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Figure 1: (a) While navigating a scene in virtual reality, (b) the user’s gaze sequence can indicate his/her need for navigation 
help and (c) an aid is displayed accordingly. 

ABSTRACT 

A key challenge for virtual reality level designers is striking 
a balance between maintaining the immersiveness of VR and 
providing users with on-screen aids after designing a virtual 
experience. These aids are often necessary for wayfnding 
in virtual environments with complex paths. 
We introduce a novel adaptive aid that maintains the ef-

fectiveness of traditional aids, while equipping designers 
and users with the controls of how often help is displayed. 
Our adaptive aid uses gaze patterns in predicting user’s need 
for navigation aid in VR and displays mini-maps or arrows 
accordingly. Using a dataset of gaze angle sequences of users 
navigating a VR environment and markers of when users 
requested aid, we trained an LSTM to classify user’s gaze 
sequences as needing navigation help and display an aid. 
We validated the efcacy of the adaptive aid for wayfnding 
compared to other commonly-used wayfnding aids. 
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1 INTRODUCTION 

With the introduction of relatively inexpensive virtual re-
ality (VR) head mounted displays that have eye-tracking 
capabilities like the FOVE, the barrier of entry to utilizing 
eye-tracking data for virtual reality applications has been 
lowered signifcantly. Conducting eye-tracking experiments 
in virtual reality becomes signifcantly simpler, fast tracking 
behavioral and cognitive studies. 
Additionally, the availability of these devices and their 

corresponding data sets provide researchers and develop-
ers with ample opportunities for creating more immersive 
experiences for VR game players by utilizing eye-tracking 
technologies. 
In virtual experiences, users often face difculties in ex-

ploring and navigating a virtual environment. This often is 
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frustrating and weakens the immersive factor that makes 
virtual experiences so enticing. These feelings of ‘needing 
navigation aid’ often go unnoticed by developers until the 
user issues a complaint about the navigation difculty. This 
leads developers to make difcult design choices to incorpo-
rate permanent navigational guides to their interfaces, which 
may come in forms like mini-maps, arrows or overlaid paths. 
All of these navigational guides may take up considerable 
screen space and could be visually unappealing or distracting 
to embed in the VR interface. 
We propose a novel approach to predict VR users’ need 

for navigation aid by analyzing their gaze patterns. Figure 1 
shows an illustration. To experiment with our approach, we 
collected gaze and head motion data from subjects recruited 
to complete a challenging search task in a virtual environ-
ment. This dataset was used to train a gaze sequence classifer 
to predict the player’s need for navigation aid when navigat-
ing a virtual environment. We discuss the model’s prediction 
accuracy and present several applications of the model as 
adaptive navigation aids. We explore our adaptive navigation 
aids’ abilities in efectively guiding the player to navigate a 
virtual environment, as well as using gaze heatmaps to com-
pare the player’s visual attention to the surroundings when 
using our adaptive aid versus that when using a conventional 
permanent on-screen aid. 
The major contributions of our work include: 

• Proposing a novel data-driven approach to train a se-
quence classifer to predict navigation aid need of users 
in VR using their gaze and head movements. 

• Based on the sequence classifer, adaptively displaying 
a navigation aid to users when their gaze sequences 
indicate that they are feeling in need of aid. 

• Validating the efectiveness of our adaptive aids com-
pared to permanent aids via a number of human user 
experiments conducted in virtual environments. 

2 RELATED WORK 

Eye-Tracking 

Eye-tracking and gaze patterns have been employed for clas-
sifying human behavior and cognition in addition to im-
proving user experience. For example, Sanches et al. [27] 
analyzed the gaze behavior of subjects to estimate their un-
derstanding of texts while reading. Lustig et al. [17] utilized 
an LSTM to classify subjects’ reading behavior as dyslexic. 
Similarly, we employed an LSTM to classify gaze sequences 
of a user feeling in need of guidance while navigating a vir-
tual environment. Gaze patterns have also been analyzed for 
improving user experience. For example, Turner et al. [30] 
demonstrated how gaze could be used for manipulating ob-
jects on a display. 

The relationship between gaze fxation fow and spatial 
navigation was studied in [29, 32] with a focus on Alzheimer’s 
patients. Burch [1] analyzed visual attraction on metro maps 
using gaze fxations. Piccardi et al. [24] found a relationship 
between the navigational styles of subjects and their gaze 
patterns while learning environment maps. We analyzed 
gaze patterns for classifying navigation guidance need in 
virtual environments. 

