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Figure 1: Our deep model learns from a large-scale dataset of mobile tappability collected via crowdsourcing. It predicts tap-
pability of interface elements and identifies mismatches between designer intention and user perception, and is served in the
TapShoe tool that can help designers and developers to uncover potential usability issues about their mobile interfaces.

ABSTRACT
Tapping is an immensely important gesture in mobile touch-
screen interfaces, yet people still frequently are required to
learn which elements are tappable through trial and error.
Predicting human behavior for this everyday gesture can
help mobile app designers understand an important aspect
of the usability of their apps without having to run a user
study. In this paper, we present an approach for modeling
tappability of mobile interfaces at scale. We conducted large-
scale data collection of interface tappability over a rich set
of mobile apps using crowdsourcing and computationally
investigated a variety of signifiers that people use to distin-
guish tappable versus not-tappable elements. Based on the
dataset, we developed and trained a deep neural network
that predicts how likely a user will perceive an interface
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element as tappable versus not tappable. Using the trained
tappability model, we developed TapShoe, a tool that auto-
matically diagnoses mismatches between the tappability of
each element as perceived by a human user—predicted by
our model, and the intended or actual tappable state of the
element specified by the developer or designer. Our model
achieved reasonable accuracy: mean precision 90.2% and re-
call 87.0%, in matching human perception on identifying
tappable UI elements. The tappability model and TapShoe
were well received by designers via an informal evaluation
with 7 professional interaction designers.
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1 INTRODUCTION
Tapping is arguably the most important gesture on mobile
interfaces. Yet, it is still difficult for people to distinguish
tappable and not-tappable elements in a mobile interface. In

ar
X

iv
:1

90
2.

11
24

7v
1 

 [
cs

.H
C

] 
 2

8 
Fe

b 
20

19

https://doi.org/10.1145/3290605.3300305
https://doi.org/10.1145/3290605.3300305


traditional desktop GUIs, the style of clickable elements (e.g.,
buttons) are often conventionally defined. However, with the
diverse styles of mobile interfaces, tappability has become a
crucial usability issue. Poor tappability can lead to a lack of
discoverability [25] and false affordances [11] that can lead
to user frustration, uncertainty, and errors [1, 2].

Signifiers can [25] indicate to a user how to interact with
an interface element. Designers can use visual properties
(e.g., color or depth) to signify an element’s "clickability"
[1] or "tappability" in mobile interfaces. Perhaps the most
ubiquitous signifiers in today’s interfaces are the blue color
and underline of a link, and the design of a button that both
strongly signify to the user that they should be clicked. These
common signifiers have been learned over time and are well
understood to indicate clickability [24]. To design for tap-
pability, designers can apply existing design guidelines for
clickability [1]. These are important and can cover typical
cases, however, it is not always clear when to apply them
in each specific design setting. Frequently, mobile app de-
velopers are not equipped with such knowledge. Despite
the existence of simple guidelines, we found a significant
amount of tappabilitymisperception in real mobile interfaces,
as shown in the dataset we discuss later.

Additionally, modern platforms for mobile apps frequently
introduce new design patterns and interface elements. De-
signing these to include appropriate signifiers for tappability
is challenging. Additionally, mobile interfaces cannot apply
useful clickability cues available in web and desktop inter-
faces (e.g., hover states). With the flat design trend, tradi-
tional signifiers have been altered, which potentially causes
uncertainty and mistakes [2]. More data may be needed to
confirm these results, however, we argue that we need more
data and automated methods to fully understand the users’
perceptions of tappability as design trends evolve over time.
One way that interface designers can understand tappa-

bility in their interfaces is through conducting a tappability
study or a visual affordance test [4]. However, it is time-
consuming to conduct such studies. In addition, the findings
from these studies are often limited to a specific app or in-
terface design. We aim to understand signifiers at a large
scale across a diverse array of interface designs and to diag-
nose tappability problems in new apps automatically without
conducting user studies.
In this work, we present an approach for modeling inter-

face tappability at scale. In addition to acquiring a deeper
understanding about tappability, we develop tools that can
automatically identify tappability issues in a mobile app in-
terface (see Figure 1).We trained a deep learningmodel based
on a large dataset of labeled tappability of mobile interfaces
collected via crowdsourcing. The dataset includes more than
20,000 examples from more than 3,000 mobile screens. Our
tappability model achieved reasonable accuracy with mean

precision 90.2% and recall 87.0% on identifying tappable el-
ements as perceived by humans. To showcase a potential
use of the model, we build TapShoe, a web interface that
diagnoses mismatches between the human perception of the
tappability of an interface element and its actual state in
the interface code. We conducted informal interviews with
7 professional interface designers who were positive about
the TapShoe interface, and could envision intriguing uses
of the tappability model in realistic design situations. Our
contributions include the following:
(1) An approach for understanding interface tappability at

scale using crowdsourcing and computational signifier
analysis, and a set of findings about mobile tappability;

(2) A deep neural network model that learns human per-
ceived tappability of interface elements from a range of
interface features, including the spatial, semantic and
visual aspects of an interface element and its screen,
and an in-depth analysis about the model behavior;

(3) An interactive system that uses the model to examine
a mobile interface by automatically scanning the tap-
pability of each element on the interface, and identifies
mismatches with their intended tappable behavior.

