i + 1th FMCW

chirp, we infer the new peak from the distance and speed

estimated at the end of the ith chirp. We then apply the

FIR filter around this new peak. Given the distance d (i)end
and speed v(i)

end estimated from the end of the ith chirp, we

can infer the distance of the beginning of the current chirp

ˆd (i+1)star t = d (i)end + v
(i)
endδT where δT is the gap between two

chirps. We do this for two key reasons: a) our distance esti-

mates are far more accurate than the peak of the DFT result;

and b) unlike a DFT that is performed over a whole FMCW

chirp, we do not require receiving a full FMCW chirp before

processing, thus reducing the frame rate.

Finally, Doppler effects can blur the peak in the frequency

domain. So, we adaptively increase the width of the pass band

in the FIR filter when the speed estimate at the end of the

previous chirp exceeds a given threshold. In our algorithm,

we set the pass band width to 1Hz when the speed does not

exceed 1m/s ; otherwise, we set the pass band width to 2Hz.
2) Extracting distance from FMCW phase. The above pro-

cess eliminated all multipaths that have a much larger time-

of-flight than the direct path. This leaves us with residual

indirect paths around the direct path. Thus, when there is no

occlusion, the sum of the residual indirect paths has a lower

amplitude than the direct path (confirmed empirically).

To extract the distance from the phase value, we approx-

imate the effect of residual multipath after filtering. From

Eq. 1, we approximate the phase as,

ϕ(t) ≈ −2π (B
T
ttd + f0td − B

2T
t2d ) (2)

Where td is the time of arrival of the direct path. The approx-

imation assumes that we have already applied the dynamic

filter to remove most multipath that has a much larger time-

of-arrival distance than the direct path. The above quadratic

equation in td (t ,ϕ(t)) can be uniquely solved; the equation

has two solutions but only one is in the range of the FMCW

chirp, [0,T ]. The distance d(t ,ϕ(t)) can then be computed as,

ctd (t ,ϕ(t)). We note the following about the distance error.

Lemma 9.1. Given the phase error bound of sin−1(A2

A1

) from
Fig. 4, the error in our distance estimate, d(t) is upper bounded
by sin−1(A2/A1)c

2π (f0−B/2) , where f0 and B are the FMCW parameters.

Proof. First we show that the function ϕ(t , td ) in Eq. 2 is

convex with respect to td , which is the time-of-arrival. This is

because the first derivative is given by,
dϕ(t,td )
dtd

= −2π (BT t +
f0 − B

T td ) < 0, when td < T . Further its second derivative

d2ϕ(t,td )
dt 2d

= 2π B
T > 0 resulting in a convex function.

Suppose an phase error ϕe would introduce a time-of-

arrival error of te because of multipath. Without loss of gen-

erality, we assume ϕe > 0. we know that for any t for a

convex function, ϕ(t , td ) > ϕ(t , td + te ) − dϕ(t,td+te )
dtd

te . Thus

the error in the phase ϕe = ϕ(t , td ) − ϕ(t , td + te ) can we

written as, ϕe > −dϕ(t,td+te )
dtd

te . This can be rewritten as,

te <
ϕe

− dϕ(t,td +te )
dtd

=
ϕe

2π ( BT t+f0−
B
T (td+te ))

. The upper bound for

this equation occurs when t = 0 and td+te is maximum. Since

the maximum delay permitted by our FMCW signal is half

its duration, this occurs when td + te =
T
2
. First from Lemma

2.1, we know thatϕe < sin−1(A2

A1

). Thus the above equation is

upper bounded as: te <
sin−1(A2

A
1

)
2π (f0− B

2
) . Thus, d

(phase)
e <

sin−1(A2

A
1

)c
2π (f0− B

2
) .

□
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