Virtual Reality 

Interaction: VR and AR devices have become much more 
accessible thanks to the advancement and popularity of 
consumer-grade VR and AR devices such as the Oculus 
Rift, HTC Vive and Microsoft Hololens. Studying interaction 
within those mediums has become a focal point and an open 
research problem for the HCI community. Some of the many 
interactive applications in VR include VR story board design 
tools [10], VR/AR conferencing systems [21] and novel tools 
for reviewing and editing VR videos [20]. 
More specifcally, VR game interactions have been a key 

target of HCI researchers. Cheng et al. [3] presented a mutual 
actuation solution by using one VR players’ actions in a 
VR game as haptic feedback for another player. Lopes et 
al. [16] introduced a haptic feedback solution to VR games 
by simulating physical impact while playing a video game 
using an electronic bracelet the authors designed. Like these 
works, our approach aims to improve the interactivity of VR 
by the use of an adaptive navigation aid. 
Navigation: Our approach aims at enhancing navigation in 
virtual environments. Previous works [7, 8, 19, 25] explored 
adaptively expanding a virtual scene to facilitate VR loco-
motion in small physical spaces. Gandrud and Interrante [6] 
utilized a user’s gaze and head motion to infer his navigation 
direction in VR, while Lee et al. [14] compared the visual 
attention of players navigating in a frst person perspective 
with players playing in a third person perspective as avatars. 

Saha et al. [26] conducted a VR experiment to study sub-
jects’ negative emotions when presented with the wrong 
service in a virtual supermarket. They guided the subjects 
to their destination with a navigation assistant, which was 
realized in the form of an embedded path similar to the path 
we used in our data collection experiments (see Figure 3). 
Moller et al. [18] utilized an on-screen arrow navigation 
aid much like ours in their AR and VR indoor navigation 
application. Darken et al. [4] studied the performance of a 
variety of VR navigation tools including: arrows, mini-maps, 
landmarks and embedded paths. They concluded that arrows 
are inefective on their own as navigation aids and should 
be complemented with additional hints like landmarks. We 
added landmarks in our virtual space to ensure that the con-
clusion of our user study is not skewed by the inability of 
arrows to guide users. 
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Figure 2: Overview of our approach. 

Eye-tracking in HMD: Several attempts have been made to 
enable eye-tracking in head-mounted displays. Pai et al. [22] 
experimented with using gaze depth for interaction. They 
used an Oculus Rift HMD with an added eye-tracker de-
signed by Pupil Labs. Shimizu et al. [28] modifed the Google 
Cardboard by using an Electrooculography (EOG) module 
extracted from an AR device to pair the Cardboard with eye-
tracking capabilities. We used an eye-tracking VR headset 
in conducting our experiments. Our HMD (FOVE), however, 
was pre-designed with an IR eye-tracker. Please refer to Vel-
loso et al. [31] for several gaze-based game mechanics based 
on the FOVE. 

3 OVERVIEW 

Figure 2 shows an overview of our approach. By using eye-
tracking data collected from subjects navigating a virtual 
environment, we trained a classifer to predict user’s need 
for a navigation aid as a result of navigating a convoluted 
virtual environment. Essentially, our classifer learned gaze 
patterns indicating users will most likely request help in 
fnding their way. Using this classifer, we experimented 
with adaptively displaying navigation aids to users. Finally 
we demonstrated the efectiveness of our aid by conducting 

Figure 3: Participants of our data collection experiment com-
pleted missions while wearing the (b) FOVE eye-tracking 
virtual reality headset. Their position and gaze data were 
recorded and later used to train our LSTM. (a) The red 
dot—not shown to the participant during gameplay— depicts 
this participant’s gaze point, and the yellow navigation aid 
shows the closest path to the destination. 

a user study comparing traditional navigation aids to our 
adaptive approach. 

4 TRAINING DATA COLLECTION 

In order to train a time-series classifer to classify gaze pat-
terns of users as “needing” or “not needing ” navigation 
help, we collected gaze data from participants navigating 
a VR space. We preprocessed this data set to remove noise 
and used a windowing approach to produce labeled gaze 
sequences to feed the classifer. 
Participants: We recruited 22 college and graduate students 
with ages ranging from 18 − 30 to participate in our IRB-
approved experiments. 
Setup: To navigate in the environment, each participant 
wore a FOVE virtual reality headset which tracks his/her 
head orientation and gaze. The FOVE had a built-in infrared 
eye-tracking system that operates with a frame rate of 120 
fps. An Internal Measurement Unit (IMU) was used to track 
the head orientation and an infrared sensor was used to track 
the user’s gaze. It displayed visuals at a frame rate of 70 fps, 
while our program sampled data at 50 fps. Users controlled 
their locomotion using a game controller. Figure 3 shows 
the FOVE headset and an example of the display shown to 
participants. 
Tasks: To collect the data set for training our classifer, we 
designed a 3D virtual city (VR City) in Unity complete with 
mock supermarkets, auto-repair shops, gas stations, etc. The 
layout of VR City is shown in Figure 4. Each participant 
completed a total of 4 tasks by navigating the city in virtual 
reality. The participant needed to fnd a fruit in each task. 
In the frst half of each task, we placed each participant 

at a randomly selected starting point from a pool of 5 pre-
specifed locations and asked him/her to fnd a fruit (apple, 
strawberry, banana or kiwi on each). Note that the closest 
path to the fruit is shown to the participant to help him/her 
fnd the fruit, as depicted in Figure 3. 