2 RELATEDWORK
The concepts of signifiers and affordances are integral to
our work. Our aim is to capture them in a structured way to
construct a predictive model and to understand their use in
a large set of real mobile interfaces. Affordances were origi-
nally described by [12] as the actionable properties between
the world and actor (i.e., person). Don Norman [23, 24] pop-
ularized the idea of affordances of everyday objects, such
as a door, and later introduced the concept of a "signifier"
as it relates to user interfaces [24]. Gaver [11] described the
use of graphical techniques to aid human perception (e.g.,
shadows or rounded corners), and showed how designers
can use signifiers to convey an interface element’s perceived
affordances. These early works form the core of our current
understanding of what makes a person know what is inter-
active. By collecting a large dataset of tappability examples,
we hope to aid our understanding of which signifiers are
having an impact at scale.
Since those early works, there have been a few studies

about the factors influencing clickability in web interfaces
[1, 2]. Usability testing methods have also adopted the idea
of visual affordance testing [4] to diagnose clickability issues.
However, these studies have been conducted at a small scale
and are typically limited to the single app being tested. We
are not aware of any large-scale data collection and analysis
across app interfaces to enable diagnosis of tappability issues,
nor any machine learning approaches that learn from this
data to automatically predict the elements that users will
perceive as tappable or not tappable.



To identify tappability issues automatically, we needed
to collect data on a large scale to allow us to use a machine
learning approach for this problem. Recently, data-driven
approaches have been used to identify usability issues [8],
and collect mobile app design data at scale [7, 9]. Perhaps
most closely related to our work is Zipt [8], which enables
comparative user performance testing at scale. Zipt uses
crowd workers to construct user flow visualizations through
apps that can help designers visualize the paths users will
take through their app for specific tasks. However, with
this approach, designers must still manually diagnose the
usability issues by examining the visualizations. In this paper,
we focus on an important usability issue in mobile interfaces
automatically—identifying cases where false affordances or
missing signifiers will cause a user to misidentify a tappable
or not-tappable interface element.

Similar to Zipt [8], our work uses crowdsourcing to collect
user data to aid the diagnosis of usability issues. We used
Amazon’s Mechanical Turk that has previously provided a
platform for large-scale usability [22] and human subjects
experiments [15, 16, 28], and in gathering data about the
visual design of user interfaces [13, 20, 31]. Our work goes
beyond data collection and analysis by developing machine
learning models to automatically examine tappability.

Deep learning [18] is an effective approach to learn from
a large-scale dataset. In our work, we trained a deep feed-
forward network, which uses convolutional layers for image
processing and embedding for categorical data such as words
and types, to automatically predict human tappability per-
ception. Recent work has used deep learning approaches to
predict human performance on mobile apps for tasks such
as grid [27] and menu selection [19]. Deep learning models
have also been built to identify salient elements in graphic
designs and interfaces [6]. However, no work has applied
these models to predicting the tappability of interface ele-
ments. Deep learning allowed us to leverage a rich set of
features involving the semantic, spatial and visual properties
of an element without extensive feature engineering.

3 UNDERSTANDING TAPPABILITY AT SCALE
A common type of usability testing is a tappability study
or a visual affordance test [4]. In these studies, designers
have crowd workers or lab participants label interfaces for
which elements they think are tappable and not tappable
digitally or on paper. Based on this data, designers can con-
struct heatmaps to visualize where users would tap in the
app being tested. These studies can help designers discover
which elements have missing or false tappability signifiers.
However, in general, there is a lack of a dataset and deep un-
derstanding about interface tappability across diverse mobile
apps. Having such a dataset and knowledge is required for us

to create automated techniques to help designers diagnose
tappability issues in their interfaces.

Crowdsourcing Data Collection
We designed a crowdsourcing task to simulate a tappability
study across a large corpus of Android mobile apps [7], using
the interface shown in Figure 2. The left side of the interface
displayed a mobile app screenshot. The right side of the task
interface displayed instructions for the task, and an expla-
nation about what we meant by tappable and not tappable.
For tappable elements, it was "When you tap this in a mobile
interface, an action will happen.", and for not tappable, the
explanation was "When you tap on it, no action will happen.".