After becoming familiar with the route by completing the 
frst half (from the starting point to the fruit) which served as 
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Figure 4: VR city’s layout. The participants were asked to 
navigate the virtual city in the training data collection ses-
sions. The stars show the stating points’ locations, while the 
other icons show the fruits’ locations. 

a training task, in the second half of each task, the participant 
was asked to return to the same starting point selected in the 
frst half. However, this time, the path was not shown to the 
participant unless it was triggered it by pressing a button 
on the controller. If the path was triggered to be shown, the 
participant needed to wait for at least 30 seconds before 
he/she could trigger the path again. This time constraint was 
designed to avoid participants abusing the hint button, and to 
ensure that the hint was most likely displayed only when the 
participant needed it, reducing the likelihood of adding false 
positives to the training set. To further push participants to 
feel confused, we placed a barrier in a random location on 
the path they followed in the frst half of the session while 
looking for the fruit. Figure 5 provides an overview of our 
tasks. 

VR City was designed to be maze-like and difcult to nav-
igate because we intentionally wanted participants to feel 
confused, thus pressing the hint button intermittently and 
providing us with positive samples (corresponding to navi-
gation aid needs) to train our classifer. 

5 NAVIGATION AID NEED PREDICTION 

Data Processing 

In each task a participant completed, we collected a time 
series of gaze angles, along with markers of whether the 
navigation aid was shown to the participant or not. We com-
puted the gaze angle as follows: 

θt = acos(ĝt • ĥt ), (1) 

where the the gaze angle θt at time t is computed using 
the inverse cosine of the dot product of the normalized gaze 

Figure 5: We asked participants to fnish tasks during the 
data collection phase. (a) The participants were dropped at 
the starting point. (b) They were asked to follow the path 
to (c) a fruit. After fnding the fruit, participants were asked 
to fnd their way back to the starting point. The path was 
hidden from the participants unless triggered by pressing 
a button. (d) Barriers were randomly placed along the path 
back to the starting point to intentionally confuse the par-
ticipants. 

direction vector ĝt and normalized head forward direction 
vector ĥt at time t . Figure 6 shows an illustration of our gaze 
angle computation. In our experiments, we found that the 
gaze angle was sufcient to predict navigation aid need using 
our model. To better generalize our approach, we avoided in-
cluding any features that could be scene specifc (e.g., looking 
at buildings, turns, ground). 
The series of gaze 

angles computed for 
a participant’s session 
comprise a gaze ses-
sion instance. We stan-
dardized our gaze ses-
sion instances by sub-
tracting their mean and 
scaling them to unit 
variance. We padded 
gaze instances that are 
shorter than the longest 
gaze instance with zero 
padding. This padding was only done for normalizing our 
data set and was removed before advancing to any of our 
other preprocessing steps. 

Figure 6: Computing the gaze angle. 
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Figure 7: Windowing and labeling of gaze angle sequences. 
More details are provided in the Data Processing section. 

Noise Reduction: Due to calibration errors for some partici-
pants, the FOVE eye-tracker produced some noisy sequences. 
Thus, it was necessary to smooth the sequences after stan-
dardization. We used a moving average flter with a window 
size of 50 time frames (1 second) to smooth out any noise in 
the gaze sequences. 
Windowing: After preprocessing the gaze samples we used 
a sliding window to produce the fnal sequences for classif-
cation. We found that using a window of size 350 time frames 
provided us with the best trade-of between accuracy and 
the shortest possible window for prediction. Each 350 sized 
sequence gave us data from about 7 seconds of game-play. 
Figure 7 illustrates our windowing and labeling method. 
Labeling: We labeled the windowed gaze sequences ac-
cording to the navigation aid marker previously mentioned. 
Subjects likely felt a need for directional help prior to press-
ing the hint button, i.e., before the navigation aid marker 
indicated that the path was shown (see Figure 7). Consequen-
tially, we labeled all the windowed gaze sequences within 
a window’s width (or 350 time frames) before a navigation 
marker as “positive” (need for navigation aid). The remaining 
windowed gaze sequences were labeled as “negative”. 
Data: We collected a total of 88 gaze sequences, one for each 
of the four tasks our 22 participants completed. The labeling 
on these gaze sequences produced an unbalanced data set 
with 540, 409 negative samples and 48, 033 positive samples. 
To create our training set, we extracted 76, 852 samples to 
create a balanced data set (containing 80% of the number of 
positive samples and the same number of negative samples). 
The test set was created by using the remaining 20% of the 
positive samples not included in the training set, as well as 
the same number of randomly-selected negative samples 
that were not included in the training set. 

Prediction Model Details 
Topology: We employed Lustig et al.’s Long-short Term 
Memory (LSTM) topology [17] in our approach considering 
the similarities between our problem statements. Lustig et al. 
successfully applied an LSTM [11] recurrent neural network 
–which can efectively identify patterns in large amounts 
of sequence data compared to rule-based approaches– to 
classify 2D gaze patterns of readers, while we attempted to 

classify gaze patterns of users navigating a virtual environ-
ment. Similar to their network structure, our network’s outer 
layer had 512 hidden units of LSTM blocks. Furthermore, we 
used hyperbolic tangent as our output activation function 
and a hard sigmoid for our input (recurrent) activation func-
tion in these LSTM blocks. Finally, our outer layer consisted 
of one output unit with a sigmoid activation function. A 
visualization of our network’s topology is provided in the 
supplementary material. 
Training: We optimized our network using Adam [12], 
a gradient-based stochastic optimizer, with binary cross-
entropy as our loss function. 

In order to select the best performing model, we extracted 
10% of our training data to be used as validation data while 
training. This validation data was held-out and used to mea-
sure the accuracy of the model at each epoch. In other words 
it was unchanged throughout training. 
The training data was shufed before each epoch. It did 

not contain any sample from the validation or test sets. The 
optimizer iterated over the training data in batches of 100 
samples. We trained our model for 500 epochs and selected 
the network that had the best accuracy (100%) on the val-
idation data at the 237th epoch as our classifer. Figure 8 
shows the validation and training accuracy achieved at each 
epoch. Beyond the 237th epoch the validation and training 
accuracies generally begin to drop; we halted training the 
LSTM at the 500th epoch. 
Implementation: We used the Python library Keras with 
a TensorFlow GPU back-end to set up and train our net-
work. We trained our network in a GPU-based high perfor-
mance computing cluster node, which had two 4-core Intel(R) 
Xeon(R) CPUs with a processor base frequency of 2.40GHz 
and 32GB of RAM. We utilized two GeForce GTX 670 GPUs 
in our training. We trained our model for 500 epochs which 
took approximately 75 hours on the GPU node. 

6 EVALUATION OF MODEL PREDICTIONS 

The sigmoid function on the fnal layer of the LSTM produces 
a score ranging from 0 to 1. Using a decision threshold σ ∈ 
[0, 1] and this score, we can classify samples as negative (< σ ) 
or positive (≥ σ ). In the evaluation of the LSTM, we set the 
threshold σ to be 0.5. 

Our model can predict users’ need of navigation aid with 
high accuracy as evidenced by the accuracy, precision, recall 
and F-score of our classifer shown in Table 1. We achieved 
a 99.94% accuracy on our 19, 214 sample test set. Please refer 
to the Data Processing section for more details about how 
we created this test set. 

We show the confusion matrix as further evidence of 
our model’s performance in Figure 9. The confusion matrix 
shows a comparison between the numbers of positive and 
negative samples in the test set that were predicted correctly. 
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Figure 8: Validation accuracy of our model at every epoch of 
training. The accuracy was computed using the held-out val-
idation data. The network corresponding to the 237th epoch 
was selected as our classifer. 

Figure 9: Confusion matrix showing the result of classifying 
the test set using our model, where “no need” and “need” 
denote prediction as negative (no need for navigation aid) 
and positive (needing navigation aid) respectively. 

Accuracy Precision Recall F-score 
99.94% 99.92% 99.96% 99.94% 

Table 1: Classifcation metrics on our test set. 

We observed that our model correctly predicted the exis-
tence of navigation aid need (positive samples) more than 
99% of the time, while erroneously predicted that a user did 
not need navigational aid less than 1% of the time. Similarly, 
our model correctly predicted that a user did not need aid 
(negative samples) more than 99% of the time, while mistak-
enly predicted that he/she needed navigation aid less than 
1% of the time. 

7 ADAPTIVE NAVIGATION AID 
Anticipating when users need navigation is useful in design-
ing interactive navigation tools. Using our navigation aid 

classifer, we were able to determine if a user needed naviga-
tion aid with only 7 seconds (350 time frames) of gameplay 
using his/her gaze. After gathering more than 7 seconds of 
data, we can slide our 7-second window to continuously 
classify new gaze points. Once we classifed a user’s gaze 
patterns as needing navigation aid, we displayed a tool to 
guide him/her to the destination. In our experiments, we re-
alize this tool in the form of an adaptive arrow or a mini-map 
which are commonly used. 