To collect our tappability dataset, we selected a set of 3,470
unique, randomly chosen screens from the Rico dataset [7]
and had crowd workers label elements randomly sampled
from these screens as either tappable or not tappable.
We selected the elements for the workers to label in the
following manner. Each UI screen in the Rico dataset has
an Android view hierarchy—JSON tree structure of all of
the interface elements on the screen, similar to a DOM tree
for a web interface. Each element in the hierarchy has a
clickable property that marks whether an element will
respond to a tapping event. For each screen, we selected up to
five unique clickable and non-clickable elements. When
selecting clickable elements, starting from a leaf element,
we select the top-most clickable element in the hierarchy
for labeling. When a clickable element contains a sub-tree of
elements, these elements are typically presented as a single
interface element to the user, which is more appropriate for
the worker to label as a whole. When a clickable container
(e.g., ViewGroup) is selected, we do not select any of its child
elements thus preventing any duplicate counting or labeling.
We did not select elements in the status bar or navigation
bar as they are standard across most screens in the dataset.
To perform a labeling task, a crowd worker hovers their

mouse over the interface screenshot, and our web inter-
face displays grey hotspots over the interface elements pre-
selected based on the above process. Workers click on each
hotspot to toggle the label as either tappable or not tappable,
which are colored in green and red, respectively. We asked
each worker to label around six elements for each screen.
Depending on the screen complexity, the amount of elements
could vary. We randomized the elements as well as the order
to be labeled across each worker.

Results
We collected 20,174 unique interface elements from 3,470
app screens. These elements were labeled by 743 unique
workers in two rounds where each round involved different
sets of workers (see Table 1). Each worker could complete
up to 8 tasks. On average, each worker completed 4.67 tasks.



Figure 2: The interface that workers used to label the tappability of UI elements via crowdsourcing. It displays a mobile inter-
face screen with interactive hotspots that can be clicked to label an element as either tappable or not tappable.

Positive Class #Elements Precision Recall

R
1

clickable=True 6,101 79.81% 89.07%
clickable=False 3,631 78.56% 61.75%

R
2

clickable=True 6,560 79.55% 90.02%
clickable=False 3,882 78.30% 60.90%

A
ll

clickable=True 12,661 79.67% 89.99%
clickable=False 7,513 78.43% 61.31%

Table 1: The number of elements labeled by the crowd work-
ers in two rounds, along the precision and recall of human
workers in perceiving the actual clickable state of an ele-
ment as specified in the view hierarchy metadata.

Of these elements, 12,661 of them are indeed tappable, i.e.,
the view hierarchy attribute clickable=True, and 7,513 of
them are not.

How well can human users perceive the actual clickable state of
an element as specified by developers or designers? To answer
this question, we treat the clickable value of an element
in the view hierarchy as the actual value and human labels
as the predicted value for a precision and recall analysis. In
this dataset of real mobile app screens, there were still many
false signifiers for tappability potentially causing workers to
misidentify tappable and not-tappable elements (see Table 1).
The workers labeled non-clickable elements as tappable 39%
of time. While the workers were significantly more precise
in labeling clickable elements, workers still marked clickable
elements as not tappable 10% of the time. The results were
quite consistent across two rounds of data collection involv-
ing different workers and interface screens. These results
further confirmed that tappability is an important usability
issue worth investigation.
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Figure 3: The number of tappable andnot-tappable elements
in several type categories with the bars colored by the rela-
tive amounts of correct and incorrect labels.

Signifier Analysis
To understand how users perceive tappability, we analyzed
the potential signifiers affecting tappability in real mobile
apps. These findings can help us understand human per-
ception of tappability and help us build machine learning
models to predict tappability. We investigated several visual
and non-visual features based on previous understandings of
common visual signifiers [1, 3, 14] and through exploration
of the characteristics of the dataset.

Element Type. Several element types have conventions for
visual appearance, thus users would consistently perceive
them as tappable [23] (e.g., buttons). We examined how ac-
curately workers label each interface element type from a
subset of Android class types in the Rico dataset [7]. Figure 3
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Figure 4: Heatmaps displaying the accuracy of tappable and
not tappable elements by location where warmer colors
represent areas of higher accuracy. Workers labeled not-
tappable elementsmore accurately towards the upper center
of the interface, and tappable elements towards the bottom
center of the interface.

shows the distribution of tappable and not-tappable elements
by type labeled by human workers. Common tappable in-
terface elements like Button and Checkbox did appear more
frequently in the set of tappable elements. For each element
type, we computed the accuracy by comparing the worker
labels to the view hierarchy clickable values. For tappable
elements, the workers achieved high accuracy for most types.
For not-tappable elements, the two most common types,
TextView and ImageView, had low accuracy percentages of
only 67% and 45%, respectively. These interface types allow
more flexibility in design than standard element types (e.g.,
RadioButton). Unconventional styles may make an element
more prone to ambiguity in tappability.