Designers and end users of 
virtual experiences can select 
the level of navigation help 
they want using the “aid sen-
sitivity control bar” shown 
in Figure 10. Users can select 
how sensitive the adaptive 

Figure 10: Users can set the aid is with regard to classify-
sensitivity of the adaptive ing gaze patterns as needing navigation aid. 

navigation aid. Each level of 
sensitivity chosen on the UI corresponds to the number of 
times per minute the gaze must be classifed as positive be-
fore the aid is shown. For example, Figure 10 shows a user 
selection that displays the aid only if 3 or more windowed 
gaze sequences in a minute have been classifed as positive– 
pertaining to someone who would need navigation aid. Each 
windowed gaze sequence refers to data collected from 7 sec-
onds (350 time frames) of navigation. In our user study, we 
set the sensitivity to 1 (i.e., we display the adaptive aid any-
time a participant’s gaze indicates he/she needs navigation 
help). 

8 USER STUDY 

Our adaptive navigation aid was designed to enhance nav-
igation in VR. We conducted a user study to validate the 
efectiveness of our adaptive aid for guiding users to their 
destinations fast and with little frustration. We also com-
pared our adaptive aid with conventional permanent aids 
(arrows and mini-maps) with regards to user satisfaction and 
immersiveness. 
Participants: Fifteen healthy college and graduate students 
whose ages ranged from 18 − 30 were recruited to participate 
in this study, akin to [3, 16, 23]. Participants gave written 
consent to participate in the IRB-approved user study. 
Setup: We used the virtual reality headset setup same as 
that of our data collection experiment. 
Tasks: To conduct the user study, we used the VR City scene 
that had been employed in the data collection experiment 
with some minor modifcations. Because the VR City lay-
out was designed to be maze-like, and we did not intend to 
frustrate participants with the wayfnding task, we opted to 
facilitate navigation in this scene by slightly modifying it. 
Figure 11 shows the modifed layout. We highlighted certain 
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Figure 11: The VR City scene modifed for our user study. A 
tower was added as a landmark to the scene. Neighborhoods 
of VR City were given diferent colors to help participants 
deduce their locations in the scene. 

regions of the scene using diferent colors to make it easy 
for participants to localize their positions in the scene. 
As landmarks play an important role in navigation [2, 4, 

13], we added a tower to the scene, which was tall enough 
to be viewed from any location in the scene. 

We asked the participants to complete tasks similar to the 
tasks designed for our data collection experiment. In the frst 
half of each task, the participant was assigned to a starting 
point and was asked to follow a path to a specifc fruit. In 
the second half, he/she was asked to return to the starting 
point under an aid condition. 
In our user study, we specifed a total of 80 tasks, each 

one being a combination of a starting point, a fruit and an 
aid condition (Figure 11 shows the starting points and fruit 
locations). Our 5 aid conditions are defned as: no aid, per-
manent arrow, adaptive arrow, permanent mini-map and 
adaptive mini-map. Figure 15 shows screenshots of the aids 
used. Every participant in our study was exposed to all of 
our aid conditions, to allow for a within-subject comparison 
between aids. 

We cycled through all of these 80 tasks giving each partic-
ipant 5 distinct tasks, such that he/she completes one task in 
each of our 5 aid conditions. The participant may complete 
a task with the same fruit or same starting point twice, but 
never the same fruit and starting point pairing. For example, 
participant A was given task 1 which asks him/her to fnd 
the apple from starting point 1, using the adaptive arrow on 
his/her way back. In task 5, participant A may be dropped 
in starting point 1 to fnd the kiwi using a permanent mini-
map or dropped in starting point 3 to fnd the apple using 
a permanent min-map on the way back. Because we had 15 

Figure 12: Participants of our user study answered the ques-
tions with a rating of 1 (strongly disagree) to 5 (strongly 
agree). The questions are listed in the user survey section. 

participants in total we were able to cycle through all of our 
tasks giving each participant a unique task. In the previous 
scenario, for example, other participants will not complete 
task 1 and task 5 since they were already assigned to partici-
pant A. This task design was created to prevent participants 
from being biased towards an aid condition due to the or-
der it was given (e.g., the participant might fnd it easier to 
complete the task under the fnal condition, after becoming 
familiar with the scene in early tasks under other conditions) 
or its pairing with a starting point and fruit (e.g., partici-
pants might fnd it easy to return to starting point 3 from 
the apple because blue might be the most memorable color, 
and starting point 3 is in the blue neighborhood). To pre-
vent the aid from biasing the participant’s post-navigation 
survey decisions, he/she was not explicitly informed about 
which aid condition was present in the task prior to taking 
its corresponding survey. 
User Survey: Participants were asked to complete a survey 
after each task to evaluate the performance of the aid given 
under the condition. We opted to use a 5-point Likert scale 
to evaluate the aids similar to [23]. The participants were 
asked to answer the following questions with a rating of 1 
(strongly disagree) to 5 (strongly agree): 

• You often feel frustrated during the navigation? 
• The aid popped-up when you needed it? 

Results 
Adaptive Aid’s Efects on Navigation. Figure 12 visualizes par-
ticipants’ answers to the question “You often feel frustrated 
during the navigation?” as a boxplot. A Friedman test revealed 
a signifcant efect of aid condition on frustration reported 
(χ 2(4) = 13.11, p = 0.01). A post-hoc test using Wilcoxon 
signed rank-test with Bonferroni correction showed that 
the median of navigation using our adaptive arrow (Md=1 
strongly disagree) was reported to be less frustrating than 
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Figure 13: Average time taken by participants to complete 
our user study tasks. 

navigation without an aid (Md=2 disagree) (W = 11, p < 0.01, 
r = 0.33). Figure 12 also shows a larger range of frustra-
tion level reported for users navigating with no aid, with 
some participants who reported a rating of 4 (agree). Com-
paratively, participants reported at most neutral frustration 
(rating of 3) after navigating using our adaptive arrow. 

Our Wilcoxon signed rank-tests with Bonferrroni correc-
tion did not fnd any signifcant diference in the frustration 
reported between navigation without an aid (Md=2) and 
navigation with our adaptive mini-map (Md=2) (W = 34.5, 
p = 0.14). We did not fnd a signifcant diference in frus-
tration reported between navigation without an aid (Md=2) 
and with a permanent mini-map (Md=2) (W = 35, p = 0.15). 
This could indicate that the mini-map is generally frustrat-
ing by nature as a navigation tool, contrasted with its arrow 
counterpart which received a lower frustration rating (Md=1, 
strongly disagree) when compared to navigation without an 
aid (Md=2) (W = 0, p < 0.001, r = 0.4). 

Comparing Adaptive Aids with Permanent Aids. Figure 12 
showed that participants generally reported smaller frustra-
tion ratings after navigation with a permanent arrow (Md=1, 
strongly disagree) compared to our adaptive arrow (Md=1, 
strongly disagree) (W = 0, p < 0.01, r = 0.39). The majority 
of participants reported that they either disagreed (rating of 
2) or strongly disagreed (rating of 1) that navigation with 
our adaptive arrow was frustrating. At most participants 
reported feeling neutral (rating of 3) frustration after navi-
gating with our adaptive aid. This indicates that our adap-
tive arrow did not cause participants to feel frustrated, it 
did however increase frustration compared to permanent 
arrows. This suggests that there is a slight trade-of between 
the lowest possible level of frustration and immersiveness 
that the designer needs to consider while selecting a proper 
navigation aid to provide. 

The post-hoc Wilcoxon rank-test with Boneferroni correc-
tion showed no signifcant diference between the frustration 

Figure 14: Participants’ gaze when navigating without an aid 
in the user study. They looked at the top of the screen antic-
ipating an aid to appear. 

level reported by participants after navigating using the per-
manent map (Md=2) compared to the adaptive map (Md=2) 
(W = 46, p = 0.43). Similar to our comparison of navigation 
with no aid and adaptive mini-map, the lack of signifcance 
could be attributed to the abstruse nature of the mini-map. 
Showing the map when it was not necessary might have 
caused participants to second-guess themselves and to stop 
to look at the map, instead of relying on their intuition to 
where the destination might be. 

Participants generally agreed that our adaptive aids ap-
peared when needed, with our adaptive arrow receiving a 
score of (Md=4, agree) and our adaptive mini-map receiv-
ing a score of (M=4, agree) with regard to timely pop-up 
in Figure 12. We conducted a Wilcoxon signed-rank test 
with Bonferroni correction to compare the timeliness of our 
adaptive arrow and mini-map and found that the diference 
between these two aids followed a symmetric distribution 
around zero (W = 39.5, p = 0.67). 
Figure 13 shows the average times taken by participants 

to complete our user study tasks. There was no signifcant 
diference in terms of task completion time when using the 
adaptive aids compared to when using their permanent coun-
terparts. Participants completed the task in an average of 
(M=51.15, SD=23.65) seconds using the permanent arrow, 
not signifcantly diferent than and the average completion 
time (M=81.33, SD=61.68) of the participants while using 
the adaptive arrow (W = 30.5, p = 0.09). The Wilcoxon 
Signed-rank test with Bonferroni correction did not show a 
signifcant diference (W = 55, p = 0.78) in the average com-
pletion time of participants using the permanent (M = 93.72, 
SD=61.11) and adaptive mini-map (M = 80.46, SD=51.97) 
neither. 