Location. We hypothesized that an element’s location on
the screen may have influenced the accuracy of workers
in labeling its tappability. Figure 4 displays a heatmap of
the accuracy of the workers’ labels by location. We created
the heatmap by computing the accuracy per pixel, using the
clickable attribute, across the 20,174 elements we collected
using the bounding box of each element. Warm colors repre-
sent higher accuracy values. For tappable elements, workers
were more accurate towards the bottom of the screen than
the center top area. Placing a not-tappable element in these
areas might confuse people. For tappable elements, there are
two spots at the top region of high accuracy. We speculate
that this is because these spots are where apps tend to place
their Back and Forward buttons. For not-tappable elements,
the workers were less accurate towards the screen bottom

Not Tappable

Tappable

Figure 5: The aggregated RGB pixel colors of tappable and
not-tappable elements clustered into the 10most prominent
colors using K-Means clustering.

and highly accurate in the app header bar area with a corre-
sponding area of low accuracy for tappable elements. This
area is not tappable in many apps, so people may not realize
any element placed there is tappable.

Size. There was only a small difference in average size be-
tween labeled tappable and not-tappable elements. However,
tappable elements labeled as not tappable were 1.9 times
larger than tappable elements labeled as tappable indicat-
ing that elements with large sizes were more often seen as
not tappable. Examining specific element types can reveal
possible insights into why the workers may have labeled
larger elements as not tappable. TextView elements tend to
display labels but can also be tappable elements. From de-
sign recommendations, tappable elements should be labeled
with short, actionable phrases [29]. The text labels of not-
tappable TextView elements have an average and median
size of 1.48 and 1.55 times larger respectively than those
of tappable TextView elements. This gives us a hint that
TextView elements may be following these recommenda-
tions. For ImageView elements, the average and median size
for not-tappable elements were 2.39 and 3.58 times larger
than for tappable elements. People may believe larger Im-
ageView elements, typically displaying images, to be less
likely tappable than smaller ImageView elements.

Color. Based on design recommendations [1], color can also
be used to signify tappability. Figure 5 displays the top 10
dominant colors in each class of labeled tappable and not-
tappable elements, which are computed using K-Means clus-
tering. The dominant colors for each class do not necessarily
denote the same set. The brighter colors such as blue and
red have more presence, i.e., wider bars, in the pixel clusters
for tappable elements than those for not-tappable ones. In
contrast, not-tappable elements have more grey and white
colors. We computed these clusters across the image pixels
for 12 thousand tappable and 7 thousand not-tappable ele-
ments and scaled them by the proportion of elements in each



set. These differences indicate that color is likely a useful
distinguishing factor.

Words. As not-tappable textual elements are often used to
convey information, the number of words in these elements
tend to be large. The mean number of words per element,
based on the log-transformed word count in each element,
was 1.84 times greater for not-tappable elements (Mean: 2.62,
Median: 2) than tappable ones (Mean: 1.42, Median: 1). Addi-
tionally, the semantic content of an element’s label may be
a distinguishing factor based on design recommendations
[29]. We hypothesized that tappable elements would con-
tain keywords indicating tappability, e.g., "Login". To test
this, we examined the top five keywords of tappable and
not-tappable elements using TF-IDF analysis, with the set of
words in all the tappable and not-tappable elements as two
individual documents. The top 2 keywords extracted for tap-
pable elements were "submit" and "close", which are common
signifiers of actions. However, the remaining keywords for
tappable elements, i.e., "brown", "grace" and "beauty", and the
top five keywords for not-tappable elements, i.e., "wall", "ac-
cordance", "recently", "computer" and "trying", do not appear
to be actionable signifiers.

4 TAPPABILITY PREDICTION MODEL
Because it is expensive and time consuming to conduct user
studies, it is desirable to develop automated techniques to
examine the tappability of mobile interfaces. Although we
can use the signifiers previously discussed as heuristics for
this purpose, it would be difficult to manually combine them
appropriately. It is also challenging to capture factors that
are not obvious or hard to articulate. As such, we employed
a deep learning approach to address the problem. Overall,
our model is a feedforward neural network with a deep
architecture (multiple hidden layers). It takes a concatenation
of a range of features about the element and its screen and
outputs a probability of how likely a human user would
perceive an interface element as tappable.