Gaze Paterns under Diferent Conditions. To visualize par-
ticipants’ visual attention under diferent conditions, we 
showed heatmaps of their average gaze points. Particularly, 
we analyzed the participants’ gaze points inside and outside 
the aid’s region under diferent aid conditions. The arrow 
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Figure 15: Two types of aids used in our user study. (a) The arrow points the participant to the direction of the goal, (b) while 
the mini-map shows the participant’s position and direction. Gaze heat-maps of participants traversing with each of these 
navigation aids are shown. Red and blue regions respectively indicate high and low amounts of visual attention. 

Figure 16: VR Village, a rural scene we created to evaluate our classifer’s accuracy. 
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Figure 17: Gaze heatmap of participants navigating VR Vil-
lage 

and mini-map aid regions are shown in the supplementary 
material. 

We found that participants looked at the top of the screen 
even when no aid was shown as depicted in Figure 14. It is 
plausible that some participants were anticipating an aid to 
be shown to them after completing one or more tasks with a 
navigation aid. 
Arrows: The adaptive arrow caused participants to explore 
a larger portion of the screen outside of the aid’s region. Us-
ing a Wilcoxon Signed- rank test (W = 18, p = 0.02, r = 0.62), 
the region outside of the permanent arrow received an aver-
age gaze fxation duration of (M=43.78, SD=16.21) seconds, 
signifcantly (27.04 seconds) shorter than the region outside 
of the adaptive arrow has received (M=70.82, SD=41.61). 
It is obviously true that using the permanent arrow is 

less frustrating and more efcient than the adaptive arrow. 
However, when comparing the gaze patterns in Figure 15, 
it is clear that the adaptive arrow surpassed the permanent 
arrow in keeping participant’s attention on the scene as 
opposed to on the aid. 
To conclude, our adaptive arrow is efective in situations 

which the designer prefers players to look around the virtual 
environment, without causing them to feel as frustrated as 
navigating without an aid, or signifcantly increasing the 
task completion time. 
Mini-maps: The adaptive mini-map did not signifcantly 
change the participants’ gaze behavior compared to the 
permanent mini-map. The gaze region outside of the mini-
map received an average gaze fxation duration of (M=70.37, 
SD=50.5) and (M=52.4, SD=20.3) seconds in the case of per-
manent and adaptive mini-maps respectively. It appears that 
participants explored the bottom portion of the screen more 
when using the adaptive mini-map than when using the per-
manent mini-map. However, this contrast was not found to 
be signifcant as in the case of the arrows (W = 51, p = 0.61). 

The mini-map is inherently less usable than the arrow. It 
is possible that participants felt frustrated more often whilst 
navigating with the adaptive min-map, causing it to be trig-
gered to them frequently, thus diverting their gaze away 
from the outside of the aid region. Conversely, the adaptive 

Figure 18: Relationship between a participant’s gaze, aid re-
quests and our classifer’s prediction in VR Village. Green 
shows regions when our classifer predicted the navigation 
aid need just before the participant requested help. 

arrow gave participants the opportunity to utilize their in-
stinctive cognitive navigation skills without adding a layer 
of confusion. Overall, we believe that a participant’s own 
wayfnding skills combined with an intuitive adaptive navi-
gation aid like the adaptive arrow might have been ideal in 
completing a navigation task. 

9 DISCUSSION 

Preliminary Test with a Diferent Scene: To test our clas-
sifer’s performance on virtual environments the LSTM was 
not exposed to, we created a new scene VR Village (shown in 
Figure 16). Using the same data collection experiment setup 
in Section 4, We asked 12 participants, with ages ranging 
from 18 − 29, to complete the same data collection tasks by 
following a path to a fruit and returning to the starting point. 
This data set was treated as an additional test set, and the 
classifer trained with the VR City data set was able to predict 
participant’s need for navigation aid with a 80.68% accuracy. 