Feature Encoding
Our model takes as input several features collected from the
view hierarchy metadata and the screenshot pixel data of an
interface. For each element under examination, our features
include 1) semantics and functionality of the element, 2) the
visual appearance of the element and the screen, and 3) the
spatial context of the element on the screen.

Semantic Features. The length and the semantics of an ele-
ment’s text content are both potential tappability signifiers.
For each element, we scan the text using OCR. To represent
the semantics of the text, we use word embedding that is
a standard way of mapping word tokens into a continuous
dense vector that can be fed into a deep learning model. We
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Figure 6: A deep model for tappability leverages semantic,
spatial and visual features.

encode each word token in an element as a 50-dimensional
vector representation that is pre-learned from a Wikipedia
corpus [26]. When an element contains multiple words, we
treat them as a bag of words and apply max pooling to their
embedding vectors to acquire a single 50-dimensional vec-
tor as the semantic representation of the element. We also
encode the number of word tokens each element contains as
a scalar value normalized by an exponential function.

Type Features. There are many standard element types that
users have learned over time (e.g., buttons and checkboxes)
[23]. However, new element types are frequently introduced
(e.g., floating action button). In our model, we include an
element type feature as an indicator of the element’s seman-
tics. This feature allows the model to potentially account for
these learned conventions as a users’ background plays an
important role in their decision. To encode the Type feature,
we include a set of the 22 most common interface element
types, e.g. TextView or Button. We represent the Type in the
model as a 22-dimensional categorical feature, and collapse
it into 6-dimensional embedding vector for training, which
provides better performance over sparse input. Each type
comes with a built-in or specified clickable attribute that is
encoded as either 0 or 1.

Visual Features. As previously discussed, visual design sig-
nifiers such as color distribution can help distinguish an
element’s tappability. It is difficult to articulate the visual
perception that might come into play and realize it as an
executable rule. As a result, we feed an element’s raw pixel
values and the screen to which the element belongs to the
network, through convolutional layers—a popular method
for image processing. We resize the pixels of each element



and format them as a 3D matrix in the shape of 32x32x3
where the height and width are 32, and 3 is the number of
RGB channels. Contextual factors on the screen may affect
the human’s perception of tappability. To capture the context,
we resize and format the entire screen as another visual fea-
ture. This manifests as a 3D matrix in the shape of 300x168x3
and preserves the original aspect ratio. As we will discuss
later, a screen contains useful information for predicting an
element’s tappability even though such information is not
easy to articulate.

Spatial Features. As location and size can be signifiers of
tappability, we include them as features. We capture the
element’s bounding box as four scalar values: x, y, width,
and height, and scale each value to the range of 0 and 1 by
normalizing them using the screen width and height.

Model Architecture & Learning
Figure 6 illustrates our model architecture. To process the
element and screenshot pixels, our network has three convo-
lutional layers with ReLU [21] activation. Each convolutional
layer applies a series of 8 3x3 filters to the image to help the
model progressively create a featuremap. Each convolutional
layer is followed by a 2x2 max pooling layer to reduce the
dimensionality of the image data for processing. Finally, the
output of the image layers is concatenated with the rest of the
features into a series of two fully connected 100-dimensional
dense layers using ReLU [21] as the activation function. The
output layer produces a binary classification of an element’s
tappability using a sigmoid activation function to transform
the output into probabilities from zero to one. The probabil-
ity indicates how likely the user would perceive the element
as tappable. We trained the model by minimizing the sig-
moid cross-entropy loss between the predicted values and
the binary human labels on tappability of each element in
the training data. For loss minimization, we used the Ada
adaptive gradient descent optimizer with a learning rate of
0.01 and a batch size of 64. To avoid model overfitting, we ap-
plied a dropout ratio of 40% to each fully connected layer to
regularize the learning. We built our model using Tensorflow
[5] in Python and trained it on a Tesla V100 GPU.

Model Performance Results
We evaluated our model using 10-fold cross validation with
the crowdsourced dataset. In each fold, we used 90% of the
data for training and 10% for validation, and trained our
model for 100,000 iterations. Similar to an information re-
trieval task, we examine how well our model can correctly
retrieve elements that users would perceive as tappable. We
select an optimal threshold based on Precision-Recall AUC.
Our model achieved a mean precision and recall, across the
10 folds of the experiment, of 90.2% (SD: 0.3%) and 87.0% (SD:

Predicted
Tappable

Predicted
Not Tappable

Actual Tappable 1195 260
Actual Not Tappable 235 1170

Table 2: Confusionmatrix for the balanced dataset, averaged
across the 10 cross-validation experiments.

1.6%). To understand what these numbers imply, we analyzed
how well the clickable attribute in the view hierarchy pre-
dicts user tappability perception: precision 89.9% (SD: 0.6%)
and recall 79.6% (SD: 0.8%). While our model has a minor
improvement on precision, it outperforms the clickable
attribute on recall considerably by over 7%.

Although identifying not-tappable elements is less impor-
tant in real scenarios, to better understand the model, we
report the performance concerning not-tappable elements as
the target class. Our model achieved a mean precision 70%
(SD: 2%) and recall 78% (SD: 3%), which improves precision
by 9%, with a similar recall, over the clickable attribute
(precision 61%, SD: 1% and recall 78%, SD: 2%). One potential
reason that not-tappable elements have a relatively low ac-
curacy is that they tend to be more diverse, leading to more
variance in the data.

In addition, our original dataset had an uneven number
of tappable and not-tappable elements (14,301 versus 5,871),
likely causing our model to achieve higher precision and re-
call for tappable elements than not-tappable ones. Therefore
we created a balanced dataset by upsampling the minority
class (i.e., not-tappable). On the balanced dataset, our model
achieved a mean precision and recall of 82% and 84% for iden-
tifying tappable elements, and a mean precision and recall
of 81% and 86% for not-tappable elements. Table 2 shows
the confusion matrix for the balanced dataset. Compared
to using view hierarchy clickable attribute alone, which
achieved mean precision 79% and recall 80% for predicting
tappable elements, and 79% and 78% for not-tappable ones,
our model is consistently more accurate across all the metrics.
These performance improvements show that our model can
effectively help developers or designers identify tappability
misperceptions in their mobile interfaces.

Human Consistency & Model Behaviors
We speculate that our model did not achieve even higher
accuracy because human perception of tappability can be
inherently inconsistent as people have their own experience
in using and learning different sets of mobile apps. This
can make it challenging for the model to achieve perfect
accuracy. To examine our hypothesis, we collected another
dataset via crowdsourcing using the same interface as shown
in Figure 2. We selected 334 screens from the Rico dataset,



which were not used in our previous rounds of data collec-
tion. We recruited 290 workers to perform the same task
of marking each selected element as either tappable or not
tappable. However, each element was labeled by 5 different
workers to enable us to see how much these workers agree
on the tappability of an element. In total, there were 2,000
unique interface elements and each was labeled 5 times. In
total, 1,163 elements (58%) were entirely consistent among
all 5 workers which include both tappable and not-tappable
elements. We report two metrics to analyze the consistency
of the data statistically. The first is in terms of an agreement
score [30] that is computed using the following formula:

A =

∑
e ∈E

∑
r ∈R

(
|Ri |
|Re |

)2
|E | × 100% (1)

Here, e is an element in the set of all interface elements E
that were rated by the workers, Re is the set of ratings for
an interface element e , and Ri is the set of ratings in a single
category (0: not tappable, 1: tappable). We also report the
consistency of the data using Fleiss’ Kappa [10], a standard
inter-rater reliability measure for the agreement between
a fixed number of raters assigning categorical ratings to
items. This measure is useful because it computes the degree
of agreement over what would be expected by chance. As
there are only two categories, the agreement by chance is
high. The overall agreement score across all the elements
using Equation 1 is 0.8343. The number of raters is 5 for
each element on a screen, and across 334 screens, resulting
in an overall Fleiss’ Kappa value of 0.520 (SD=0.597, 95% CI
[0.575,0.618], P=0). This corresponds to a "Moderate" level
agreement according to [17]. What these results demonstrate
is that while there is a significant amount of consistency in
the data, there still exists a certain level of disagreement on
what elements are tappable versus not tappable. Particularly,
consistency varies across element Type categories. For ex-
ample, View and ImageView elements were labeled far less
consistently (0.52, 0.63) than commonplace tappable element
types such as Button (94%), Toolbar (100%), and CheckBox
(95%). View and ImageView elements have more flexibility
in design, which may lead to more disagreement.
To understand how our model predicts elements with

ambiguous tappability, we test our previously trained model
on this new dataset. Our model matches the uncertainty
in human perception of tappability surprisingly well (see
Figure 7). When workers are consistent on an element’s
tappability (two ends on the X axis), our model tends to
give a more definite answer—a probability close to 1 for
tappable and close to 0 for not tappable. When workers are
less consistent on an element (towards the middle of the X
axis), our model predicts a probability closer to 0.5.