We suspect that the drop in accuracy was due to the change 
in gaze behavior of participants navigating this rural scene. 
This is evident in Figure 17 showing the gaze heat-map of 
participants navigating VR Village. Participants viewed VR 
Village in an oval pattern with more spread around the hori-
zon, while they viewed VR City in a U-shaped pattern (see 
Figure 14) focusing on the city blocks to localize their posi-
tion. Unlike in the urban VR City scene where participants 
could use buildings, signs and counting street blocks to fnd 
their way; in the rural VR Village, participants relied on 
mountains, hills and trees to localize their position. 
For some participants, the change in gaze patterns was 

minor and we were able to anticipate when they needed 
navigation aid. An example is shown in Figure 18. However, 
in order to maintain our high accuracy for all users it seems 
preferable to detect the type of the scene and task users are 
navigating and employ a navigation aid need classifer that 
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has been trained on scenes and tasks of a similar type. We 
could also request that users press the hint button when 
completing a new task in a new scene. Afterward, we could 
use this data to fne-tune our mode. 
Applications: Adding immersion to the virtual experience 
is not the only beneft of our adaptive aid. Our aid could be 
used by level designers to unintrusively collect data from 
users about the virtual experience. This could be helpful in 
allowing the designers to analyze the navigation difculty 
of environments under design. 
Moreover, our classifer and sensitivity bar mentioned in 

Section 7 can allow users to adjust the navigation difculty 
according to their wayfnding skill level. Also, if level design-
ers prefer users to explore the environment and not rely on 
a navigation aid, they can start users with a highly sensitive 
adaptive aid, but gradually decrease the sensitivity as users 
become more accustomed to the navigation experience. 
Limitations and Future Work: Although eye-tracking 
embedded VR headsets are promising, they still do not attain 
the precision of standard eye-trackers. Faulty calibration in 
the FOVE resulted in several noisy sessions, in addition to 
being less comfortable compared to the more lightweight tra-
ditional eye-trackers. As the technology behind eye-tracking 
headsets matures, these limitations will hopefully subside. 

Furthermore, IR-based VR trackers do not generalize well 
across all eye and skin colors. This phenomenon was ex-
plored by Feit et al. [5] using the IR-based tracker TobiiEye 
X. Li et al. [15] noted varying cross-user accuracy in the 
FOVE due to diferences in amount of refected light across 
skin colors and pupil light absorption across eye colors. 

The varying latencies, frequencies and accuracies of head-
mounted displays are likely to afect our prediction model. 
In other words, a head-mounted display with diferent spec-
ifcations than the FOVE, which can not be remedied by 
adjusting the sampling rate, is likely to require fne-tuning 
of our model. 

We found it challenging to label our dataset with the def-
nite moments that our subjects felt a need for a navigation 
aid. From our observations on the subjects’ behavior and 
several labeling attempts in preliminary experiments, we 
estimated the time that the subjects might have needed the 
aid before they pressed the hint request button. This estima-
tion could have been improved by using an additional tool to 
serve as a reference point for the cognitive state subjects are 
in when needing help. For example, an Electroencephalogra-
phy (EEG) sensor could have been utilized for monitoring 
subject’s brain activity, and any discernible recordings before 
triggering the hint button could have been used as markers. 
Although we extensively explored our adaptive tool’s ef-

fectiveness in our user study, we have yet to conduct an ex-
tensive usability study. The NASA TLX (Task Load Index) [9] 
could help us identify ways to improve users’ experience 

with our tool. We could also study the usability of a hybrid 
solution: an application can employ our adaptive navigation 
aid and allow users to manually trigger the aid when needed 
as well. We could also adaptively fade out the aid when users 
no longer need the help. These hybrid solutions could possi-
bly achieve the permanent arrow’s low frustration level and 
the adaptive arrow’s immersiveness. We empirically showed 
that participants found navigation using the permanent ar-
row less frustrating, while it pulls their gaze away from the 
scene and puts it onto the aid. A best-of-both-worlds solution 
could maintain the adaptive arrow’s immersiveness and the 
permanent arrow’s low-level of frustration. 
Given the reasonable accuracy of our classifer, it could 

be extended to serve other navigation-related purposes. For 
example, the classifer’s predictions could be used by level 
designers for analyzing the navigability of a virtual envi-
ronment in design. If a specifc region of the environment 
frustrated a signifcant number of users, our prediction model 
could be applied to detect that and visualize it for the level 
designer. 

Finally, we explored the use of gaze patterns for facilitating 
virtual environment navigation only. It would be interest-
ing to investigate whether our approach can be applied in 
a real-world setting, for example, popping up navigation 
hints through augmented reality glasses to assist a user in 
navigating an unfamiliar environment in the real world. 

10 CONCLUSION 

In this paper, we investigated the use of gaze patterns for 
classifying the need for navigation aid in virtual reality. We 
devised a model that is able to predict when users needed 
navigation help and used the predictions to adaptively aid 
them in fnding the right way. We validated the efcacy of 
our adaptive navigation aid through a user evaluation study, 
and showed its potential in improving the engagement of 
users in virtual navigation while efectively guiding them to 
their destinations. 
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