All Agree  
Not Tappable

4/5 Agree  
Not Tappable

3/5 Agree  
Not Tappable

3/5 Agree 
Tappable

4/5 Agree 
Tappable

All Agree 
Tappable

Predicted 
Not Tappable

0.2

0.4

0.6

0.8

Predicted 
Tappable

Figure 7: The scatterplot of the tappability probability out-
put by the model (the Y axis) versus the consistency in the
human worker labels (the X axis) for each element in the
consistency dataset.

Usefulness of Individual Features
One motivation to use deep learning is to alleviate the need
for extensive feature engineering. Recall that we feed the
entire screenshot of an interface to the model to capture
contextual factors affecting the user’s decision that can not
be easily articulated. Without the screenshot pixels as input,
there is a noticeable drop in precision and recall for tappable
of 3% and 1%, and for not-tappable, an 8% drop in precision
but no change in recall. This indicates that there is useful
contextual information in the screenshot affecting the users’
decisions on tappability. We also examined removing the
Type feature from the model, and found a slight drop in
precision about 1% but no change in recall for identifying
tappable elements. The performance change is similar for the
not-tappable case with 1.8% drop in precision and no drop
in recall. We speculate that removing the Type feature only
caused a minor impact likely because our model has captured
some of element type information through its pixels.

5 TAPSHOE INTERFACE
We created a web interface for our tappability model called
TapShoe (see Figure 8). The interface is a proof-of-concept
tool to help app designers and developers examine their UI’s
tappability. We describe the TapShoe interface from the per-
spective of an app designer, Zoey, who is designing an app
for deal shopping, shown in the right hand side of Figure 8.
Zoey has redesigned some icons to be more colorful on the
home page links for "Coupons", "Store Locator", and "Shop-
ping". Zoey wants to understand how the changes she has
made would affect the users’ perception of which elements in
her app are tappable. First, Zoey uploads a screenshot image



Figure 8: The TapShoe interface. An app designer drag and drops a UI screen on the left. TapShoe highlights interface elements
whose predicted tappability is different from its actual tappable state as specified in its view hierarchy.

along its view hierarchy for her app by dragging and drop-
ping them into the left hand side of the TapShoe interface.
Once Zoey drops her screenshot and view hierarchy, Tap-
Shoe analyzes her interface elements, and returns a tappable
or not-tappable prediction for each element. The TapShoe
interface highlights the interface elements with a tappable
state, as specified by Zoey in the view hierarchy, that does
not match up with user perception as predicted by the model.

Zoey sees that the TapShoe interface highlighted the three
colorful icons she redesigned. These icons were not tappable
in her app but TapShoe predicted that the users would per-
ceive them as tappable. She examines the probability scores
for each element by clicking on the green hotspots on the
screenshot to see informational tooltips. She adjusts the sen-
sitivity slider to change the threshold for the model’s predic-
tion. Now, she sees that the "Coupons" and "Store Locator"
icon are not highlighted and that the arrow icon has the high-
est probability of being perceived as tappable. She decides to
make all three colorful icon elements interactive and extend
the tappable area next to "Coupons", "Store Locator", and
"Website". These fixes prevent her users from the frustration
of tapping on these elements with no response.

We implemented the TapShoe interface as a web applica-
tion (JavaScript) with a Python web server. The web client
accepts an image and a JSON view hierarchy to locate in-
terface elements. The web server queries a trained model,
hosted via a Docker container with the Tensorflow model
serving API, to retrieve the predictions for each element.

6 INFORMAL FEEDBACK FROM DESIGNERS
To understand how the TapShoe interface and tappability
model would be useful in a real design context, we con-
ducted informal design walkthroughs with 7 professional

interface designers at a large technology company. The de-
signers worked on design teams for three different products.
We demonstrated TapShoe to them and collected informal
feedback on the idea of getting predictions from the tappa-
bility model, and on the TapShoe interface for helping app
designers identify tappability mismatches. We also asked
them to envision new ways they could use the tappability
prediction model beyond the functionality of the TapShoe in-
terface. The designers responded positively to the use of the
tappability model and TapShoe interface, and gave several
directions to improve the tool. Particularly, the following
themes have emerged.

Visualizing Probabilities
The designers saw high potential in being able to get a tap-
pability probability score for their interface elements. Cur-
rently, the TapShoe interface displays only probabilities for
elements with a mismatch based on the threshold set by the
sensitivity slider. However, several of the designers men-
tioned that they would want to see the scores for all the
elements. This could give them a quick glance at the tappa-
bility of their designs as a whole. Presenting this information
in a heatmap that adjusts the colors based on the tappability
scores could help them compare the relative level of tap-
pability of each element. This would allow them to deeply
examine and compare interface elements for which tappa-
bility signifiers are having an impact. The designers also
mentioned that sometimes, they do not necessarily aim for
tappability to be completely binary. Tappability could be
aimed to be higher or lower along a continuous scale de-
pending on an element’s importance. In an interface with
a primary action and a secondary action, they would be



more concerned that people perceive the primary action as
tappable than the secondary action.

Exploring Variations
The designers also pointed out the potential of the tappability
model for helping them systematically explore variations.
TapShoe’s interface only allows a designer to upload a single
screen. However, the designers envisioned an interface to
allow them to upload and compare multiple versions of their
designs to systematically change signifiers and observe how
they impact the model’s prediction. This could help them
discover new design principles to make interface elements
look more or less tappable. It could also help them compare
more granular changes at an element level, such as different
versions of a button design. As context within a design can
also affect an element’s tappability, they would want to move
elements around and change contextual design attributes to
have a more thorough understanding of how context affects
tappability. Currently, the only way for them to have this
information is to conduct a large tappability study, which
limits them to trying out only a few design changes at a time.
Having the tappability model output could greatly expand
their current capabilities for exploring design changes that
may affect tappability.

Model Extension and Accuracy
Several designers wondered whether the model could extend
to other platforms. For example, their design for desktop or
web interfaces could benefit from this type of model. Ad-
ditionally, they have collected data that our model could
already use for training. We believe our model could help
them in this case as it would be simple to extend to other
platforms or to use existing tappability data for training.
We also asked the designers about how they feel about

the accuracy of our model. The designers already thought
that the model could be useful in its current state even for
helping them understand the relative tappability of different
elements. Providing a confidence interval for the prediction
could aid in giving them more trust in the prediction.

7 DISCUSSION
Our model achieves good accuracy at predicting tappable
and not-tappable interface elements and the TapShoe tool
and model are well-received by designers. Here we discuss
the limitations and directions for future work.
One limitation is that our TapShoe interface, as a proof-

of-concept, demonstrates one of many potential uses for the
tappability model. We intend to build a more complete design
analytics tool based on designers’ suggestions, and conduct
further studies of the tool by following its use in a real design
project. Particularly, we will update the TapShoe interface
to take early stage mockups other than UI screens that are

equipped with a view hierarchy. This is possible because
designer can mark up elements to be examined in a mockup
without having to implement it.

Our tappability model is only trained on Android inter-
faces and therefore the results may not generalize well to
other platforms. However, our model relies on general fea-
tures available in many UI platforms (e.g., element bounding
boxes and types). It would be entirely feasible to collect a
similar dataset for different platforms to train our model and
the cost for crowdsourcing labeling is relatively small. In
fact, we can apply a similar approach to new UI styles that
involve drastically different design concepts, e.g., emerging
UI styles in AR/VR.
From our consistency evaluation, we learned that peo-

ple’s perception of tappability is not always consistent. In
the future, we plan to explore ways to improve the model’s
performance with inconsistent data. These methods could
extend our tappability annotation task beyond a simple bi-
nary rating of tappable versus not-tappable to a rating that
incorporates uncertainty, e.g., adding a "Not sure" option or
a scale of confidence in labels.

The tappability model that we developed is a first step to-
wards modeling tappability. There may potentially be other
features that could add predictive power to the model. As
we begin to understand more of the features that people use
to determine which elements are tappable and not tappable,
we can incorporate these new features into a deep learning
model as long as they are manifested in the data. For example,
we used the Type feature as a way to account for learned con-
ventions, i.e., the behavior that users have learned over time.
As users are not making a tappable decision solely based
on the visual properties of the current screen, we intend to
explore more features that can capture user background.
Lastly, identifying the reasons behind tappable or not-

tappable perception could potentially enable us to offer rec-
ommendations for a fix. This also requires us to communicate
these reasons with the designer in a human-understandable
fashion. There are two approaches to pursue this. One is
to analyze how the model relies on each feature, although
understanding the behavior of a deep learning model is chal-
lenging and it is an active area in the deep learning field.
The other approach is to train the model to recognize the
human reasoning behind their selection. Progress in this
direction will allow a tool to provide a more complete and
useful output to the designers.

8 CONCLUSIONS
We present an approach to model interface tappability at
scale. We collected a large dataset of tappability examples
via crowdsourcing and analyzed a variety of tappability sig-
nifiers based on the dataset. We then designed and trained a
deep model that achieved reasonable accuracy in predicting



human perception on tappability. We analyzed the model
behavior in relation to uncertainty in human tappability
perception. Finally, we buit TapShoe, a tool that uses the
deep model to examine interface tappability, which received
positive feedback from 7 professional interaction designers
who saw its potential as a useful tool for their real design
projects.
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